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Abstract. Slice analysis is a generalization of the theory of holomorphic functions of one complex
variable to quaternions. Among the new phenomena which appear in this context, there is the fact
that the convergence domain of f .q/D

P
n2N.q � p/

�nan, given by a � -ball†.p; r/, is not open
in H unless p 2 R. This motivates us to investigate, in this article, what is a natural topology for
slice regular functions. It turns out that the natural topology is the so-called slice topology, which
is different from the Euclidean topology and nicely adapts to the slice structure of quaternions. We
extend the function theory of slice regular functions to any domains in the slice topology. Many
fundamental results in the classical slice analysis for axially symmetric domains fail in our general
setting. We can even construct a counterexample to show that a slice regular function in a domain
cannot be extended to an axially symmetric domain. In order to provide positive results we need to
consider so-called path-slice functions instead of slice functions. Along these lines, we can establish
an extension theorem and a representation formula in a slice domain.

Keywords. Domains of holomorphy, quaternions, slice regular functions, representation formula,
slice topology

1. Introduction

The richness of complex analysis makes it natural to look for generalizations to quater-
nions. Around the early thirties various people, among which Moisil and Fueter, consid-
ered possible definitions of analyticity over the quaternions. Since then, Fueter and his
school started a systematic study, so the notion of ‘regular’ quaternionic function is the
one associated with the so-called Cauchy–Riemann–Fueter equation [10],
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This theory has been widely studied; see e.g. [9,19,23] but also [6,17] and the references
therein. Unfortunately, the class of Fueter regular functions does not contain the identity
function f .q/ D q or any other polynomial in q. However, Fueter [10] found a powerful
approach to construct functions in higher dimensions based on holomorphic function of
one complex variable.

This approach was further developed by Sce [21], Rinehart [20] and resulted in the
theory of intrinsic or stem functions. Later on, Cullen [8] defined another class of regu-
lar functions by intrinsic functions. Cullen regular functions contain quaternionic power
series of the form

P
n2N q

nan.
Following Cullen’s approach, another theory, called slice quaternionic analysis, was

started by Gentili and Struppa [13,14] based on a more geometric formulation. This local
theory has been well established first on balls centered at the origin [13,14] and then over
axially symmetric slice domains [4,5]. Most of the local theory of holomorphic functions
of one complex variable can be lifted to quaternions. It gives rise to the new notion of S-
spectrum and has powerful applications in the quaternionic spectral theory (see e.g. [1,5]),
and in quaternionic Hilbert spaces [2, 3, 5, 15]. See [7, 12] and the references therein for
other information.

In contrast to its full development in local theory, the global one remains to be devel-
oped. The challenging task of establishing the global theory over quaternions can lead to
some new theories such as slice Riemann surfaces, domains of slice regularity, and slice
Dolbeault complexes. Therefore, the first natural question to be answered is:

What is the natural topology in slice analysis?
In [4], it has been claimed that any slice regular function on a domain of H can be

extended to an axially symmetric domain. But this is not true and we provide a counter-
example in Example 8.10. This means that axially symmetric slice domains are not the
maximal domains of definition of a slice regular function. In other words, axially sym-
metric domains do not play the role of the natural maximal domains in slice analysis. On
the other hand, the convergence domain of the Taylor expansion of a slice regular functionX

n2N

.q � p/�n
f n.p/

nŠ
;

completely described in terms of the � -ball †.p; r/ (see [11]), may not be a Euclidean
domain. Hence the Euclidean topology is not a natural topology in slice analysis.

To answer the above question, we observe that the slice book structure of quaternions
plays a key role which makes it feasible to lift the theory of holomorphic functions in
one complex variable to quaternions. The slice book structure comes from the following
decomposition of quaternions into complex planes:

H D
[
I2S

CI ; (1.1)

where CI D R C IR is the complex plane generated by the imaginary unit I and S
consists of all imaginary units I of quaternions. As a result, the slice book structure of
quaternions is a natural structure in slice analysis.
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Motivated by the slice book structure, we can answer the main question of this article.
It turns out that the natural topology in slice analysis is the so-called slice topology, which
adapts nicely to the book structure of quaternions. We prove that the slice topology is
finer than the Euclidean topology and all of the � -balls †.p; r/ are domains in the slice
topology.

With this slice topology, some natural questions arise. One can ask if the slice theory
can be extended from axially symmetric domains to any domains in slice topology, but
the answer is negative in general. As an example, one can consider the representation
formula. This formula is the most important feature of the classical local theory of slice
analysis. It states that any slice regular function over an axially symmetric slice domain
is completely determined by its values on two pages, i.e. complex planes, of the book
structure of H. This result cannot be immediately extended to the case of open sets in
the slice topology. Instead, we have to extend the theory of stem functions to a new one
involving paths which produce path-slice functions.

Using the slice topology, one can also ask if any domain in the slice topology is a
domain of holomorphy in some sense. The answer to this question is also negative, in
general, in contrast to the case of holomorphic functions in one variable. This leads to the
study of the characterization of domains of holomorphy just as in the case of holomorphic
functions of several variables. We provide conditions for a domain to be such a domain of
holomorphy.

The structure of the paper is the following. In Section 2, we introduce the slice topol-
ogy on quaternions for slice regular functions and we describe our main results and ideas.
In Section 3, we give some basic properties and examples for the slice topology. In Sec-
tion 4, we prove an identity principle for slice regular functions on domains in the slice
topology. In Section 5, we generalize the notion of slice function to any subset of H
and give several equivalent definitions of slice functions. In Section 6, we prove a gener-
alized extension formula. In Section 7, we define a class of functions, called path-slice
functions. These functions play a similar role on slice domains to that of slice func-
tions on axially symmetric slice domains. We also give several equivalent definitions of
path-slice functions and prove our main theorem, i.e. the Representation Formula 2.11. In
Section 8, we give an example to show that the classical general representation formula
[4, Theorem 3.2] does not work on a non-axially-symmetric s-domain, using the new Rep-
resentation Formula 2.11. Section 9 is devoted to domains of holomorphy for slice regular
functions defined on slice-open sets among which there are axially symmetric st-domains
and � -balls.

We will continue our study of global slice analysis in forthcoming articles.

2. Main results

In this section, we state our main results. To this end, some notation and definitions from
[13] are needed. Let

S WD ¹q 2 H W q2 D �1º



X. Dou, G. Ren, I. Sabadini 3668

be the sphere of imaginary units of H. For any subset � of H and I 2 S, we call

�I WD � \CI

the I -slice (a slice) of �.

Definition 2.1. Assume that� is an open set in CI for some I 2S. A function f W�!H
is said to be left CI -holomorphic (or simply holomorphic) if f has continuous partial
derivatives and satisfies

N@If .x C yI / WD
1

2

�
@

@x
C I

@

@y

�
f .x C yI / D 0 (2.1)

for any x; y 2 R with x C yI 2 �:

The definition originally given in [13] is as follows:

Definition 2.2. Let � be a domain in H. A function f W �! H is said to be (left) slice
regular if fI WD f j�I is left CI -holomorphic for any I 2 S.

[11, Theorem 8] shows that the convergence domain of the seriesX
n2N

.q � p/�nan

is the � -ball
†.p; r/ WD ¹q 2 H W �.p; q/ < rº:

with the � -distance defined by

�.q; p/ WD

´
jq � pj; 9I 2 S W p; q 2 CI ;p
.Re.q � p//2 C .jIm.q/j C jIm.p/j/2; otherwise;

for any p; q 2 H. A � -ball is not a Euclidean domain when p 2 H n R. This illustrates
the need to define ‘slice regular’ functions on more sets, such as the above � -balls. Note
that the ‘holomorphic’ condition of f in Definition 2.2 is limited to each slice CI , I 2 S.
Thus in order to define ‘slice regularity’, we just need to guarantee that �I is open in CI
for each I 2 S.

Definition 2.3. A subset � of H is called slice-open if �I is open in CI for any I 2 S.

It is clear that the � -ball†.p; r/ is slice-open. Now we extend Definition 2.2 to slice-
open sets.

Definition 2.4. Let � be a slice-open set in H. A function f W �! H is called (left)
slice regular if fI is left holomorphic for any I 2 S.

We note that, so far, in the literature, numerous results in slice quaternionic analy-
sis (according to the definition in [13]) have been developed systematically over axially
symmetric slice domains and this is basically enough for various purposes. Our goal is to
generalize it to any slice-open set. Some properties can be proved as in the classical case,
e.g. the following Splitting Lemma. Thus we state it without proof.
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Lemma 2.5 (Splitting Lemma). Let f be a function on a slice-open set�. Then f is slice
regular if and only if for all I; J 2 S with I ? J , there are complex-valued holomorphic
functions F;G W �I ! CI such that fI D F CGJ .

The set of slice-open sets gives a topology on H:

Lemma 2.6.
�s.H/ WD ¹� � H W � is slice-openº

is a topology on H.

Proof. This can be immediately verified directly or by observing that the slice topology
is the final topology with respect to the inclusions ¹iI W CI ! HºI2S.

Definition 2.7. We call �s.H/ the slice topology. Open sets, connected sets and paths in
the slice topology are called slice-open sets, slice-connected sets and slice-paths.

Remark 2.8. In particular, a similar terminology will be used for all the other notions in
the slice topology, with one remarkable exception. We will not use the term ‘slice-domain’
to denote a domain in the slice topology, since this notion is already used in the literature
to denote something else (see Definition 2.9 below). We will use instead the term slice
topology-domain, for short, st-domain.

Definition 2.9. A set � in H is called a classical slice domain, for short s-domain, if �
is a domain in the Euclidean topology,

�R WD � \R ¤ ;;

and �I is a domain in CI for any I 2 S.

It is evident that an s-domain must be a domain in the slice topology, i.e. an st-domain,
but the converse is not true (see Example 3.13).

The classical slice quaternionic analysis is established on axially symmetric s-
domains. The slice quaternionic analysis on st-domains shows differences with respect to
the classical one, since it relies on slice-connectedness. For example, the proof of the fol-
lowing generalized Identity Principle in Section 4 involves some properties of st-domains
induced by slice-connectedness.

Theorem 2.10 (Identity Principle). Let f and g be slice regular functions on an st-
domain � in H. If f and g coincide on a subset of �I with an accumulation point
in �I for some I 2 S, then f D g on �.

Another fundamental result in the classical slice analysis is the general representation
formula [4, Theorem 3.2]. Unfortunately, this formula fails, in general, on non-axially-
symmetric domains (see Section 8).

To get the validity of the formula, we have to introduce the notion of path-slice func-
tions (see Definition 7.1).
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We consider the transform

PI W C ! CI ; x C yi 7! x C yI;

for any x; y 2 R and I 2 S. For any path  in C, we define the corresponding path in CI
as

I WD PI ı  for any I 2 S.

Theorem 2.11 (Representation Formula). Assume that � is a slice-open set in H and
suppose  is a path in C satisfying the conditions

.0/ 2 R; I ; J ; K � �;

for some I; J;K 2 S with J ¤ K. If f is a slice regular function on �, then

f ı I D .I �K/.J �K/�1f ı J C .I � J /.K � J /�1f ı K : (2.2)

Remark 2.12. Although we only assume the domain� under consideration is slice-open,
some restrictions related to slice-connectedness are implicitly involved as shown by the
conditions

I ; J ; K � �:

The path I in a slice can distinguish points of � more finely than x C yI (by the
Euclidean coordinate in CI ; see Section 8). This ensures that the representation formula
holds on non-axially-symmetric domains.

A function satisfying (2.2) is called path-slice in Section 7 based on an equivalent
definition. It turns out that any slice regular function is a path-slice function. The proof of
(2.2) will depend on a new approach; see Proposition 7.2(i, vi).

3. Slice topology

In this section, we study some properties of the slice topology �s.H/. The slice structure
induces the intricacy of the notion of slice-connectedness near the real axis. We tackle
this issue in terms of slice-paths.

We denote by �s.H/ and �.H/ the slice topology and the Euclidean topology of H,
respectively. Sometimes, we simply write �s and � , for short.

Proposition 3.1. .H; �s/ is a Hausdorff space and � ¨ �s .

Proof. Since every Euclidean open set in H is slice-open, we have � � �s and �s is Haus-
dorff. Note that †.p; r/ is slice-open and not open for any p 2 H n R and r 2 RC. It
follows that the slice topology is strictly finer than the Euclidean topology.
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We remark that the slice topology locally coincides with the Euclidean topology on a
slice complex plane for any point away from the real axis R, because for any I 2 S the
subspace topologies on CI of �s.H/ and �.H/ coincide, i.e.

�s.CI / D �.CI /:

However, �s.H/ is quite different from the Euclidean topology �.H/ near R, as demon-
strated by the following example.

Example 3.2. Fix I 2 S. We construct a slice-open set � in H as

� WD
[
J2S

�J ; (3.1)

where

�J WD

8̂<̂
:
²
x C yJ 2 CJ W x2 C

y2

dist.J;CI /
< 1

³
; J ¤ ˙I;

¹x C yJ 2 CJ W x2 C y2 < 1º; J D ˙I:

Here dist.J;CI / is the Euclidean distance from J to CI .
By construction, � is slice-open. But � is not open in H since 0 2 � and 0 is not

in the Euclidean interior of �. This is because �J is an ellipse whose minor semi-axisp
dist.J;CI / tends to 0 when J approaches I with J ¤ ˙I .

The slice topology is finer than the topology induced by the � -distance as proved in
the following result:

Proposition 3.3. �� ¨ �s , where �� is the topology on H induced by the � -distance.

Proof. Let U 2 �� and I 2 S. Then for any q 2 UI ,

r WD �.q;H n U/ > 0:

Note that for each z;w 2CI , �.z;w/D distCI .z;w/, where distCI .z;w/ is the Euclidean
distance in CI . Let BI .q; r/ be the ball with center q and radius r in CI . It is clear that
BI .q; r/ is a subset of UI , and q is a point in the interior of UI . Hence UI is open in CI ,
so that U is slice-open and �� � �s .

To show that the slice topology is strictly finer, we consider the set� defined in (3.1),
Example 3.2, which is slice-open. Let J 2 S. Since H n� � CJ n�J ,

�.0;H n�/ � �.0;CJ n�J / D distCJ .0;CJ n�J /: (3.2)

Note that
lim

J!I; J¤I
distCJ .0;CJ n�J / D 0: (3.3)

From (3.2) and (3.3) we deduce that �.0;H n�/ D 0. Hence, 0 is not an interior point
in � under the topology �� and so � is not open in �� . However, � is a slice-open set
and we conclude that �� ¤ �s .
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To deal with the difficulties of the topology near R, a new notion, called real-con-
nectedness, comes up. This provides an effective tool since the slice topology has a
real-connected subbase.

Definition 3.4. A subset � of H is called real-connected if the set �R WD � \ R is
connected in R. In particular, when � \R D ;, � is real-connected.

Proposition 3.5. For any slice-open set � in H and q 2 �, there is a real-connected
st-domain U � � containing q.

Proof. We take U to be the slice-connected component of the set .� n�R/[A contain-
ing q. Here, when q 2 R, we take A to be the connected component of �R containing q
in R; otherwise, we set A WD ;.

It is easy to check that q 2 U and U is a real-connected st-domain.

Now we describe slice-connectedness by means of slice-paths.

Definition 3.6. A path  in .H; �/ is said to be on a slice if  � CI for some I 2 S.

Proposition 3.7. Every path on a slice is a slice-path.

Proof. This follows directly from the fact that �s.CI / D �.CI / for any I 2 S.

Proposition 3.8. Assume that an st-domain U is real-connected.

(i) If UR D ;, then U � CI for some I 2 S.

(ii) If UR ¤ ;, then for any q 2 U and x 2 UR, there exists a path on a slice from q to x.

Proof. (i) If UR D ;, then

U �
G
J2S

CCJ ; where CCJ WD ¹x C yJ 2 H W y > 0º

is a slice-open set in H for any J 2 S. This means that U � CCI for some I 2 S since U
is slice-connected.

(ii) We fix q 2 U and x 2 UR. Take I 2 S such that q 2 CI . Since U is an st-domain
in H, by definition UI is an open set in the plane CI . Let V be the connected component
of UI containing q.

By definition the sets CI nR and
S
J2Sn¹˙I º.CJ nR/ are slice-open. If VR D;, then

V D U \ .CI nR/ and U n V D U \
h [
J2Sn¹˙I º

.CJ nR/
i

are slice-open. Since U is slice-connected and nonempty, it follows from

U D V t .U n V /

that V D U . This implies UR D VR D ;, which is a contradiction. We thus conclude
VR ¤ ;.
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We take a point x0 2 VR. Since V is the connected component of UI containing q,
there exists a path ˛ in V from q to x0. Because U is real-connected, we have a path ˇ
in UR from x0 to x. It is clear that ˛ˇ is a path on a slice from q to x.

Corollary 3.9. Assume that an st-domain U is real-connected.

(i) UI is a domain in CI for any I 2 S.

(ii) For any p; q 2 U , there exist paths 1; 2 such that each of them is a path on a slice
in U , 1.1/ D 2.0/, and 12 is a slice-path from p to q.

Proof. This follows directly from Proposition 3.8.

Proposition 3.10. The topological space .H; �s/ is connected, locally path-connected
and path-connected.

Proof. It follows from Proposition 3.5 and Corollary 3.9 (ii) that .H; �s/ is locally path-
connected. Since H \ CI D CI � R for any I 2 S, .H; �s/ is path-connected so that it
is also connected.

Corollary 3.11. A set � � H is an st-domain if �R ¤ ; and �I is a domain in CI for
any I 2 S.

Proof. If �I is open for any I 2 S, then by definition � is slice-open. Since �R ¤ ;,
we can take a fixed point x 2 �R. By hypothesis, �I is a domain in CI for any I 2 S,
there exists a path on a slice from x to each point of �. This implies that � is slice-path-
connected, so that it is also slice-connected. Thus � is an st-domain.

Note that there are sets � which are st-domains with �R D ;. For example, let us
consider a fixed J 2 S. We set

� WD BJ .2J; 1/ D ¹q 2 CJ W jq � 2J j < 1º:

It is evident that � is an st-domain and �R D ;.

Remark 3.12. By Corollary 3.11, any s-domain is an st-domain. Therefore the notion of
st-domain is a generalization of the notion of s-domain.

However, not every st-domain � is an s-domain, even when � is a domain in H, as
we show in the following example.

Example 3.13. We fix I 2 S and consider the domain in H defined by

� WD B.0; 2/ [ B.6; 2/ [ U; where U WD ¹q 2 H W dist.q � I; Œ0; 6�/ < 1=2º:

It is easy to check that
�J D BJ .0; 2/ [ BJ .6; 2/

for any J 2 S with J?I . Hence�J is not connected in CJ so that� is not an s-domain.
However, � is slice-connected, because any point in � can be connected to 0 or 6 by a
path in a slice, and 0 can be connected to 6 by a path in CI . And since �J is open in CJ
for any J 2 S, � is an st-domain.
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4. Identity principle

In this section we provide an identity principle for slice regular functions defined on st-
domains.

Since st-domains satisfy conditions weaker than those required of s-domains, the
proof of the Identity Principle 2.10 is more difficult than the one for s-domains. We need
to reduce the problem to the special case where the domain is real-connected.

Lemma 4.1. Assume that an st-domain� is real-connected. Let f and g be slice regular
functions on �. If f and g coincide on a subset of �I with an accumulation point in �I
for some I 2 S, then f D g on �.

Proof. By assumption, we have �I ¤ ; so that Corollary 3.9 (i) implies �I is a non-
empty domain in CI . Therefore, using the Splitting Lemma and the identity principle for
classical holomorphic functions of a complex variable, we deduce that f and g coincide
on �I .

If �R D ;, then � D �I due to Proposition 3.8 (i) so that f D g on �.
Otherwise, we have�R¤;. By Corollary 3.9 (i),�J is a domain in CJ for all J 2 S.

Since f D g on �R .� �I /, it follows that f D g on �J for any J 2 S. Consequently,
f D g on � D

S
J2S �J .

Now we can give the proof of the identity principle for st-domains.

Proof of Theorem 2.10. We consider the set

A WD ¹x 2 � W 9V 2 �s.�/ W x 2 V and f D g on V º:

By definition, A is a slice-open set in �.
Next, we show that A is nonempty. Due to Proposition 3.5, there exists a real-con-

nected st-domain U that contains the accumulation point p and U � �. It follows from
Lemma 4.1 applied to U that f D g on U . This means that p 2 A, so that A is nonempty.

Finally, we claim that � n A is slice-open. From this claim and the fact that � is
slice-connected, we conclude that A D �, so that f D g on �.

It remains to prove the claim. Let q 2 � n A be arbitrary. From Proposition 3.5, there
exists a real-connected st-domain V containing q with V ��. We already know that both
A and V are slice-open, hence so is A \ V .

If A \ V ¤ ;, then A \ V is a non-empty slice-open set. Since f D g on A \ V , it
follows from Lemma 4.1 that f D g on V . This means that q 2 A, a contradiction.

Therefore, A \ V D ;. This implies that q is a slice-interior point of � n A. Hence
� n A is slice-open. This proves the claim and finishes the proof.

5. Slice functions

Slice functions play a fundamental role in the theory of slice regular functions. The related
stem function theory for slice analysis has been established in the case of real alternative
�-algebras [16]. See [18] for recent developments.
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In this section, we give several equivalent characterizations of slice functions. For
convenience, we consider slice functions on an arbitrary domain of definition.

We remark that our definition of the slice function is different from the classical one.

Definition 5.1. Let � be an arbitrary set in H. A function f W �! H is called a slice
function if there is a function F W R2 ! H2�1 such that

f .x C yI / D .1; I /F.x; y/ (5.1)

for any x C yI 2 � such that x; y 2 R, I 2 S, and y � 0.
The function F is referred to as an upper stem function of the slice function f .

We note that we are not requiring, at this stage, any condition on F and since it is
defined in R2, for x C Iy 62 �, we set F.x; y/ D .0; 0/T . Set

S2� WD ¹.I; J / 2 S2 W I ¤ J º:

For any .J;K/ 2 S2� we have the noteworthy identity

.J �K/�1J D �K.J �K/�1: (5.2)

From this, it is easy to check that�
1 J

1 K

��1
D

�
.J �K/�1J .K � J /�1K

.J �K/�1 .K � J /�1

�
: (5.3)

Proposition 5.2. For any function f W�!H with� �H, the following statements are
equivalent:

(i) f is a slice function.

(ii) There exists a function F W R2 ! H2�1 such that

f .x C yI / D .1; I /F.x; y/ (5.4)

for any x C yI 2 � with x; y 2 R and any I 2 S.

(iii) If x; y 2 R, I 2 S, and .J;K/ 2 S2� with x C yL 2 � for L D I; J;K, then

f .x C yI / D .1; I /

�
1 J

1 K

��1 �
f .x C yJ /

f .x C yK/

�
: (5.5)

(iv) If x; y 2 R, I 2 S, and .J;K/ 2 S2� with x C yL 2 � for L D I; J;K, then

f .x C yI / D .J �K/�1ŒJf .x C yJ / �Kf .x C yK/�

C I.J �K/�1Œf .x C yJ / � f .x C yK/�: (5.6)

(v) If x; y 2 R, I 2 S, and .J;K/ 2 S2� with x C yL 2 � for L D I; J;K, then

f .x C yI / D .I �K/.J �K/�1f .x C yJ /C .I � J /.K � J /�1f .x C yK/:

(5.7)
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Proof. It follows from (5.2) and (5.3) that assertions (iii)–(v) are equivalent.
(i))(ii). If f is a slice function, then there is a functionGD .G1;G2/T WR2!H2�1

such that
f .x C yI / D .1; I /G.x; y/

for any x C yI 2 � with x; y 2 R, I 2 S, and y � 0.
Hence we can take a function F W R2 ! H2�1 defined by

F.x; y/ WD

´
.G1; G2/

T .x; y/; y � 0;

.G1;�G2/
T .x;�y/; y < 0:

Direct calculation shows that (5.4) holds.
(ii))(iii). According to (5.4), we have�

f .x C yJ /

f .x C yK/

�
D

�
1 J

1 K

�
F.x; y/

for any x; y 2 R and .J;K/ 2 S2�. This implies that

F.x; y/ D

�
1 J

1 K

��1 �
f .x C yJ /

f .x C yK/

�
: (5.8)

Combining this with (5.4), we deduce that (5.5) holds.
(iii))(i). We consider the sets

A WD ¹.x; y/ 2 R2 W y � 0 and j.x C yS/ \�j D 1º;

B WD ¹.x; y/ 2 R2 W y � 0 and j.x C yS/ \�j > 1º;

where jS j denotes the cardinality of the set S .
If .x; y/ 2 B, then there are at least two distinct points in the set .x C yS/ \ �.

Therefore, the axiom of choice shows that we can choose .Jx;y ; Kx;y/ 2 S2� such that

x C yJx;y ; x C yKx;y 2 .x C yS/ \�

for any .x; y/ 2 B.
From this, we can construct a function G W B ! H2�1 defined by

G.x; y/ WD

�
1 Jx;y
1 Kx;y

��1 �
f .x C yJx;y/

f .x C yKx;y/

�
:

Finally, we can define the desired function F W R2 ! H2�1 via

F.x; y/ WD

8̂̂<̂
:̂
.f .x C yIx;y/; 0/

T ; .x; y/ 2 A;

G.x; y/; .x; y/ 2 B;

.0; 0/T ; otherwise;

where Ix;y is the unique imaginary unit I 2 S such that x C yI 2 � for .x; y/ 2 A. It is
easy to check that F satisfies (5.1), so that f is a slice function.
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We remark that the form in (5.7) is also in [16, Proposition 6] for the related class of
functions.

Remark 5.3. By Proposition 5.2, the classical representation formula in [4, Theorem 3.2]
can be interpreted in the formalism of slice functions. That is, any slice regular function
defined on an axially symmetric s-domain is a slice function.

6. Extension theorem

In [4, Theorem 4.2], the extension theorem is generalized from balls centered on the real
axis to axially symmetric s-domains. In this section, we consider a further generalization
to not necessarily axially symmetric st-domains.

For any I D .I1; I2/ 2 S2�, we set

�ŒI� WD ¹.U; V / W U 2 �.CI1/ and V 2 �.CI2/º:

Associated with

U D .U1; U2/ 2 �ŒI� with I D .I1; I2/ 2 S2�;

we introduce the following three sets:

UCs WD .U1 \CCI1/ t .U2 \CCI2/ t .U1 \ U2 \R/;

U�
s WD ¹x C yS W .x C yI1; x C yI2/ 2 U ; y 2 R; y � 0º;

UC�s WD UCs [U�
s :

Sometimes we also replace UC�s by UC�s;I to emphasize its dependence on I.

Lemma 6.1. Let I 2 S2� be fixed. Then UC�s is slice-open.

Proof. We need to show that any q 2 UC�s is a slice-interior point of UC�s .

Case 1: q 2UC�s nR. If q 2UCs nR, then q is an interior point ofU1 \CCI1 orU2 \CCI2 .
Hence q is a slice-interior point of UCs and of UC�s .

If q 2 U�
s n R, it can be expressed as q D x C yJ for some J 2 S, x; y 2 R with

y > 0. By definition of U�
s ,

x C yI1 2 U1 \CCI1 ; x C yI2 2 U2 \CCI2 :

Hence there exists an r 2 RC such that

BI1.x C yI1; r/ � U1 \CCI1 ; BI2.x C yI2; r/ � U2 \CCI2 :

This means BJ .x C yJ; r/ � U�
s , so that q is a slice-interior point of UC�s .

Case 2: q 2 UC�s \R. It is easy to check that

UC�s \R D U1 \ U2 \R:
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Since q 2 UC�s \R, there exists an r 2 RC such that

BI1.q; r/ � U1; BI2.q; r/ � U2;

which implies, by definition, that BJ .q; r/ � U�
s for any J 2 S. Hence B.q; r/ � UC�s .

Theorem 6.2. Let I 2S2� and U D .U1;U2/2 �ŒI�. If f WU1 [U2!H is a function such
that f jU1 and f jU2 are both holomorphic, then f j

UCs
admits a slice regular extension zf

over UC�s .
Moreover, if W is an st-domain such that

W � UC�s ; W \UCs ¤ ;;

then zf jW is a slice function and it is the unique slice regular extension of f j
W\UCs

over W .

Proof. Define a function g W U�
s ! H by

g.x C yJ / WD .J � I2/.I1 � I2/
�1f .x C yI1/

C .J � I1/.I2 � I1/
�1f .x C yI2/ (6.1)

for any J 2 S, x; y 2 R with y � 0 and x C yI� 2 U�, � D 1; 2.
By direct calculation (see the proof of [4, Theorem 3.2]), we find that g is slice regular

on U�
s and g D f on U�

s \UCs . Hence the function zf W UC�s ! H defined by

zf WD

´
g on U�

s ;

f on UCs ;
(6.2)

is a slice regular extension of f j
UCs

.
If h W W ! H is a slice regular extension of f j

W\UCs
, then

h D f D zf on W \UCs ;

so that the Identity Principle 2.10 implies h D zf jW . Consequently, zf jW is the unique
slice regular extension of f j

W\UCs
over W .

By (5.3), (6.2) and direct calculations, we rewrite (6.1) as

zf .x C yJ / D .1; J /Fx;y

for any x; y 2 R and J 2 S with y � 0 and x C yK 2 W , K D J; I1; I2, where

Fx;y D

�
1 I1
1 I2

��1�
f .x C yI1/

f .x C yI2/

�
:
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Now we can introduce a function G W R2 ! H defined by

G.x; y/ WD

8̂̂̂̂
<̂
ˆ̂̂:

Fx;y ; x C yI1; x C yI2 2 W;

.f .x C yI1/; 0/
T ; x C yI1 2 W and x C yI2 … W;

.f .x C yI2/; 0/
T ; x C yI1 … W and x C yI2 2 W;

.0; 0/T ; otherwise:

It is easy to show that G is an upper stem function of f jW . This means that zf is slice on
W by definition.

Corollary 6.3. If f W BI .q; r/! H is a holomorphic function with I 2 S, q 2 CI and
r 2 RC, then it can be uniquely extended to a slice regular function over the � -ball
†.q; r/.

Proof. Case 1:BI .q; r/\RD;. In this case, we haveBI .q; r/D†.q;r/ so that f D zf
is the unique slice regular extension of itself.

Case 2: BI .q; r/ \R ¤ ;. Now we take

I WD .I;�I / 2 S2�; U WD .BI .q; r/; BI .q; r// 2 �.I/:

It is easy to see UC�s D †.q; r/, which is an st-domain. By Proposition 6.2, f admits a
unique slice regular extension zf over †.q; r/.

7. Path-slice functions and representation formula

In this section we extend the representation formula from axially symmetric domains to
non-axially-symmetric domains. To this end, we introduce the new notion of path-slice
functions. It turns out that any slice regular function on a slice-open set is path-slice (see
Theorem 7.4). We can also prove the representation formula for path-slice functions.

We denote by P.C/ the set of paths  W Œ0; 1�! C with initial point .0/ in R and
we consider its subset

P.CC/ WD ¹ 2P.C/ W .0; 1� � CCº:

Definition 7.1. A function f W �! H with � � H is called a path-slice function if for
any  2P.C/, there is a function F W Œ0; 1�! H2�1 such that

f ı I D .1; I /F (7.1)

for any I 2 S with I � �.
We call ¹Fº2P.C/ a (path-)stem system of the path-slice function f .

Obviously, if �R D ;, then for each  2 P .C/, there is no I 2 S such that I � �.
Thus, by definition, every function f W �! H is path-slice.

Now, we provide equivalent characterizations for path-slice functions.
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Proposition 7.2. For any function f W�!H with� �H, the following statements are
equivalent:

(i) f is a path-slice function.

(ii) For any  2P.C/, there is an element q 2 H2�1 such that

f ı I .1/ D .1; I /q (7.2)

for any I 2 S with I � �.

(iii) For any  2P.CC/, there is an element p 2 H2�1 such that

f ı I .1/ D .1; I /p (7.3)

for any I 2 S with I � �.

(iv) For any  2P.C/ and I; J;K 2 S with J ¤ K and I ; J ; K � �, we have

f ı I D .1; I /

�
1 J

1 K

��1�
f ı J

f ı K

�
: (7.4)

(v) For any  2P.C/ and I; J;K 2 S with J ¤ K and I ; J ; K � �, we have

f ı I D .J �K/�1.Jf ı J �Kf ı K/C I.J �K/�1.f ı J � f ı K/:

(vi) For any  2P.C/ and I; J;K 2 S with J ¤ K and I ; J ; K � �, we have

f ı I D .I �K/.J �K/�1f ı J C .I � J /.K � J /�1f ı K :

Proof. From (5.2) and (5.3), one can deduce that assertions (iv)–(vi) are equivalent.
(i))(iv). Suppose that f is a path-slice function and let ¹Fº2P.C/ be its stem

system. By (7.1) it follows that�
f ı J

f ı K

�
D

�
1 J

1 K

�
F (7.5)

for any  2P.C/ and I; J; K 2 S with J ¤ K and I ; J ; K � �. It follows from
(7.1) and (7.5) that (7.4) holds.

(iv))(iii). Suppose (iv) holds. We consider the two sets

A WD ¹ 2P.CC/ W j¹I 2 S W I � �ºj D 1º; (7.6)

B WD ¹ 2P.CC/ W j¹I 2 S W I � �ºj > 1º: (7.7)

By the axiom of choice, there is .J ; K / 2 S2� such that J ; K � � for any  2 B.
We denote by I the unique imaginary unit I in S such that I � � for any  2 A.

For any  2P.CC/, we set

p WD

8̂̂̂̂
<̂
ˆ̂̂:
.f ı I ; 0/T ;  2 A;�
1 J

1 K

��1�f ı J .1/
f ı K .1/

�
;  2 B;

.0; 0/T ; otherwise;

It is immediate to verify that (7.3) holds.
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(iii))(ii). Let  2P.C/ be arbitrary. We define

s WD max ¹t 2 Œ0; 1� W .t/ 2 Rº

and define the path ı W Œ0; 1�! C by

ı.t/ WD

8̂̂<̂
:̂
.1/; .1/ 2 R;

..1 � s/t C s/; .1/ 2 CC;

..1 � s/t C s/; otherwise:

By construction ı 2P.CC/, and moreover, if I � � for some I 2 S, then ı�I � �,
where

� WD

´
1; .1/ 2 CC;

�1; otherwise:
(7.8)

We take

q WD

´
.pı;1; �pı;2/

T ; j¹I 2 S W I � �ºj � 1;

0; otherwise;

where pı D .pı;1; pı;2/T 2 H2�1 is an element satisfying (7.3), i.e.,

f ı ıI .1/ D .1; I /pı

for any I 2 S with ıI � �. Obviously, q satisfies (7.2) so that (ii) holds.
(ii))(i). Let  2P.C/ be arbitrary and fix a point t 2 Œ0; 1�. We consider the path

ı W Œ0; 1� ! C defined by ı.s/ WD .ts/. Then ı is a path from .0/ to .t/ such that
ı 2P.C/.

Let qı be an element satisfying (7.2), i.e.,

f ı ıI .1/ D .1; I /qı

for any I 2 S with ıI � �.
Now we can define a function F W Œ0; 1�! H2�1 via

F .t/ WD

´
qı ; 9I 2 S W I � �;

.0; 0/T ; otherwise:

We remark that, by construction, the path ı depends on the parameter t .
It is direct to verify that f ı I D .1; I /F for any I 2 S with I � �. This means

that f is path-slice since  is arbitrary.

Proposition 7.3. Every slice function is a path-slice function.

Proof. If f is a slice function, then (5.4) holds. If we set I .t/ WD x.t/ C y.t/I , it is
clear that (7.2) follows from (5.4). This implies that f is path-slice.

Theorem 7.4. Every slice regular function on a slice-open set is path-slice.
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Proof. Let � be a slice-open set and f W �! H be a slice regular function. We show
that f is path-slice. To this end, by Proposition 7.2 we only need to verify (7.3), namely
we need to choose p 2 H2�1 such that

f ı I .1/ D .1; I /p

for any  2P.CC/ and I 2 S with I � �. We have to treat three cases.

Case 1: Let B be as in (7.7) and  2 B. In virtue of (7.7), there exist J;K 2 S such that

J ¤ K; J ; K � �:

Take UJ and UK such that
J � UJ ; K � UK ;

and UJ is a domain in �J and UK is a domain in �K .
Let us set J D .J;K/ and U D .UJ ; UK/. We consider the function

g D f jUJ[UK :

This function satisfies the conditions in the Extension Theorem 6.2. Therefore, gjUCs has

a slice regular extension zg over the slice-connected component W of UC�s;J \� contain-
ing .0/. By the Identity Principle (see Theorem 2.10), we have f D zg on W . Since zg is
slice on W , it follows that f is slice on W .

Recall that  2P.CC/. By construction we have

J ; K � UC�s;J :

This implies that for any L 2 S,
L � UC�s;J :

Then for any I 2 S with I � �,

I � UC�s;J \�:

Since I .0/ 2 W andW is a slice-connected component of UC�s;J \�, we thus conclude

I � W:

Due to the fact that f is slice on W , Proposition 5.2 (ii) implies that there exists a
function F W R2 ! H2�1 such that

f .x C yI / D .1; I /F .x ; y / (7.9)

for any I 2 S with I ��, where we have written .1/D x C y i for some x ; y 2R:
Finally, we set

p WD F .x ; y /;  2 B: (7.10)
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Case 2: Let A be as in (7.6) and  2 A: In this case, we take

p WD .f ı 
I .1/; 0/T ;  2 A; (7.11)

where I is the unique imaginary unit I 2 S such that I � �.

Case 3: Let  … A [B: In this case, we take p WD .0; 0/T .
With the choice of p above, it is clear that p satisfies (7.3) as desired.

Proof of Theorem 2.11. It is a direct consequence of Proposition 7.2 and Theorem 7.4.

Remark 7.5. A slice regular function on a slice-open set is not necessarily a slice func-
tion. To provide an example, let us fix J 2 S and consider f W H nR! H defined by

f .q/ D

´
0; q 2 CJ nR;

1; otherwise:

Then f is a slice regular function defined on the slice-open set H nR but it is not a slice
function. Indeed, f is a constant in each slice CI , I 2 CI , so that f is a slice regular
function. Suppose that f is a slice function. If x C yI 2 H n R with I ¤ ˙J , then
f .x C yJ / D f .x � yJ / D 0 and we would have

f .x C yI / D .1; I /

�
1 J

1 �J

��1 �
f .x C yJ /

f .x � yJ /

�
D 0:

However, x C yI … CJ nR, so that f .x C yI / D 1, which is a contradiction.

Proposition 7.6. The set of slice functions and the set of path-slice functions on an axially
symmetric slice-path-connected set which intersects with R contain the same elements.

Proof. Let � be an axially symmetric slice-path-connected set with �R ¤ ;. According
to Proposition 7.3, we just need to prove that any path-slice function on � is slice. Let
f W�!H be a path-slice function and let us prove that f is slice. Since� is slice-path-
connected, for any z 2 �R and q 2 � there is a slice-path ˛ in � from z to q.

We write q D x C yI for some x; y 2 R and I 2 S. Since

H nCI D
[

J2Sn¹˙I º

CCJ

is slice-open, the preimage ˛�1.CI / is closed in Œ0; 1�. Let Œt; 1� for some t 2 Œ0; 1� be the
connected component of ˛�1.CI / containing 1.

We consider the path  W Œ0; 1�! C defined by

.s/ WD P�1I ı ˛.t C .1 � t /s/:

It is clear that  is in P.C/ and I is a path from ˛.t/ to q.
Since � is axially symmetric, we have J � � for any J 2 S. Since

J .1/ D x C yJ; 8J 2 S;
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it follows from Proposition 7.2 (iv) that

f .x C yL/ D .1; L/

�
1 J

1 K

��1�
f .x C yJ /

f .x C yK/

�
for any L; J;K 2 S with J ¤ K. This implies that f is slice by Proposition 5.2 (iii).

Remark 7.7. We note that the set of axially symmetric slice-path-connected open sets
with intersection with R coincide with the set of axially symmetric s-domains. In fact, it
is immediate that any axially symmetric s-domain � is an axially symmetric slice-path-
connected open set. To prove the converse, we consider an axially symmetric slice-path-
connected open set�with�R 6D ;, and we show that it is an axially symmetric s-domain.
First of all, we note that for any I 2 S and any p; q 2 �R, there is a path in �I from p

to q. We define the map P W H! C by

P .x C yJ / WD

´
x; y D 0;

x C jyji; y ¤ 0:

Since � is slice-path-connected, there is a slice-path  from p to q. Then ŒP ./�I is a
path in�I from p to q. Let now p 2�I and q 2�R, one may show that there is a path 
in CI from p to q by reasoning as in the proof of Proposition 3.8 (ii), and similarly, for
any p; q 2 �I , there is a path in CI from p to q. Hence �I is a domain and so � is an
axially symmetric s-domain.

Remark 7.8. Suppose that � in Theorem 2.11 is an axially symmetric s-domain in H.
For any q D x C yI 2 �, there exists a point p 2 �R and a path  in C such that I is
a path from p to q. Since � is axially symmetric, we know that, for all K 2 S, K � �
and K.1/ D x C yK. By Theorem 2.11, we have

f .xC yI /D .I �K/.J �K/�1f .xC yJ /C .I � J /.K � J /�1f .xC yK/ (7.12)

for any J; K 2 S with J 6D K. This means that Theorem 2.11 recovers the classical
representation formula [4, Theorem 3.2].

8. Counterexample on non-axially-symmetric domains

In this section, we give an example to illustrate that the classical representation formula
may not hold for non-axially-symmetric domains.

Let s 2 Œ0; 1� be fixed. Define a ray s W Œ0; 1/! C by

s.t/ WD
i

2
C

t

1 � t
ei.�=4Cs�=2/:

Geometrically, the ray starts from i=2 to1 and the angle between the ray and the positive
real axis is �=4C s�=2.
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For any continuous function ' W S! Œ0; 1�; we define a continuous function F W S �
Œ0; 1/! H by

F.I; s/ D PI ı '.I/.s/:

The complement of the image of F is denoted by

�' WD H n F.S � Œ0; 1//:

Proposition 8.1. The set �' is an s-domain and

�' \ S D S n '�1.1=2/:

Proof. (i) For any I 2 S, we denote

' ŒI � WD PI ı '.I/.Œ0; 1//:

Then ' ŒI � is an image of a ray in CI from I=2 to1. And the angle between the ray and
the positive real axis is

�=4C '.I /�=2:

By definition,
F.S � Œ0; 1// D

[
I2S

' ŒI �

and
�' D H n

[
I2S

' ŒI �: (8.1)

Since
PI ı '.I/.t/ WD

I

2
C

t

1 � t
e'.I/�I=2C�I=4; 8t 2 Œ0; 1/;

we have �[
K2S

B

�
K

2
;
t

1 � t

��
\PI ı '.I/Œ0; 1/ D PI ı '.I/Œ0; t/

for any t 2 .0; 1/ and I 2 S. Taking the union over all I 2 S, we get�[
K2S

B

�
K

2
;
t

1 � t

��
\ F.S � Œ0; 1// D F.S � Œ0; t//: (8.2)

Denote

At WD

�[
K2S

B

�
K

2
;
t

1 � t

��
\ .H n F.S � Œ0; t �//: (8.3)

Since F is continuous, the set F.S � Œ0; t �/ is compact, so that At is open.
By (8.2) and (8.3), we have

At D

�[
K2S

B

�
K

2
;
t

1 � t

��
\ ŒH n F.S � Œ0; 1//� D

�[
K2S

B

�
K

2
;
t

1 � t

��
\�'
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and [
t2.0;1/

At D
[

t2.0;1/

��[
K2S

B

�
K

2
;
t

1 � t

��
\�'

�
D

� [
t2.0;1/

�[
K2S

B

�
K

2
;
t

1 � t

���
\�' D H \�' D �' :

This means that �' is open.
Note that�' \CI is CI with two rays deleted. One is emitting from I=2 lying in the

upper space CCI , while the other one emitting from �I=2 lying in the lower space C�I WD
CC
�I . Therefore, .�'/I is a domain in CI and path-connected. And since �' \ R D R,

�' is an s-domain.
(ii) Note that for any I 2 S, I 2 ' ŒI � if and only if '.I / D 1=2. It follows that

�' \ S D S n '�1.1=2/:

Let us now fix J 2 S. The classical theory of holomorphic functions shows that the
function

‰.z/ D
p
2z � J ; 8z 2 J=2CRC; (8.4)

admits a unique holomorphic extension ‰s over CJ n .sŒJ � [ sŒ�J �/, where sŒJ � WD
PJ ı s.Œ0; 1// for any s 2 Œ0; 1�.

Remark 8.2. The function ‰s has the following properties.

(i) For any s; t 2 Œ0; 1�,
‰sjR D ‰t jR :

(ii) For any s 2 Œ0; 1�, we have

‰s.�J / D
p
3 e�J�=4

and

‰s.J / D

´
�eJ�=4; s 2 Œ0; 1=2/;

eJ�=4; s 2 .1=2; 1�:

(iii) For any s 2 Œ0; 1�, denote ˛ WD �=2C s�=2. Then for any � 2 RC

lim
�!˛�

‰s.J=2C �e
�J / D

p
� e˛J=2; lim

�!˛C
‰s.J=2C �e

�J / D �
p
� e˛J=2:

This implies that ‰s cannot be extended continuously to any point in sŒJ � n ¹J=2º.

Proposition 8.3. Let ' W S! Œ0; 1� be a continuous function and ‰ be as in (8.4). Then
the function ‰' W �' ! H defined by

‰'.x C yI / WD
1 � IJ

2
‰'.I/.x C yJ /C

1C IJ

2
‰'.I/.x � yJ /; (8.5)

for y � 0, is the unique slice regular extension of ‰ over �' . In particular,

.‰'/J D ‰'.J /:
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Proof. By direct calculation, .‰'/I is a holomorphic extension of ‰'.I/jR. And ‰' is
well-defined by Remark 8.2 (i). It is clear that ‰' is the unique slice regular extension
of ‰.

Proposition 8.4. Formula (7.12) does not hold, in general, for slice regular functions
defined on non-axially-symmetric domains.

Proof. To show that the statement does not hold in general, we provide a counterexample.
Let us recall that J 2 S is fixed in (8.4) and in this proof. Let '.K/ D 1

2
jK � J j. Then

(using the above notations)

‰'.I / ¤
1 � IJ

2
‰'.J /C

1C IJ

2
‰'.�J /

for each I 2 S with 1=2 < '.I / < 1. In fact, since '.�J / D 1, we have I ¤ �J and
.1 � IJ / ¤ 0. By Remark 8.2 (ii),

‰'.J / D �‰'.I/.J / ¤ 0 and ‰'.�J / D ‰'.I/.�J /:

From (8.5) we obtain

‰'.I / �

�
1 � IJ

2
‰'.J /C

1C IJ

2
‰'.�J /

�
D .1 � IJ /‰'.I/.J / ¤ 0:

Definition 8.5. Let��H. A function f W�!H is called slice-Euclidean continuous if
for any U 2 �.H/, the preimage f �1.U / is slice-open. In other words, f W .�; �s.H//!
.H; �.H// is continuous.

Proposition 8.6. Let��H. A function f W�!H is slice-Euclidean continuous if and
only if for any I 2 S, fI is continuous.

Proof. Let I 2 S and U 2 �.H/. If fI is continuous, then .fI /�1.U / is open in CI .
Hence

f �1.U / D
[
I2S

.fI /
�1.U /

is slice-open.
Conversely, if f W �! H is slice-Euclidean continuous, then for any U 2 �.H/ we

have f �1.U / 2 �s.H/. This means .fI /�1.U / is open in CI for any I 2 S. Therefore,
fI is continuous.

Proposition 8.7. Every slice regular function is slice-Euclidean continuous.

Proof. This follows directly from Proposition 8.6.

Proposition 8.8. Let ‰' be as in (8.5). For any continuous function ' W S! Œ0; 1�, there
is a unique slice regular extension z‰' of ‰' on

z�' WD �' [ ' Œ�J �:

Moreover, z‰' cannot be extended slice-Euclidean continuously to any point in
.H n z�'/ [ .H n

1
2
S/.
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Proof. Note that ‰'.q/ D
p
2q � J for any q 2 J=2CRC. From complex analysis, we

know that ‰' can be extended slice regularly to ' Œ�J �. This extension, denoted by z‰' ,
is unique by the Identity Principle 2.10. For any � 2 RC, we have

lim
�!ˇ

‰'.�J=2C �e
�J� / D z‰'.�J=2C �e

�Jˇ /; (8.6)

where
ˇ WD �=2C '.�J /�=2:

For any I 2 S n ¹�J º, denote

˛ WD �=2C '.I /�=2:

It follows from (8.5) and (8.6) that for any � 2 RC,

lim
�!˛�

z‰'

�
I

2
C�eI�

�
D
1�IJ

2
lim
�!˛�

‰'.I/

�
J

2
C�eJ�

�
C
1CIJ

2
z‰'

�
�J

2
C�e�J˛

�
;

lim
�!˛C

z‰'

�
I

2
C�eI�

�
D
1�IJ

2
lim
�!˛C

‰'.I/

�
J

2
C�eJ�

�
C
1CIJ

2
z‰'

�
�J

2
C�e�J˛

�
:

By Remark 8.2 (iii), we find

lim
�!˛�

z‰'.I=2C �e
I� / ¤ lim

�!˛C

z‰'.I=2C �e
I� /:

According to Proposition 8.6, z‰' cannot be extended slice-Euclidean continuously to
any point in ' ŒI � n ¹I=2º. Since[

I2Sn¹�J º

.' ŒI � n ¹I=2º/ D .H n z�'/ [
�
H n 1

2
S
�
;

it follows that z‰' cannot be extended slice-Euclidean continuously to any point in
.H n z�'/ [ .H n

1
2
S/.

Proposition 8.9. z‰' cannot be slice regularly extended to any st-domain strictly contain-
ing z�' .

Proof. This is a direct consequence of Propositions 8.7 and 8.8.

Remark 8.10. Notice that�' is not axially symmetric when ' is not constant. Moreover,
the only axially symmetric st-open set including �' is H, since[

xCyI2�'

x C yS D H:

By Remark 3.12 and Proposition 8.9,‰' cannot be slice regularly extended to any axially
symmetric s-domain in H when '.K/ D 1

2
jK � J j for K 2 S.
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We now provide an example of a slice regular function defined on a slice-open set
� 2 �s n �� . The fact that this is indeed an example as required can be seen following the
reasonings in this section.

Example 8.11. For each s 2 .0; 2�, define

Ws WD ¹x C yi W x D 0 and s=8 � y � 1=2º [ ¹x C yi W x � 0 and y D s=8º

and W0 WD ;. Fix I 2 S. Define

� WD
[
J2S

ŒCCJ nPJ .WjJCI j/� [R:

Then � 2 �s n �� . The function ‰ defined in (8.4) can be extended to a slice regular
function ‰0 on�. And ‰0 cannot be extended slice regularly to any slice-open set strictly
containing �.

9. Domains of slice regularity

In this section, we consider domains of slice regularity for slice regular functions, anal-
ogous to domains of holomorphy of holomorphic functions. It turns out that the � -balls
and axially symmetric slice-open sets are domains of slice regularity.

In contrast to complex analysis of one variable, a slice-open set may fail to be a
domain of slice regularity.

We also give a property of domains of slice regularity (see Proposition 9.7).

Definition 9.1. A slice-open set � � H is called a domain of slice regularity if there are
no slice-open sets �1 and �2 in H with the following properties:

(i) ; ¤ �1 � �2 \�.

(ii) �2 is slice-connected and not contained in �.

(iii) For any slice regular function f on�, there is a slice regular function zf on�2 such
that f D zf in �1.

Moreover, if there are slice-open sets �; �1; �2 satisfying (i)–(iii), then we call
.�;�1; �2/ a slice-triple.

In a similar way, we give the following:

Definition 9.2. Let � be a slice-open set, I 2 S and U1, U2 be open sets in CI . Then
.�;U1; U2/ is called an I -triple if

(i) ; ¤ U1 � U2 \�I .

(ii) U2 is connected in CI and not contained in �I .

(iii) For any slice regular function f on �, there is a holomorphic function zf W U2 ! H
such that f D zf in U1.
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Lemma 9.3. Let U be a slice-open set and � be an st-domain with U ¨ �. Then � \
@IUI ¤ ; for some I 2 S, where @IUI is the boundary of UI in CI .

Proof. Suppose that �\ @IUI D ; for each I 2 S. Since �I and CI n .@IUI [ UI / are
open in CI , so is

Œ� \ .H n U/�I D �I \ .CI n UI / D �I n .�I \ UI /

D �I n Œ�I \ .@IUI [ UI /� D �I \ ŒCI n .@IUI [ UI /�:

By definition, � \ .H n U/ is slice-open. Hence � is the disjoint union of the nonempty
slice-open sets�\ .H nU/ and�\U . Hence� is not slice-connected, a contradiction.

Proposition 9.4. A slice-open set � � H is a domain of slice regularity if and only if for
any I 2 S there are no open sets U1 and U2 in CI such that .�;U1; U2/ is an I -triple.

Proof. Let � be a domain of slice regularity and suppose, towards a contradiction, that
there exists an I -triple .�;U1; U2/ for I 2 S.

Let V � U1 be a nonempty domain in CI such that V \RD ;, and choose J 2 ¹˙I º
such that V � CCJ . It is clear that V is an st-domain and, by definition, .�; V; U2/ is a
J -triple. Let f W � ! H be a slice regular function. By Theorem 6.2, where we take
I WD .J;�J / and U WD .U2; U2/, we deduce that f jV can be extended to a slice regular
function zf on a slice-open set UC�s;I � U2. Let zV be the slice-connected component of
UC�s;I containing V . Since U2 � V is connected in CJ , we have zV � U2. Since U2 ª�J ,
we have . zV /J ª�J , and so zV ª�. Thus ; ¤ V � zV \�, zV is slice-connected and not
contained in �. Moreover, for any slice regular function f on �, there is a slice regular
function zf j zV on zV such that f D zf on V .

We conclude that .�; V; zV / is a slice-triple, and � is not a domain of slice regularity,
which is a contradiction.

Now we prove the converse, i.e. a slice-open set� is a domain of slice regularity if for
each I 2 S there are no open sets U1 and U2 in CI such that .�;U1;U2/ is an I -triple. So
suppose that � is not a domain of slice regularity. Then there are slice-open sets �1; �2
such that .�;�1;�2/ is a slice-triple. Let U be a slice-connected component of � \�2
with U \�1 ¤ ;. By the Identity Principle 2.10, .�;U;�2/ is also a slice-triple.

We claim that for any I 2 S, UI is a union of some connected components of
�I \ .�2/I in CI . (This follows from the general fact that if † is a slice-open set and
U is a slice-connected component of †, then for each I 2 S, UI is a union of some
connected components of †I .) Then for any I 2 S,

@IUI � @I ..�2/I \�I / � @I ..�2/I / [ @I .�I /:

Since .�2/I \ @I ..�2/I / D ;, we have

.�2/I \ @IUI � @I�I : (9.1)
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By Lemma 9.3, .�2/J \ @JUJ ¤ ; for some J 2 S. Let p 2 .�2/J \ @JUJ . By
(9.1), we have p 2 @J�J , and so p … �J . Let�3 be the connected component of .�2/J
containing p in CJ , and U 0 WDUJ \�3. Since p 2 @JUJ and p is an interior point of�3
in CJ , we have p 2 @JU 0 and thus U 0 ¤ ;. Hence

(i) ; ¤ U 0 � �3 \�J .

(ii) �3 is connected in CJ and not contained in �J (by p 2 �3 and p … �J ).

(iii) Since .�; U; �2/ is a slice-triple, for any slice regular function f on �, there is a
slice regular function f 0 W �2 ! H such that f D f 0 in U . Since �3 � �2 and
U 0 � U , f 0j�3 is a holomorphic function such that f D f 0j�3 on U 0. This implies
that .�;U 0; �3/ is a J -triple, a contradiction, and the assertion follows.

Proposition 9.5. Any axially symmetric slice-open set is a domain of slice regularity.

Proof. Suppose that an axially symmetric slice-open set � is not a domain of slice regu-
larity. By Proposition 9.4, there is an I -triple .�;U1; U2/ for some I 2 S. Using the fact
that � is axially symmetric, and Theorem 6.2 where we set I D .I;�I /, U D .�I ;�I /,
we deduce that any holomorphic function f W�I !CI can be extended to a slice regular
function zf defined on�. Since .�;U1; U2/ is an I -triple, the function f jU1 D zf jU1 can
be extended to a holomorphic function Mf W U2! H. By the Splitting Lemma 2.5 and the
Identity Principle in complex analysis, Mf is a CI -valued holomorphic function. Thus, for
any holomorphic function f W �I ! CI , there is a holomorphic function Mf W U2 ! CI
such that f D Mf on U1. We conclude that �I is not a domain of holomorphy in CI ,
which is a contradiction.

Proposition 9.6. Any � -ball is a domain of slice regularity.

Proof. Let p 2H and r 2RC, let†.p;r/ be the � -ball with center at p and with radius r .
Consider the function f W †.p; r/! H defined by

f .q/ D
X
n2N

�
q � p

r

��2n
:

We know that p 2 CK for some K 2 S, and from classical complex analysis arguments,
fK W †K.p; r/! CK does not extend to a holomorphic function near any point of the
boundary of †K.p; r/ WD †.p; r/ \ CK . If †.p; r/ is not a domain of slice regularity,
then by Proposition 9.4, there is an I -triple .†.p; r/;U1;U2/ for some I 2 S. Let U 01 be a
connected component of†.p;r/\U2 in CI withU 01 \U1¤;. Then .†.p;r/;U 01;U2/ is
also an I -triple and U2 \ @IU 01 � @I .†I .p; r//. If p 2 CI , the holomorphic function fI W
†I .p; r/! CI can be extended to a holomorphic function near a point of the boundary
of †I .p; r/, which is a contradiction.

Otherwise, if p …CI , then p 2CCJ for some J 2 S n ¹˙I º. Take z D xC yL 2 U2 \
@IU

0
1 with y > 0 and L 2 ¹˙I º. Then x C yJ 2 †J .p; r/ and x � yJ 2 @J .†J .p; r//.

There is r1 2 RC such that

BL.x C yL; r1/ � U2 and BJ .x C yJ; r1/ � †.p; r/ \CCJ :
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Using Theorem 6.2 where we set

I D .L; J / and U WD .†L.p; r/ [ BL.x C yL; r1/; †J .p; r//;

we conclude that the holomorphic function fJ W †J .p; r/ ! CJ can be extended
to a holomorphic function on BJ .x � yJ; r1/ [ †J .p; r/ near the point x � yJ 2
@J .†J .p; r//, which is a contradiction. Therefore, †.p; r/ is a domain of slice regu-
larity.

Proposition 9.7. Let I 2 S and let � be a domain of slice regularity. If  2P.C/ and
.J;K/ 2 S2� with J ; K � �, then I � � for any I 2 S.

Proof. For contradiction, suppose that I 6� � for some I 2 S. Since I is a slice-path,
.I /�1.�/ is open in Œ0; 1�. Set

t WD min ¹s 2 Œ0; 1� W I .s/ … �º:

By assumption, we have

zJ WD 
J .t/ 2 �; zK WD 

K.t/ 2 �;

so that
BJ .zJ ; r/ � �; BK.zK ; r/ � �

for some r 2 RC.
Since I is continuous in CI , there is t 0 2 Œ0; t/ such that I .t 0/ 2 BI .zI ; r/, where

zI WD 
I .t/.

For any slice regular function f on �, define a function g W BI .zI ; r/! H by

g.x C yI / D .I �K/.J �K/�1f .x C yJ /C .I � J /.K � J /�1f .x C yK/ (9.2)

for any x; y 2 R with x C yJ 2 BJ .zJ ; r/.
By direct calculation (see [4, proof of Theorem 3.2]), g is holomorphic. Note that

I .t 0/ 2 �I \BI .zI ; r/. By the Representation Formula 2.11 and (9.2), f D g on�I \
BI .zI ; r/ \ 

I Œ0; t/. Then, according to the Identity Principle in complex analysis and
Splitting Lemma 2.5, we have

g.x C yI / D f .x C yI /

for each point x C yI in the connected component of �I \ BI .zI ; r/ containing I .t 0/,
i.e. g D f near I .t 0/.

By Corollary 6.3, there is a unique slice regular extension zg on �1 WD †.zI ; r/ of
f jBI .zI ;r/. Since †.zI ; r/ and � are slice-open, it follows that †.zI ; r/ \ � is slice-
open. Hence the slice-connected component �2 of †.zI ; r/ \� containing I .t 0/ is an
st-domain. By the Identity Principle 2.10, f D g on �2.

It is easy to check that�,�1 and�2 satisfy (i)–(iii) in Definition 9.1. Hence� is not
a domain of slice regularity, which is a contradiction.
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10. Final remarks

Let z�' and z‰' be defined as in Proposition 8.8. Proposition 8.9 implies that z‰' cannot be
slice regularly extended to a larger st-domain. However, according to Proposition 9.7, z�'
is not a domain of slice regularity when ' is not constant. This suggests establishing an
analogue of the theory of Riemann domains for quaternions and characterize the domain
of existence of z‰' which is an analogue of a Riemann domain. Since the slice topology
is not Euclidean near R, we cannot consider quaternionic manifolds along the lines used
in this paper. Instead, orbifolds over .H; �s/ could be considered.
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