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A B S T R A C T

In this paper, combined extension and torsion of hydrogel subject to a chemo-mechanical coupled loading is 
described in the framework of continuum mechanics, where the free energy density consists of the elastic, mixing 
and chemical contributions. A simplified, closed-form and exactly analytical solution to the mechanical response 
is obtained, which accounts for the coupling effect of external loading, chemical potential and microstructural 
parameters, such as crosslinking degree, Flory-Huggins parameter, etc. In particular, the effect of free swelling 
and microscopic diffusion on deformation of the hydrogel at equilibrium state is discussed, reaching some 
fundamental conclusions. Negative axial forces are captured, revealing the typical positive Poynting effect where 
the cylinder tends to elongate on twisting, and an inhomogeneous deformation, induced by torsion, along the 
radial direction is demonstrated. Furthermore, the dynamic competition between external loading and solvent 
environment is revealed and investigated, where the direct connection between internal micro-physical pa-
rameters and macroscopic deformation is demonstrated. The theoretical results presented in this paper may 
provide predictions and guidance for the mechanical analysis and design of hydrogel cylinder subject to 
extension and torsion in a solvent.

1. Introduction

Hydrogels are a fascinating group of polymers characterized by their 
unique three-dimensional network structure, established through 
chemical or physical cross-linking. From a macroscopic point of view, 
hydrogels deform quasi-elastically in such a way that they change vol-
umes and shapes when external mechanical or chemical loading is 
applied and gradually return to the original after the loading is removed. 
On a microscopic scale, the presence of a porous network structure en-
ables water-soluble small molecules to diffuse into or out of the gel, with 
a diffusion coefficient comparable to that in aqueous solutions, indi-
cating liquid-like properties. As a result, hydrogels exhibit both solid and 
liquid properties, making them highly versatile and valuable in various 
applications (Hao et al., 2022; Li et al., 2021, 2023). Furthermore, 

film-substrate systems made with hydrogels are widely used in flexible 
electronic devices, and the buckling behaviour subject to different 
external loads is discussed (Liu et al., 2022; Su et al., 2018; Wang et al., 
2020). Therefore, the understanding of the physical mechanisms that 
link the macroscopic mechanical deformations of hydrogels to the 
microstructure and solvent environment is an important foundation for 
its design and application.

The nonlinear phenomenon that a cylinder tends to elongate under 
simple torsion was first experimentally discovered by and named after 
Poynting, as Poynting effect, on steel, copper and brass wires (Poynting, 
1909, 1912). Afterwards, torsion of solid cylinder has been widely 
investigated for different types of loads and boundaries, and for variant 
materials, such allies and polymeric materials with series of constitutive 
relations. Rivlin exploited a neo-Hookean model to calculate the forces 
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required to produce certain simple types of deformation in a uniform 
tube of circular cross-section with simultaneous extension, inflation and 
torsion, where the strain energy density is linearly dependent on the first 
strain invariant (Rivlin, 1949). This model was then modified with a 
Mooney-Rivlin model to analysis the nonlinear deformation of rubbery 
elastomer, where an additive linear component of the second invariant 
is included (Ogden, 1997). Later, Horgan et al. discussed positive/-
negative Poynting effect, that the cylinder tends to elongate or shorten 
on twisting, through investigation into finite deformation of soft 
rubber-like cylinder subject to variant loadings such as simple torsion 
and torsion with extension (Horgan and Murphy, 2015; Kanner and 
Horgan, 2008a, 2008b). Subsequently, equi-biaxial extension, simple 
shear and pure torsion were also analyzed for soft biomaterials based on 
FD-model, further confirming the importance of the second strain 
invariant in constitutive models (Demiray, 1972; Fung, 1967; Horgan 
and Smayda, 2012). Recently, the finite extension and torsion of an 
elastic circular of isotropic nonlinear elastic solid is described with the 
Blatz-Ko constitutive models (Kirkinis and Ogden, 2016; Polignone and 
Horgan, 1991). However, in the study of fluid-infused materials, such as 
hydrogels and biological tissues, solvent diffusion and large volume 
change can occur and the effect of chemical potential becomes signifi-
cant (Horgan and Murphy, 2015). A second-order nonlinear elastic 
theory with chemical coupling for biogels is proposed by Wu et al., 
through perturbation analysis on the basis of statistical mechanics 
constitutive formulation (Wu and Kirchner, 2010). Afterwards, the 
simple shear and torsion with axial loading of bilayer composite biogels 
were investigated to reveal the Poynting effect (Wang and Wu, 2014; Wu 
and Wang, 2015). Although the aforementioned models proved capable 
of phenomenally simulating the complex deformation, the underling 
mechanism and microscopic association with macroscopic behavior are 
still not well understood.

From the framework of thermodynamics and continuum mechanics, 
a series of multiphysics field models have been proposed for hydrogels 
recently, and the shortcomings of the nonlinear elasticity model of 
extension and torsion can be well overcome. Motivated by the experi-
mental observation, Dolbow et al. developed a continuum model for 
chemically induced volume phase transition in hydrogels, in which the 
coupling between the deformation and solute concentration is formu-
lated through the interfacial normal conjugational force balance 
(Dolbow et al., 2004; Ji et al., 2006). Hong et al. proposed a 
non-equilibrium coupled model of molecular migration and large de-
formations, where the free energy is derived from stretching the network 
and mixing the network with small molecules (Hong et al., 2008, 2009), 
and remote migration is successfully modelled via coupling diffusion of 
small molecules with the overall deformation of hydrogel. Furthermore, 
Li et al. proposed a multi-effect-coupling thermal-stimulus (MECtherm) 
model to simulate the responsive behavior of hydrogels due to multi-
physical coupled stimuli (Li et al., 2005, 2007, 2009). Similar work was 
conducted by Chester et al. (Chester and Anand, 2010) and Duda et al., 
2010, 2018 by introducing a multiplicative decomposition of the 
deformation gradient. Based on the constitutive models formulated by 
statistically mechanics principles, those models have depicted a 
comprehensive description of both macro and microscopic properties of 
hydrogel. In analytical practices, however, the inhomogeneous defor-
mation and the coupling between extension and torsion, induced by the 
twisting of hydrogels, remain unclear. Therefore, it is still a pressing and 
advanced issue to investigate the extension and torsion of hydrogel 
cylinder along with the dynamic diffusion of solvent molecules, and the 
influence of the chemical potential on nonlinear deformations.

Consequently, in this paper, the extension and torsion of hydrogel 
cylinder subject to a chemo-mechanical coupled field is analyzed in the 
framework of continuum mechanics, where a statistical formulation of 
free energy density is adopted, consisting of the elastic, mixing and 
chemical contributions. As a result, a simplified, closed-form and exactly 
analytical solution of the mechanical response is obtained, which cou-
ples the effect of chemical potential and microstructure material 

parameters, such as crosslinking degree, Flory-Huggins parameter, etc. 
In particular, the dynamic competition between mechanical and chem-
ical loading is revealed and discussed, and the direct connection be-
tween internal micro-physical parameters and macroscopic deformation 
is demonstrated.

This paper is organized as follows. First in Section 2, the extension 
and torsion of hydrogel cylinder subject to chemo-mechanical coupled 
field is analytically investigated in the framework of continuum me-
chanics, including isotropic free swelling. Then in Section 3, the effects 
of Flory-Huggins parameter and degree of crosslinking are theoretically 
analyzed on the torque and axial force on the surface of a cylindrical, 
where all the results are dependent on the chemical potential. In addi-
tion, the classic nonlinear positive Poynting effect is reveled where the 
cylinder tends to elongate on twisting. A summary of this paper and 
conclusions are given in the last section.

2. Formulation

In this section, the extension and torsion of hydrogel cylinder with 
chemical coupling is formulated in the framework of continuum me-
chanics. It should be noted that the hydrogel remains in a state of 
equilibrium within the solvent, where the amounts of solvent moving in 
and out of the hydrogel are dynamically balanced. The transient diffu-
sion process over time, however, is not considered in this context.

As illustrated in Fig. 1, the upper and lower end faces of the hydrogel 
specimen is twisted by parallel circular plates, and the deforming pro-
cess may be decomposed into two steps in this study. Firstly, the cylinder 
specimen at dry state with radius R0 and height H isotropically swells to 
a stretch λ0, depicting an interstitial state with radius r0 = λ0R0 and 
height h = λ0H. Then a torque T0, along with an axial load F, is imposed 
on the top surface to induce a rotation of the upper plane z = h to an 
angle φ =

γ
r⋅h with respect to the fixed bottom plane surface z = 0, while 

the axial stretch λ0 remains unchanged. It is noted that the chemical 
equilibrium is broken by torsion along the radial direction, to maintain 
the radial force balance. As a result, solvent molecules might migrate 
radially due to the gradient of chemical potential, and finally reach an 
equilibrium with inhomogeneous deformation. Alongside, an axial 
loading F is required to maintain the stretch, as a result of nonlinear 
effect.

Following the classical theoretical framework of nonlinear contin-
uum mechanics, the description of deformations can be defined as a 
mapping ψ: Ω0→Ω, from reference configuration Ω0 to the current 
configuration Ω at time t. The deformation gradient F = Gradx = dx/dX 
then describes the deformation kinematics from a reference point X ∈

Ω0 to its current position x = ψ(X, t) ∈ Ω in the configuration Ω at time 
t. Typically, hydrogel is considered as a condensed matter with negli-
gible void space, and the volume change of the hydrogel is achieved by 
absorbing and discarding solvents. Subsequently, the molecular 
incompressibility condition is expressed as (Hong et al., 2008) 

1+ vC = J = det F (1) 

where v is the volume per solvent molecule, C is the number of the 
solvent molecules per unit volume inside the hydrogel, and J is the 
determinant of the deformation gradient F.

2.1. Isotropic swelling

When the hydrogel specimen is immersed in solvent in the absence of 
any external force, it may deform from the initial state (a) to the inter-
stitial swelling state (b), as shown in Fig. 1. A swelling equilibrium is 
achieved when the two opposite tendencies cancel each other out, that 
is, the volume expansion caused by solvent penetration and the elastic 
contraction generated by the internal network structure. A material 
point X = XiEi then moves to a place with coordinate xʹ in the interstitial 
frame that is equilibrated with the surrounding chemical potential μ0, 
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and the coordinate xʹ is obtained as 

xʹ= x1ʹe1ʹ + x2ʹe2ʹ + x3ʹe3ʹ = λ0X1e1ʹ + λ0X2e2ʹ + λ0X3e3ʹ (2) 

or in polar system as xʹ = ŕ erʹ + ź eź , where the interstitial radial, 
angular, and axial coordinate (ŕ , θʹ, ź ) is associated with those in the 
reference state (R,Θ,Z) as 

rʹ= λ0R 

θʹ=Θ 

ź = λ0Z (3) 

Since the specimen undergoes an isotropic swelling, the interstitial 
base vectors eí  are identical to those in the reference state EK, i.e. eŕ =

ER,eθʹ = EΘ,ezʹ = EZ. Given that the only non-trivial derivatives of base 
vectors is ∂EΘ

∂Θ = ER, the isotropic deformation gradient F0 is thus given as 
(Hong et al., 2009) 

F0 = Gradx’ =
∂x’

∂X
= x’ ⊗

(

ER
∂

∂R
+ EΘ

1
R

∂
∂Θ

+ EZ
∂

∂Z

)

=

⎡

⎣
λ0 0 0
0 λ0 0
0 0 λ0

⎤

⎦

(4) 

where Grad(⋅) = ∂(⋅)
∂X = (⋅) ⊗

(

ER
∂

∂R + EΘ
1
R

∂
∂Θ + EZ

∂
∂Z

)

denotes the right 

gradient of a variable ( ⋅) with respect to the reference frame X in a 
cylindrical coordinate system, and the volume ratio J is the determinant 
of deformation gradient F0, namely J = det F0 = λ3

0.
Furthermore, the first Piola-Kirchhoff (PK1) stress P is work- 

conjugate with the deformation gradient F, and it can be given as 

P=
∂Ŵ
∂F

(5) 

where Ŵ is the free energy density of hydrogels. Consequently, the true 
stress σ is hence formulated as 

σ =
1
J

PFT =
1
J

∂Ŵ
∂F

FT (6) 

If no body force is considered, the balance of force, in terms of the 
true stress σ, is then formulated as 

σ⋅∇ = 0 (7) 

Constitutively, the total free energy density Ŵ of hydrogels, gener-
ally depending on the deformation F and concentration C, contains 
contributions form stretching the network We(F) and mixing the poly-
mer and solvent Wm(C). While the chemical field may be coupled 
through Legendre transformation, resulting in a new form of free energy 
density W(F,μ), depending on the deformation F and chemical potential 
of the interstitial solvent μ, as (Wu et al., 2022; Zheng et al., 2022) 

W(F, μ)= Ŵ − μC (8) 

Following the Flory-Rehner model, the stretching energy density We 

of the hydrogel network is (Flory and Rehner, 1943) 

We(F) =
NkT

2
(F : F − 3 − 2 ln J) (9) 

where N is the number density of polymer chains, k is the Boltzmann 
constant, T is the temperature.

Fig. 1. Schematic of soft cylinder subject to torsion in solvent. Initially, a hydrogel cylinder is at reference state (dry state) with radius R0 and length H (a). It is then 
immersed in solvent and swells isotopically to an interstitial state with a stretch λ0 (free swelling state) with radius r0 = λ0R0 and length h = λ0H (b). Extension and 
torsion of the swollen cylinder in a solvent to an angle φ =

γ
r⋅h subject to torque T0 and an axial load F, and invariant axial stretch λ0 subject to axial load F, where the 

plane surface z = 0 remains fixed (c).
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And the free energy density of mixing the polymer and solvent Wm 
(Hong et al., 2008; Huggins, 1941), can be given as 

Wm(C)= −
kT
v

[

vC ln
(

1+
1
vC

)

+
χ

1 + vC

]

(10) 

where χ is the Flory-Huggins parameter.
Upon substituting Eqs (1), (9) and (10) into Eq. (8), the total free 

energy density W can then be explicitly expressed as below. 

W(F, μ) = NkT
2

(F : F − 3 − 2 ln J) −
kT
v

[

(J − 1)ln
J

J − 1
+

χ
J

]

− μ (J − 1)
v
(11) 

Consequently, by Eqs (4) and (11), and setting stress (6) to zero, namely 
σ = 0, the relationship between chemical potential μ0 and stretching λ0 
for free swelling can then be obtained as 

1
λ0

=
1

vN

[
μ0

kT
− ln

(

1 −
1
λ3

0

)

−
1
λ3

0
−

χ
λ6

0

]

+
1
λ3

0
(12) 

It should be noted that the chemical potential μ0 at the equilibrium 
steady state is non-dimensionalized with kT, that is μ̃ = μ0/ kT. As a 
result, Eq. (12) is normalized with only two dimensionless material 
parameters, vN and χ, to formulate the chemo-mechanical coupling 
constitutive relation of the hydrogel at the equilibrium state. Subse-
quently, the isotropic swelling ratio λ0 of the hydrogel is discussed in 
details for the influence of the non-dimensionalized chemical potential 
μ̃, the crosslinking vN and the Flory-Huggins parameter χ. By Eq. (12), 
Fig. 2 shows the variation of the stretch λ0 with (a) the non- 
dimensionalized chemical potential μ̃ = μ0/kT with χ = 0.2 and vN =

10− 3, (b) the Flory-Huggins parameter χ with μ̃ = − 10− 3 and vN =

10− 3, and (c) the crosslinking vN with χ = 0.2 and μ̃ = 10− 3, respec-
tively. Here, a representative value of the volume per molecule is set as 
v = 10− 28m3, the range of crosslinking is vN = 10− 4 ∼ 10− 1, and kT =

4 × 10− 21J at room temperature in this paper. Combining Fig. 2 and Eq. 
(12), the following properties are found.

a) It is demonstrated that the stretch λ0 increases with larger chemical 
potential ̃μ, and that the stretch λ0 approaches 1 corresponding to the 
initial dry gel state when the chemical potential μ̃ approaches 
negative infinity, meaning no solvent is inside the hydrogel network.

b) The parameter χ serves as a dimensional measure of the enthalpy of 
mixing, indicating the hydrophobicity of hydrogel. In applications 
where gels with significant swelling ratios are desired, materials 
possessing low χ values are typically utilized.

c) With the increase of the internal structural parameter crosslinking 
vN, the material becomes stiffer, leading to a gradual decrease in the 
corresponding macroscopic elongation.

Furthermore, all of the curves in Fig. 2 exhibit monotonicity when 
using the chemical formula as the independent variable. With the free 
swelling study and discussion in this subsection, the above summary will 
play an essential and fundamental role in the ensuing analyses and 
investigation.

2.2. Chemically coupled extension and torsion: Poynting effect and radial 
inhomogeneity

After the first step of swelling, a combined torque T0 and axial 
loading F is then imposed on the top surface of the hydrogel cylinder, 
with bottom surface fixed, to induce a rotation of the upper plane, along 
with an unchanged stretch λ0, where the deformation process is assumed 
always in solvent and at equilibrium state. Subsequently, the final co-
ordinate x = rer + zez is obtained as (Kirkinis and Ogden, 2016; 
Polignone and Horgan, 1991), 

Fig. 2. Variation of the stretch λ0 with different physical parameters subject to 
zero stress.
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r= rʹ = r(R)

θ= θʹ +
γ
r0

ź = Θ +
γ
r0

λ0Z = Θ + ζλ0Z 

z= λzź = λ0Z (13) 

Here, γ represents the twist per unit length of the deformed cylinder 
on the radial surface, r0 = λ0R0 is the radius of cylinder after swelling, 
the strain ζ = γ

r0 
is the twist per unit length, and the final radial coor-

dinate r varies with the reference position R, and we will denote ṙ = dr
dR as 

its derivative with respect to R later in this paper.
In the context of infinitesimal deformation, the radial direction 

deformation (13) is homogeneous for an incompressible isotropic ma-
terial, where the solution to pure torsion has been showed by Rivlin as 
r = ŕ = λ0R (Rivlin and Rideal, 1948). In this case with finite defor-
mation, however, the homogeneous radial deformation is no longer 
preserved due to the chemo-mechanical coupling and nonlinearity in 
constitutive relations. It is considered that the current radial coordinate 
r is no longer linearly associated with the reference position R, but as a 
function left to determine. As a consequence, the deformation gradient F 
is given by Eq. (13) as 

F = Gradx = x ⊗

(

ER
∂

∂R
+ EΘ

1
R

∂
∂Θ

+ EZ
∂

∂Z

)

= ṙer ⊗ ER +
r
R

eθ ⊗ EΘ + (ζrλ0eθ + λ0ez) ⊗ EZ (14) 

And the three principal invariants of the deformation gradient F are 

I1 = ṙ+
r
R
+ λ0, I2 =

1
2

(
rṙ
R
+ ṙλ0 +

rλ0

R
− ζ2r2λ2

0

)

, J=
rṙ
R

λ0 (15) 

The PK1 stress P is obtained by Eqs (5), (11) and (14), as 

P=
∂W(F, μ)

∂F
=NkT

(
F − F− T)+

kT
v

[

ln
(

1 −
1
J

)

+
1
J
+

χ
J2 −

μ
kT

]

JF− T

(16) 

Consequently, the true stress σ can be given as 

σ =
1
J

PFT =
NkT

J
(
FFT − I

)
+

kT
v

[

ln
(

1 −
1
J

)

+
1
J
+

χ
J2 −

μ
kT

]

I (17) 

or in matrix form as 

σ =
1
J

PFT =
NkT

J

⎡

⎢
⎢
⎣

ṙ2
− 1 0 0
0 (r/R)2

+ λ2
0ζ2r2 − 1 λ2

0ζr
0 λ2

0ζr λ2
0 − 1

⎤

⎥
⎥
⎦

+
kT
v

[

ln
(

1 −
1
J

)

+
1
J
+

χ
J2 −

μ
kT

]

I (18) 

whose components are in the form of 

σrr =
NkT

J
(
ṙ2

− 1
)
+

kT
v

[

ln
(

1 −
1
J

)

+
1
J
+

χ
J2 −

μ
kT

]

σθθ =
NkT

J

[
(r/R)2

+ λ2
0ζ2r2 − 1

]
+

kT
v

[

ln
(

1 −
1
J

)

+
1
J
+

χ
J2 −

μ
kT

]

σzz =
NkT

J
(
λ2

0 − 1
)
+

kT
v

[

ln
(

1 −
1
J

)

+
1
J
+

χ
J2 −

μ
kT

]

σrθ = σθr = 0 

σrz = σzr = 0 

σθz = σzθ =
NkT

J
λ2

0ζr (19) 

Investigation of Eq. (19) reveals that all the three normal stresses, σrr, 

σθθ and σzz, are significant influenced by both the elastic deformation 
and chemical field. The stress σθz and σzθ due to the external torque T0 

are also implicit functions of the strain ζ and the chemical potential μ, 
where the dependence on chemical potential μ is included in the stretch 
λ0, as explicitly expressed by Eq. (12).

Afterwards, the Equilibrium equations of Eq. (7) in cylinder co-
ordinates can be written as 

∂σrr

∂r
+

1
r

∂σrθ

∂θ
+

σrr − σθθ

r
+

∂σrz

∂z
= 0 

∂σθr

∂r
+

1
r

∂σθθ

∂θ
+

σrθ + σθr

r
+

∂σθz

∂z
= 0 

∂σzr

∂r
+

1
r

∂σzθ

∂θ
+

∂σzz

∂z
+

σzr

r
= 0 (20) 

of which the last two equations are automatically satisfied by Eq. (19), 
while the first equation can be reduced as the following ordinary de-
rivative equation. 

dσrr

dr
+

σrr − σθθ

r
= 0 (21) 

Using the chain rule, Eq. (21) can be further written as 

dσrr

dR
+

ṙ
r
(σrr − σθθ)= 0 (22) 

and the derivatives of the terms of Eq. (19), the stress σrr, are obtained as 

dJ
dR

=
d

dR

(ṙr
R

λ0

)
= λ0

(

r̈
r
R
+ ṙ

ṙR − r
R2

)

= λ0⋅
r̈rR + ṙ(ṙR − r)

R2 

d
dR

[
NkT

J
(
ṙ2

− 1
)
]

= −
NkT
J2

dJ
dR

⋅
(
ṙ2

− 1
)
+

NkT
J

(2ṙr̈)

d
dR

[

ln
(

1 −
1
J

)]

=
1

1 − 1
J
⋅
1
J2⋅

dJ
dR

=
1

J(J − 1)
⋅
dJ
dR 

d
dR

(
1
J

)

= −
1
J2⋅

dJ
dR 

d
dR

(
1
J2

)

= −
2
J3⋅

dJ
dR

(23) 

As a result, the force balance equation (22) can be presented 
explicitly as below. 
[

−
(
ṙ2

− 1
)
+

1
vN

2 − J
J(J − 1)

+ 2ṙ2
]

r̈ +
[

−
(
ṙ2

− 1
)

+
1

vN
2 − J

J(J − 1)

]

⋅
ṙ
r
(ṙR − r)

R
+

ṙ2

r

[
ṙ2

− (r/R)2
− λ2

0ζ2r2
]

= 0 (24) 

where J = ṙr
Rλ0. It is found that Eq. (24) is a nonlinear second-order or-

dinary differential equation of the current radial coordinate, r(R), with 
respect to the original coordinate R. As mentioned above, the chemical 
potential μ is implicitly included in Eq. (24) through the stretch (12). 
Besides, the strain ζ is also included in Eq. (24), revealing that the co-
ordinate r is influenced by both the strain ζ and the chemical potential μ, 
indicating a chemo-mechanical coupled effect on the deformation sub-
ject to extension and torsion.

In order to get solution to Eq. (24), boundary conditions need spec-
ified. By Eq. (19), the shear stresses σrθ and σrz are equal to 0, thus the 
boundary condition for the traction-free surface is given as 

σrr =0, on R = r0 (25) 

Furthermore, to ensure that the deformation F is bounded, the 
following regularity is imposed as 
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r(R)→ 0, if R→0 (26) 

If the applied torque is denoted by T0, it may be formulated by Eq. 
(19) with the stress σθz as 

T0 =

∫

D
σθz⋅rda =

∫ r0

0
σθz⋅2π[r(R) ]2dr (27) 

where D denotes the current cross section of the cylinder and da is a 
material element area after deformation. Since dr = ṙdR and the prin-
cipal invariant J = ṙr

Rλ0, the torque (27) then can be rewritten by Eq. 
(19), as 

T0 =

∫ r0

0
2π[r(R)]2σθzdr =

∫ R0

0
2π[r(R)]2σθzṙ(R)dR

=

∫ R0

0
2π[r(R)]2NkT

J
λ2

0ζr(R)ṙ(R)dR (28) 

or inversely 

ζ =
T0

∫ R0
0 2πNkTλ0r2RdR

(29) 

Similarly, in order to maintain the axial stretch λ0 unchanged with 
torsion, the axial extension F on any cross-section of the cylinder is 
required, and it may be obtained as 

F =

∫

D
σzzda =

∫ r0

0
σzz⋅2πr(R)dr (30) 

By Eq. (19) and dr = ṙdR, the axial load (30) can be obtained as 

F =

∫ r0

0
σzz⋅2πr(R)dr =

∫ R0

0
σzz⋅2πr(R)ṙ(R)dR

=

∫ R0

0
2πrṙ

{
NkT

J
(
λ2

0 − 1
)
+

kT
v

[

ln
(

1 −
1
J

)

+
1
J
+

χ
J2 −

μ
kT

]}

dR

(31) 

The above-formulated governing equations (24) and (28) to (31), 
along with the boundary conditions (26), (27) and fixed axial stretch, 
describe the finite deformation of extension and torsion for hydrogel 
cylinder at given chemical potential μ and torque T0 in the continuum 
framework, together with axial loading F. The relation may thus be 
obtained among the stretch λ0, torque T0, strain ζ, radial position r and 
axial force F, where in the chemical potential μ and the microstructure 
parameters, such as crosslinking vN and Flory-Huggins parameter χ, are 
naturally incorporated. Furthermore, if the effect of the chemical po-
tential is neglected, the large extension and torsion of an elastic cylinder, 
composed of homogeneous isotropic elastic material such as Blatz-Ko 
material can be recovered by reduction of the present nonlinear 
coupling theory (Kirkinis and Ogden, 2016; Polignone and Horgan, 
1991).

In addition, as pointed out by previous works (Kirkinis and Ogden, 
2016; Polignone and Horgan, 1991), appropriate axial traction needs to 
be supplied in order to maintain the finite deformation of soft materials 
subject to torque. It is observed that the axial force (31) is found and 
derived in this subsection. Furthermore, the sign of the axial load F re-
veals the positive or negative Poynting effect in such a way that negative 
loading F, or compression, indicates the typical Poynting effect, i.e., the 
cylinder tends to elongate when twisted (Poynting, 1909). Conversely, if 
the axial force F is positive, or extension, a negative Poynting effect may 
take place, i.e., the cylinder tends to shorten on twisting (Balbi et al., 
2019). Additionally, the coupled effects of physical processes imposed 
by external loading and material parameter such as chemical potential μ, 
crosslinking vN and Flory-Huggins parameter χ, is numerically explored 
and discussed following section.

3. Numerical analysis: dynamic competition between 
mechanical and chemical loading

In this section, the combined torsion and extension of hydrogel is 
numerically investigated, for effects of loading and material parameters, 
such as torque T0, Flory-Huggins parameter χ and degree of crosslinking 
vN. In particular, the typical nonlinear positive Poynting effect is 
discovered with a negative axial force F, where the cylinder radius tends 
to elongate. Also, the interplay between mechanical and chemical effects 
is discussed, revealing their dynamic competition through changes in 
network structure and chemical potential. In order to provide a more 
specific discussion, the normalized force F̃ is introduced by dividing the 
force F by the shear modulus NkT/2 and area of cross section πR2

0 as 

F̃=
2F

NkT⋅πR2
0

(32) 

Similarly, to normalize the torque, we relate the torque T0 to the 
shear stress τ through the integral T0 =

∫ R0
0 τ⋅2πRdR. Simplifying this 

with an average shear stress τ to T0 = τ
∫ R0

0 2πRdR = τ⋅2πR3
0 /3, we get 

the average shear stress as τ = 3T0/2πR3
0. This average shear stress is 

then normalized by the shear modulus NkT/2, resulting in the dimen-
sionless or normalized torque T̃0 given by 

T̃0 =
3T0

NkT⋅πR3
0

(33) 

By Eqs (12), (24)–(26), (28) and (33), it is discovered that the torque 
T0 is influenced by both the strain ζ and the chemical potential μ. Sub-
sequently, the surface of normalized torque T̃0 with the strain ζ and the 
non-dimensionalized chemical potential μ̃ is shown in Fig. 3, to analyze 
the effect of chemo-mechanical coupling on the torque T̃0, where the 
cylinder radius R0 = 0.1m, the Flory-Huggins parameter χ = 0.2 and 
degree of crosslinking vN = 10− 3. It is found that the torque T̃0 is 
positively correlated with both the chemical potential ̃μ and strain ζ. The 
increase with strain aligns with general principles of mechanics, while 
the increase with chemical potential is attributed to a significant 
extension of the polymer chains, which leaves little room for further 
deformation, thereby requiring greater loading.

In details, Fig. 4 is plotted to show the variation of the normalized 
torque T̃0 with the non-dimensionalized chemical potential μ̃ for 
different strains ζ = 0.01, 0.02, 0.03, 0.04 and 0.05. It is demonstrated 
that the normalized torque T̃0 increases with rising chemical potential, 

Fig. 3. The surface of normalized torque T̃0 with the strain ζ and the non- 
dimensionalized chemical potential μ̃, where χ = 0.2 and vN = 10− 3.
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which is consistent with the result of Fig. 3. As mentioned above, higher 
chemical potential reflects a greater solvent content, leading to more 
fully extended polymer chains. As a result, the hydrogel network be-
comes more resistant to twisting, requiring a higher torque to achieve 
the same strain. Besides, the torque T̃0 changes relatively slow when the 
chemical potential μ̃ is sufficiently low, whereas it increases rapidly as 
the chemical potential μ̃ approaches zero, reflecting an increasing in-
fluence of the chemical field at high solvent content. Furthermore, a 
higher strain ζ corresponds to a higher torque T̃0 for fixed chemical 
potential μ̃.

In addition, the intrinsic Flory-Huggins parameter χ also have sig-
nificant influence on the normalized torque T̃0 through tuning the hy-
drophilicity of hydrogel, thereby affecting the stretch λ0. Fig. 5 is then 
plotted by Eqs (12) and (28) to show the variation of the normalized 

torque T̃0 with the Flory-Huggins parameter χ subject to different 
chemical potentials μ̃ = − 0.8, − 0.7, − 0.6, − 0.5, − 0.4, where the 
strain ζ = 0.01 and vN = 10− 3. It is observed in Fig. 5 that the torque T̃0 
decrease with the increase of Flory-Huggins parameter χ. This is 
attributed to fact that an increase in the Flory-Huggins parameter χ re-
duces the hydrophilicity of hydrogel, leading to a decrease in the stretch 
λ0, consequently, a lower solvent content. By the conclusions drawn 
from Fig. 4, this results in a lower torque T̃0. This relationship is further 
supported by the formulations in Eqs (12) and (28) and Fig. 2(b), where 
the stretch λ0 consistently decreases as the Flory-Huggins parameter χ 
increases. Therefore, the torque T̃0 is monotonically and inversely pro-
portional to the Flory-Huggins parameter χ, since it is positively corre-
lated with the stretch λ0 and solvent content. In addition, if the Flory- 
Huggins parameter χ is fixed, a higher chemical potential μ̃ corre-
sponds to a larger torque T̃0 subject to chemo-mechanical coupling ef-
fect, which is consistent with the result of Fig. 4.

Furthermore, as well known and also noticed in Fig. 2(c), the 
crosslinking vN is a critical internal structural parameter that directly 
affects the macroscopic deformation of the hydrogel. When analyzing 
the effect of crosslinking vN, it is important to note that normalizing the 
force and torque with NkT/2 becomes unreasonable since the parameter 
N is now a variable. Besides, normalizing these quantities with a fixed 
crosslinking parameter N0 would also be inappropriate. Therefore, in the 
following discussions of Figs. 6 and 10 regarding the effect of cross-
linking vN, both the normalized torque T0/

2
3 πR3

0 and the normalized 
force F/πR2

0 are expressed in unit of Pascals, without normalization by 
the shear modulus. It should also be noted that, similar as the effect of 
Flory-Huggins parameter χ, the contribution of the crosslinking vN 
consists of two parts as demonstrated by Eq (28), of which one is the 
elasticity of the structure itself (vNKT /v) and the other is the indirect 
contribution by the stretch (12). By Eqs (12) and (28), Fig. 6 is plotted to 
show the variation of the normalized torque 3T0/2πR3

0 with the cross-
linking vN subject to different chemical potentials μ̃ = − 0.8, − 0.7, −
0.6, − 0.5, − 0.4, where the strain ζ = 0.01 and Flory-Huggins 
parameter χ = 0.2. With the increase of the crosslinking vN, the 
hydrogel becomes stiffer, leading to an increase in its stretch λ0 as shown 
in Fig. 2(c), and a larger torque 3T0/2πR3

0 is then required. Conse-
quently, the torque 3T0/2πR3

0 is positively correlated with the cross-
linking vN as shown in Fig. 6. In addition, for a given chemical potential 
μ̃, the change in the slope of curve is relatively modest if the crosslinking 

Fig. 4. Variation of the normalized torque T̃0 with the non-dimensionalized 
chemical potential μ̃ for different strains ζ, where χ = 0.2 and vN = 10− 3.

Fig. 5. Variation of the normalized torque T̃0 with the Flory-Huggins param-
eter χ subject to the different non-dimensionalized chemical potential μ̃, and 
vN = 10− 3.

Fig. 6. Variation of the normalized torque 3T0/2πR3
0 with the crosslinking vN 

subject to the different non-dimensionalized chemical potential μ̃, and χ = 0.2.
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vN is less than ∼ 10− 2, while the curve becomes steeper with rapidly 
increasing torque when the crosslinking vN increases from ∼ 10− 2 to 
10− 1.

Similarly, by Eqs (12), (31) and (32), it is discovered that the 
normalized axial force F̃ is influenced by both the strain ζ and the 
chemical potential μ. Subsequently, the surface of normalized axial force 
F̃ with the strain ζ and the non-dimensionalized chemical potential μ̃ is 
shown in Fig. 7(a), to analyze the effect of chemo-mechanical coupling 
on the axial force F̃, where χ = 0.2 and vN = 10− 3. Generally, Poynting 
effect describes the phenomenon that the specimen tends to elongation 
upon twisting. This case happens when no axial force is present. An 
equivalent expression of this effect is that a compressive force along the 
axial direction is required to maintain the axial length upon twisting, 
which is the approach we adopt in the present paper. By Fig. 7(a), it is 
found that the axial force ̃F is negative to maintain the stretch, revealing 
a positive Poynting effect. This may be understood by Fig. 7(b) that 
shows the surface of radial position r with the strain ζ and initial radial 
coordinate R, in such a way that radial elongation (24) of the hydrogel 
cylinder requires an axial shortening to assure the incompressibility 
condition. Fig. 8 then shows the variation of the normalized axial force ̃F 
with the non-dimensionalized chemical potential ̃μ with different strains 

ζ = 0.01, 0.02, 0.03, 0.04 and 0.05, where χ = 0.2, vN = 10− 3. It is 
demonstrated that an increase in the chemical potential μ̃ can lead to a 
rise in the axial force F̃. This result may be attributed to two aspects. 
Firstly, an increase in chemical potential results in larger solvent content 
at equilibrium, leaving little room for further deformation and 
increasing resistance. As a result, a larger force ̃F is required as chemical 
potential rises. Secondly, from a deformation perspective, twisting may 
reduce the internal chemical potential, encouraging the hydrogel to 
absorb more solvent, which leads to both radial and axial expansion. 
While in this scenario where the axial deformation is preserved during 
twist, an addition compressive axial force is necessary. As a general 
principle, an increase in chemical potential leads to greater solvent 
content, resulting in more significant dilation and, consequently, a 
larger axial force is required. Furthermore, for a fixed chemical potential 
μ̃, an increase in the applied strain ζ on the hydrogel also corresponds to 
a higher axial force F̃, which is consistent with the trends observed in 
Fig. 7(a). All of these results are a manifestation of the competition 
between mechanical interaction of strain ζ and solvent diffusion up to 
equilibrium with chemical potential μ̃.

Furthermore, Figs. 9 and 10 are plotted by Eqs ((12), (24), (31) and 
(32) to show the variations of the normalized force F̃ with the Flory- 
Huggins parameter χ and normalized axial force F/πR2

0 with cross-
linking vN respectively, subject to different chemical potentials μ̃ = −

0.8, − 0.7, − 0.6, − 0.5, − 0.4, where the strain ζ = 0.01, vN = 10− 3 in 
Fig. 9 and χ = 0.2 in Fig. 10. It can be seen from Fig. 9 that the 
normalized axial force F̃ is inversely proportional to the Flory-Huggins 
parameter χ. An increase in the Flory-Huggins parameter χ reduces the 
hydrophilicity of the hydrogel, leading to a decrease in the stretch λ0 
and, consequently, a lower solvent content. As concluded in Figs. 7 and 
8, the decrease in solvent content results in a lower force F̃. In addition, 
as shown in Fig. 10, a larger axial force F/πR2

0 is required for increasing 
crosslinking vN, as the hydrogel becomes stiffer with higher cross-
linking. Furthermore, both Figs. 9 and 10 reveal that an increase in the 
chemical potential ̃μ can lead to a rise in the axial force for a fixed Flory- 
Huggins parameter χ or crosslinking vN, which is the same as in Fig. 8. 
To sum up, the variation of physical parameters such as the Flory- 
Huggins parameter and crosslinking plays an important role in the dy-
namic competition between mechanical and chemical effects, which 
provides guidelines for the design and application of hydrogels.

Fig. 7. The surface of normalized axial force F̃ with the strain ζ and the non- 
dimensionalized chemical potential μ̃ (a), and the surface radial coordinate r 
with the strain ζ and initial radial coordinate R (b), where χ = 0.2 and vN =

10− 3.

Fig. 8. Variation of the normalized axial force F̃ with the non-dimensionalized 
chemical potential μ̃ for different strains ζ, where χ = 0.2 and vN = 10− 3.
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4. Conclusions

Based on the framework of continuum mechanics, a detailed theo-
retical analysis and numerical investigation of the combined extension 
and torsion of hydrogel cylinder is presented under chemo-mechanical 
coupled loading, where the chemical field is coupled with finite defor-
mation through incorporating the incompressibility constraints via 
Legendre transformation. The significant observations and conclusions 
are summarized below. Firstly, a simplified, closed-form analytical 
model is derived to accurately describe the chemo-mechanical coupled 
response of hydrogel, considering the effects of external load, chemical 
potential, and microphysical parameters such as the degree of cross-
linking and Flory-Huggins interaction. This provides a robust theoretical 
foundation for in-depth understanding of the complex deformation 
mechanisms in hydrogel. Secondly, the impacts of free swelling and 
microscopic diffusion of hydrogels are systematically analyzed at 

equilibrium state. The influences of various parameters, such as the 
chemical potential and crosslinking, on the macroscopic deformation 
and fundamental properties are revealed, offering valuable theoretical 
guidance for designing high-performance hydrogel. Furthermore, the 
classic Poynting effect, where hydrogel cylinder tends to elongate on 
twisting, is discovered and explained. The inhomogeneous deformation, 
induced by torsion, along the radial direction is demonstrated, shedding 
more light on the complex deformation behavior of hydrogel. Finally, 
the dynamic competition between external loads and solvent environ-
ment is explored at equilibrium state, establishing direct connections 
between internal microscopic parameters and macroscopic deformation. 
The torque is positively correlated with both the chemical potential and 
strain, and an increase in the chemical potential can lead to a rise in the 
axial force. In summary, the analysis of complex loading and boundary 
condition will be of universal interest to the mechanics community. The 
theoretical results presented in this paper may provide predictions and 
guidance for the mechanical analysis and engineering applications of 
hydrogel cylinder subject to extension and torsion in a solvent.
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