
GrOUT: Transparent Scale-Out to Overcome
UVM’s Oversubscription Slowdowns

Ian Di Dio Lavore
Politecnico di Milano, Italy

ian.didio@polimi.it

Arnaud Delamare
Oracle Labs, Switzerland

arnaud.d.delamare@oracle.com

Davide Maffi
Politecnico di Milano, Italy

davide1.maffi@mail.polimi.it

Daniele Bonetta
VU Amsterdam, Netherlands

d.bonetta@vu.nl

Marco Arnaboldi
Oracle Labs, Switzerland

marco.arnaboldi@oracle.com

Marco D. Santambrogio
Politecnico di Milano, Italy

marco.santambrogio@polimi.it

Abstract—Hardware accelerators have always been difficult to
approach. In recent years, we have experienced great efforts to
simplify their programming paradigms, especially on GPUs. This
led to the development of various domain-specific frameworks
and microarchitectural features that facilitated some aspects of
this multifaced problem. One such feature is the Unified Virtual
Memory (UVM) oversubscription mechanism that allows the
developer to handle datasets with a bigger memory footprint than
the HW accelerators. Although promising, current UVM faces
extreme overheads when running large workloads that reach an
oversubscription factor (allocated vs. available memory) ampler
than a per-workload threshold. In this work, we propose GrOUT,
a language- and domain-agnostic framework that tackles the
slowdowns brought by the UVM oversubscription mechanism.
In particular, we highlight how a scale-out approach is a feasible
solution to solve the slowdowns brought by UVM on workloads
from various domains. Moreover, we design a framework capable
of autonomously scaling out user-provided workloads, reaching
a speedup of more than 24.42× with minimal changes to the
application logic.

Index Terms—GPU, Distributed Systems, Unified Virtual
Memory, Oversubscription, Polyglot Programming, CUDA

I. INTRODUCTION

Due to their inherent multithreading capabilities, GPUs are
widely utilized in diverse applications, ranging from Deep
Learning to Genome Analysis [1], [2]. With the rising demand
for handling and extracting insights from Big Data and AI
workloads, compute machines equipped with multiple GPUs
have been increasingly adopted in cloud data centers [3].
Unfortunately, the immense amount of computational power
available in those multi-GPU architectures does not come for
free to the developer. Indeed, effectively utilizing the full
capabilities of a multi-GPU architecture requires expertise
in asynchronous programming, and developers must consider
the problem of processing large-scale datasets. The research
community has highlighted the importance of this multi-
faced problem and proposed multiple solutions to abstract
the complexity away from the end-user. However, those so-
lutions struggle to maintain a good ratio of usability over
obtainable performance [4]. Parallel to constructing high-level
frameworks, we have seen a massive effort to simplify the

This work was completed while D. Bonetta was working at Oracle Labs.

Dataset size (GB)

S
lo

w
do

w
n

fa
ct

or

0

50

100

150

200

250

8 16 32 64 128 160

2x NVIDIA V100 (16GB)

Fig. 1: Impact of UVM oversubscription in the execution time
of Black–Scholes algorithm when increasing the input size.
Red bars indicate runs that exceed the GPUs’ memory.

GPU programming paradigm. In particular, in 2014, NVIDIA
released the 6th edition of the CUDA programming model
that introduced Unified Virtual Memory (UVM) support
inside the Kepler and Maxwell GPU architectures [5]. UVM
aims to simplify the programming paradigm by relieving the
developer of the need to manage data transfers from and to
the hardware accelerators manually. This is accomplished via
Unified Virtual Addressing (UVA), which internally adopts a
page-faulting architecture to expose a convenient virtualized
unified memory space to users. Today’s workloads commonly
process large-scale datasets that exceed the memory size of
the hardware accelerators. On top of that, the CPU’s main
memory is typically at least an order of magnitude bigger than
the GPU’s (e.g., 80GB vs. 2TB on the latest NVIDIA DGX
H100 system [6]). Therefore, an essential aspect of UVM is
supporting the oversubscription of the GPU memory, that is,
the ability to allocate on the HW-accelerator memory regions
bigger than the on-device one, exploiting the UVA technology.
Multiple GPU programming frameworks have been extended

to include support for UVM, enabling them to handle out-of-
memory scenarios by oversubscribing the memory of the GPU.
Unfortunately, as highlighted in [7], UVM oversubscription is
very decremental to the workload’s performance, even when
working with a small oversubscription factor. In Figure 1,
the slowdown factor can be observed on a massively parallel
algorithm (Black–Scholes [8]) for increasing dataset sizes on
a multi-GPU system with two NVIDIA server-grade GPUs.
To solve this issue, users can resort to two main approaches.
The first one involves multiple iterations of profiling the cur-
rent UVM’s oversubscription behavior and then hand-tuning
the CUDA runtime by instrumenting the CPU-side code
(e.g., with prefetching and memory advises) [9]. Moreover,
developers must fine-tune the kernels’ memory access logic
to match the black-box behavior of the UVM. This is only
sometimes feasible given that the access patterns might be
intrinsically determined by the application’s logic (e.g., sparse
accesses). On the other hand, the second approach solves this
issue at its root cause by scaling out the available resources,
directly decreasing the oversubscription factor of each HW
accelerator by distributing the workloads on multiple servers.
The common practice for performing such distribution is a
complex and time-consuming effort of rewriting the entire
code base to match a different programming paradigm, such
as CUDA-aware MPI or NVIDIA Collective Communications
Library (NCCL) [10], [11]. In this work, we focus on simpli-
fying the latter approach by providing GrOUT, a framework
capable of solving the problem of UVM’s oversubscription
performance loss by removing its root cause. We provide an
alternative to standard practices targeting users who might not
have the expertise required to hand-tune and restructure CUDA
C++ code or want to accelerate problems in novel-emerging
domains. In such cases, the time-to-prototype and integration
with existing pipelines is an essential aspect to consider. The
key contributions of this work are the following:

1) Highlight how a scale-out approach can solve the slow-
downs brought by UVM’s oversubscription mechanism
when handling large-scale workloads. Although resolute,
this approach is currently limited by the engineering effort
required to restructure the overall application.

2) Design of GrOUT, a framework that enables au-
tonomous scale-out of GPU-accelerated applications,
highly reducing the effort required to distribute a pre-
existing code base to handle large-scale problems.

3) Extensive experimental evaluation on oversubscription
factors larger than previous literature on multi-GPU
architectures.

4) Implementation of a native multi-language API to ac-
cess the functionalities of the framework from major
programming languages (e.g., Python, JavaScript, Java).

The framework is released as a completely open-source project
to let users exploit its capabilities1. The rest of the work is
organized as follows. In Section II, we introduce the reader
to the necessary background to fully understand the content

1https://github.com/necst/grout

GPU-0 GPU-1CPU

Memory

NVLink / PCIe

Memory Memory

(a)

GPU-0 GPU-1CPU

Memory

NVLink / PCIe

(b)

Fig. 2: High-level view of the memory model without (a) and
with (b) UVM for multi-GPU systems.

of this paper. Section III presents the current state of the
literature concerning UVM. Then, in Section IV, we present
the architecture and design choices of the proposed framework.
Finally, Section V details the experimental evaluation applied
to validate this research.

II. BACKGROUND

This section will introduce the necessary background on
the technologies involved in this work. In particular, we will
provide a brief overview of the UVM technology and of
GraalVM, the base layer upon which GrOUT is built.

A. Unified Virtual Memory

Starting from the Kepler architecture, NVIDIA’s GPUs are
now supporting the UVM paradigm, enabling them to provide
the end-user with a unified address space when dealing with
allocated data [5]. Figure 2 depicts the high-level view of the
new programming model when adopting UVM. The physi-
cally distinct memories of the hardware accelerators are now
exposed to the user as a single, unified, consistent memory
address space. Thanks to the addition of page-faulting and au-
tomatic migration of pages, the user can now access the same
pointer in the host code (e.g., during the initialization phase)
and pass it to the device during kernel launch, drastically
reducing the code base complexity. Additionally, the developer
can still manage the UVM through its APIs to manually opti-
mize the data transfers (e.g., by prefetching memory regions),
thereby offering mechanisms to tune memory placements.
Nonetheless, it is worth noticing that the complete architecture
of UVM (e.g., adopted heuristics) is not released to the public.
Therefore, without manual intervention, the behavior of the
UVM should be treated as a black-box model, increasing
the effort required to extract maximum performance from the
devices. This scenario is analogous to, e.g., cache coherence

https://github.com/necst/grout

protocols where users do not control what gets stored in L2/L3
caches and have to ”trust” the underlying hardware.

B. GraalVM

GraalVM is a high-performance Java Virtual Machine
(JVM) created and maintained by Oracle, built upon the widely
adopted HotSpot JVM. Besides Java, GraalVM can run poly-
glot applications written in popular programming languages
like Python, JavaScript, or C/C++ [12], [13]. GraalVM inte-
grates an advanced Just-In-Time (JIT) compiler with various
optimizations (e.g., polymorphic and aggressive inlining) [14],
[15], [16]. Among the multiple features of the GraalVM’s
compiler is the ability to run guest programming languages
exploiting an independent Intermediate Representation (IR).
Indeed, guest programming languages, such as the aforemen-
tioned ones, can be executed thanks to multiple interpreters
built using the Truffle Language Implementation Framework
(Truffle) [17]. Moreover, Truffle can be exploited to implement
new libraries within GraalVM that will be directly available
to all the JVM-supported languages. This aspect removes the
need to develop custom bindings for multiple languages, which
brings additional maintenance costs for the developer.

III. RELATED WORKS

In the literature, we can find multiple works that have
focused their attention on characterizing the behavior of the
CUDA UVM throughout the evolution of its architecture and
programming model enhancements [7], [9], [18], [19]. Shao
et al. analyze the behavior of CUDA 11.0 on the Turing
architecture, highlighting the impact of Frequently Accessed
but Low Locality (FALL) pages on the overall application
performance [7]. Similarly, multiple works throughout differ-
ent generations of the CUDA runtimes and GPU architec-
tures have demonstrated how the effect of prefetching and
memory advise is highly dependent on the application logic
and therefore, they are not always a solution to optimize the
UVM behavior [18], [9], [19]. Indeed, Shao et al. showed
that the advanced optimization features of UVM have different
outcomes (slowdowns/speedups) for the same workload when
adopted under different oversubscription factors [7].

Lots of effort has been placed into the design of novel
methodologies to enhance the performance of UVM. Multiple
works propose new architectural designs to tackle specific
application scenarios. However, given the complex runtime op-
timization problem of page eviction, migration, and prefetch-
ing, none are definitive for all the possible ones. Before the
direct integration of a Page Migration Engine inside NVIDIA’s
GPUs, a notable effort has been made towards integrating and
subsequently optimizing the page-faulting mechanism [20],
[21]. Nonetheless, researchers have proposed multiple HW
designs in the following years to cope with the inefficiency
of the original design or solve new types of workloads (e.g.,
highly irregular applications) [22], [23], [24], [25].

On the other hand, always related to this work, we find liter-
ature concerned with the introduction of the UVM paradigm
inside HW-acceleration pipelines. Fumero et al. investigated

1 import polyglot

2 # Initialization
3 build = polyglot.eval(GrOUT,

"buildkernel")↪→

4 square = build(KERNEL, KERNEL_SIGNATURE)
5 x = polyglot.eval(GrOUT, "int[100]")

6 # Normal execution flow
7 for i in range(100):
8 x[i] = i
9 square(GRID_SIZE, BLOCK_SIZE)(X, 100)

10 print(x)

Listing 1: A minimal Python example of GrOUT’s APIs.

the opportunities given by the direct integration of UVM inside
a research-oriented JVM [26]. Parravicini et al. extended a
joint effort of NVIDIA and Oracle Labs, called GrCUDA, to
enable asynchronous and transparent execution of CUDA C++

code from within all of the major programming languages in
a single GPU system, exploiting UVM [27]. This work shares
with GrOUT the usage of a polyglot runtime to expose native
CUDA C++ code to guest programming languages, although it
mainly focuses on single-node, single-GPU execution. Indeed,
as we present in Section V-C, their work is greatly affected
by the UVM oversubscription slowdowns when scaling the
memory footprint of the workloads.

To the best of our knowledge, this is the first work that
examines the advantages/disadvantages of a scale-out solution
to the UVM’s oversubscription slowdowns. Moreover, no
language-agnostic framework currently supports autonomous
scale out of multi-GPU accelerated workloads with minor to
no modifications to the workload logic.

IV. GROUT DESIGN AND IMPLEMENTATION

In this Section, we first provide an informal introduction
to the GrOUT APIs (Section IV-A). Subsequently, we delve
into the details of the implementation. Section IV-B provides
a bird’s-eye view of the framework’s architecture, going into
the specifics of the scheduling procedure in Section IV-C and
the implemented scheduling policies in Section IV-D.

A. GrOUT APIs

GrOUT exposes GPU functionalities to GraalVM languages
such as Python or JavaScript. Using the GrOUT APIs, users
can register new or existing kernels (e.g., open-source imple-
mentations) directly in the language and can allocate data
that is seamlessly shared between the CPU and the GPU.
Listing 1 provides an example of the usage of such APIs.
In the first line, the polyglot package is imported into the
environment. It exposes the polyglot functionalities available
inside the Python implementation of GraalVM [12]. Among
those functionalities, we find GrOUT, built as a library inside
the GraalVM ecosystem. In Lines 3-4, the user accesses the
build functionality of GrOUT. In particular, at runtime, it
issues a build command to the NVIDIA Runtime Compiler
(NVRTC) that compiles a GPU kernel from a string containing

Co
nt
ro
ll
er

CE

Dependency DAG

Truffle Interop. API Inter-Node Scheduler

Node 1 Node 2

Wo
rk
er

Command Interface CUDA Runtime

Intra-Node Scheduler

GrCUDA

CUDA Interface

HW Accelerators (GPUs)

1

2 3

4

5 6 7

Fig. 3: High-level view of the architecture of GrOUT.

the CUDA C++ code (pre-compiled kernels are also supported).
Moreover, it associates it with the variable square. Line 5
creates a UVM array managed by GrOUT that will be later
initialized (Lines 7-8) for successive use. Finally, in Lines
9 and 10, the user launches a kernel as a regular function
call and prints the modified array. It is relevant to notice that
one of the framework’s benefits is completely hiding away
from the user the need to manage data transfer between the
hardware accelerators and the host system. Moreover, transfer-
computation overlap, when possible, is automatically achieved
without user intervention; that is, if a kernel was launched
between the square() function call and the print() with
no dependencies to prior scheduled kernels, it will run in
parallel with respect to the first kernels and the data move-
ments. Indeed, we adopted the same set of APIs exposed by
the GrCUDA framework [27] that supported only single-node
architectures, but we transparently distribute the application
for the end-user with minimal to no change in the code.

B. GrOUT Architecture: Bird’s-Eye View

In Figure 3, we present the overall high-level view of
the framework; it is composed of two major components:
the Controller and the Worker. The Controller is
implemented using the Truffle Language Implementation that
allows it to gain polyglot capabilities, that is, the ability to
interface with the major programming languages natively. The
user interacts with the framework (Figure 3, 1), creating
a language-independent Computational Element (CE). A
CE is a lightweight wrapper around all the GPU kernel
launches in the host code and read/write operations on memory
regions handled by the framework (e.g., array’s initialization).
By exploiting the information inside a CE, the framework

Algorithm 1: Node-level scheduling
input : Current CE
output: CE is assigned to a specific stream

// Add CE to Global DAG’s frontier
forall frontierCE in globalDAG.frontier do

dependencies ← computeDependencies(CE, frontierCE);
if dependencies.size > 0 then

ancestors.add(frontierCE);
end

end
filteredAncestors ← filterRedundant(ancestors, CE);
DAG.addEdges(filteredAncestors, CE);
DAG.updateFrontier();

// Apply node-level scheduling policy
scheduledNode ← nodeManager.assignNode(CE, policy1);

// Issue necessary data movements
forall param in CE.parameters do

if ¬ param.upToDateOn(scheduledNode) then
if upToDateOnlyOnController(param) then

scheduledNode.send(param);
else

P2PNode ← param.upToDateNodes();
P2PNode.send(scheduledNode);

end
end

end

maintains, at runtime, an up-to-date graph of the dependencies
among all of the different CEs (Figure 3, 2). The scheduler
uses this Directed Acyclic Graph (DAG) to optimize the
CE placement among all the system nodes, guaranteeing
the overall computation’s correctness and achieving com-
putation/computation and transfer/computation overlap when
possible. After a CE is added to the dependency DAG, it
is forwarded (Figure 3, 3) to the inter-node scheduler that
optimizes its placement (see Section IV-C). The scheduler
applies different scheduling policies that the user can select
to match the behavior of its workload better (we discuss those
policies in Section IV-D). Finally, the CE is assigned to a
specific Worker (Figure 3, 4).

C. Hierarchical Scheduling

GrOUT adopts a hierarchical scheduling architecture that
treats the optimization of the placement of a CE (e.g., GPU
kernel) to a specific device with a two-layered architecture.

At the first layer, the Controller schedules tasks to
nodes considering its local dependency DAG without worrying
about assigning a task to a specific Stream/GPU. Since all
of the CEs coming from the workload will, at some point,
pass through the Controller, we will refer to its DAG as
Global DAG. Algorithm 1 depicts the node-level scheduling
procedure in a simplified way. The first step is to add the
current CE to the Global DAG’s frontier. To do so, GrOUT’s
scheduler iterates over the current frontier of the DAG and
checks if dependencies are present with respect to the current
CE; if so, the frontier’s element (frontierCE) is added to
the list of ancestors. After this step, we filter the ancestor list
to remove redundant links (e.g., A and B have dependencies

Algorithm 2: Intra-node scheduling
input : Assigned CE
output: CE placed for execution on a GPU’s stream

// Add CE to Local DAG’s frontier
// ... Omitted

// Apply the intra-node scheduling policy
selectedStream ← streamManager.assignGPUstream(CE, policy);

// Exec. CE & add sync events on ancestors
forall ancestorsComp in filteredAncestors.getComputations() do

selectedStream.addAsyncWait(ancestorsComp.endEvent);
end
selectedStream.execute(CE);

against a new CE called C, but B depends on A). Finally, the
DAG is updated, creating the necessary edges and modifying
the frontier. The second step is to apply the selected scheduling
policy to the current CE, also considering the recently updated
DAG; additional details are provided in Section IV-D. The
third and final part of the algorithm deals with issuing the
necessary data movements between the nodes in the system.
In particular, the scheduler iterates over the CE arguments,
which can be either up-to-date on the scheduled Worker or
not. Nothing needs to be done in the former case, and the
computation proceeds with no unnecessary data movements.
In the latter case, data movements need to be issued. If the
current parameter is up-to-date only on the Controller, the
scheduler will directly transfer the data to the assigned node.
Otherwise, since some of the other nodes have the parameter in
a consistent state, we issue a peer-to-peer (P2P) data transfer
between the selected node and a candidate P2PNode. The
output of the overall procedure is a node where the current CE
is scheduled to be executed, which can be either a remote node
(Worker) or directly the Controller in case of read/write
operations on UVM-managed arrays.

At the second layer, each Worker receives tasks to be
executed and exploits the intra-node runtime scheduler of
GrCUDA [27] to optimize the utilization of the available GPUs
within the single node (Figure 3, 5). Algorithm 2 depicts
a high-level view of the intra-node scheduling procedure. In
each Worker, the DAG represents only a partial view of
the overall workload; therefore, we refer to it as Local
DAG. Similar to the Controller, the first step consists of
adding the assigned CE to the DAG (refer to Algorithm 1
exchanging Global with Local DAG). After this initial
step, the scheduler assigns a CUDA Stream to the current
CE by applying the selected policy on the available HW
accelerators. A CUDA Stream can be seen as a FIFO queue
where CEs are placed for execution. A single GPU can
manage multiple Streams to achieve a higher overlap between
transfer/computation or unrelated computations. The adopted
intra-node scheduler exploits this aspect to increase GPU
utilization autonomously and at runtime. Finally, asynchronous
Wait Events are added inside the selected CUDA Stream
to guarantee correctness with the other active CEs. In this case,

the output of the scheduling procedure is where to place the
current CE in terms of the Stream on a specific device. This
elastic approach relieves the Controller of the additional
overhead of handling the overall distributed system, reducing
the framework’s scheduling cost, which would otherwise have
to keep track of the status of each GPU/Stream on each node.

D. Scheduling Policies

Policies can be easily implemented into the framework
to match user-specific scenarios. Nevertheless, during the
development of this work, we developed multiple workload-
agnostic policies.

• Round-Robin: A simple, yet in some cases effective,
policy that schedules a CE on a different node each time,
following a circular pattern (Figure 4a).

• Vector-Step: Similar to Round-Robin, this policy accepts
a vector as a parameter and assigns a pre-defined number
of CEs to a specific node before switching to the next one.
For example, with a vector of [1, 2, 3] and two nodes, we
would assign the first CE to the first node, then two CEs
to the second one, and finally three CEs to the first node
(Figure 4b).

• Min-Transfer-Size: this more informed policy considers
the input parameters of the CE during scheduling (Fig-
ure 4c). In particular, it reduces the data size to be moved
around the system by allocating the CE to the node where
the majority of up-to-date data resides.

• Min-Transfer-Time: Similar to Min-Transfer-Size, this
policy takes advantage of the runtime knowledge of the
input parameters of a CE to assign it to the node requir-
ing the empirically lowest transfer time of the needed
data. Indeed, during the initialization of the framework,
an interconnection matrix containing the bandwidth be-
tween all the nodes is constructed for later use. This is
particularly relevant when working with heterogeneous
interconnection types between the nodes in the systems
or, for example, with Virtual Network Interface Cards
(VNICs) with different SLAs.

V. EXPERIMENTAL EVALUATION

In this section, we present an evaluation of our framework
over a set of multi-GPU UVM workloads. In particular,
we first explore the experimental setup adopted during our
evaluation (Section V-A). Then, we present the multi-GPU
UVM workloads that have been selected (Section V-B). After
that, in Section V-C, we create a baseline for our implemen-
tation by investigating the slowdowns brought by the UVM
oversubscription mechanism inside another GraalVM library
that supports only single-node execution (GrCUDA [27]).
Consequently, we perform an initial evaluation on two nodes of
the same workload by implementing them with our framework
(Section V-D). This served two purposes: first, we experi-
mented with the usability of the framework, highlighting how
easily it is for the end-user to adopt our framework from a
GrCUDA single-node implementation of the same workloads.
Secondly, we provide experimental results on the efficacy of

Node 2

Node 3

Node 1

Node 4

21

1

1

1

(a) Round-Robin

Node 2

2

Node 3

Node 1

Node 4

3 4

7

vector
[2, 3, 4, 7]

(b) Vector-Step

Node 1

A
B

A B C

CE

4 GB

2 GB 8 GB

Node 2

A

Node 3

B

(c) Min-Transfer-Size

100s

Node 1

A
B

A B C

CE1000s 10s

Node 2

A

Node 3

B

(d) Min-Transfer-Time

Fig. 4: A visual representation of the implemented inter-node scheduling policies.

our solution to eliminate (or reduce) the impact of UVM
oversubscription on the overall execution times of the work-
loads. In Section V-E, we delve into the autonomous scaling
capabilities of the framework, applying the different policies
that are available to the end-user. Finally, we characterize
the overhead when dealing with a larger cluster of nodes
(Section V-F).

A. Experimental Setup

During our evaluation, we employed Oracle Cloud Infras-
tructure (OCI) resources. In particular, the GPU-equipped
servers (one per worker) have two NVIDIA Tesla V100
(16GB each, 32GB total), an Intel Platinum 8167M with
180GB of RAM and network card with a bandwidth of
4000 Mbit/s. Therefore, the oversubscription factor (allocated
vs. available memory) is considered 1× when the memory
footprint of the workloads reaches 32GB. On the other hand,
the controller server is equipped with an Intel Xeon 6354
with 256GB of RAM and a peak network bandwidth of up
to 8000 Mbit/s. No particular setup is created on OCI for the
allocated resources (e.g., Bare-Metal, Clusters optimizations)
to provide an evaluation to the end-user of the more cost-
effective setup. Each test is repeated ten times adopting the
arithmetic mean to average the results. Given that single
run execution times of some of the tests scaled more than
exponentially, we capped them to a maximum of 2.5 hours
for each run.

B. Workload Suite

We selected three workloads from the publicly available
GrCUDA’s suite [27]. They represent a valid candidate in the
scope of our work since they have already been implemented
and optimized using NVIDIA’s UVM. In Figure 5, we present
the Global DAG of each workload. The number inside of
each circle represents a possible schedule on different nodes.
In particular, we selected the Machine Learning Ensemble
Model (MLE), Conjugate Gradient (CG), and Dense Matrix-
Vector Product (MV). MLE is an inference on an ensemble
model composed of two different pipelines that present an
imbalance in the execution time of each branch. On the
other hand, CG is composed of multiple inter-dependent CEs
that stress network communication. Finally, MV is a row-
partitioned matrix-vector product on a dense matrix. Each

CPY

MUL

CPY

MUL

MUL

CPY

1

1

2

3

3

2
9

9

X1, Y

X2, Y

X3, Y

X9, Y

Z

MUL

CPY
SAXPY

CPY

1 PRE

1 AXPY

1

2 PRE

2 AXPY

NORM1 MMUL4MMUL3

DP31

1 SAXPY3

NORM3

SAXPY

AXPY1 AXPY3

RED1

Z

ARGMAX

MMUL

MMUL

1

1

2

X

NORM

1

1

ADDV

MAX2
LSE

2
EXP

2

SOFTMAX2

1

X

MLE CG MV

Fig. 5: Workloads CEs dependencies.

1 import polyglot

2 ### GrCUDA ###
3 X = polyglot.eval(GrCUDA, "float[SIZE]")

4 ### GrOUT ###
5 X = polyglot.eval(GrOUT, "float[SIZE]")

Listing 2: Code changes required to distribute the workload
from the GrCUDA’s workload suite.

workload has been profiled to find the correct input sizes to
generate a memory footprint for the desired oversubscription
level (4GB to 160GB). It is essential to note that thanks to
the APIs of the framework, minimal changes were required
to the original code of the workloads to distribute them on
multiple nodes. In particular, as highlighted in Listing 2, the
developer needs to just specify the language of GrOUT.

C. Workloads’ UVM Behaviour

As a first step, we inspected the performance of the open-
source workloads. This has been done for two main reasons:
firstly, showcasing that the degradation of performances under
oversubscription is also present in the GrCUDA framework
and not only in plain CUDA UVM code, and secondly, veri-
fying that the selected workloads were affected by it. Figure 6a
depicts the results of our characterization. In particular, all the
workloads scale almost linearly when increasing the dataset

4 8 16 32 64 96 12
8

16
0

Sizes (GB)

10
0

10
1

10
2

10
3

10
4

S
lo

w
do

w
n

(v
s.

 4
 G

B
)

72.0x

Normal Oversub.

MLE

4 8 16 32 64 96 12
8

16
0

Sizes (GB)

77.3x

Normal Oversub.

CG

4 8 16 32 64 96 12
8

16
0

Sizes (GB)

Out of Time
>2.5h

Normal Oversub.

MV

(a) Single Node

4 8 16 32 64 96 12
8

16
0

Sizes (GB)

10
0

10
1

10
2

S
lo

w
do

w
n

(v
s.

 4
 G

B
)

Normal Oversub.

4.1x

MLE

4 8 16 32 64 96 12
8

16
0

Sizes (GB)

Normal Oversub.

13.3x

CG

4 8 16 32 64 96 12
8

16
0

Sizes (GB)

Normal Oversub.

4.1x

MV

(b) GrOUT - Offline Policy

Fig. 6: Slowdowns with respect to 4GB execution when in-
creasing the dataset size up to 160GB (5× of oversubscription
factor) for both single-node and two nodes (GrOUT).

size, but this behavior drastically changes when reaching a spe-
cific oversubscription level, namely 2x (64GB) or 3x (96GB).
CG and MLE show a comparable performance degradation
after reaching that threshold with values in the range of 70×
of slowdowns. For the massively parallel MV, the scenario is
even more exacerbated, arriving at execution times slower than
342× (instead of a theoretical 1.5×) when the working set of
the workload is increased only by 50% over the previous one.
Therefore, the selected workloads from the GrCUDA suite are
indeed affected by performance degradations when working
with out-of-memory sizes and UVM.

D. Initial Evaluation on Two Nodes

• Are we eliminating (or reducing) the performance degrada-
tion of UVM when distributing the workload?

To investigate this aspect, in Figure 6b, we show the GrOUT
execution times for the workloads on two nodes. We use the
smallest size as a baseline (4GB equivalent to an oversub-

0.125x 0.25x 0.5x 1x 2x 3x 4x 5x
Oversubscription Factor

10
2

10
1

10
0

10
1

S
pe

ed
up

 (l
og

 s
ca

le
)

0.0
5

0.0
5

0.0
6

0.1
0 0.1

5

7.0
1

6.7
2

7.4
5

0.0
8

0.0
8

0.0
7

0.0
7

2.5
7

1.2
3

1.3
1 1.6

4

0.0
1

0.0
1

0.0
2 0.0

3

0.1
1

>24.42
>18.20 >14.54

Baseline (higher is better)

Normal Oversubscribed
Benchmark
MLE
CG
MVP
MVP - Out of Time

Fig. 7: Characterization over increasing values of oversub-
scription factor of the speedup of GrOUT against a single-
node execution respectively on two and one equally equipped
nodes with two NVIDIA V100 (16GB).

scription factor of 0.125×) and vector-step as scheduling
policy. Comparing the results with the one from Figure 6a, the
impact of UVM oversubscription is significantly reduced. The
highest slowdown between different oversubscription levels
was 342.6× in the MV workload; now, the same step is almost
linear with a value of 4.1×. For what concerns CG and MLE,
we reach respectively 13.3× (instead of a slowdown of 77.3×)
when switching from 64GB to 96GB and 4.1× (instead of a
downturn of 72.0×) from 32GB to 64GB. Therefore, scaling
out user-provided workloads renders it possible to reduce the
effect of UVM’s oversubscription.

• Is scaling out a solution to achieve better performances for
the same size over a single-node execution?

We performed an initial evaluation of the performance of
GrOUT, optimizing the placement of different CEs using an
offline policy (vector-step) provided by the end user.
We executed each workload using GrOUT on two nodes
against the original versions implemented with GrCUDA on
a single node. Figure 7 depicts our study showing on the
y-axis the speedup compared to the single-node execution
for the same level of oversubscription factor. Under normal
conditions, i.e., when the workload size does not reach the
oversubscribed scenario, the single-node execution performs
better. This is unsurprising as GrOUT pays the network cost of
moving data between the different systems. Switching to the
oversubscribed scenario, things get interesting, particularly at
the 2× oversubscription level; only CG benefits from workload
distribution, while MLE and MV are still perform better on
the single node. But, by just going a single step further, all
the different workloads are performing better on a distributed
setup (including network transfers and scheduling overhead).
GrOUT enables speedups of up to 1.64× for MLE, 7.45× for
CG, and above 24.42× for MV, where we went out-of-time
in the single-node execution.

MLE CG MV
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
lo

w
do

w
n

Fa
ct

or

Baseline
(Lower is better)

Out of Time
>2.5h

Low: 0.1

MLE CG MV

Baseline
(Lower is better)

Out of Time
>2.5h

Medium: 0.5

MLE CG MV

Baseline
(Lower is better)

Out of Time
>2.5h

High: 0.9

round-robin
vector-step

min-transfer-size
min-transfer-time

min-transfer-size - Out of Time
min-transfer-time - Out of Time

Fig. 8: Execution time of the different workloads while adopting online and offline scheduling policies with 3× oversubscription
factor (dataset size of 96GB). round-robin policy as a baseline (lower is better). The three plots depict the behavior under
different exploration vs. exploitation heuristics ratios.

E. Autonomous Scheduling: Considerations & Evaluation

In the previous subsection, we presented the results of GrOUT
concerning its ability to transparently scale out workloads for
the end user, reducing the slowdowns brought by the UVM
oversubscription mechanism. Here, we focus our attention
on our efforts to provide online scheduling policies that can
automatically, at runtime, place CEs on different nodes based
on data locality and network transfer speeds. It is essential to
consider that our framework is designed to accommodate any
user application in a workload and domain-agnostic way. In
particular, we do not pose constraints to the developer while
he is creating its application, keeping the original logic intact.
This serves to ease the usage of multiple HW accelerators
even in distributed environments for inexperienced users
and novel-emerging domains where the experience of multi-
GPU programming and distributed systems might be limited.
Not surprisingly, this comes with significant challenges and
disadvantages to our scheduler. To accommodate workloads
in an agnostic way, we do not base our scheduling heuristic
and logic on the inner code inside CEs but rather on the
dependencies created among them. In particular, we evaluated
the benefits of adopting the min-transfer-size and
min-transfer-time policies presented in Section IV-D.
Those policies consider the interdependencies between CEs
and combine this knowledge with data-locality considerations
(the size) and network metrics (the time). As a baseline,
we selected the naive round-robin policy. Moreover, for
what concerns the roofline for the performance, we consider
the user-defined vector-step policy that, being an offline policy,
can be customized to better map to the workload if the CE
dependencies patterns are known a priori. Figure 8 depicts
our results. Each plot shows a different configuration of
the heuristic present inside each online policy to set the

level of exploration (assigning CEs to different nodes) vs.
exploitation (increasing the usage of a single node before
switching to other nodes). In particular, we have three levels:
Low, Medium, and High, corresponding to a threshold in
the amount of available (up-to-date) data on a specific node
before considering it viable during the scheduling procedure;
otherwise, each policy will apply the round-robin one in
favor of exploration. The general trend is that, for the selected
workloads, the heuristic greediness has no noteworthy impact
on the overall execution times. On the other hand, the impact
of online scheduling policies is more relevant and correlated
with the different characteristics of each workload. In MLE,
both min-transfer-size and min-transfer-time
policies can match the performance of user-defined scheduling
approaches. On the other hand, CG sees a 2× slowdown
when using online scheduling policies since the complex inter-
dependencies (shown in Figure 5) are not known, and the run-
time scheduler has limited information on the overall structure.
It is relevant to notice that, although the online policies reach
a slowdown in this workload compared to the best offline
policy, the workloads are still faster than a single-node
execution. Finally, MV highlights the need for UVM-aware
policies. Indeed, the online policies are trying to minimize the
data movements (in terms of size or time) by assigning CEs
to the same node since moving from one node to another is an
expensive operation. Nevertheless, the exponential growth of
the execution time given by the oversubscription mechanism of
UVM reaches levels where a pure exploration policy (like the
simple round-robin) reduces its impact by at least 100×.
This result considers our execution time cap for a single run
of the workloads of 2.5 hours.

2 4 8 16 32 64 128 256
Nodes

0

50

100

150

200

250

300
S

ch
ed

ul
in

g
Ti

m
e

(
s)

round-robin
vector-step
min-transfer-size
min-transfer-time

Fig. 9: Overhead of executing the scheduling policies to assign
a Worker to CEs insides the Controller for an increasing
number of nodes.

F. Strong Scaling Evaluation

• Is infinite scale-out a definite solution?
To answer this question, a relevant factor is how the user has
defined its workload logic. Autonomously distributing user-
provided workloads at runtime, with no hints provided by the
user, is a difficult task to optimize. Nevertheless, we recognize
that a heuristical model could be built to autonomously allo-
cate more resources at runtime after reaching the steep increase
in execution time that we highlighted for all the workloads in
Sections V-C and V-D and also for the original pure CUDA
C++ example in Figure 1. Indeed, there exists a direct link
between execution time and oversubscription factor that might
be exploited to set desired Key Performance Indicators (KPI)
to be maintained during the workload execution, such as
throughput or budget needs. This limit is bound to be reached
at some point if the workload is put under more pressure to
perform Big Data analytics tasks as the scale-up capabilities
of cloud GPU resources are limited to up to 16 GPUs
inside of a single system. After reaching this cap, the user
will eventually encounter oversubscription and, therefore, a
steep increase in execution times. Using GrOUT, the user can,
almost effortlessly, distribute its application for rapid time-to-
PoC of their solution.
• Is the proposed runtime scheduler capable of handling large

clusters?
In Figure 9, we study the time required by the Controller
to perform the scheduling decision and send the CEs to the
workers while applying different policies on an increasing
number of nodes. Static policies like the round-robin or
vector-step are not influenced by the number of nodes
to manage since they perform constant time operations. In
particular, the former iterates over the nodes (workers),
maintaining a circular list, while the latter switches be-
tween the nodes after assigning a pre-defined number of
CEs. On the other hand, we have that, as expected, the
two min-transfer-[size/time] policies increase the

overhead of each assignment based on the number of nodes
in the system. The hierarchical scheduling approach presented
in Section IV-C relieves the Controller of the additional
burden of assigning a specific Stream on each HW acceler-
ator by delegating this choice to each Worker, effectively
lowering the scheduling cost. Generally, the time required by
each static policy is well under 30µs, while for the more
informed ones, it reaches a peak of 200µs with 256 nodes to
manage. In particular, in our evaluation, we found that those
overheads do not significantly impact the overall execution
time of the workloads since they can be interleaved with
workers placement of CEs into the HW-accelerators.

VI. CONCLUSION

In this paper, we have highlighted how UVM can have
a significant impact on GPU-accelerated applications, and
we have shown how scaling out can mitigate the problem
effectively. Manually rewriting the workload logic to ex-
ploit common distribution paradigms can be time-consuming.
Moreover, users in novel emerging domains might not have
the expertise required to reach satisfactory performances. To
face this problem, we designed a multi-language workload-
agnostic framework that can autonomously distribute user-
provided workloads on multiple multi-GPU nodes. We exper-
imentally evaluated the GrOUT capabilities on a set of open-
source workloads reaching speedups of up to 24.42× based
on the inner characteristic of each application. Moreover, we
studied the behavior of the runtime scheduler under multiple
offline and online scheduling policies. Although custom offline
policies usually perform better, online ones are still faster
than oversubscribed scenarios on a single node. Finally, we
investigated the scaling capabilities of the high-level scheduler
when working on larger clusters of nodes (up to 256 nodes).
We observed a maximum of 200 µs of overhead for each
CE, even with the more informed online policies, a value ac-
ceptable throughout the different workloads. Additionally, the
proposed framework can be adopted in all major programming
languages thanks to its inner polyglot capabilities, simplifying
the scale-out process of user-provided workload to multiple
nodes with multiple HW accelerators. We wish to point out
that although other vendors, such as AMD and Intel, provide
their implementation of Unified Virtual Memory [28], [29], we
focus specifically on NVIDIA’s implementation in this work.
Still, the methodology and framework can be easily extended
to encompass other proprietary technologies.

ACKNOWLEDGEMENTS

The Authors would like to thank Oracle Cloud Infrastructure
and the Oracle for Research program for the Oracle Cloud
Credits that were essential for the creation of this work.

REFERENCES

[1] M. Pandey, M. Fernandez, F. Gentile, O. Isayev, A. Tropsha, A. C. Stern,
and A. Cherkasov, “The transformational role of gpu computing and
deep learning in drug discovery,” Nature Machine Intelligence, vol. 4,
no. 3, pp. 211–221, 2022.

[2] A. Zeni, G. Guidi, M. Ellis, N. Ding, M. D. Santambrogio, S. Hofmeyr,
A. Buluç, L. Oliker, and K. Yelick, “Logan: High-performance gpu-
based x-drop long-read alignment,” in 2020 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). IEEE, 2020, pp. 462–
471.

[3] K. Ranganath, J. D. Suetterlein, J. B. Manzano, S. L. Song, and
D. Wong, “Mapa: Multi-accelerator pattern allocation policy for multi-
tenant gpu servers,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, 2021,
pp. 1–14.

[4] S. Choi, T. Kim, J. Jeong, R. Ausavarungnirun, M. Jeon, Y. Kwon, and
J. Ahn, “Memory harvesting in {Multi-GPU} systems with hierarchical
unified virtual memory,” in 2022 USENIX Annual Technical Conference
(USENIX ATC 22), 2022, pp. 625–638.

[5] R. Landaverde, T. Zhang, A. K. Coskun, and M. Herbordt, “An inves-
tigation of unified memory access performance in cuda,” in 2014 IEEE
High Performance Extreme Computing Conference (HPEC). IEEE,
2014.

[6] J. Choquette, “Nvidia hopper h100 gpu: Scaling performance,” IEEE
Micro, 2023.

[7] C. Shao, J. Guo, P. Wang, J. Wang, C. Li, and M. Guo, “Oversub-
scribing gpu unified virtual memory: Implications and suggestions,” in
Proceedings of the 2022 ACM/SPEC on International Conference on
Performance Engineering, 2022, pp. 67–75.

[8] N. E. Karoui, M. Jeanblanc-Picquè, and S. E. Shreve, “Robustness of
the black and scholes formula,” Mathematical finance, vol. 8, no. 2, pp.
93–126, 1998.

[9] S. Chien, I. Peng, and S. Markidis, “Performance evaluation of advanced
features in cuda unified memory,” in 2019 IEEE/ACM Workshop on
Memory Centric High Performance Computing (MCHPC). IEEE, 2019.

[10] “MPI Solutions for GPUs — developer.nvidia.com,” https://developer.
nvidia.com/mpi-solutions-gpus, [Accessed 19-10-2023].

[11] S. Jeaugey, “Nccl 2.0,” in GPU Technology Conference (GTC), vol. 2,
2017.

[12] M. Šipek, B. Mihaljević, and A. Radovan, “Exploring aspects of polyglot
high-performance virtual machine graalvm,” in 2019 42nd International
Convention on Information and Communication Technology, Electronics
and Microelectronics (MIPRO). IEEE, 2019.

[13] F. Niephaus, T. Felgentreff, and R. Hirschfeld, “Towards polyglot
adapters for the graalvm,” in Companion Proceedings of the 3rd Interna-
tional Conference on the Art, Science, and Engineering of Programming,
2019, pp. 1–3.

[14] A. Prokopec, G. Duboscq, D. Leopoldseder, and T. Wı̈rthinger, “An
optimization-driven incremental inline substitution algorithm for just-in-
time compilers,” in 2019 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO). IEEE, 2019, pp. 164–179.

[15] C. Wimmer, C. Stancu, P. Hofer, V. Jovanovic, P. Wögerer, P. B. Kessler,
O. Pliss, and T. Würthinger, “Initialize once, start fast: application
initialization at build time,” Proceedings of the ACM on Programming
Languages, vol. 3, no. OOPSLA, pp. 1–29, 2019.

[16] M. Grimmer, R. Schatz, C. Seaton, T. Würthinger, M. Luján, and
H. Mössenböck, “Cross-language interoperability in a multi-language
runtime,” ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 40, no. 2, pp. 1–43, 2018.

[17] C. Wimmer and T. Würthinger, “Truffle: a self-optimizing runtime
system,” in Proceedings of the 3rd annual conference on Systems,
programming, and applications: software for humanity, 2012, pp. 13–14.

[18] M. Knap and P. Czarnul, “Performance evaluation of unified memory
with prefetching and oversubscription for selected parallel cuda applica-
tions on nvidia pascal and volta gpus,” The Journal of Supercomputing,
vol. 75, no. 11, pp. 7625–7645, 2019.

[19] T. Allen and R. Ge, “Demystifying gpu uvm cost with deep runtime and
workload analysis,” in 2021 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). IEEE, 2021, pp. 141–150.

[20] J. Lee, M. Samadi, and S. Mahlke, “Vast: The illusion of a large memory
space for gpus,” in Proceedings of the 23rd international conference on
Parallel architectures and compilation, 2014, pp. 443–454.

[21] T. Zheng, D. Nellans, A. Zulfiqar, M. Stephenson, and S. W. Keckler,
“Towards high performance paged memory for gpus,” in 2016 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2016, pp. 345–357.

[22] H. Kim, J. Sim, P. Gera, R. Hadidi, and H. Kim, “Batch-aware unified
memory management in gpus for irregular workloads,” in Proceedings of

the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, 2020, pp. 1357–1370.

[23] D. Ganguly, R. Melhem, and J. Yang, “An adaptive framework for
oversubscription management in cpu-gpu unified memory,” in 2021
Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2021, pp. 1212–1217.

[24] S. Go, H. Lee, J. Kim, J. Lee, M. K. Yoon, and W. W. Ro, “Early-
adaptor: An adaptive framework forproactive uvm memory manage-
ment,” in 2023 IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS). IEEE, 2023, pp. 248–258.

[25] X. Long, X. Gong, B. Zhang, and H. Zhou, “An intelligent framework
for oversubscription management in cpu-gpu unified memory,” Journal
of Grid Computing, vol. 21, no. 1, p. 11, 2023.

[26] J. Fumero, F. Blanaru, A. Stratikopoulos, S. Dohrmann, S. Viswanathan,
and C. Kotselidis, “Unified shared memory: Friend or foe? understanding
the implications of unified memory on managed heaps,” in Proceedings
of the 20th ACM SIGPLAN International Conference on Managed
Programming Languages and Runtimes, 2023, pp. 143–157.

[27] A. Parravicini, A. Delamare, M. Arnaboldi, and M. D. Santambrogio,
“Dag-based scheduling with resource sharing for multi-task applications
in a polyglot gpu runtime,” in 2021 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, 2021, pp. 111–
120.

[28] Z. Jin and J. S. Vetter, “Evaluating unified memory performance in
hip,” in 2022 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW). IEEE, 2022, pp. 562–568.

[29] “SYCL* Unified Shared Memory Code Walkthrough — intel.com,”
https://www.intel.com/content/www/us/en/developer/articles/
code-sample/dpcpp-usm-code-sample.html, [Accessed 19-10-2023].

https://developer.nvidia.com/mpi-solutions-gpus
https://developer.nvidia.com/mpi-solutions-gpus
https://www.intel.com/content/www/us/en/developer/articles/code-sample/dpcpp-usm-code-sample.html
https://www.intel.com/content/www/us/en/developer/articles/code-sample/dpcpp-usm-code-sample.html

	Introduction
	Background
	Unified Virtual Memory
	GraalVM

	Related Works
	GrOUT Design and Implementation
	GrOUT APIs
	GrOUT Architecture: Bird's-Eye View
	Hierarchical Scheduling
	Scheduling Policies

	Experimental Evaluation
	Experimental Setup
	Workload Suite
	Workloads' UVM Behaviour
	Initial Evaluation on Two Nodes
	Autonomous Scheduling: Considerations & Evaluation
	Strong Scaling Evaluation

	Conclusion
	References

