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A self-adaptive hardware with resistive
switching synapses for experience-based
neurocomputing

S. Bianchi 1,5,6, I. Muñoz-Martin 1,5,6, E. Covi 1,2, A. Bricalli3, G. Piccolboni3,
A. Regev3, G. Molas 3, J. F. Nodin4, F. Andrieu4 & D. Ielmini 1

Neurobiological systems continually interact with the surrounding environ-
ment to refine their behaviour toward thebest possible reward. Achieving such
learning by experience is one of the main challenges of artificial intelligence,
but currently it is hindered by the lack of hardware capable of plastic adap-
tation. Here, we propose a bio-inspired recurrent neural network, mastered by
a digital system on chip with resistive-switching synaptic arrays of memory
devices, which exploits homeostatic Hebbian learning for improved efficiency.
All the results are discussed experimentally and theoretically, proposing a
conceptual framework for benchmarking the main outcomes in terms of
accuracy and resilience. To test the proposed architecture for reinforcement
learning tasks, we study the autonomous exploration of continually evolving
environments and verify the results for the Mars rover navigation. We also
show that, compared to conventional deep learning techniques, our in-
memory hardware has the potential to achieve a significant boost in speed and
power-saving.

In the last decades, artificial intelligence (AI) has drawn inspiration
from the biological world, where humans and animals interact with
one another and the surrounding environment to improve the effi-
ciency of routine tasks1. This continuous and mutual interplay enables
a constant boost of the abilities, the knowledge, and the complexity of
the organisms, which become increasingly resilient to the daily life2.
Currently, achieving efficient adaptation to the continually evolving
situations of life is a major objective of the AI community, whose
principal aim is to build machines able to infer concepts and to make
decisions3.

The experience-based knowledge, where agents evolve by trial-
and-error episodes throughout their entire life, is an interdisciplinary
subject of biology, computer science and neuroscience known as
“reinforcement learning”4. During the last decades there have been
several studies to contextualize the framework of reinforcement
learning. For instance, the Markov Decision Process introduces a

numerical framework under the hypothesis that the state probability
and the reinforcement learning operations are knownand accessible5,6.
Such decision-making procedure introduces a probability function
Pðs,a, s0Þ which weights the value V sð Þ of a certain position “s” for
moving toward another state “s0”. In equation:

V sð Þ=maxaðR s,að Þ+α
X
s0

Pðs,a, s0ÞV ðs0ÞÞ, ð1Þ

The solution of the Markov process is a policy method which
defines, if the model of the environment is known, the most con-
venient action to take at every available state6. However, in biology,
organisms do not often have a model of the environment a priori, and
they have to handle their own policies relying on the current occur-
rences by direct interaction with the surroundings. In this context, the
Q-learning theory is a model-free algorithm used to assess the quality
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of an action in a particular state7. In formula:

Q sð Þ=R s,að Þ+α
X
s0

Pðs,a, s0Þmaxa0Qðs0,a0Þ, ð2Þ

where maxa0Qðs0,a0Þ is the maximum of all the possible V sð Þ. Conse-
quently, a quality of a certain positionQ sð Þ is dependent on the quality
of the nearest states s0. The Q-values can also map the value of each
position with respect to the environmental modulations in time, thus
defining the so called “temporal difference (TD)” framework8:

TDt s,að Þ=βðQt s,að Þ � Qt�1 s,að ÞÞ, ð3Þ

where β is the inverse of the learning rate of the current Q value with
respect to the previousQ value (Qt�1 a, sð Þ). Thesemodels canmap the
behaviour of the agent developing a decision-based policy by
exploiting the interaction with the environment and taking a decision
whoseeffect, in turn, constitutes partof the experience of the agent9–11.
All these intuitions have been demonstrated in “Dyna”, where learning
methods were used for managing the planning results and for
developing a cause-consequence model of the agent’s actions12.

To study the spatial learning and memory, several experiments
were carried out in the field of behavioural neuroscience, such as the
water maze exploration13,14. In particular, the Morris Maze navigation
has been investigated by neuroscientists to study the effect of cogni-
tive diseases related to the spatial learning15. Such studies also mod-
elled the physiological basis of reward-based behaviours using
Hebbian learning and spiking neurons16. In this context, it has been
observed that when a penalty/reward event occurs, humans and ani-
mals release in brain dopamine, a pleasure-related neurotransmitter
which become the reinforcement variable for the elaboration of the
experience13.

All these findings have been sources of inspiration for building
intelligent hardware computing elements. In particular, in the last
years, recurrent synaptic connections have been addressed as key
elements for reproducing reward-based decision-making
demonstrators17 using both CMOS-based platforms18 and non-volatile
memories19. CMOS technology is the most mature approach for the AI
hardware design, highlighted by the results achieved by deep learning
with AlphaGo20,21. However, the first hardware setup of AlphaGo
required 1920 central processing units (CPUs) and 280 graphics pro-
cessing units (GPUs), with a peak power of half a megawatt22. Such
power requirement is far from what is observed in brain-computation
for mainly two reasons: (i) the slow and energy-hungry training pro-
cedures of deep learning techniques, for instance the
“backpropagation”21; (ii) the communication delay between the pro-
cessing units and the dynamic random-access memory (DRAM), also
known as “Von Neumann bottleneck”, while biological computation
happens in-situ, i.e. in the sameplacewhere the information is stored23.

For this reason, memristors, such as resistive switching devices
(RRAMs) and phase change memories (PCMs), appear interesting for
emulating the stochastic neuro-plausible computing, thanks to the
reduced area, 3D stacking capability in the backend-of-the-line,
increased parallelism, and analogue storage24–27. A key advantage of
networks based on these emerging devices is the fast computation
exploited by vector-matrix multiplications which can intrinsically
perform in-situ multiplication and summation via Ohm’s and Kirchh-
off’s laws28,29. Memristor arrays have shown enhancements in speed
and energy for both in-memory supervised learning30–32 and unsu-
pervised learning33–36. Furthermore, they are the best candidates for
neurocomputing, boosting algorithms such as the spike-timing
dependent plasticity (STDP)35,37 and the homeostatic mechanisms to
stabilize the divergent growth of the weights under pure Hebbian
learning38,39. Such features offer key abilities for the implementation of
resilient bio-inspired systems but, generally, are not as accurate as

standard deep learning approaches, which, on the other hand, lack
plasticity. These dichotomies of artificial neural networks with respect
to the biological word was summed up since the early years of inves-
tigation in AI with the sentence “stability-plasticity dilemma”40.

In this work, we propose a neuromorphic hardware based on
Silicon Oxide (SiOx) RRAM devices able to join state-of-the-art accu-
racy and bio-inspired plasticity for autonomous and resilient naviga-
tion at low-power. The network relies on bio-inspired algorithms, such
as STDP and plastic homeostasis, to adjust the parameters along a
temporal sequence, as in recurrent neural networks (RNNs)41. The
RRAM devices are used for both Hebbian learning processes (inte-
gration, fire, potentiation/depression of the synapses) and to map the
recurrent internal state of each neuron. In particular, the multilevel
capability of the devices is used to modulate the neuronal threshold,
acting as homeostatic boundary of the firing activities42. To test the
resilience of the hardware, a two-dimensional dynamic maze showing
environmental changes in time is experimentally configured in a field-
programmable-gate-array (FPGA), thus mimicking biology16 and deep-
learning software-based approaches43–45. The bio-inspired hardware
described in thiswork is also tested for complex cases such as theMars
rover navigation, thus investigating the properties of the system in
terms of scalability and reconfigurability. The network starts from
stochastic trials, it progressively maps the configuration of the envir-
onment, it becomes a master of the problem trial after trial, and it
finally finds the optimum path towards the objective. Furthermore, we
benchmark our work with respect to deep learning techniques, finally
demonstrating that our solution overcomes the standard approaches
used for autonomous navigation. In this context, we also present a
theoretical frameworkwhichhighlights themainbenefits of theRRAM-
based in-situ computation such as the high efficiency, resilience, low
power consumption and accuracy. In the SupplementaryDiscussion of
this manuscript, we also provide a further appendix on the numerical
modelling of the bio-inspired approach to reinforcement learning and
a more technical insight about the experimental setup.

Results
RRAM synaptic devices
The network relies on the resistive switching memory, RRAM, which
consists of two electrodes in TiN separated by a thin layer of Silicon
Oxide (SiOx), Fig. 1a. Set and reset processes of the RRAM cause an
increase or decrease of the resistance of the device, respectively: a gap
appears during reset, responsible for the resistance increase to the
high resistive state (HRS), while a filamentary growth emerges during
set, responsible for resistance decrease to a low resistive state (LRS)46.
The application of bipolar voltage pulses to the Top Electrode (TE), as
in Fig. 1b, causes the switching of the devices from LRS toHRS and vice
versa. On the other hand, by applying a sufficiently low VREAD signal
(50-150mV, i.e., smaller than VSET and |VSTOP|) it is possible to measure
a read current that is proportional to the resistive state of the device.
When the RRAM is used as synaptic element in a neural network, this
current is referred to as “post-synaptic current”. Note that the RRAM
devices show a wide resistive window (more than one order of mag-
nitude), Fig. 1c. Furthermore, by varying the compliance current IC
acting on the gate of the selector, it is possible to programawide set of
low multi-resistive values, thus enabling the use of the RRAM devices
formapping the plastic behaviour of the synaptic elements, Fig. 1d–f32.
A similar tendency is evident evenmodulating VSTOP, here highlighting
amultilevel range of high resistive values, Fig. 1g47. As visible in Fig. 1e, f
for the LRS, and in Fig. 1g for the HRS, the definition of a resistive
weight is always affected by a statistical uncertainty. Such variation is
one of the main problems in memory-based deep neural networks
since the computation strongly relies on the precision of the synaptic
weights48–51. On the other hand, biological organisms draw their cap-
ability from the inherent parallelism, stochasticity, and resilience of
neuronal and synaptic computation. Introducing bio-inspired
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dynamics into neural networks would thus improve robustness and
reliability of artificial intelligent systems.

The event-based architecture
A resilient hardware should be reactive to the events that occur in its
surrounding to experience every event in terms of penalties and
rewards, Fig. 2a. Considering the autonomous navigation, it is possible
to describe the succession of decision-making situations by means of
bio-inspired instances. For example, the movement between two
positions can bemodelled by the firing activities of two neurons (PRE-
and POST-) connected by an RRAM synaptic element, accordingly to
the STDP procedure. The post-synaptic current, which depends on the
state of the RRAM, Fig. 1b, is integrated and then compared to the
internal threshold of the post-neuron, Fig. 2a. If the internal threshold
is overcome, a programming signal arises, and it directly potentiates
the synaptic element by means of a feedback to the top electrode of
the synapse connecting the current position with the firing neuron.
The synaptic signal can be also depressed after spiking events of ran-
dom neurons selected by means of linear-feedback shift registers
(LFSRs): in this case, a “refractory period” of 1μs is considered, as in
biology36. Every neuron can be equippedwith a further synaptic device
(named “state”) which directly affects the firing threshold VTH during
the learning activity, Fig. 2a. Thus, synaptic and internal RRAMdevices
constitute a proper framework for the definition of the navigation
problem.

To introduce the high-level functionality of the system, we pro-
pose in Fig. 2b the flowchart of the reinforcement learning algorithm
for autonomous navigation. Note that the system can start from pure
random initial conditions. However, it is preferable to prepare high
resistive internal states for the VTH statematrix, |VSTOP| = 1.1 V in Fig. 1g,
andmoderately low resistive synapses, IC = 54 μA in Fig. 1d. This choice
makes the neuronal integration faster. Note that some random posi-
tions are selected to provide initial stochasticity to the system, hence
finally getting bimodal distributions for the RRAMmatrices. When the
exploration starts, the post-synaptic currents are integrated by the
nearest neurons, identified by the cardinal positions, eventually lead-
ing to firing activities and thus to movements of the agent52. This
behaviour is similar to what is observed in bio-inspired winner-take-all
(WTA) networks, where the output neurons compete with each other
to specialize on different tasks53,54.

The bio-inspired behaviour is mapped in hardware by means of a
digital system on chip (SoC) with a microcontroller and an FPGA
embedded, managing several RRAM arrays and output neurons. The
RRAM synaptic arrays shown in Fig. 2c are used for mainly three rea-
sons: (i) to connect the SoC with the CMOS neurons taking advantage
of the synaptic matrix vector multiplication (MVM)23; (ii) to track the
position of the agent at each instant54; (iii) to implement bio-inspired
homeostatic STDP55. At each step of exploration, the FPGA collects the
current position (i, j) of the agent and stimulates its nearest neurons by
sending pulses at the gate of the corresponding (i, j) 1T1R RRAM

Fig. 1 | Electrical characterization of the RRAM synaptic devices. a Scanning
Electron Microscope image of the SiOx RRAM devices and sample photo of the
packaged RRAM arrays used in this work. b I-V characteristics of the 1T1R RRAM
devices (device-to-device measurements) at fixed VSTOP as a function of the com-
pliance current IC in order to study the switchingmechanism of the synapses under
different operative conditions. Note that the compliance current is directly man-
aged by acting on the gate voltage VG of the selector of the cell, which is an nmos
transistor. By sendingpre-neuronal spikes at the gateof the selector andbiasing the
top electrode of the RRAM synaptic element, a post-synaptic current is generated

and used for the post-neuronal computation. During the fire events, a program-
ming signal is superimposed to the bias of the top electrode in order to set or reset
the memory device. c Typical low-resistive (LRS) and high-resistive (HRS) dis-
tributions using IC = 74 μA and VSTOP = −1.5 V. dMultilevel LRS at increasing IC with
the average resistive value μR (e) and the corresponding standard deviation σR (f):
note that the precision of the synaptic weight is dependent on the module of the
programming current (higher power, higher precision of the synaptic weight).
gModulationof theHRSas a functionofVSTOP sweepwith the extractedσ error bar:
the higher, in module, the stop voltage, the higher the resistance that is obtained.
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synapses (refer to Fig. 2c for the block scheme and to Fig. 2d for the
description related to a specific firing example). Once a neuron, e.g.
neuron north (NW), reaches its internal threshold VTH, the corre-
sponding synapse (i, j) is set to LRS for the STDP mechanism36,54,56. At
the same time, the neuron sends the fire signal back to the FPGA,
represented by the dashed lines in Fig. 2c, d. Once the FPGA stores the

signal, it consequently selects the address of the firing neuron, in this
example position (i−1, j + 1) of neuron NW (north-west), and partially
sets its internalRRAMstate. This proceduredirectly affects the internal
threshold of that neuron, since the slight decrease of resistance of the
internal state (modulation of the firing activity) prevents to reach the
threshold of the neuron itself in the next integration phase. Note that

Fig. 2 | Flow-chart of the reinforcement learning procedure implemented in
hardware. a Representation of high-level reinforcement learning for autonomous
navigation considering 8 main directions of movement: an agent (e.g., a robot)
interacts with the environment by means of decision-making events which even-
tually lead to penalties or rewards that modulate the next actions. The direction of
movement between two positions is ruled by the STDP. The pre-neuronal signal
(current position of the agent) excites the gate of the selector of the synaptic RRAM
element by sending a sequence of rectangular pulses while the TE of the synapse is
biased at a read voltage (between 50 and 150mV). The consequent post-synaptic
current is integrated in the post-neuron and compared with the internal threshold
(ruled by a further “state” device) eventually inducing fire activities which potentiate
the synaptic element and mark the direction of movement. Note also that LFSR

registers can select random neurons for sending stochastic depression signals.
b High-level description of the bio-inspired reinforcement learning procedure
implemented in hardware. Note that, for best operation, the initial combination of
the RRAMmatrices is bimodal. c Block scheme of the hardware, with the “synaptic”
and “internal states” RRAM arrays, the FPGA and the 8 neurons that stand for the 8
cardinal directions. d Example of the operative condition of the firing neuron NW
with respect to the synaptic and internal state arrays. The internal threshold is
modulated by the resistive state of the internal RRAM device which changes as a
function of the fire activity: an analogue front-end is also necessary for a correct
definition of the post-synaptic currents. e Top view of the memory array and of the
integrated circuital periphery for the management of the memory addresses.
f Example of a dynamic maze to test the systems for reinforcement learning tasks.
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in the case of a spatial movement, each position can be ideally reached
from all the geographical coordinates (north, south, north-east,…); for
this reason, themodulation of the threshold is performed at every (i−1,
j + 1) state position, i.e. for every internal state array. The partial set of
the internal state devicekeeps trackof thehistory of that position, thus
configuring, for every explored point, a dynamic behaviour in time.
Furthermore, note that the movement of the agent might also be
backward: this is assured by the distribution of the synaptic arrays as a
function of the direction, Fig. 2c.

Moreover, note that the parallelization of the synaptic arrays and
the replication of each internal state for every direction towards a
point, Fig. 2c, d, allows the use of only 8 CMOS neurons. This is due to
the fact only the threshold modulator, i.e., the RRAM device selected
by the decoders in the circuital periphery, changes for every explored
position, while the hardware of the neurons remains the same. Such
choice goes along with the efficient hardware architecture we fabri-
cated for the RRAM arrays, and it is relevant in terms of Giga-
operations per second (GOPS/mm2), since the RRAM devices are built
in the backend of the line. Thus, reducing the number of CMOS neu-
rons is a key point to enable the scalability of the hardware in terms of
power and area consumption.

In order to provide a concrete case study, we describe now the
exploration of a dynamic maze whose walls dynamically move in time,
Fig. 2f. The goal of the network is to find a final reward, the red square,
by successive trials, each one limited in time.

In-memory computing for autonomous navigation
The maze can be pre-designed by an external user into the FPGA. This
architectural choice allows to test the system without building a phy-
sical agent (e.g. a robot) in a real maze. The environment is configured
as a matrix of 32 × 32 positions, thus requiring for this test case a total
of 16,384 RRAM devices (8192 for the internal states and 8192 for the
synaptic connections), as indicated in the block scheme of Fig. 2c.

The current position in the maze is defined by the address of the
internal states that the FPGA operates in a particular moment, e.g.,
position (i, j) = (2, 2) in Fig. 3a. At every position occupied by the agent,
the signals sent by the FPGA via the synaptic connections cause the
integration and eventually the fire of one of the 8 post-neurons. The
fire event of a neuron (N, in the case of Fig. 3b) causes (i) the poten-
tiation (resistance decrease) of the connecting synapse, Fig. 3c, and (ii)
the inhibition of all the other neurons by discharging the signals stored
in the integration blocks, Fig. 2a, as it happens in WTA networks54.
Once this procedure is completed, a further signal is sent back to the
FPGA, which nowmoves the position of the agent to that indicated by
the firing neuron, i.e., (i, j) = (2, 3), Fig. 3d.

Consequently, the RRAM elements of all the eight internal states
related to that address are partially set, Fig. 3e, thus increasing the
internal threshold of that specific position (for clarity, only one VTH

increase referred to the spiking position is shown). The control of the
internal threshold is fundamental for themanagement ofpenalties and
rewards. For instance, when the agent hits a wall, it will then try to find
the escape path along other directions. Conversely, if the final reward
is found, the agent is likely to remember the last occupied positions to
ease the successive trials towards the solution.

In order to better clarify the role of the recurrent state, Fig. 3f–h
describe the evolution in time of an internal state under different
situations. Figure 3f shows the modulation of the internal state for an
ordinary (i.e.without rewardorpenalty) position. Every time theneuron
fires, it increases its internal threshold, thus reducing its firing excit-
ability and promoting the exploration. When the agent touches a
boundary (a wall) it receives a penalty, which increases the internal
threshold of that neuron for the successive trials, Fig. 3g, and reset to
HRS the corresponding synaptic connections, thus mimicking the sen-
sorial receptors of a mouse swimming in a water maze16. On the other
hand, when the agent finds the final reward, the FPGA incrementally

reduces the internal thresholds of the 10 last positions, Fig. 3h. On the
other hand, note that the RRAM resistance value of the internal
threshold can reach an upper limit, Fig. 3i, thus building a boundary
condition to the learning activity based on homeostatic STDP.

A synapse is set to LRS when a PRE-neuron fires before a POST-
neuron tomake the agentmoving ahead, Fig. 2a. However, accordingly
to STDP-based Hebbian learning54, we also insert random spiking
activity at low frequency bymeans of LFSRs. Once the LFSRs generate
the coordinates of random positions, the hardware system sends
“reset” (negative) programming pulses to the top electrode of the
selected devices, superimposing the programming signal to the bias
voltage, Fig. 2a37. If this happens in parallel with the excitement of the
synaptic gate, a reset occurs, thus providing stochasticity to the net-
work and random depression, Fig. 3j56. Note also that a “digitalized
STDP” (binary potentiation/depression) is enough for providing effi-
cient operation without accuracy loss36. Furthermore, the synaptic
connections are potentiated toward the direction of movement and
depressed when a penalty occurs, Fig. 3k, thus inhibiting the move-
ment towards inconvenient directions in the next trials. The synaptic
connections and the internal states of the ordinary positions are re-
initialized at every trial, which ends after reaching the time limit or
when the reward is found, as in biological experiments16. Note that if
the environmental configuration changes and the previous rewarded
path is inhibited by a new wall, the threshold increases more slowly,
since the internal state starts from a higher resistive value, Fig. 3l.

Exploration, optimization and recall
The experiments follow the same procedure used in the case of the
Morris Maze in biology: the agent has a limited time to explore the
environment under successive trials16. Once a trial starts, the sequence
of firing neurons maps the movement of the agent in the environment,
Fig. 4a. The exploration is configured as successive randomwalkswhich
progressively develop amodel of the environment.When the solution is
found, it is remembered and improved in time, until the environment
changes and another escape path must be found. In this situation, the
agent gets a penalty in unexpected positions (refer to snapshot number
4 in Fig. 4a, where the lighter colour indicates the longest time spent by
the agent in thosepoints). However,when the systemcomesback to the
previous configuration, it easily recovers the first solution.

Once the global reward is found, the system incrementally reduces
the internal threshold VTH of the last 10 positions by resetting the
internal state resistances of every “state” array, speeding up the overall
response of the network. This is evident in Fig. 4b, where the time
needed to reach the reward is measured as a function of the number of
trials and then averaged over 50 experiments. At the beginning, the
system cannot find the solution and the time spent in the maze is the
maximum available. Then, if the solution is found, the system progres-
sivelydecreases thecomputing time.When themaze changes shape, the
network starts to fail; however, after an exploration period, it success-
fully gets to the target again.Once the system is brought back to thefirst
configuration, the previous solution is retrieved faster than before. This
is due to the “recall property”, which is related to the residualmemoryof
the internal states and to the intrinsic recurrent structure19. Supple-
mentary Movie 1 illustrates the experimental setup and the hardware
demonstration of the exploration of the dynamic environment via
reinforcement learning. Supplementary Code 1 provides the simulation
code for the maze exploration via reinforcement learning.

The overall average energy per trial required by the system was
extrapolated by simulation studies of the hardware setup. Considering
an average case of 50 repetitions of the same exploration, as in Fig. 4c,
the major energetic contribution is related to the use of the SoC. On
the other hand, the switching activity of the arrays is considerably high
when the network has to modify its internal structure to get self-
adaptation to the environment, thus causing a non-negligible increase
of the power consumption. The energetic efficiency improves with the
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increasing accuracy of the system to get to the reward since the inte-
gration time of each step decreases.

Figure 4d shows the modelling of the environment, after several
trials starting from different initial points, as a function of the internal
states, considering the corresponding threshold associated to each

position. Note that near the changing walls the averaged threshold is
lower, due to the presence of two escape paths depending on the
current configuration of the environment. In any case, the overallfiring
activity of the neurons is higher for the positions near the
reward, Fig. 4e.

Fig. 3 | Step-by-step description of the main signals ruling the autonomous
navigation. aThe FPGA records the current position of the agent andb triggers the
gate voltage signal of the synaptic devices to start the integration phase of the
nearest neurons. Once a neuron fires, all the integration signals are discharged by
switching on a transistor in parallel to the capacitor used for integration. After the
fire event, the corresponding synaptic connection is brought high (c) and the
current position of the agent is updated (d); the threshold of the new internal state
rises as a consequence of the internal state partial set (e); the procedure (a–e) is
repeatedat everymovement of the agent. f If a position (i, j) is accessedconsequent
times, it plastically adapts the corresponding internal thresholds causing a gradual
increaseof the thresholdVTH; the neuronal thresholdplastic adaptation is also used

to map the penalties, by increasing the corresponding VTH (g), and the rewards, by
decreasing the corresponding VTH (h). Note that the gradual increase of the neu-
ronal threshold is bounded to the effective multilevel capability of the RRAM
devices (i). During the ordinary movement, the synaptic connections from one
position to another are potentiated or depressed for the STDP mechanism (j),
while, on the other hand, the penalty positions always undergo depression, due to
reinforcement learning (k). Note that the synaptic connections are always poten-
tiated if the agent does not come back. If rewarded positions run into a penalty due
to the dynamic evolution of the environment, the corresponding internal thresh-
olds rise slower than the ordinary positions, due to the firing history and the dif-
ferent fire excitability (l).

Article https://doi.org/10.1038/s41467-023-37097-5

Nature Communications |         (2023) 14:1565 6



To propose a fair benchmark with respect to the state-of-the-art,
we have studied the efficiency of standard approaches under the same
environmental configuration (“maze 1”) depicted in Fig. 4a. The stan-
dard approach of the conventional free-model reinforcement learning
was developed using the Python framework (https://pypi.org/project/

pyqlearning/). As shown in Fig. 4f, the bio-inspired solution overcomes
the state-of-the-art free-learning algorithm in terms of accuracy. The
better results aredue to themore plastic and resilient algorithm tofind
the solution, which leads to a faster convergence to the optimum
result.

Fig. 4 | Recall property in dynamics environments and power efficiency of the
system. a Experimental results for 9 successive trials of a maze which changes
topological configuration every 3 trials. The system explores the environment to
find the reward and it recalls the first solution once the previous configuration is
proposed. b The time to get the solution improves from trial to trial along with the
optimization of the policy. However, note that, once the maze changes shape, the
reward time increases accordingly since a new solution must be found. When the
maze comes back to the previous situation the first solution is recalled. c Energy
consumption tendency for each core of the system. d Once the initial point is
changed from trial to trial, the energy consumption stays high, but a policy map of
thewhole environment is retrieved.eMapof the firing rate of the neurons, showing

that the highest values are, on average, in the nearby zone of the final reward.
f Colour maps of the accuracy for standard Python-based deep Q-learning and the
proposed bio-inspired approach under the same benchmarking condition. Note
that the bio-inspired hardware assures better accuracy results for every combina-
tion of explorative parameters (number of trials per experiment and number of
steps per single trial, i.e., exploration time). g Comparison in terms of memory
computing elements between the deep Q-learning procedure and the bio-inspired
solution at increasing sizes of the environment to explore. Note that the power
consumption is also furtherly improved in the bio-inspired solution thanks to the
use of RRAMmemory devices built in the back end of the line, which avoids the von
Neumann bottleneck typical of standard computing platforms.
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Furthermore, the bio-inspired approach shows a far better man-
agement of the computing resources with respect to standard solu-
tions, Fig. 4g. In fact, by calculating the number of memory elements
that are needed for carrying out an exploration at a certain average
accuracy (99%), it comes out that our solution is 10 times cheaper (the
number of computing elements is directly proportional to the area/
power consumption). Related to this topic, note that themost efficient
supervised CNN (convolutional neural network) necessary in standard
deep reinforcement networks for achieving the 99% target, requires
more than 5million of parameters with almost 1 billion ofmultiply and
accumulate operations57. On the other hand, the bio-inspired approach
proposes a better computing architecture (for the matrix-vector
multiplication, Fig. 2c) and exploitation of the resources (plasticity is
assured thanks to the STDP).

We reportmore information about the benchmarkwith respect to
the state-of-the-art in the section “Discussion” and in the supplemen-
tary information, where we also propose an appendix for the theore-
tical comparison in terms of resilience.

Mars rover navigation
In the last few years, there have been several works which have started
to apply reinforcement learning algorithms to terrain images of Mars,
to test the artificial networks based on learning by reinforcement in
harsh natural landscapes58,59. In particular, the terrain images of Mars
were taken from HiRISE, which collects an entire dataset of high-
resolution Martian images60.

We performed the Mars Rover Navigation test step-by-step. The
first regarded thedefinitionof the environment from readaptedHiRISE
pictures: we elaborated the images, and we individuated slopes and
descents to build a proper description of the environment in the SoC;
secondly, we defined the experimental setup; thirdly, we performed
the experimental measurements. Finally, we used the experimental
measurements for performing Monte Carlo simulations and assessing
performance studies.

Figure 5a shows an example of readapted satellite image with
dimension 128 × 128. The goal of the rover is to find the path to get to
the target without fatal errors, i.e., the fall into a crater or the roll-over
while climbing a rock. The penalty mechanism, in this case, is referred
to the slope of the frame of the rover, which cannot overcome 15
degrees. Figure 5b shows the trajectories of the agents during various
attempts of the rover to get to the reward. Note that, if the rover has a
single-shot trial of exploration, the optimumpath is not assured due to
the lack of a model of the environment. However, once the rover
experiences random walks in the Martian environment, it progres-
sively maps the morphology of the territory, highlighting the for-
bidden locations (i.e. craters and hills) by remembering the received
penalties, Fig. 5c. Note also that the capability of adaptation to the
environment enables a mapping in time of hills and craters in case of
morphological changes.

The dynamic self-adaptation of the neural network depends on
the required time to get to the solution: firstly, the system creates a
model of the environment experiencing penalties; secondly, it finds
the solution and tries to progressively optimize the time to get to the
reward. The time evolution of the system depends on the iterative
procedure of integration and fire that is performed for everyposition P
occupied by the agent. Thus, given a starting point, successive trials of
exploration lead to the definition of preferential paths toward the
reward, as indicated in Fig. 5d for the number ofmovements needed to
reach the reward as a function of the number of trials.

Reconfigurability of the hardware
The Mars Rover navigation proposes a case study which is more
demanding in terms of power and area consumption, since it deals with
a larger environmentwhere reliability, resilience and accuracy play a key
role. Similar types of exploration are relevant for several tasks. For

instance, robots from “Boston Dynamics” have been used in archae-
ological areas to inspect hard-to-access sections of the ruins, to collect
data and to alert people for safety and structural problems whenever
some unexpected changes are detected (https://www.washingtonpost.
com/world/2022/03/31/pompeii-robot-dog-patrol-boston-dynamics/).
In this section, we are going to discuss the scalability of the bio-inspired
hardware in the framework of the Mars Rover navigation, investigating
the best management of the computing resources and demonstrating
that theproposed recurrentneural network can infer abstract strategies.
A further appendix related to this topic, “Additional insights over the
scalability topic”, is also proposed in the supplementary information.

In order to demonstrate the scalability of our system, we compare
the exploration of a new environment using two different approaches,
namely (i) the step-to-step mapping described in Figs. 3 and 4 and (ii)
the optimized exploration using transfer learning from previous trials.

This latter approach is based on two stepswhich enable the re-use
of previous information. During the first step, Fig. 5e, small sections of
the old policy map are dissected in order to record random shapes.
The record is simply driven by the integrated current of all the RRAM
devices included in the region of the memory under consideration,
choosing only those sections which are far enough from themaximum
and minimum boundaries (i.e. all LRS devices and all HRS devices).
Once this procedure is iterated for different forms, the set of shapes is
recorded in the FPGA and stochastically used as penalty function (red
squares) during the exploration of the new environment, Fig. 5f. Such
approach improves the efficiency results, Fig. 5g, and it avoids the
physical device-position mapping (a single address is enough to
abstract a region of space when the agent touches a penalty).

Note that the system is flexible because it can be easily reconfi-
gured during operation. For instance, it would be also possible to re-
write old, allocated memory arrays within the same trial in order to
dynamically improve the RRAM memory efficiency over time. Such
reconfigurability, which enables the use of the same hardware for
different autonomous navigation tasks, goes in the direction of pro-
viding hardware-based computation while retaining the flexibility of a
software approach, as it is done in reconfigurable FPGAs61.

Furthermore, the RRAM-based computation is performed
“in situ”, thus offering a far better management of the computing
resources. In this context, the memory array can be continually
exploited by the bio-inspired computation until the completememory
resource is fully allocated. Then, the direction of movement, the
number of steps and some further information (penalty/rewards) can
be saved in separated registers (which could also be RRAM-based) as
pure coordinates. Thus, the RRAM array is practically ready again to
perform further explorative trials, abstracting the previous maps of
exploration and referencing the stored coordinates to the effective
number of “refreshes” of the RRAM memory arrays.

Theoretical modelling for in-memory reinforcement learning
In order to study by a theoretical point of view the benefits introduced
by the in-memory bio-inspired approach in terms of energetic effi-
ciency, resilience and accuracy, consider again the Q function, Eq. II.
We analyse now the same equation accordingly to the main outcomes
related to the hardware presented in this work.

• The reward function R s,að Þ of the hardware is mapped by the
homeostatic reaction described in Fig. 2a, b and in Fig. 3i: the
environment gives penalties and rewards which directly affect
the quality “Q” of a position “s” by acting on the “state” RRAM
devices. If a penalty occurs, or a reward is found, the firing
neuron threshold is modulated, Fig. 3g, h. Note that the firing
neuron is the one which overcomes its threshold first, i.e., (Iout –
Ith) > 0, in which Iout is the post-synaptic current, and Ith is the
equivalent homeostatic threshold of that neuron. Thus, keeping
constant the read voltage and being the neuronal current
dependent on the synaptic elements, the reward function canbe
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written as a function of the conductance values only,
i.e., RðGsyn,GstateÞ.

• The learning factor is not required in the neuromorphic
approach, since it is a parameter related to the deep learning

procedure. However, we introduce here a generic fitting factor β
for the modulation of the quality factor equation.

• The probability function “P”, which describes the probability of
the quality of a certain position s for moving towards another

Fig. 5 | Reconfigurability and scalability of the hardware under the Mars Rover
navigation test. a Custom environment of Mars readapted from HiRISE, with
highlighted the initial (start) and the final (global reward) points selected for the
test of the algorithm.bThe agent explores the environment in 100 trials, eventually
finding the target: note that the successful trials improve the strategy step-by-step
to get faster to the solution. c Various trials of exploration lead to the creation of a
complete policy map of the whole environment, with higher equivalent threshold
of the positions which received penalties. d Time improvement of the exploration
path: after selecting a starting point, the policy map drives the system to optimize
the number of steps to get to the final reward. e Iterative selection of small sections
of the previous policy map by reading the integrated current of the state array to
record generic shapes of the penalty-related objects. Note that this procedure can

be iterated as a function of the shape size by choosing proper boundaries to avoid
misleading cases (e.g., sections of thepolicymaps inwhichno shapes are detected).
f Exploration of a new environment taking into consideration different sizes of
penalty shapes: once the agent receives a penalty, it is possible to inhibit a generic
pre-recorded area of the environment, thus avoiding a memory-position mapping.
Furthermore, the memory array can be continually exploited by the bio-inspired
computation until the complete memory resource is fully allocated. Then, the
direction of movement and the further information can be saved in peripheral
registers as pure coordinates. g Study over 100 experiments of the time
improvement of the explorationpath comparing the free-policywith the optimized
policy using recorded penalty shapes, eventually highlighting the benefits of
transfer learning from previous explorations.
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state s’, is dependent on the homeostatic-based STDP mechan-
ism. Thus, it depends on the synaptic evolution of the synaptic
connection between state s and s’, Fig. 3j, in formula,
P = P Gsyn s, s0ð Þ,Gstate sð Þ, ∂Gsynðs,s’Þ

∂t

� �
36.

• The value maxa’Qðs0,a’Þ is the maximum of all the possible
valuesQðs’Þ among the possible states s’ the agent could explore
after an action a’. This feature is mapped by means of the
synaptic-based movement, since the Q factor of each position is
modelled over time by the plastic modulation of the synapses,
Fig. 4e. Thus, we can rewrite this contribution as
maxs0Q Gsyn s0, sð Þ,Gstate s’ð Þ , ∂Gsynðs’,sÞ

∂t

� �
, where the inverted s

parameters stand for the possibility, depending on R s’ð Þ, of
going on exploring or coming back to the previous state, Fig. 2a.

Thus, the neuromorphic Q-learning equation, that we now call QN,
can be re-written using this formula:

QN sð Þ=R Gsynðs, s0Þ,GstateðsÞ
� �

+β
X
s0

P Gsyn s, s0ð Þ,Gstate sð Þ, ∂Gsynðs,s0Þ
∂t

� �
maxs0Q Gsyn s0, sð Þ,Gstate s0ð Þ, ∂Gsynðs0,sÞ

∂t

� �
:

ð4Þ

Following the same procedure, it is also possible to describe the
TD(λ), Eq. III:

TDN,t a, sð Þ=ρ QN,t Gsyn,Gstate

� �
�QN,t�1 Gsyn,Gstate

� �� �
, ð5Þ

where ρ is a fitting parameter. Note that we have re-written all the
reinforcement learning equations in terms of memory-based circuital
parameters, but it is also possible to furtherly develop the theoretical
study by highlighting the mathematical relationships behind the pure
functional representations of Equations IV-V. In the supplementary
material we provide the appendix “Additional insights over the
theoretical modelling of bio-inspired networks for reinforcement
learning” to link the reinforcement variables to the physical para-
meters of the circuit.

All these outcomes highlight the advantages of the bio-inspired
approach since (i) time and power consuming data transfers between
CPU and DRAM are avoided and (ii) the system can rely on pure
synaptic adaptation to carry out accurate computation. By a theore-
tical point of view, this is themost relevant achievement introduced by
this work since it highlights the intrinsic benefit of neuromorphic in
situ-computation with respect to the state-of-the-art.

Discussion
Deep learning techniques using standard Von Neumann processors
enable accurate autonomous navigation but require great power
consumption and long time for making training algorithms effective,
Fig. 4f, g (https://pypi.org/project/pyqlearning/). In particular, the
environmental information is often sparse, noisy and delayed, while
training procedures are supervised and require direct association
between inputs and targets during the backpropagation. Hence,
complex models of convolutional neural networks are needed to
numerically find the best combination of parameters for the deep
reinforcement computation62, (https://pypi.org/project/pyqlearning/).
Thus, the standard approaches to reinforcement learning enable free-
policy learning by reinforcement, but this is paid in terms of lower
accuracy with respect to the same environmental configuration,
Fig. 4f, and in higher cost of the resourceswhen a specific performance
is targeted, Fig. 4g. Furthermore, standard processors require data
transmission back and forth the DRAM (Von Neumann bottleneck)
while in-memory computing assures a local processing of the infor-
mation where it is stored, Fig. 1a22,23,63.

Note also that deep Q-learning techniques suffer from unstable
learning under some conditions of bias overestimationwhich requires a

mutual trainingof amulti-layer-perceptron (MLP)network anda correct
setting of the learning rate64. This could affect the effectiveness of the
training algorithm when the system must map the environment
autonomously, requiring a network of several layers with the Adam
optimizer applied for stochasticoptimization65. All these features assure
high accuracy in, at least, 1000 episodes for each trial. Contrarily, the
bio-inspired learning procedure relies on training-free in-situ hardware
computation. This approach improves a lot the time efficiency, Fig. 4b,
and the energy consumption, Fig. 4c, while keeping high the accuracy,
Fig. 4f. Furthermore, the STDP does not require dedicatedmethods for
stochastic optimization, and it assures an optimum behaviour also
when the configurationof the space toexplore is not constant36. Related
to this context, in the supplementary appendix “Comparison of the
resilient properties between bio-inspired and deep learning approa-
ches”, we report a theoretical study over the adaptation capabilities of
the neuromorphic solution with respect to the standard Python-based
approach (https://pypi.org/project/pyqlearning/).

TheMarkovdecision process, Q-learning, TD(λ) anddeep learning
are not the only topics to which the scientific community refers to for
modelling and designing reinforcement learning algorithms. For
instance, the multi-bandit problem is often taken as benchmark. The
multi-armedbandit problemdealswith an agent that attempts tomake
decisions as a consequence of previous experiences but, at the same
time, it needs to acquire new knowledge for the next decision-making
events. To cope with this framework, several works have proposed the
use of RNNs for enhancing the re-use of past information66 and for
building “meta-learners”, i.e., systems trained on a distribution of
similar tasks featuring a generalization capability when novel goals are
targeted67,68. However, even considering these meta-approaches, sev-
eral CNN-based training algorithms are anyway necessary to provide
the system with an optimum policy map for the required navigation
task, thus falling again in the power and time bottleneck.

In conclusion, we proposed an event-based hardware based on
RRAM devices capable of self-adaptation to get efficient neuro-
computing in reinforcement learning tasks. We studied the experi-
mental behaviour of the network highlighting the resilient capability of
the autonomous navigation under various environmental difficulties,
such as obstacles and dynamic modifications of the maze. We also
proposed a study of the hardware reconfigurability of the system
under the Mars rover navigation test. Finally, we introduced a theo-
retical framework for bio-inspired reinforcement learning highlighting
the main outcomes of RRAM-based computation with respect to the
state-of-the-art. This work highlights the relevance of bio-inspired
approaches for artificial intelligence and underlines the computational
benefits of non-volatile memories for autonomous hardware systems.

Methods
SiOx RRAM arrays
The RRAM devices are deposited in the backend-of-the-line (BEOL) on
top of the 4th metal layer of 130 nm-technology CMOS wafers. First, a
TiN bottom electrode (BE) is created as an inert electrode. Afterwards,
an optimized resistive switching layer of SiOx is deposited, followed by
a Ti layer (playing the role of oxygen scavenging layer) and a TiN layer.
The memory dots are obtained by etching. Then, a passivation layer is
deposited. Finally, the top electrode (TE) contact is opened, and the
5th metal line is processed to complete the integration process. Note
that every state array is separated from the synaptic array and each of
themhas a dedicated direct-memory-access (DMA) circuit addressable
by proper pad connections (refer to Supplementary Fig. 4).

In particular, each of the integrated circuits used for the experi-
ments proposed in this manuscript enables the use of 96 kb bonded
devices. Given the high number of available arrays, further memory
elements could be easily accessed by providingmore bondingwires to
the package (until 1Mb). Note also that themaximumdimensionof the
array that can be accessed using only one DMA is around 16 kb

Article https://doi.org/10.1038/s41467-023-37097-5

Nature Communications |         (2023) 14:1565 10

https://pypi.org/project/pyqlearning/
https://pypi.org/project/pyqlearning/
https://pypi.org/project/pyqlearning/


(128 × 128), while the smallest fully connected array addressable by the
hosting board and the experimental setup shown in Supplementary
Fig. 3 has a dimension of 8 × 8. Finally, note that the high reconfigur-
ability of these arrays gives the possibility of choosing different top-
level architectures for taking advantage of different features of the
devices, depending on the application and target.

The devices can be accessed via two digital signals, one for the row
and the other for the column, respectively. All the devices were electro-
formedby applying an increasing amplitudevoltage sweep relyingonan
automated setup with a parameter analyser (HP4156C). In order to
characterize thedevices and study themain features in termsof resistive
window and multilevel capability, a “write and verify” algorithm was
used, constituted by a series of alternative application of write and read
pulses. To provide both set and reset switching activities, the polarity of
the cells was switched accordingly to the transition toobtain: during set,
a positive polarity was applied to the top electrode of the cell; during
reset a positive polarity was applied to the bottom electrode of the cell.
Conversely, the devicewas also tested by applying positive pulses at the
top electrode during set and negative pulses during reset. During reset
the maximum gate voltage is applied to the gate of the transistor to get
the lowest possible ohmic resistance. The data were collected and stu-
died using Matlab or the libraries “Matplotlib”, “Pandas”, “Seaborn” in
Python environment. As illustrated in Fig. 1b, the switching behaviour of
thedevices allows toobtain aVSET from1 to 1.35 V. Thus, in theoperation
setup, a sufficiently high voltage VSET was always used in order to
guarantee a good switching behaviour; the same was assured for the
reset transition.However, note that significantly high standarddeviation
affects the HRSmultilevel capability of the devices, Fig. 1g. On the other
hand, the multilevel low resistive capability of the devices as a function
of the compliance current IC is more stable, even if the distributions of
Fig. 1d present overlaps between one another. However, this is not
important for theoverall computationof thenetwork, sincebio-inspired
computing does not require a precise definition of the weights. Note
that in the supplementary information we provide a further appendix,
“Additional insights over the theoretical modelling of bio-inspired net-
works for reinforcement learning”, which investigates themathematical
connection between the reinforcement equations IV and V with the
physical parameters ruling the resistive state of the RRAM devices.

Simulation setup
In order to design the system, a high-level environmental simulation
was implemented in Matlab. The simulation was initially carried out
with an ideal definition of the weights for then inserting the values
coming from the characterization of the devices.

The algorithm has three main sections, and it deals with a sim-
plified behavioural description:
1. The first part deals with the creation of themaze, the definition of

the constants (such as the initial position, the rate of maze mod-
ulation in time, the maximum number of trials and epochs) and
the initialization of the variables (such as the current calculation,
the current integration, and the cardinal points).

2. The secondpart regards the loadingof the experimental data. The
agent is connected to the cardinal points by SiOx RRAM synapses
that are potentiated (set) or depressed (reset) by Hebbian learn-
ing. Each cardinal point is represented by a spiking neuron that
integrates the current coming from the synapses. The first neuron
that reaches the threshold voltage (defined by a specific SiOx-
RRAM state device) induces a spike that fully sets the corre-
sponding excitatory synapses; at the same time, the state device is
partially set, thus causing a gradual increase of the neuronal
threshold. If the agent founds a wall (penalty) or the final goal
(reward) the corresponding state positions are remembered from
trial to trial in order to boost the learning by reinforcement.

3. The third section of the code is referred to the calculation of the
movements. Once the initial position is set, the agent can go

towards eight possible directions, which are mapped by the cor-
responding RRAM synaptic elements. After the definition of the
synaptic elements, all the nearest positions of the maze are
scanned by the code, as the integration plus fire events make the
agent move. If the agent moves toward a wall, the corresponding
synapse is re-programmed to HRS while the corresponding
internal state is re-programmed to LRS, thus reducing the
neuronal spiking excitability of that position. If the agent moves
toward the reward of the maze, the corresponding internal states
of the last 10 run position are reprogrammed to HRS, thus
lowering the thresholds and easing the reward path. Note that, for
the ordinary positions of the maze, the STDP-based Hebbian
learning is taken into consideration: the integrated current
(variable “Current”) is the product of the read voltage (VCOM)
e.g., 100mV, times the corresponding synaptic conductance. The
current is integrated (variable “Integration”) and the first spiking
neuron determines the direction alongwhich the agent ismoving.
This direction defines a new initial position from which the
previous calculations are repeated.

Pseudocode of the reinforcement learning algorithm

Algorithm 1. Behavioral code for reinforcement learning
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Note that two key procedures are defined in the pseudocode,
namely (i) “Synapses matrix” and (ii) “States matrix”.
1. The synapticmatrix is initialized tohigh conductance values using

IC = 54 μA. However, it is also possible to select the LFSR registers
in order to choose random positions and to provide random HRS
with |VSTOP| = 1.1 V. Thus, the final distribution for the synaptic
matrix is bimodal, as reported in Fig. 2b. Those synapses that have
undergone a penalty or received a reward keep the conductance
obtainedduring theprevious trials. This initialization procedure is
made for assuring faster response of the explorative algorithm,
but further initialization approaches would be anyway acceptable
while keeping the same accuracy.

2. The States matrix is generally initialized at lower conductance
values with |VSTOP| = 1.1 V (plus local high conductance values of
randompositions selectedby the LFSR registers andprogrammed
at IC = 54 μA). Note that the state devices are gradually increased
in conductance as the devices are gradually set at higher IC. All the
resistance values are taken from the distributions of
experimental data.

To perform an analysis regarding the time and the accuracy at
varying IC and VSTOP, the combination of different devices for the
“Synapses matrix” was studied. Considering ideal multilevel synaptic
definition for the internal states, the efficiency of the algorithm
improves when the synaptic devices have low-dispersed LRS and HRS,
as reported in Table 1.

Data availability
The experimental data generated in this study have been deposited in
this GitHub repository: https://github.com/Bianchi27/A-self-adaptive-
hardware-with-resistive-switching-synapses-for-experience-based-
neurocomputing.git. Further data that support the findings of this
study are available from the corresponding author upon request.

Code availability
The computer codes are available accessing this GitHub repository:
https://github.com/Bianchi27/A-self-adaptive-hardware-with-resistive-
switching-synapses-for-experience-based-neurocomputing.git.
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