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ABSTRACT ARTICLE HISTORY

Test and qualification (T&Q) phases take a significant portion of the Received 10 February 2020
time to market for critical products in the space industry, especially Accepted 29 June 2021
when introducing new technologies. Since T&Q are treated as stan- KEYWORDS

dard procedures, they tend to be independent of the architectural Qualification; space industry;
design phases and kept away from design decisions. However, when model-based design;
introducing new technologies, qualification procedures may differ product architecture
from those established in regular design scenarios, and the estima-

tion of qualification costs and duration is problematic. There is a lack

of design for qualification methods capable of modelling these activ-

ities in early phases and use those models to support the architecture

design of products with affordable test and qualification phases.

In this article, a computer-assisted, model-based design method to

model T&Q activities concerning early product architecture designsis

proposed. Product architecture alternatives, test schedules and cost

are connected through the quantification of T&Q drivers and driver

rates. The design method is demonstrated using a case study about

electric propulsion for satellites. The method is applicable for design

situations where the choice of technology has a strong dependence

on the qualification procedure.

1. Introduction

To remain competitive in the market, companies strive to introduce new technologies to
increase product performance and reduce costs and time to market. These technologies
often introduce changes in the product’s architecture, which is defined as the product’s
basic physical building blocks and their interactions (Ulrich and Eppinger 2015).

Research has shown that designers are prone to developing product architectures
that maximise the implementation and benefits of new technology based on perfor-
mance, functionality and projected product cost (Wyatt, Eckert, and Clarkson 2009; Borgue,
Panarotto, and Isaksson 2019). Consequently, they risk missing to include the impact that
the integration of new technologies may bring onto the realisation process (Tatikonda and
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Rosenthal 2000). This tendency is also present in high-cost, high-reliability industries, such
as the space industry, where established realisation processes have evolved through deep
knowledge of the behaviour of the technologies utilised.

In recent years, there has been an increase in the demand for access to space, with new
actors competing for market shares. Market developers now expect leaps in cost decrease
and time to market while maintaining high reliability (Ohrwall Rénnback and Isaksson
2018). Incentives to introduce novel and high-potential technologies and manufacturing
techniques are high.

However, the rigorous processes required to test and qualify new technologies extend
the actual lead time for testing procedures, and due to the uncertainty of their outcome,
there is a risk of long design iterations (Engel and Barad 2003; Dordlofva et al. 2019). More-
over, as qualification procedures for new technologies can differ from those standardised
for regular design scenarios, test phases may further increase costs and redesign iterations
(Dordlofva et al. 2019). Therefore, the ability to account for qualification procedures in early
design phases has become increasingly important.

The early consideration of qualification requirements, through design for qualification
(DfQ) strategies, would support the design of architectures with affordable test and quali-
fication phases and reduce redesign iterations (Wang, Azarian, and Pecht 2008; Dordlofva
et al. 2019), reducing the duration and cost of the product development process (PDP) as
well. Once the product architecture is successfully implemented, the designer can choose
between optimising its performance and reducing the cost of realisation, where test and
qualification activities play an important part.

A well-known limitation for early design assessment of test and qualification activities
is the lack of model-based methods (methods based on the implementation of models) to
estimate the duration and cost of these activities (Tahera et al. 2019). Therefore, this study
aims at answering the following research question:

How can qualification activities be modelled during preliminary design to support design
efforts and reduce future redesign iterations?

This article aims to propose a method for modelling test and qualification activities that
enables designers to include unique requirements stemming from test and qualification
(T&Q) of new technologies when exploring alternative product architectures. A case study
from a technology-development project at a satellite space propulsion manufacturer serves
to illustrate this method.

2. Background

2.1. Test and qualification activities in the product design and development
process

Test activities are performed throughout the PDP to attain different objectives, from con-
cept development to detailed design (Tahera and Earl 2018). Among test activities, quali-
fication activities are performed to demonstrate that a product meets specified safety and
legislative norms and quality and reliability requirements (ISO 2020). Similar objectives can
be attributed to the verification, validation and testing (VVT) activities in the systems engi-
neering field (Shabi, Reich, and Diamant 2017). VVT activities are performed throughout
a PDP before delivering or marketing products for ensuring product quality. Verification is
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most often used to test the fulfilment of requirements, whereas validation activities test the
fulfilment of stakeholders’ needs and expectations. The ISO/IEC/IEEE 12207-2:2020(E) stan-
dard draws a clear parallel between verification and qualification activities (1ISO 2020).

Design development and test activities are performed iteratively throughout the PDP.
Data obtained from test activities can be expensive both in terms of cost and time. For this
reason, how and when these data are used is critical, as it can impact the cost and duration
of the product development activities.

In their review of the modelling of test activities, Tahera et al. (2019) argue that most
modelling methods focus on the schedule of a given set of design and test activities to opti-
mise development times. Other studies are concerned with choosing the most appropriate
test activities in terms of cost and risk.

Engel and Barad (2003) and Tahera et al. (2019) indicate that the cost of test activities can
be as much as 55% of the total life cycle cost. Moreover, test activities depend on product
architectures and design contexts; therefore, they should be adapted to different product
architecture scenarios (Wang, Azarian, and Pecht 2008).

However, the reviewed literature does not provide mechanisms to enhance the concep-
tual design phases with insights (or requirements) from the T&Q phases. There seems to be
an underlying assumption that there is enough upfrontinformation about the technologies
considered, the product itself, as well as how the T&Q of these technologies can be con-
ducted. However, when introducing new technologies, information about product design
and the corresponding T&Q activities may not be available. Consequently, test phases can
result in unexpected costs or difficulties that lead to expensive redesign iterations (Wang,
Azarian, and Pecht 2008; Dordlofva et al. 2019).

2.2. Modelling test activities to support DfQ in early design phases

To model T&Q activities and connect them to product architecture requirements, the
factors or variables that influence the cost and duration of these activities must be first
identified. In this article, those factors are referred to as T&Q drivers.

The notion of a driver is used in literature to describe the causes that affect the output
of a system. The term - in this case, cost driver - is usually implemented when referring
to factors that cause a change in cost (Shank 1989). Authors such as Ben-Arieh and Qian
(2003), for instance, developed a parametric cost-estimation model for modelling costs of
manufacturing activities using cost drivers of machined parts; the authors identified activity
cost drivers (ACD) for the manufacturing processes. For each ACD, they defined activity cost
driver rates (ACDR) as the total activity cost divided by the number of cost drivers. Their cost
model allows for modelling the costs of manufacturing activities in the early design and
development phases.

However, as authors such as Shabi, Reich, and Diamant (2017) and Tahera et al. (2019)
point out, the identification of activity drivers and the consequent model of test activities
have received significantly less attention in the research community in comparison with
other design and analysis activities in a PDP.

Some authors, such as Wyatt, Eckert, and Clarkson (2009) and Tahera et al. (2019), men-
tion that design complexity, product architecture, degree of novelty, the timing of testing
and susceptibility to design change affect the duration and cost of test activities. Moreover,
when redesigning or upgrading a product, companies attempt to limit the implementation
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of new components as they increase test activities. These factors are identified as test
drivers. These studies, however, do not present a clear statement about the extent to which
those drivers affect test activities or how test activities can be modelled and linked to prod-
uct architecture. Similar insights about VVT activities can be found in literature, for example,
in the work by Shabi, Reich, and Diamant (2017). However, the relationship between VT
drivers and product architecture is not established directly.

Dordlofva et al. (2019) presented a compendium of qualification drivers extracted from
manufacturers of space components but did not explain further their influence on prod-
uct architecture design or selection. There is a need for DfQ methods that connect product
architecture design phases to T&Q activities; this connection can be achieved by modelling
T&Q activities. The main contribution of this article is a model-based design for the quali-
fication method to link T&Q activities to early design phases through the identification of
T&Q drivers.

3. Research methodology

A case where qualification has a direct impact on the selection of new technologies and
the concept selection for new products was identified within an advanced manufacturing
demonstration project for next-generation satellite-propulsion systems. The project is part
of Horizon 2020, funded by the European Commission, with the objective of developing
three different electric propulsion subsystems.

This article is focused on developing a T&Q model and its implementation during the
conceptual design phases of an electric propulsion system (EPS). The study focused on con-
ventional EPS architectures, implementing a power-processing unit (PPU), and innovative
EPS architectures, implementing a direct drive (DD) technology (Impresario 2015).

The core of the data collection activities for this study was performed during a three-
month visit to a satellite manufacturer participating in the project. During this period, the
first and second authors worked on site in collaboration with the EPS design team. Full
access to real company data and the possibility to perform interviews and participate in
their technical meetings were provided. The second author already worked at the com-
pany in a supporting role for mission analysis. The first author had the role of an observer to
gather data during the study. The authors invested the equivalent of 60 full working days
(8hs/day) in the data collection activities of this study.

The information gathered can be divided into (1) information gathered from docu-
mented sources (documented information) and (2) information gathered through interac-
tions with practitioners (tacit information). Information-gathering activities are detailed in
Sections 3.1 and 3.2.

From the study, a generic method for modelling T&Q activities and including them in
early design phases was developed. The method aimed at supporting architectural design
decisions and developing products with affordable T&Q phases. The method was applied
for the design of a high-power propulsion system for space exploration.

The performed activities are schematised in Figure 1 and hereby presented.

3.1. Data collection of documented information

The data collection of documented information was performed through the analysis of
the company’s internal documentation, including mission-specific (where and how the
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Figure 1. Research methodology diagram illustrating the performed data collection activities and time
for activity completion.

product was going to be utilised) and product-specific (design and test requirements to
comply with the specific mission) documents. As presented in Figure 1, the first data col-
lected were stored in a function-means model of the EPS (Claesson 2006). A function model
was preferred, as it facilitates product architecture understanding and the establishment
of system boundaries (Miiller, Siiskonen, and Malmqvist 2020), assessing the components,
subsystems and interactions that were going to be included in the study.

Later, documentation about product development and testing was gathered and doc-
umented in preliminary lists. Those lists and further information collected about activity
schedules were later stored in Gantt and PERT (Program evaluation and review technique)
charts.

Finally, another portion of the data was obtained from the ESA’s product and T&Q stan-
dards for space components, such as ECSS-Q-ST-70-45C for mechanical testing of metallic
materials (ECSS 2008), or ECSS-Q-ST-60C Rev.2 for electrical, electronic and electromechani-
cal components (ECSS 2013). This documentation supported the identification and analysis
of the drivers that motivate the implementation, cost and duration of T&Q activities.

3.2. Data collection of tacit information

In addition to the collection of documented information, a series of meetings and semi-
structured interviews with company practitioners was performed. As presented in Figure 1,
most of the meetings were held to validate 1) the EPS function model, 2) the T&Q list, 3) the
T&Q schedule, 4) the T&Q drivers, and 5) the T&Q activities models.

Semi-structured interviews were held to gather information about the best-, average-
and worst-case scenario for activity cost and duration. Moreover, the interviewees were
requested to provide information about the activities’ sequences. Data obtained from dif-
ferent participants and documented information were compared, and when discrepancies
were found, additional meetings were held. The meetings and interviews for the data col-
lection of tacit information were held with seven company practitioners, with an average
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of 10 years of expertise in the areas of systems engineering, design and T&Q of EPS. Each
meeting lasted between one and two hours.

During the interviews, practitioners were also asked about the factors that influence the
cost (cost drivers) and duration (duration drivers) of T&Q activities. However, the informa-
tion gathered about cost and duration was further analysed to find commonalities and
trends among activities and their relation to architectural components. This analysis was
performed to find cost and duration drivers not mentioned by the practitioners.

The performed data collection and study led to the development of the method pro-
posed in this article for modelling T&Q activities and its implementation to support product
architecture design decisions. The proposed method is introduced in the following section.

4. Modelling T&Q activities for supporting architecture design decisions

This section presents a DfQ method and its implementation to support product architec-
ture design decisions. The method is based on identifying the factors that drive (drivers)
duration and cost of T&Q activities and their interaction with activity schedules.

The input of this method is the current product design information, such as CAD files,
datasheets, etc,, and the T&Q activities related to it, such as development and testing docu-
mentation. The outputs of this method are the total cost and duration of T&Q phases and a
T&Q model, which can then be implemented to estimate the duration and cost of the T&Q
activities for future product architectures. The T&Q model and the cost and duration of each
T&Q activitiey are used to support the design of product architectures with affordable T&Q
phases.

To support design decisions, the DfQ method combines function-modelling techniques,
which support the decomposition and visualisation of alternative product architectures,
with the identification and quantification of T&Q drivers to model T&Q activities.

Figure 2 presents the proposed method, which can be divided into six steps presented
in the following sections.

4.1. Step 1: construct function model

With information about product architecture and design, a function model of the product
is constructed. Function models are representations of the hierarchical decomposition of
a product’s functional requirements (Claesson 2006). In this article, the function-modelling
technique preferred is enhanced function-means (EF-M), which associates one design solu-
tion (DS) with each functional requirement (FR) (Claesson 2006; Miiller, Siiskonen, and
Malmqvist 2020), as presented in Figure 3, left. Interactions between the DSs can be mod-
elled using “interacts with”” connections. Such interactions can be of four types: geometry,
signals, energy, and material flow. In this article, DSs are used to represent components or
component assemblies.

4.2. Step 2: construct PERT diagram

In this step, PERT diagrams are constructed (Dodin 1985). These representations facilitate
the understanding of the T&Q workflow and are necessary for performing a calculation of
the total duration of T&Q activities.
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Figure 3. EF-M (Enhanced Function-Means) elements representing a product architecture (left) and
activities performed for testing and qualifying such architecture (right). Their connection through test
and qualification (T&Q) drivers enables the proposed design for qualification method.

Using the function model as a visual guideline of product architecture, T&Q activities
should be grouped according to the system level they belong to (system, subsystem,
module or component level). Generally, every activity in the PERT diagram must have a cor-
responding element in the product architecture; however, several activities can share the
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same element. The function model, in this case, provides a structure for T&Q activity identi-
fication, as it can depict interfaces among components or subsystems, interfaces which are
often tested, as highlighted with dashed arrows in Figure 3.

4.3. Step 3: gather T&Q activities’ information

Step 3 concerns gathering information about the duration and cost of T&Q activities. The
duration and cost of each activity are represented by a beta probability distribution func-
tion (PDF). In a beta probability function, the area under the curve on the right side of the
most likely activity completion time is greater than the area on the left side, representing
the human tendency to extend the duration of a task to fill the available completion time
(Browning and Eppinger 2002). In this article, however, the beta representation is estimated
by a triangular distribution, using three values for activity duration: best-case, most likely,
and worst-case scenario durations. The height of a triangle distribution (the most likely
activity duration) is normalised; therefore, the area under the distribution equals one. This
estimation has been extensively implemented by authors such as Browning and Eppinger
(2002) or Wu (2016).

Step 3 is focused on details for breaking down cost and duration information. For exam-
ple, if 20 h are required to test electronic equipment, the duration breakdown may include
a list of every test performed, their duration and sequence (which, in the end, will add
up to 20 h). A cost breakdown would include information about necessary resources for
the tests, such as the number of engineers or technicians, equipment implemented and
consumables.

The information gathered in this step enables the construction of a Gantt chart of
the T&Q activities, which facilitates the assessment of schedule and activity duration by
practitioners (Wilson 2003).

4.4. Step 4:develop T&Q drivers

In Step 4, T&Q drivers are identified by analysing the data obtained in the previous steps.

After their identification, activity driver rates for each driver are established. In research
conducted by Ben-Arieh and Qian (2003), the authors identified ACDs and their respective
ACDRs for manufacturing processes.

Forexample, the authors determined that the activity “Discuss product (manufacturing)”
had a total cost of $17.53. After performing a cost breakdown, it was found that such cost
was driven by the “Number of tool changes”, which in their case was equal to six (six tool
changes were performed). Therefore, the activity cost driver rate for the driver Number of
tool changesis $17.53 /6 = $2.91.

In Step 4, ACD and ACDR are identified for each T&Q activity. Moreover, following the
logic behind the definition of ACD and ACDR, activity duration drivers (ADD) and their
respective activity duration driver rates (ADDR) are identified as well. The identification of
ADD and ADDR enables the assessment of T&Q activities’ duration in early design phases.

4.5. Step 5:develop T&Q model

By implementing the T&Q drivers and their respective driver rates, the duration and cost
of such activities can be modelled in relation to the product’s architectural features. As
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Ben-Arieh and Qian (2003) have previously proposed, the cost of a manufacturing process
defined by ACDs and ACDRs can be modelled as > ACD;xACDR;. The same principle can be

i=1
implemented to model the duration and cost of T&Q activities once ACDs and ACDRs are
identified. Then, implementing the PERT diagram from Step 2, the total cost and duration
of the T&Q phase are obtained through an activity network calculation code that reduces

the whole activity schedule to one equivalent activity, as proposed by Dodin (1985).

4.6. Step 6:implement T&Q model to support architectural design

The developed T&Q model is implemented to support architectural design and selection in
early design phases (bottom of Figure 3).

5. Applying the DfQ method on a high-power EPS design

The proposed DfQ method is illustrated with the analysis of an already developed 5 kW hall
thruster (HT) EPS. The analysis performed on this thruster enables the development of T&Q
models to support the development of a future high-power (20 kW) HT EPS architecture.

A conventional EPS for an HT comprises a PPU, a fluid management system (FMS) and a
thruster unit (TU), which comprises a thruster and a cathode. A conventional EPS architec-
tureis presented in Figure 4. The EPS is fed by the satellite’s power-generation system (PGS),
consisting of solar arrays (SA), a power bus and batteries. The PPU modulates the power
from the power bus, controls the operation of the subsystem components and provides
housekeeping telemetries.

Thrust is generated and sustained by the TU and cathode, ionising propellant, typically
xenon, provided by the FMS. The ionised propellant (plume) is accelerated with a magnetic
field, propelling the satellite (Impresario 2015).

To ensure compliance with quality requirements, different tests are performed at com-
ponent, module and subsystem levels. Some tests include mechanical tests, such as vibra-
tion and shock tests, and vacuum tests, performed in an adequate vacuum environment
with high pumping capabilities (ECSS 2018). The long duration and high costs of these tests
constrain the product development schedule.

Through each development and test step, different physical thruster models are imple-
mented following the ECSS standards (ECSS 2018). These models include (1) an engineering
model (EM), representative in terms of fit, functionality and form, (2) an engineering quali-
fication model (EQM), which fully respects the final product excepts for standard parts, (3) a
proto-flight model (PFM), representing the end product during the qualification tests, and
(4) a flight model (FM) as the end product before the acceptance phase.

With the development of increasingly powerful HTs, system complexity and mass may
increase.

The main drawbacks of EPSs with conventional PPU arrangement are heavyweight and
large volume. A solution can be a direct-drive architecture, with power from the SAs directly
transferred to the TU, simplifying the PPU with the removal of the power modules for the
operations of the TU and cathode (Impresario 2015).

However, when implementing a DD architecture, the power bus must be designed to
sustain the high-voltage levels of the TU. Moreover, the rest of the components of the PGS
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Figure 4. Satellite system architecture.

shall be adapted to cope with high-voltage levels, relaying (in some architectural solutions)
on high-voltage SAs. However, an inconvenience of such SAs is the risk associated with
arcing and the interaction of the SA with the TU plume. These events require additional
T&Q activities (Impresario 2015).

To assess the duration and cost of T&Q activities for a 20 kW HT and implement these
insights for making architectural design decisions, a T&Q model for known HT architectures
is developed in section 5.1, following the method introduced in section 4. In section 5.2, the
model is implemented to support the conceptual design of a 20 kW HT.

5.1. Development of a T&Q model fora 5 kW HT

Following step 1, CAD designs, datasheets and other product architecture data were used
to build a function model of the 5 kW HT. Figure 5 illustrates a simplified version of such
a model. The model alternates functions with DSs and represents interfaces among com-
ponents and modules (coloured lines). The work done by Claesson (2006) offers a detailed
explanation of the theory and methods for building an EF-M.

From the information gathered about T&Q activities, the PERT diagram presented in
Figure 6 was built. In this case, the PPU, the FMS and the TU are different modules of the
EPS. Therefore, the EPS and the PGS are subsystems of the satellite system.

In general, the process of building the PERT and function models is iterative. A com-
mon complaint about EF-M modelling is the lack of modelling guidelines on what to
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Figure 6. PERT diagram with a simplified representation of the test and qualification activities. Different
EPS modules and the PGS are identified with different colours: orange (TU), blue (Cathode), yellow (PPU),
green (FMS) and pink (PGS).

include in the model and how (Miller, Siiskonen, and Malmqvist 2020). As every activity
in the PERT diagram must have a corresponding element in the product architecture, iter-
ating between the PERT and function models helps in building a complete function model
without unnecessary details. Moreover, information from CAD designs and datasheets can
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evidence elements in the function model without a corresponding test activity. In this case,
further efforts to find information about those test activities and include them in the PERT
diagram should be made.

In the PERT diagram, testing activities related to single components from the different
product modules (such as PPU, FMS, TU and cathode) are performed in series with other
activities from the same module but in parallel to activities performed on the other mod-
ules. Later, the at module level and EPS subsystem level, testing activities can be performed
either in series or in parallel. The choice depends on the implementation of one or more
test models (EM, EQM and PFM), as the latter option allows for several activities to be per-
formed in parallel. Figure 6 includes the PGS as well. The PGS is presented in a general way,
not distinguishing its modules and components to reduce figure complexity, presenting,
however, the T&Q activities performed to evaluate its interaction with the EPS.

Table 1 presents a compendium of the duration and cost of T&Q activities performed at
the component level. The details of those activities are not included in the table to preserve
company-sensitive information.

Table 2 presents a simplification of the activities performed on different test models
(EM, EQM or PFM) for the different EPS modules and PGSs. Only representative activity
placeholders were included; this simplification preserves company-sensitive information
while supporting the presentation of the proposed T&Q activities model. For the same
reason, activity durations and cost values are not representative of the real company data.

From Tables 1 and 2, T&Q duration and cost drivers can be extracted. However, some
of the drivers do not depend on the EPS design. This is the case for the duration of the
module level tests, which are determined by the satellite mission and standardised test
configurations, such as the ECSS-Q-ST-70-45C for mechanical testing of metallic materi-
als (ECSS 2008), or the ECSS-Q-ST-60C Rev.2 for electrical, electronic and electromechanical
components (ECSS 2013).

Similar to the procedure followed by Ben-Arieh and Qian (2003) and introduced in
Section 4.4, design-dependent driver rates were obtained from the activities in Tables 1
and 2. Some of the driver rates are presented in Tables 3 and 4.

Table 1. Data collected for components in the PPU, FMS and TU modules.

Duration (days) Cost (euros)

Component B M W B M W Cost remarks Duration remarks

PPU

Components without 12 22 35 264 484 770 1 engineer. Proportional to Firmware increases
firmware time duration.

Components with firmware 18 30 45 396 660 990

FMS

Mechanic components 6 11 17 110 220 330 New materials, coatings,

Electronic components 12 22 35 264 484 770 manufacturing techniques

or design geometries
increase duration

TU

Electromagnets comp. 6 11 17 110 220 330 Proportional to testing time.

Anode 10 14 18 220 308 396 Average of 1.5 engineers.

Electromagnet assembly 1 2 4 22 4 88

PGM

Electrical components 12 22 35 264 848 770 Proportional to time. 1 Depends on SA

engineer voltage.
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Table 2. Data collected for module level.

Duration (days) Cost (x102 €)
Cathode B M W B M w Cost remarks Duration remarks
TestsatEMlevel 200 340 520 18000 30000 46000 2 engineers.Dependsontype Depends on test
Tests at EQM level 200 340 520 19000 31000 47000 of propellant and thruster configuration and

power. Proportional to time. satellite mission.
FMS
Tests at EM level 16 24 40 180 185 195
Testsat EQMlevel 40 70 100 250 255 265
TestsatPFMlevel 16 24 40 740 750 770

TU

TestsatEMlevel 140 300 40 4600 5100 5400 2 engineers. Depends on

Testsat EQMlevel 70 100 140 5100 7300 10000 type of propellant, vacuum

TestsatPFMlevel 60 90 120 4400 6600 8800 chamber and number of
models tested. Thruster
power increases costs.
Proportional to time.

PPU

Testsat EM level 140 300 400 650 690 710 1 engineer. Proportional to

Testsat EQMlevel 70 100 140 2000 21000 23000 time

TestsatPFMlevel 60 90 120 2000 21000 23000

Other

Coupling tests 40 60 120 10 14 30 2engineers

PGS

Testsat EM level 140 300 400 900 1200 1500 2 engineers. Proportional to Duration of the electro
TestsatEQMlevel 70 100 140 2000 2100 2200 time. discharge test depend
TestsatPFMlevel 60 90 120 3800 3900 4000 on voltage level.

For example, Table 1 indicates that T&Q activities for PPU components without firmware
have a duration of (12, 22, 35) days, and components with firmware have a duration of (18,
30, 45) days. Every PPU component requires at least (12, 22, 35) T&Q days; hence, the num-
ber of PPU components (Nmp) is a qualification driver and (12, 22, 35) days/Nmp is its driver
rate. PPU components with firmware (Nmf) require (6, 8, 10) extra T&Q days; hence, Nmf is
a qualification driver with the driver rate of (6, 8, 10) days/Nmf.

Activity cost drivers that depend on activity duration drivers are not included in Table 4.
For example, the number of PPU modules increases the duration of test activities, thereby
increasing costs due to an increase in required manpower. However, the number of PPU
modules is not considered a cost driver.

In Table 2, the cost and duration of the test activities on the module level depend on
the number of models (EM, EQM or PFM) tested. If the number of models tested increases,
cost increases as more test models are manufactured; however, the total duration of T&Q
activities performed in a module is reduced, as several tests can be performed in parallel.
In Table 3, the number of modules tested (Nemd, Ngmd and Npmd) can vary from one to
the total number of T&Q activities performed. If the number of PPU EMs is one (Nem = 1),
every test activity at the PPU EM level is performed in series. However, if the number of PPU
EMs is equal to the number of test activities, every activity is performed in parallel.

From the data collected in previous steps, a T&Q dependency structure matrix (DSM) was
built (Maheswari and Varghese 2005), as presented in Figure 7, top.

In the matrix, columns and rows represent test activities. Nondiagonal matrix compo-
nents indicate that an activity in a certain row is dependent on the results from a previous
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Table 3. Driver rates for activity duration drivers. Duration is presented in days.

Activity duration drivers

Driver rate (days / N of driver)

Activity Driver B M w
PPU components test Nmp  Number of components 12 22 35
Nmf  Number of components with firmware 6 8 10
PGS components test Nbu  Number of buses tested 12 22 35
Nb  Number of batteries tested 12 22 35
Ncon  Number of converters tested 12 22 35
Vsa  SAvoltage (Vsa/100)B  (Vsa/100)M  (Vsa/100)W
Nsa  Number of components on the SA 12 22 35
TU components tests Nn#  Materials, coating, manufacturing *B/(2Nn) *M/(2Nn) *W/(2Nn)

technique or design geometry not
implemented in previous projects

Nc  Number of coils tested 0.5 1 2
Ne  Number of electromagnets assemblies 1 2 4
tested
Nfe  Number of ferromagnetic parts tested 5 10 15
Na  Number of anodes tested 10 14 18
FMS Nfmc  Number of mechanical components 6 1 17
Nfec  Number of electronic components 12 22 35
Tests at componentlevel Neg  Number of engineers (1 < Neg < Number of tests)
Coupling tests Nct  Number of coupling tests 40 60 120
All tests on module level  Nem  Number of EM tested 1 < N#m < Number of tests

Ngm  Number of EQM tested
Npm  Number of PFM tested

*The driver rate equals a proportion of the test activity. For example, if the anode is manufactured with new manufacturing
technologies (such as additive manufacturing), test activities are increased in a 50%.
#Nn# can represent Nnc (coils), Nne (electromagnet), Nnfe (ferromagnetic) and Nna (anode).

activity (or activities). If activity A depends on the results of activity B, A and B are in series,
and their durations are added to compute the total T&Q duration. If activities A and B
depend on the results of the same activity and their results are necessary for the execu-
tion of another activity, A and B are in parallel (Dodin 1985). In this case, only the duration
of the longest activity is added to the total. In this way, the DSM is simplified until an equiv-
alent single activity is reached (Figure 7, bottom). When the DSM becomes irreducible,
duplication techniques are implemented, as suggested by Dodin (1985).

The DSM presents information in the same way a PERT diagram does; however, it
has a better performance in schedule optimisation since it can allow operations such as
sequencing or partitioning and tearing (Maheswari and Varghese 2005).

In the DSM, it is assumed that the test activities performed at the PPU component level
are performed in series; however, they are performed in parallel to the tests performed at
the TU component level. In the same way, only one model (one EM, one EQM and one PFM)
is used at the module level. For instance, tests at the PPU module level are performed in
series; however, they are performed in parallel to the tests performed at the TU module
level.

The main contribution of this article is not the development of an algorithm for activity
network calculation. Consequently, to simplify the duration and cost calculations, the activ-
ity model assumes that (1) activity durations are independent of each other: Dependencies
are only accounted for in the interactions between the activities, and (2) activity duration
accounts for any internal rework efforts.
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Table 4. Driver rates for activity cost drivers. Duration is presented in days.

Activity cost driver

Driver rate (euros / N of driver)
22 per hs (Worldsalaries 2019)

Activity Driver

All activities Neg Number of engineers

PPU Npeb Number of EM 50 K(1 + 0.1(Power-5 kW))
Npeq Number of EQM 250 K(1 4+ 0.1(Power-5 kW))
Npp Number of PFM 250 K(1 4+ 0.1(Power-5 kW))

Cathode Ncem Number of EM 10 K(1 + 0.1(Power-5 kW))
Nceq Number of EQM 20 K(1 + 0.1(Power-5 kW))

Ncp Number of FPM 20 K(1 + 0.1(Power-5 kW))

Tp Thruster power *%(22Duration)76 x 10~°

FMS Nfem Number of EM 75K(1 + 0.1(Power-5 kW))
Nfeq Number of EQM 300 K(1 4+ 0.1(Power-5 kW))
Nfp Number of FPM 300 K(1 4+ 0.1(Power-5 kW))

TU Ntem Number of EM 40K(1 + 0.1(Power-5 kW))
Nteq Number of EQM 80 K(1+ 0.1(Power-5 kW))

Ntp Number of FPM 80K(1 4+ 0.1(Power-5 kW))

Tp Thruster power **(220Duration) 76 x 10-5

PGS Ngem Number of EM 10K(1 + 0.1(Power-5 kW))
Ngeq Number of EQM 30 K(1 + 0.1(Power-5 kW))

Ngp Number of FPM 30K(1 + 0.1(Power-5 kW))

**For Xenon, 760 euros/kg.

Consequently, the most probable total duration and cost of the T&Q activities for the
5kW EPS are 1,340 days and €64,000,000. These results resonated well with company
practitioners.

Modelling T&Q activities

Based on the work presented by Ben-Arieh and Qian (2003), the duration and cost of the
T&Q activities can be estimated using drivers and driver rates as

Activity duration =) ~ ADD;XADDR; (1)
i=1

Activity cost = ) ~ ACDXACDR; 2)
i=1

In these equations, activity duration and cost are represented by a vector of three com-
ponents, namely, best-case-, most-probable-case- and worst-case-scenario duration and
cost. The analysis was performed assuming that one test model (one EM, one EQM and one
PFM) is used. (Tests are performed in series).

For example, the modelling equations for the total duration (equation 3) and cost
(equation 4) for activities at a PPU component level are presented below. The rest of the
modelling equations can be obtained through equations 1 and 2, after implementing the
drivers and driver rates from Tables 3 and 4.

DPPUcomp = Nimp(12, 22, 35) + Ny (6, 8, 10) (3)
CPPUcomp = Neg x 22 x DPPUcomp (4)
Where T&Q activity durations:

-~ Nmp: (ADD) Number of PPU components
- Nps: (ADD) Number of components with firmware
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- (12,22,35): Best-case-, most-probable-case- and worst-case-scenario ADDR for Nmp
- (6,8,10): Best-case-, most-probable-case and worst-case-scenario ADDR for Nmf

- T&Q activities cost:

- Neg: (ACD) Number of engineers

— 22 (euros/hrs): engineer’s salary (Worldsalaries 2019)

5.2. Application of the T&Q model for architectural design of a 20 kW HT

In this section, the developed T&Q model is implemented to analyse the impact of different
product architectures on the duration and cost of T&Q activities and support the develop-
ment of additional architectures. Five different architectures of a 20 kW HT are analysed. The



662 O.BORGUE ET AL.

Therm. Regulatol

o
Valve Command

MU s0Cs

Control Bus

 cps

,

Converter

&

Power Bus

TSU

|
o IRRTTR
a) b) i
PoC Power Cell DD Direct Drive
PPU Power Processing Unit TMTC Telemetry and Telecommand
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first three architectures are based on variations of a conventional PPU module, as presented
in Figure 8a. One of the alternatives is a PPU with one 20 kW power cell (PPU1), another with
two 10 kW power cells (PPU2) and a third with five 4 kW power cells (PPU3). The advantage
of multiple power cells is the possibility to modularise the PPU to make the design flexible
and adaptable to future mission requirements.

The last two alternatives are variations of a DD configuration, where the anode module
of the PPU is removed and the TU is directly fed from the power bus connected to the PGS.
This configuration has the objective of reducing weight, volume and the number of com-
ponents (Impresario 2015). The TU is directly connected to an HV power bus connected to
a high-voltage SA. As other satellite subsystems might require a low voltage, converters
are implemented in the PGS to adapt to the power requirements of the different satellite
subsystems. One of the DD alternatives, presented in Figure 8b, has a centralised volt-
age converter (DD1). The other alternative (DD2) has a distributed converter arrangement,
where different converters are assigned to different components.

A centralised converter reduces the number of components and the weight and vol-
ume of the equipment that protects the converter from radiation degradation; however, it
concentrates thermal control efforts to a single hot spot.

The distributed converter arrangement implements a larger number of smaller convert-
ers, facilitating modularity, redundancy and design adaptability. However, these smaller
converters can increase volume and weight.

Direct coupling between the PGS and the TU implies the implementation of a high-
voltage power bus, which leads to the implementation of a high-voltage battery and solar
arrays (Hoskins et al. 2003).
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One of the concerns that industrial practitioners raised about the DD configuration is
that the new interface presumably requires a new coupling test between the TU and the
PGS. This new coupling test is modelled as presented in equations 5 and 6.

Duration:

v
DCouplingpgs_1y = (40, 60, 120)% (5)
Cost : CCouplingpgs—tuy = Neg x 22 x DCouplingpgs—tu (6)

By implementing the T&Q model adapted to the 20 kW HT and equations 5 and 6, the
cost and duration of T&Q phases for the five architecture alternatives can be analysed.

Figure 9a (table) and 9b (graph) present the results of the T&Q activities for the five
different architectures (PPU1, PPU2, PPU3, DD1 and DD2) performed under two different
schedules (Figure 9c-d).

Firstly, a schedule with single test models (only one EM, EQM and PFM for each module)
was implemented, denoted with the index “A”, as in PPUA or DDA (Figure 9c¢). This schedule
alternative eliminates the possibility of parallel activities inside the modules.

Secondly, a schedule with as many test models as necessary for performing activities on
the different modules in parallel was considered, denoted with the index “B”, as is PPUB or
DDB (Figure 9d).

The three PPUA alternatives (PPUTA, PPU2A and PPU3A) have the same total T&Q dura-
tion (1,340 days). This result suggests that the tests performed at a component level in the

Duration

Duration (Days
Architecture oD - C«;‘sltrf):l) (Days)
days- Bt 2642 "
PPU1 A 1340 104 100 000
PPU1 B 340 109 700 000
PPUA
PPU2 A 1340 104 100 500
PPU2 B 340 109 700 500 1340 1°2
PPU3 A 1340 104 101 000 i -
PPU3 B 340 109 701 000
DD1 A 2642 126 000 000 476 .,
DD1B 476 131 500 000 340 oo,
DD2 A 2730 126 000 500 3
DD2 B 476 131 500 500 104 109 126 131 Cost (ME€)
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Figure 9. Duration vs. cost distribution of T&Q activities for 10 architecture alternatives (a, b) under two
different schedules (c, d).
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PPU are not part of the critical path of schedule A. Therefore, an increase in the number of
PPU components did not increase the total duration of the T&Q activities; however, their
cost slightly increased. The same can be observed with PPUB alternatives. From Figure 9a,
the schedule B reduced the total duration of the activities to 340 days, increasing their costs
by approximately 5%.

The DDA alternatives have a total duration of 2,642 days (DD1) and 2,730 days (DD2)
with costs that are approximately 20% higher than the conventional PPU architecture. This
result suggests that the converters are part of the critical path of schedule A.

Afterimplementing schedule B, costs increased by approximately 4%. DDB architectures
have T&Q activities with a total duration of 476 days, implying that the T&Q activities for the
converters are not in the critical path of schedule B.

These results suggest that architectural changes can have a different, sometimes unin-
tuitive, impact on the T&Q activities, depending on the part of the system they are
implemented in.

Moreover, the duration of the T&Q activities for conventional PPU configurations for
20 kW HT and 5 kW HT is the same, as the identified drivers for activity duration are indepen-
dent of the thruster power. However, the T&Q of a 20 kW HT is estimated to be 60% more
expensive than the T&Q of a 5 kW TH. These results resonated well with estimations made
by company experts.

DD architectures enable a reduction in weight and volume (Hoskins et al. 2003),
corresponding to a reduction in the number of components (the anode supply is
removed from the PPU) and component interfaces (the two interfaces, PGS-anode sup-
ply and anode supply-anode, are replaced with the interface PGS-TU), as presented in
Figure 10.

In Figure 10, the cost and duration of T&Q activities for PP1A and DD1A are compared.
The activity DSMs have been colour-coded from green (low cost/duration) to red (high
cost/duration).
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Figure 10. Comparison of PPU and DD architectures. In the middle, DSMs have been colour-coded to
compare activity cost and duration for both architecture alternatives.
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Figure 11. Representation of T&Q duration and cost in a function model scheme.

However, this component reduction negatively impacts the duration and cost of the
T&Q performed and visualised in the colour-coded DSMs in Figure 10 as the red rows and
columns. This increase is mostly related to the high-voltage components and the coupling
tests between the TU and the SA.

In Figure 11, the colour-coded DSMs are represented in a function model scheme to visu-
alise the T&Q duration and cost of different architectural components. In this figure, the
activities in the DSM are connected to their corresponding design solutions (white boxes)
in the function model, as diamonds. These diamonds indicate activity duration (top) and
cost (bottom) and are colour-coded from green to red, as done in Figure 10.

The model implementation and visualisation of its results in Figure 11 suggest that to
render the DD architectures conveniently, test activities related to the SA and coupling
between the TU and the SA must be redesigned. Moreover, design efforts should focus
on redesigning the components or interfaces that undergo long and expensive tests. One
solution can be the implementation of dedicated SAs (physically separated SAs with differ-
ent voltages), reducing the number of converters and the consequences of the interaction
between the SA and the TU plume (Impresario 2015).

6. Discussion

The proposed DfQ method supports the development of products with affordable T&Q
phases. The method is based on modelling T&Q activities by linking product architecture
and test schedule through the identification and quantification of drivers and driver rates,
as proposed by Ben-Arieh and Qian (2003). In this article, their work is taken one step further
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to support architectural design trade-off decisions to reduce the duration and cost of the
PDP while still developing a reliable product.

The DfQ method is not intended to frame T&Q requirements as the only require-
ments to be addressed during architectural design. The method and proposed models are
tools for facilitating the introduction of T&Q requirements in early multidisciplinary design
trade-offs.

Identifying and quantifying drivers and driver rates allow the identification of test-
intensive components, modules and subsystems. Table 1 evidences that electrical com-
ponents undergo longer testing and incur more costs than mechanical TU components.
Moreover, it is possible to identify the longest and more expensive tests (Figures 10 and
11).

In the case study, significant differences were observed between the duration and cost
of T&Q activities for architectures with conventional PPU and architectures with DD. The
results suggest that conventional PPU architectures can be modularised and designed to
be adaptable to different requirements of an EPS product family without incurring higher
costs and longer T&Q phases. In the case of the DD configuration, however, adaptability
and modularisation are penalised with longer and more expensive T&Q phases.

In this context, by implementing the DfQ method, the expensive and long T&Q activities
for a DD architecture can be identified and targeted for redesign. In the same way, the DD
components and interfaces that undergo long and expensive tests can be also identified
and redesigned.

The DD configuration changes not only the PPU architecture at a component level but
also the subsystems interfaces. These modifications at the subsystem interface level lead to
additional test activities and modifications at the component level in the PGS. The impact
that design changes have on T&Q duration and cost depends on the system level affected.
Therefore, the importance of computer-based schedule calculations is based on the DSMs.

In this context, the presented method can facilitate communication and cooperation
between the development and testing departments, where colour-coded activity DSMs
from Figure 10 and the function model from Figure 11 can function as boundary objects.
The method, therefore, enables the concurrent design of product architecture, T&Q sched-
ule and T&Q activities as well. This fact is particularly interesting for the implementation of
new technologies or in any other design situation where the qualification phases might not
be well defined.

The data gathering and model development for this method was performed for the
equivalent of 60 working days (8hs/day; Figure 1), in the context of a product with qual-
ification phases lasting around 1,400 days (4%). However, these activities included the
development of the method, where the information and models are meant to be updated
with each development project of similar nature in a design organisation.

The time to perform the study is likely to depend on the type of product to be designed,
the components and the design context, which is why the effort needed to perform it
cannot be generalised.

To increase the capabilities of the method and the accuracy of its results, three areas of
improvements have been identified:

o Inthis study, the activity model and, consequently, the DSM have been simplified assum-
ing that activity durations are independent of each other and that activity duration
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accounts for rework efforts. However, the DSM representation was preferred, as it
enables future calculations about the interdependencies and overlapping of activi-
ties, the design iteration and the schedule optimisation, as proposed by Maheswari
and Varghese (2005) or Huang and Chen (2006). These capabilities can improve T&Q
estimations and contribute to cost and duration optimisation.

e Companies designing products for space applications strive for extreme reductions
in cost and time to market while maintaining high reliability. Relaxing qualification
requirements of individual units is an increasingly popular alternative among, for
instance, mega satellite constellation developers to reduce costs and time to mar-
ket (Ohrwall Rénnbick and Isaksson 2018). In this case, reliability is achieved at the
mega-constellation level instead of the unit level (Sdnchez, Soares, and Wolahan 2017).
Regardless of the preferred approach to attain reliability, T&Q models can be combined
with risk analysis strategies to assess the risks (product and financial) of not performing
(or partially performing) certain T&Q activities. In this case, the risk would be considered
aT&Q driver. An example of risk assessment in the context of VVT activities can be found
in the work of Engel and Barad (2003). Efforts to include risk assessments in the pro-
posed methodology are currently ongoing. These efforts propose the implementation
of fuzzy logic techniques for modelling technology uncertainties and risks related to T&Q
in space products.

e Cost and duration were modelled with a triangular PDF as a simplification of beta PDFs.
This modelling choice assumes that the shape of PDFs is known and able to be repre-
sented as beta functions (Liberatore 2002). To improve the representation of duration
and cost probability, a fuzzy logic modelling strategy can be adequate, as previously
demonstrated by Liberatore (2002) or Masmoudi and Hait (2012).

The presented model-based DfQ method is meant to be generalised for the integration
of new technologies into product architectures. The case study in this article is specific to
the EPS design of a satellite thruster. As such, generalised validity will require the method
to be repeated on other technologies and other product contexts.

An appropriate method validation must be based on validation strategies for design
methods, such as the one proposed by Pedersen et al. (2000). Emphasis should be on eval-
uating whether the results obtained (products with affordable T&Q phases) are related to
the method application and not to other factors. Such a study can compare design outputs
from different design teams, some with the DfQ method and some without.

Conclusion

In this article, a model-based DfQ method for integrating T&Q procedures into the concep-
tual design and evaluation of product architectures is presented. The novelty of the method
lies in linking product architecture alternatives with T&Q activities and schedules through
the identification and quantification of T&Q drivers and driver rates. It is demonstrated how
the method implemented in the case of a satellite thruster component allows designers to
design their components to mitigate the substantial risk of design iterations due to late
discovery of qualification issues.

It is proposed that by defining qualification drivers, the defining characteristics of a
qualification procedure can be quantitatively modelled and integrated into a design study
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where alternative technologies and concepts are investigated. Therefore, the method can
be applied to various design situations where the choice of technology has a strong
dependence on the qualification procedure. However, further validation of the method's
generalisability is required and is left for future research activities in this domain.

The DfQ method was utilised to model T&Q phases for a 5 kW hall thruster. After imple-
menting the T&Q model, qualification procedures were integrated into the conceptual
design and evaluation process of a 20 kW thruster.
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