
Journal of Computational and Applied Mathematics 429 (2023) 115211

p
a
a
m
m
i
C
(
n

a
p
O

h
0

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Towards an open-source framework for Fluid–Structure
Interaction using SU2,MBDyn and preCICE
Alice Zanella, Luca Abergo ∗, Francesco Caccia, Myles Morelli, Alberto Guardone
Department of Aerospace Science and Technology, Politecnico di Milano, Building B12, Via La Masa 34, Milan, 20156, Italy

a r t i c l e i n f o

Article history:
Received 27 October 2022
Received in revised form 17 February 2023

a b s t r a c t

Fluid–Structure Interaction (FSI) problems are a primary concern for the aerospace
industry. Predicting the deformation of flexible structures due to aerodynamic forces is
essential in different scenarios, e.g., for determining the performance of rotorcrafts and
wind turbines. In this context, we present a new high-fidelity, open-source, modular, and
user-friendly FSI simulation framework by coupling the well-established fluid solver SU2
with the multi-body structural solver MBDyn. The SU2 suite solves steady and unsteady
Euler and RANS equations using a finite volume method on unstructured grids. The
aerodynamic loads on the surfaces are then passed to MBDyn. Through a multi-body
analysis, rotations, displacements, and the structural response of rotorcraft systems are
efficiently computed and exchanged back with the fluid solver. A partitioned approach
is used between the two codes, each specific for a single physical domain. Both explicit
and implicit coupling were considered. The coupling is obtained through the library
preCICE, which treats the two specialized solvers as ‘‘black boxes’’ and provides data
mapping between non-matching grids. Classical FSI test cases are presented and results
are compared with data from literature to validate the framework.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

The interaction between fluid and structure is a primary concern for the aerospace industry. It poses a challenging
roblem both numerically and computationally. Fluid–Structure Interaction (FSI) has a natural application in many
eronautical problems, e.g., the design of largely-deformable wings, Vertical Take-Off and Landing aircrafts, rotorcrafts
nd gust response [1]. Concerning helicopters, many structural solvers come with an in-house, low-fidelity aerodynamic
odel, which can reproduce the inflow and consequently trim the rotor. The increasing available computational power
akes possible to introduce high-fidelity solvers and capture more complex phenomena, such as the blade-vortex

nteraction and the vortical wake. For this purpose, two specialized and separate solvers are usually employed. A
omputational Structural Dynamics (CSD) code is used to model the blade dynamics, and a Computational Fluid Dynamics
CFD) solver is used to capture the aerodynamics of the rotor. The way data is exchanged between different domains is
amed coupling.
The application of FSI in rotorcraft studies became dominant in the 1980s. In 1986 Tung et al. coupled full-potential

erodynamic methods with comprehensive codes in a loosely-coupled transonic simulation using CAMRAD and full-
otential rotor solver. In the 1990s, Bauchau and Ahmad developed a tightly-coupled solver using CAMRAD/JA and
VERFLOW to simulate the four-bladed UH-60 A Blackhawk helicopter rotor. In the early 2000s, finite element multi-body

∗ Corresponding author.
E-mail address: luca.abergo@polimi.it (L. Abergo).
ttps://doi.org/10.1016/j.cam.2023.115211
377-0427/© 2023 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.cam.2023.115211
https://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cam.2023.115211&domain=pdf
mailto:luca.abergo@polimi.it
https://doi.org/10.1016/j.cam.2023.115211


A. Zanella, L. Abergo, F. Caccia et al. Journal of Computational and Applied Mathematics 429 (2023) 115211

s

s
c

a
i
W
i
T
b
c
a
i

g
f
D
T
i

2
a

2

O
T

2

m

Fig. 1. Monolithic approach. S and F are the solid and the fluid operators. The advancing of the solution from time step tn to tn+1 occurs
simultaneously.

Fig. 2. Partitioned approach. S and F are the solid and the fluid operators. The fluid solver waits to receive the displacements from the structural
olver, updates its solution and sends the forces to the structural solver. The time can advance and the loop repeats.

olvers were introduced to model rotor blade structural dynamics and control during rotorcraft operations [4]. These CSD
odes use simplified aerodynamic models to reduce the computational cost.
Two coupling approaches are possible: monolithic and partitioned. In the monolithic approach, a single system of fluid

nd structural equations is solved at once (see Fig. 1). In this case, the interaction between fluid and structure at the mutual
nterface is explicitly inserted in the system and the conservation of quantities at the interface is straightforward [5–7].
ith such an approach, only one solver would be responsible for both the fluid and the structural dynamics. In contrast,

n the partitioned approach the fluid and the solid domains are treated separately and each is solved by a specialized code.
hey collide at the interface, where some conditions must be enforced. The data exchange and the coupling are performed
y an additional module or external library. This approach could lack of unconditional stability: partitioned schemes are
ommonly energy-increasing. Therefore, the time-step must be smaller than in the monolithic approach [8]. The great
dvantage, though, is the freedom of coupling different solvers, managing the fluid and the solid domain discretization
ndependently using two highly specialized codes (See Fig. 2).

The goal of this work is to create a completely open-source environment which can solve FSI problems with a very
eneralized structure. The framework is based on a partitioned approach with tight coupling, to guarantee both great
lexibility and high accuracy. The open-source code SU2 [9] was chosen as fluid solver, while the open-source Multibody
ynamics solver MBDyn [10] handles the structural equations. The two codes are coupled using the library preCICE [11].
he integration is successfully verified on two test cases from literature, namely a vertical flap and a flexible cantilever
n vortical flow.

The present paper is organized as follows. The framework and the software involved are shown in Section 2. Results of
D test cases for verification and validation are shown in Section 3. In Section 4, the main findings and future perspectives
re discussed.

. Framework

This section introduces the individual solvers used for computing the aerodynamics and aeroelasticity of the problem.
ne adapter has been coded for each solver, and they communicate through the coupling library also introduced here.
he framework can be deemed user-friendly since the FSI simulation is set with a unique text file.

.1. Fluid domain and SU2

The SU2 suite deals with partial differential equations (PDEs) using a finite volume method on arbitrarily unstructured
eshes. The PDEs are solved on a domain Ω ⊂ R3 as long as they can be formulated as:

∂U
+ ∇ · F c(U ) − ∇ · F v(U ) = Q in Ωf × [0, t] (1)
∂t
2
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where U is the vector of conservative variables, F c(U ) are the convective fluxes, F v(U ) are the viscous fluxes and Q
s a generic source term. From this general form a wide variety of PDEs can be derived, including the classical Euler,
avier–Stokes (NS) and Reynolds-Averaged Navier–Stokes (RANS) equations. For example, the NS equations are obtained
onsidering:

U =

(
ρ

ρv
ρe0

)
. (2)

F c(U ) =

(
ρv

ρv ⊗ v + Ip
ρvH + pv

)
, F v(U ) =

( 0
τ

τ · v + κ∇T

)
(3)

here p denotes the static pressure, I ∈ R3×3 is the identity matrix, H is the fluid enthalpy and τ the viscous stress
ensor. The heat conduction has been discretized with the Fourier law, with κ being the thermal conductivity and T the
emperature.

For FSI, it is convenient to rewrite the fluid equations in an Arbitrary Lagrangian Eulerian (ALE) formulation. In this
ase, the vector of the convective fluxes F c(U ) must be rewritten as:

F c
ALE(U ) =

(
ρ(v − u̇Ω )

ρv ⊗ (v − u̇Ω ) + Ip
ρ(v − u̇Ω )e0 + pv

)
(4)

ith u̇Ω being the velocity of the arbitrarily moving nodes of the grid.
The numerical methods used for solving the Unsteady Reynolds Averaged Navier Stokes (URANS) equations are

ereinafter discussed. A second order Backward differentiation formula (BDF2) with dual time-stepping is used as time
iscretization [12]. Dual time-stepping is particularly appropriate for unsteady problems and can increase accuracy,
rovided that convergence is reached. A multi-grid technique has also been used to speed up convergence [13]. The
oe method with MUSCL reconstruction was used as second order accurate convective scheme. SU2 also provides a mesh
eformation technique, called Radial Basis Function (RBF). RBF is able to apply large deformations preserving the quality
f the grid, with a relative cheap computational cost [14,15].

.2. Structural domain and MBDyn

MBDyn [16] is free and open-source general purpose Multibody Dynamics analysis software developed at the
epartment of Aerospace Science and Technology of Politecnico di Milano. The code offers a multibody dynamics approach
o analyse complex, multidisciplinary dynamics problems. MBDyn can simulate linear and non-linear dynamics of rigid and
lexible bodies (lumped elements, beams, or shells) subject to kinematic constraints, rotations, external forces, and control
ubsystems. MBDyn can integrate aerodynamic, electric, thermal, and hydraulic models with the structural domain. For
mid-fidelity approach, it offers inflow models, which are used to simulate fixed-wing and rotorcraft aerodynamics and
nable fast analysis of various flight conditions. The calculation time is comparably short, as opposed to three-dimensional
inite element formulations [17]. It makes multibody analysis a very efficient simulation tool for rotorcraft systems.

Nodes are the fundamental MBDyn entities: they instantiate kinematic degrees of freedom (DoF) and the corresponding
quilibrium equations. Different types of nodes exist in MBDyn. In this work, dynamic nodes are used. Each node can
ave up to 6 DoF, i.e., the three coordinates defining its position and the three Euler-like angles defining its orientation
following the 1, 2, 3 convention), and also store all the information regarding the inertia. Elements are used to connect
odes, can access nodal properties and write contributions to the equations. In this context, three-node, second-order
eam elements are used. Beams are particularly useful when dealing with slender bodies, as rotor blades [18] or wind
urbines [19], in order to reduce the order of complexity to a 1D model. Deformable, slender beams are implemented in
BDyn using the Finite Volume approach explained by [20]. They are defined by a reference line and its nodes. Each point
f the beam refers to a structural node. An arbitrary offset is allowed to guarantee more freedom in defining the reference
ine. At each evaluation point, a 6D constitutive law must be defined, relating the strains and the curvatures of the beam
o the internal forces and moments at the evaluation points. Various constitutive laws are implemented, ranging from the
sotropic beam section to the fully anisotropic one. In this work, a linear viscoelastic law is chosen.

In practice, MBDyn solves Newton–Euler equations of motion for rigid bodies connected by kinematics joints and
eformable elements. Lagrange multipliers λ are used to impose constraints. Thus, a system of differential–algebraic
quations is solved:

M(x)ẋ = q (5)

q̇ +
∂φ

∂x
λ = f (x, ẋ, t) (6)

φ(x, t) = 0 (7)

where x are the kinematic variables, including rotations, q the momentum and momenta moments, and φ(x, t) = 0
the imposed blade pitch and rotations, added as algebraic relations between the Cartesian coordinates of the bodies.
3
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An A/L stable, multi-step integration scheme is used for time marching [21]. An incremental approach is used with a
predictor–corrector scheme to compute the orientation between two consecutive time steps. The guess increment remains
constant, while the corrector operator is formulated in terms of Cayley–Gibbs–Rodrigues parameters, which does not use
trigonometric operations [22].

2.3. Coupling with preCICE

The coupling library preCICE is developed by the Technical University of Munich (TUM), the University of Stuttgart and
he University of Erlangen. It offers the possibility to couple single-physics specialized software in a partitioned multi-
hysics simulation, treating them as ‘‘black-boxes’’. Indeed, no knowledge about the inner processes of the solvers is
equired by the library. One of the main advantages of preCICE is flexibility. It provides technical communication, data
apping between non-matching grids, and coupling iteration schemes.
Four variables control the interaction between solvers. The coupling step can run parallel or serial, in an either explicit

r implicit manner. The choice is crucial, not only because of the different execution time of an iteration, but also because
f the instabilities that could arise [23]. The explicit serial coupling is typically called conventional serial staggered and
rovides to the fluid solver F n the solid solution at the current time step, sn. The new flow variables, f n+1 are transmitted
o the structural solver Sn to compute the new structural solution sn+1:

f n+1
= F n(sn) (8)

sn+1
= Sn(f n+1) (9)

he explicit scheme can be accelerated with a parallel implementation, where the two solvers FN and SN are executed at
he same time using the solutions f n and sn. This, however, usually introduces a loss of accuracy and stability. Therefore,
his method is not considered in this work [24]. Instability issues can be overcome with implicit schemes. In preCICE,
mplicit schemes are based on fixed-point iterations. Within the same time instance, the coupling conditions at the FSI
nterface are enforced and the following set of equations is solved iteratively:

f n+1
k+1 = F n(sn+1

k ) (10)

sn+1
k+1 = Sn(f n+1

k ) (11)

here k labels the sub-iterations of the fixed-point method. The sub-iterations stop when the following convergence
riteria are satisfied:

f̂ n+1
k+1 − f̂ n+1

k

f̂ n+1
k

⏐⏐⏐⏐⏐
Γ

< tolf (12)

ŝn+1
k+1 − ŝn+1

k

ŝn+1
k

⏐⏐⏐⏐⏐
Γ

< tols (13)

where f̂ □□ |Γ and ŝ□□|Γ are, respectively, the fluid forces and the structural displacements evaluated on the interface Γ

between the two domains, while tolf and tols are the chosen threshold values.
The need of data mapping is typically related to a fluid mesh finer than the solid one. Thus, at the interface there are

more fluid nodes than structural ones. Moreover, in our framework, the information coming from and fed to MBDyn by the
adapter belongs to a 1D space, while SU2 uses grids made of 2D or 3D elements. The mapper should not disrupt the mass
and energy balances. Therefore, preCICE offers different methods to correctly map data between different domains, either
in a consistent or conservative form. In consistent mapping, the value assigned to a structural node is the same as the
value assigned to the corresponding fluid nodes. Thus, consistent mapping is used for displacements and all fluid nodes
assigned to that single solid node experience the same movement. The conservative form, on the other hand, ensures that
the integral value is preserved. Forces require this property. Their value at a structural node must be equal to the integral
on the associated fluid nodes.

Different mapping strategies are implemented. The main ones are Nearest Neighbour, Nearest Projection, and Radial Basis
Functions. The Nearest Neighbour only requires vertex position information. The value at one node on the source mesh
is assigned to the closest node of the target mesh, in Euclidean distance (Fig. 3). This results in first order accuracy. It
is computationally cheap and works well when the two grids are almost coincident. The Nearest Projection requires an
additional source of information, i.e., the connectivity of the source mesh. The target mesh points are projected on the
mesh elements of the source mesh. Then, the method performs linear interpolation on them and assigns the interpolated
values back on the target mesh. It is second order accurate. A 3D representation is given in Fig. 4. Finally, a Radial Basis
Function (RBF) does not require any topological information and works well on most grids. Gaussian and thin plate splines
are available as basis functions. The computational complexity of the data mapping can be reduced using a local support
for the basis functions. This means that the spatial influence of nodes, from which data is mapped, is limited to a certain

range, called support radius.

4
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Fig. 3. Nearest neighbour method: shortest euclidean distance.

Fig. 4. Nearest projection method for a 3D case.
Source: Figure taken from [25].

3. Results

Two bi-dimensional test cases on simple flows are carried out to verify and validate the reliability of the coupling. The
first one is a simple 2D vertical beam that interacts with a fluid experiencing large deformations. The aim is to verify the
coupling of MBDyn and SU2 by comparing the results with other known couplings found on the preCICE repository.1 The
second test-case serves as validation. It is a well known FSI benchmark described in [26]. It consists of a square cylinder
with a trailing flap crossed by a viscous, laminar flow. The computational aspect is more involved, since the flap oscillates
along with complex vortex structures. After a grid sensitivity analysis, the results are compared with literature. Concerning
the mapping of forces and displacements, for both the test cases Nearest Projection is used to map the displacements from
the 1D structural grid to the fluid mesh, whereas the loads are mapped using RBF. In this way, only the connectivity of
the beam nodes is shared with preCICE, which is computationally less expensive than sharing the connectivity of the fluid
mesh.

3.1. Verification test case: Perpendicular flap

This first test case is a 2D simulation of a deformable flap which extends in a channel. The fluid flows horizontally
through the channel, while the flap stands vertically. At the lower end the flap is clamped to the floor, while the upper
part can move freely. Fig. 14 shows the geometry of the test case. All the fluid and structural properties, the SU2 setup and
grid are taken from the preCICE tutorial repository. In this way, it is possible to compare the new MBDyn-preCICE-SU2
framework with other software. In particular, preCICE has been used to couple SU2 with two Finite Elements solvers,
FEniCSx [27] and Calculix (See Fig. 5).2

The flow is assumed compressible and inviscid, and therefore governed by the Euler equations. The flow domain is
discretized using an unstructured grid provided by preCICE website. The fluid and solid properties are listed in Table 1. The
MBDyn model is composed of 10 s order beam elements. It was seen that by doubling the number of beam elements, the
maximum tip displacement changes by less than 0.1%. The 10 beams are connected to 9 nodes, plus 2 at the extremities.

1 preCICE test cases: https://github.com/precice/tutorials. Accessed Sept. 2022.
2 Calculix Website: https://github.com/calculix. Accessed Sept. 2022.
5
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Fig. 5. Domain of the 2D flap test case. The structural discretization is also highlighted.

Fig. 6. Tip displacement: Result Comparison with Precice Website Data.

Table 1
Vertical flap test case: fluid and solid properties.
Quantity Symbol Value Unit

Fluid Density ρ 1 kgm−3

Kinematic Viscosity ν 10−3 m2 s−1

Mach M 0.1

Solid Density ρ 3000 kgm−3

Elastic Modulus E 4 · 106 Pa
Poisson Coefficient ν 0.3
Damping Factor 0.0001

Moreover, each second order beam intrinsically has an additional node in its centre. The discretization of the flap is
highlighted in Fig. 14. The beam is clamped at one end and free at the other. In this case, the nodes have only two
degrees of freedom, the orientation is not included in the kinematic variables.

The FSI simulation is started from the single-physics fluid solution, in order to let the flow field to fully develop and
peed up convergence. Implicit and explicit coupling provide the same tip displacement history. A time step of 0.05 s
s used. RBF is used for mapping displacements and forces. The expected behaviour is observed: the flap bends in the
irection of the flow and then oscillates back and forth for three times. The maximum tip displacement is slightly lower
ith respect to the other FSI frameworks using SU2. The frequency, however, is well captured as can be seen in Fig. 6.
he difference can be attributed to the extremely simple 1D, 2 DoF beam model used in this test case, while the other
esults reported use 2D structural elements.
6
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Fig. 7. Fluid domain for the bluff body with flexible cantilever. Distances are shown in cm.

Fig. 8. Flexible cantilever structure. Evidence on beams and nodes.

Table 2
Bluff body with flexible cantilever: fluid and solid properties.
Quantity Symbol Value Unit

Inlet Velocity u∞ 0.513 m s−1

Fluid Density ρf 1.18 kgm−3

Kinematic Viscosity νf 1.54 × 10−5 m2 s−1

Temperature T 0.0164 K
Reynolds Number Re 332
Mach Number M 0.2

Solid Density ρs 100 kgm−3

Elastic Modulus E 0.25 MPa
Poisson Coefficient νs 0.35
Damping Factor 0.005

3.2. Validation test case: Flexible cantilever in vortical flow

The problem consists of a fixed square bluff body, with a flexible flap attached to it. The body is immersed in a laminar,
ompressible flow. The test case was first proposed by [26]. It has been used as a benchmark FSI problem by many authors
see Table 3). The 2D physical domain is shown in Fig. 7. The square cylinder sheds vortices, which generate an area of
ow-pressure on its wake perceived by the flexible appendix. This alternated force generates vortex-induced vibrations on
he structure, finally resulting in a structure driven vortex shedding. In the literature, the frequency of the flap oscillation
nd the maximum amplitude of the vertical displacement at the cantilever tip are extensively used for validation. The
eported frequencies are in the range 3.0Hz to 3.2Hz, while the tip displacements lie between 0.95 cm and 1.31 cm.

Concerning the fluid domain, the square and the flap are non-slip walls, while the upper and the lower boundaries
are slip walls. Due to the low Reynolds number, and the non-negligible Mach number, the compressible Navier–Stokes
equations are solved. The physical properties of the flow are shown in Table 2 together with the solid properties of the
cantilever beam. Its thickness as well as the material properties are chosen so that its first eigen-frequency is close to the
frequency of the vortex shedding. The beam is clamped at the left end and free at the other. The beam section is uniform
and the physical properties are constant throughout the beam length. A linear viscoelastic constitutive law is chosen, with
a damping factor of 0.005. A representation of the MBDyn model of the flexible appendix is shown in Fig. 8.

Since the problem is strongly coupled, an implicit scheme is chosen. The simulation is started from a converged flow
solution computed with a rigid flap, in order to speed up the transient.
7
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Fig. 9. Convergence of the maximum tip displacement by increasing the number of elements in the fluid domain.

Fig. 10. Convergence of the vibration frequency of the beam by increasing the number of elements in the fluid domain.

Fig. 11. Convergence of the maximum tip displacement by increasing the sampling frequency in the time domain.

The discretization of the structural domain was kept fixed, considering once more 10 s order beam elements defined
sing a total of 21 structural nodes. On the other hand, the solution showed strong dependence on the spatial discretization
f the flow domain and on the temporal discretization. The results of space and time convergence are shown in
igs. 9 to 12. A too coarse spatial discretization affects the maximum tip displacement of the beam (Fig. 9), where the
elative error between the two coarsest grids is about 12%. On the other hand, the relative error on the vibration frequency
f the beam was always below 1% and decreased as the number of elements of the fluid domain increased. On the other
and, the time discretization affected both the maximum tip displacement of the beam and its vibration frequency in a
imilar manner. The relative error decreased below 1% with a sampling frequency of 500Hz.
The evolution of the flow field is shown in Fig. 13. Initially, vortex shedding generates from the square as a result of

he sharp edges. Then, this vortex trail causes the flap to start to oscillate, which results in another vortex trail detaching.
his work presented a tip displacement of 1.28 cm and a frequency of oscillation of 3.20Hz, with a Strouhal number of

0.062. The values agree well with other studies found in literature. A comparison is reported in Table 3.

4. Conclusion

In this paper, a new framework for fluid–structure interaction with partitioned approach was described. The structural
solver MBDyn was linked with the fluid solver SU2 using the coupling library preCICE. Within this framework, implicit
and explicit couplings can be used, and different mapping techniques are also available. The framework is modular, highly
specialized, user-friendly and totally open-source. The need for an open-source solver arises from the fact that many
existent couplings employ two closed-source solvers and do not allow any modification of the source code. Therefore,
developers could not modify and improve the capabilities and extend the possible applications.
8
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Fig. 12. Convergence of the vibration frequency of the beam by increasing the sampling frequency in the time domain.

Fig. 13. Bluff body with flexible cantilever: pressure visualization of the flow field in different phases. Low-pressure regions are represented in cyan.
Top left: t ≈ 0. Top right: t ≈

1
3 T . Bottom left: t ≈

2
3 T . Bottom right: t ≈ T .

Fig. 14. Bluff body with flexible cantilever: FFT plot representing the oscillation frequency.

The verification of the proposed framework was made with two test cases. They proved the robustness of the mesh
mapping and data exchange. The first one was a flexible vertical flap immersed in an inviscid flow. The second was a
flexible flap behind a bluff body immersed in a viscous, laminar flow, which is a largely studied case in the context of
fluid–structure interaction simulations. The results showed good agreement with literature.
9
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Fig. A.15. Configuration File.

Table 3
Bluff body with flexible cantilever: summary of results.

Average
frequency [Hz]

Max tip
displacement [cm]

Ramm and Wall [26] 3.08 1.31
Matthies and Steindorf [28] 2.99 1.33
Dettmer and Perić [29] 2.96–3.31 1.1–1.4
Wood et al. [30] 2.78–3.125 1.1–1.2
Kassiotis et al. [31] 3.17 1.0
C. et al. [32] 3.25 1.02
Froehle and Persson [33] 3.18 1.12

Present study 3.20 1.28

Since MBDyn is highly specialized on multi-body models undergoing rotations and SU2 is capable of producing high-
fidelity flow simulations on rotorcraft [34], the natural extension of this work will be the 3D fluid–structure coupled
simulation of helicopter rotors.

Code availability

The framework is composed by two solvers, SU2 and MBDyn, the coupling library preCICE and two adapters. The
softwares can be found:

• MBDyn https://www.mbdyn.org/
• MBDyn adapter https://gitlab.com/stilita/mbdyn-esm-adapter/
• preCICE https://precice.org/
10
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• SU2 ver 7.5 https://github.com/su2code/SU2
• SU2 ver 6 adapter https://github.com/precice/su2-adapter

Accessed: 2 February 2023.

Data availability

Data will be made available on request.

ppendix. FSI configuration file

In this appendix, it is explained how to set the general configuration file for the fluid–structure simulation. This XML-
ormatted file contains all the data required for the interface, instead the grids and the settings of each domain are in a
edicated folder. Taking ad reference Fig. A.15, the first line explicit the physical dimension of the problem. From line 3
o 6, it is indicated which fields are exchanged between the domains. Then, the config file requires the name of the grids
nd what are the input and the output of each domain. From line 18 to 34, the user must indicate the name of the solvers’
xecutable and the mapping technique desired. The line 37 indicates the path between the folders containing the grid
nd config file of each solver. From line 39 to line 49, it is declared the type of coupling. In the figure, it is reported an
mplicit coupling which requires to explicit more options such as in which sequence the solvers are called, the maximum
umber of coupling iterations and the criteria of convergence.
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