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Abstract
Background Artificial intelligence (AI) has the potential to enhance patient safety in surgery, and all its aspects, including 
education and training, will derive considerable benefit from AI. In the present study, deep-learning models were used to 
predict the rates of proficiency acquisition in robot-assisted surgery (RAS), thereby providing surgical programs directors 
information on the levels of the innate ability of trainees to facilitate the implementation of flexible personalized training.
Methods 176 medical students, without prior experience with surgical simulators, were trained to reach proficiency in five 
tasks on a virtual simulator for RAS. Ensemble deep neural networks (DNN) models were developed and compared with 
other ensemble AI algorithms, i.e., random forests and gradient boosted regression trees (GBRT).
Results DNN models achieved a higher accuracy than random forests and GBRT in predicting time to proficiency, 0.84 vs. 
0.70 and 0.77, respectively (Peg board 2), 0.83 vs. 0.79 and 0.78 (Ring walk 2), 0.81 vs 0.81 and 0.80 (Match board 1), 0.79 
vs. 0.75 and 0.71 (Ring and rail 2), and 0.87 vs. 0.86 and 0.84 (Thread the rings 2). Ensemble DNN models outperformed 
random forests and GBRT in predicting number of attempts to proficiency, with an accuracy of 0.87 vs. 0.86 and 0.83, 
respectively (Peg board 2), 0.89 vs. 0.88 and 0.89 (Ring walk 2), 0.91 vs. 0.89 and 0.89 (Match board 1), 0.89 vs. 0.87 and 
0.83 (Ring and rail 2), and 0.96 vs. 0.94 and 0.94 (Thread the rings 2).
Conclusions Ensemble DNN models can identify at an early stage the acquisition rates of surgical technical proficiency of 
trainees and identify those struggling to reach the required expected proficiency level.

Keywords Artificial intelligence robotic surgery · Machine learning robotic surgery · Deep-learning robotic surgery · 
Artificial intelligence surgical simulation · Machine learning surgical simulation · Deep-learning surgical simulation

Surgery is quintessentially a craft medical specialty because 
the patient outcome depends on the overall quality of the 

executed operation, and thus, on the surgical skills (cogni-
tive, technical, and non-technical), competence, and perio-
perative care by the surgeon. Patient outcome ultimately 
reflects on the quality of surgical training initially proposed 
by William Halsted [1] and the introduction more than a 
century later of credentialing and privileges. The Halsted’s 
training program for surgical residents has been in estab-
lished use worldwide and remained virtually unchanged for 
nearly a century until the advent of minimal access surgery 
(MAS), which posed several challenges on the new skills 
surgeons have to acquire to perform operations competently 
and safely by this approach. These skills are perceptual, 
visuo-spatial, psychomotor, and cognitive [1].

Virtual reality (VR) simulators were developed for 
the training of basic skills first for laparoscopic surgery 
and, subsequently, for robot-assisted surgery (RAS) [1]. 
They enable tracking of trainees’ performances by using 
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built-in algorithms. A seminal randomized control trial 
(RCT) conducted at Yale University demonstrated that 
surgical residents trained until proficiency on a VR for 
laparoscopic surgery completed faster and made five times 
fewer errors during laparoscopic cholecystectomy on real 
patients than a control group following traditional appren-
ticeship training [2].

The level of technical skills for MAS varies greatly 
among surgeons as shown in a study involving all Michi-
gan hospitals demonstrating that operations performed by 
highly skilled surgeons had fewer postoperative complica-
tions and lower reoperation rates [3].

During the last decade, artificial intelligence (AI) has 
been applied to several medical specialties, e.g., radiology 
and dermatology for image analysis. Some studies have 
indicated that surgical clinical practice stands to gain from 
the current explosion of AI [4, 5]. In this respect, surgical 
science has recently adopted a data-driven approach to 
improve the quality and efficiency of operations through 
acquisition, analysis, and modeling of data [6]. This 
approach represents a paradigm shift in surgical clinical 
practice, including surgical education and training.

Non-linear machine learning (ML) algorithms, espe-
cially deep learning (a subclass of ML based on neural 
networks), have the potential to predict the proficiency-
gain curves for operative surgery for two reasons. First, 
there is no linear relationship between number of attempts 
and proficiency gain for most surgical trainees. An estab-
lished method to monitor proficiency-gain curve in sur-
gery is cumulative summation (CUSUM). This describes 
performance of trainees as a series of incremental or 
decremental scores, depending on failure or success [7]. 
However, CUSUM cannot predict important data on train-
ees’ progress toward efficient and safe execution, e.g., 
training time and the number of attempts needed to reach 
the required competence level. Second, proficiency-gain 
curves vary substantially among individuals as they reflect 
individual levels of innate technical aptitude [8]. Accord-
ing to the results of a Delphi survey involving surgical 
program directors in Canada, there is a group of residents, 
ranging from 5 to 15%, who have trouble in reaching tech-
nical competence [9]. In this regard, the demonstration of 
the robustness of ML models to predict the different rates 
of proficiency acquisition of residents would be beneficial 
for the early detection of trainees struggling to achieve the 
required level of technical skills. Overall, the early iden-
tification of proficiency acquisition patterns could enable 
surgical program directors to customize the teaching of 
technical skills on individual basis. This would have impli-
cations at the level of curriculum planning by estimating 
in advance the length of training, the time assigned to 
trainers, and costs in competence-based surgical training 
curricula.

Despite the potential of ML models for these purposes, 
the supporting published evidence is limited to a retrospec-
tive study on VR for laparoscopic surgery [10]. In this study 
on 15 medicals students, ML models reached an accuracy 
of 72.0% and 89.0% to predict, respectively, the number of 
attempts to reach proficiency and the final performance at 
the VR simulator [10].

In the present study, we have applied deep neural net-
works (DNN) for the assessment of progress in surgical 
skills acquisition. More specifically, we designed ensem-
ble DNN models to identify a threshold, corresponding to 
the number of attempts needed to predict the training time, 
and the number of attempts needed to reach proficiency in a 
group of medical students without prior experience in surgi-
cal training. The medical undergraduate students performed 
exercises on a VR for RAS. The working hypothesis under-
pinning the study was that DNN models would provide more 
robust and accurate prediction than other ML algorithms.

Methods

Tests procedure

Undergraduate medical students of the University of Pisa 
(Italy) were recruited by an open non-remunerated call. 
They had no prior experience with surgical simulation. All 
recruited students were trained on the at dV-Trainer VR sim-
ulator (Mimic, Seattle, WA, United States), which replicates 
the master console of da Vinci robotic surgical system.

Participants were allowed ten days to complete success-
fully the following five exercises on the dV-Trainer: (i) Peg 
board 2 (PB2), (ii) Ring walk 2 (RW2), (iii) Match board 1 
(MB1), (iv) Ring and rail 2 (RR2), and (v) Thread the rings 
2 (TR2). The participants had to reach proficiency, defined 
as ‘performing correctly the exercise with green levels in all 
metrics twice consecutively,’ before moving to the next exer-
cise. The second execution was required to exclude chance. 
Examples of proficiency-gain curves for RR2 task are shown 
in Fig. 1. A tutor was present to provide all participants with 
instructions on the set up, ergonomics of simulator console, 
navigation through software menus, effective use of cam-
era, and clutch pedals. Institutional Review Board was not 
required for this study.

Data sources

The development of DNN and other ML models was based 
on data collected at EndoCAS surgical training center of the 
University of Pisa. These data include medical undergradu-
ates who had been trained to proficiency on a VR simulator 
for RAS from June 2016 to March 2017. This dataset was 
enlarged with data from new cases from January to February 
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2020. Part of the dataset had been published in a previous 
study from our group, specifically designed to determine the 
capability of the VR simulator to identify and quantify the 
size of three medical undergraduate groups with average, 
high and low innate aptitudes for manipulative skills [8].

Development of the models

The research was framed as a regression task for supervised 
learning with training time and number of attempts labeled 
as target variables. The scores of each attempt on the VR 
simulator represented the features. Scatter plots confirmed 
non-linearity between features and target variables. Boxplots 
revealed the presence of outliers which were included to 
maintain a large range of proficiency-gain curves. Ensemble 
AI models were then applied to the dataset. These repre-
sent a family of aggregated predictors capable of providing 
higher accuracy than the individual predictors [11]. Exam-
ples of ensemble AI models are random forests, and gradi-
ent boosted regression trees (GBRT). In this study, DNN 
ensemble models were designed. In the stacking configura-
tion of ensemble models, individual models are trained on 
a training set and their predictions used as input to train a 
meta-learner (blender), which provides the final prediction 
on the test data set. The process is depicted in in Fig. 2. More 

details on the description and implementation of the DNN 
ensemble models are reported in the Appendix.

The dataset was split randomly into training and test sets 
in a ratio of 80:20. A hold-out set was used as validation set 
from the training set in a ratio of 80:20. Grid search cross 
validation was performed on random forests and GBRT 

Fig. 1  Examples of proficiency-
gain curves for RR2 tasks

Fig. 2  Stacking DNN: data are used to train initial models (orange 
boxes). Their predictions are used to train the meta-learner (green 
box). Adapted from [11]
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to select the best hyperparameters on the training dataset. 
Ensemble learning models were then compared with a con-
ventional ML model as reference, i.e., Kernel support vector 
machine (SVM). Keras with Tensor Flow (version 2.0) as 
backend and scikit-learn (version 0.22) were used for data 
analysis.

Results

A total of 176 medical students completed their training 
until they reached proficiency. The students comprised 81 
(46.0%) males, and 95 females (54.0%), with a mean age of 
23.5 (± 3.0) years. They were in the following undergradu-
ate years: UGY1 = 22, UGY2 = 38, UGY3 = 49, UGY4 = 27, 
UGY5, and 39 UGY6 = 39. The number of participants 
assessed over the attempts in each task is shown in Table 1. 
The training time and number of attempts to reach profi-
ciency are reported in Table 2. Training time includes the 

net execution time of each attempt but excludes the loading 
time of the exercises and time to provide medical students 
with feedback.

Performances of the DNN ensemble models

The ensemble DNN models obtained the highest accuracy 
on the same attempt for both target variables: five for PB2, 
three for RW2 and MB1, four for RR2, and two for TR2, as 
reported in Tables 3 and 4. The dataset size for each task 
was 95 for PB2, 140 for RW2, 103 for MB2, 119 for RR2, 
and 165 for TR2. The ensemble DNN models achieved the 
following accuracy values on training time: 0.84 for PB2, 
0.83 for RW2, 0.81 for MB1, 0.79 for RR2, and 0.87 for 
TR2. Regarding the accuracy for number of attempts, DNN 
ensemble achieved: 0.87 for PB2, 0.89 for RW2, 0.91 for 
MB1, 0.89 for RR2, and 0.96 for TR2. Analysis of features 
selection for both target variables revealed that ensemble 
DNN models achieved the highest accuracy by reducing the 
number of features in RW2 and MB1 task (two out of three 
features), and RR2 (three out of four). By contrast, ensemble 
DNN needed all features in the other tasks, respectively, five 
for PB2 and two for TR2.

Comparison with other ML models

Data of kernel SVM, a non-ensemble algorithm used as ref-
erence of conventional ML algorithms, are also reported. A 
comparison on accuracy scores of ensemble learning (DNN 
vs random forests and GBRT) and kernel SVM is outlined 

Table 1  Number of medical students assessed during attempts in each task

Attempt 1 Attempt 2 Attempt 3 Attempt 4 Attempt 5 Attempt 6 Attempt 7 Attempt 8 Attempt 9 Attempt 10 More 
than 10 
attempts

PB2 161 161 157 128 95 65 45 33 20 15 12
RW2 170 170 140 100 74 58 46 27 14 9 6
MB1 172 172 103 67 40 27 18 10 9 7 4
RR2 157 157 145 119 88 73 64 56 40 32 22
TR2 165 165 81 58 40 25 16 13 9 8 6

Table 2  Training time and number of attempts expressed as median 
(range) for all medical students

Training time (s) Number of attempts

PB2 883.0 (229.1–3438.1) 5 (2–16)
RW2 747.8 (229.5–2922.2) 4 (2–14)
MB1 794.2 (322.4–4535.9) 3 (2–14)
RR2 1518.8 (418.9–5999.9) 3 (2–22)
TR2 439.6 (217.3–2996.1) 2 (2–14)

Table 3  Accuracy values (r2) of 
ensemble DNN compared with 
other ML models to predict 
training time

Best attempt Dataset size Meta-leaner 
(ensemble 
DNN)

Random forests Gradient boosted 
regression trees

Kernel SVM

PB2 5 95 0.84 0.70 0.77 0.70
RW2 3 140 0.83 0.79 0.78 0.79
MB1 3 103 0.81 0.81 0.80 0.70
RR2 4 119 0.79 0.75 0.71 0.69
TR2 2 165 0.87 0.86 0.84 0.83



Surgical Endoscopy 

1 3

in Tables 3 and 4 for training time and number of attempts. 
All these algorithms reached their highest score in the same 
attempt as ensemble DNN models for both the target vari-
ables. Ensemble DNN outperformed the other algorithms 
in all instances, with the exception of prediction of training 
time for MB1 where ensemble DNN and random forests 
achieved the same accuracy (0.81), and prediction of num-
ber of attempts for RW2 where ensemble DNN and GBRT 
reported the same accuracy (0.89). For feature selection, the 
same number of features as ensemble DNN was achieved, 
with the exception of RR2 where the DNN model needed 
two features for training time compared to three by the other 
algorithms.

Discussion

Uptake of AI has spread rapidly to many fields, includ-
ing medicine. Deep-learning models have been shown to 
outperform humans in disease detection, e.g., pneumonia 
from chest X-rays [4]. The current study used non-linear 
algorithms, i.e., DNN, to demonstrate how these models 
can detect the proficiency-gain curves of trainees early and 
correctly in a large group of medical students trained and 
assessed by a VR simulator for RAS. The results confirmed 
that DNN models reached a higher accuracy than other 
ensemble ML algorithms (random forests and GBRT).

The only previously published report on ML for predic-
tion of proficiency-gain in surgery reported an accuracy of 
0.72 on the number of attempts to reach proficiency dur-
ing simulation-based training for laparoscopy [10]. How-
ever, this study was limited to 15 medical students, some 
of whom were assessed by a VR simulator while the others 
on a physical simulator for laparoscopy. Additionally, each 
participant was evaluated only on one task [10]. In sharp 
contrast, the present study assessed a larger number of medi-
cal students (ranging from 95 to 165 depending on the exer-
cise) trained on five component surgical tasks. The study has 
demonstrated that DNN predicted the number of attempts 
to reach proficiency with higher accuracy than the previ-
ously reported study. The accuracy of DNN ranged from 
0.87 for PB2 (the task with the highest threshold equivalent 

to five attempts) to 0.96 for TR2, the task with the lowest 
threshold (equivalent to two attempts). The developed DNN 
models also predicted the training time to proficiency with 
an accuracy ranging from 0.79 for RR2 (the exercise taking 
the longest time to complete training) to 0.87 for TR2. Addi-
tionally, the study confirmed the high capability of DNN to 
learn complicated training patterns with much higher accu-
racy than ensemble tree-based models (random forest and 
GBRT), and conventional non-linear ML algorithms such 
as kernel SVM.

To date, there have been few published studies on AI 
applied to training in RAS. Moreover, they did not assess 
the proficiency-gain curves. One study applied support vec-
tor machine to define the stylistic behavior of 14 participants 
with different level of experience during the execution of 
two tasks for three times on a VR simulator for RAS [12]. 
Other studies applied complex deep-learning models, e.g., 
convolutional neural networks and/or recurrent neural net-
works, for motion analysis of the John Hopkins University 
Intuitive Surgical Gesture and Skill Assessment Working 
Set (JIGSAWS), a public dataset with video and kinematic 
data of eight surgeons performing three RAS tasks (suturing, 
needle passing, and knot tying) on inanimate models [13]. 
Another study applied support vector machines to JIGSAWS 
dataset to predict skills classifications and scores assessed 
by Objective Structured Assessment of Technical Skill 
(OSATS) and Global Evaluative Assessment of Robotic 
Surgery (GEARS) [14].

The present study has two implications for surgical edu-
cation and training. First, in view of the growing published 
evidence that there is group of surgical trainees who struggle 
to reach the required competence level. The first report in 
this field involved 37 residents trained by a VR for laparos-
copy confirming an incidence of 8.1% of subjects who were 
unable to be trained in the laparoscopic surgical approach 
[15]. Another study reported that 15.0% of subjects with a 
low ability to reach proficiency for laparoscopic appendec-
tomy on a simulator [16]. More recently, two studies by our 
group on 121 and 155 medical students found, respectively, 
an incidence 11.6% and 11.0% exhibiting a low level of 
innate ability for RAS [8, 17]. Based on these reports, some 
surgical training program directors have explored the use of 

Table 4  Accuracy values (r2) of 
ensemble DNN compared with 
other ML models to predict 
number of attempts

Best attempt Dataset size Meta-leaner 
(ensemble 
DNN)

Random forests Gradient boosted 
regression trees

Kernel SVM

PB2 5 95 0.87 0.86 0.83 0.69
RW2 3 140 0.89 0.88 0.89 0.83
MB1 3 103 0.91 0.89 0.89 0.87
RR2 4 119 0.89 0.87 0.83 0.72
TR2 2 165 0.96 0.94 0.94 0.88
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VR simulators as an objective assessment tool of surgical 
innate aptitude for surgical technical skills to complement 
the current selection process of candidates applying to rec-
ognized surgical training programs [8, 17]. The bottleneck 
of such a test lies in the extra time and costs required to com-
plete the selection process. In the present study, we report 
that after few attempts (varying from two for TR2 to five for 
PB2), DNN models can predict the individual proficiency-
gain curves of applicants, thereby significantly reducing the 
overall selection process.

The methods of implementing AI models reported by this 
study can be extended to any kind of VR surgical simula-
tion. The availability of the counterpart of our DNN mod-
els for laparoscopy would enable a thorough evaluation of 
innate technical skills for MAS. This test may serve as a 
robust objective assessment of technical skills to comple-
ment the selection of surgical residents. However, surgical 
residents must acquire competence during training also in 
other crucial domains for safe execution of surgery such as 
cognition, decision making, and non-technical skills, e.g., 
human factors.

Second, the early detection of the skills deficits among 
low performing trainees would enable provision of feedback 
to them with consideration of extending their training period 
to reach surgical competence, i.e., flexible training period 
would become an integral component of a competence-based 
surgical curriculum.

This study has some limitations, the most important being 
the small sample size of training and test sets. The reason for 
this stems from the long time required in studies acquiring 
data on surgical proficiency-gain curves. Second, data of our 
study come from a single center. Since the VR simulator for 
RAS used in this study is available in many surgical train-
ing centers, a larger multi-institutional study would allow to 
capture a significantly larger range of trainees. A multicenter 
study would, thus, enable a more robust assessment valida-
tion of the predictive accuracy of the developed AI models 
when applied to external centers. Third, the AI models we 
have developed are limited to prediction of proficiency dur-
ing surgical training using a simulator. They cannot be used 
to predict clinical performance during execution of surgery 
on real patients.

Conclusions

The present study is the first to apply DNN models for the 
early prediction of proficient execution of surgical compo-
nent tasks during the acquisition of basic skills of RAS. In 
this respect, it has the potential to usher a new era of surgical 
training characterized and underpinned by flexible surgical 
training, based on innate aptitude for manipulative psycho-
motor skills and tailored to the needs of individual surgical 

residents. Consequently, the gifted trainees, who will require 
significantly less time to reach proficiency, should complete 
this stage of their training sooner than the average ones and 
qualify for the next phase of training. It will add meaning 
to the modern emphasis on competence-based surgical 
curricula.
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