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Smart grid is the primary stakeholder in smart cities integrated with modern technologies as the Internet of Tings (IoT), smart
healthcare systems, industrial IoT, renewable energy, energy communities, and the 6G network. Smart grids provide bidirectional
power and information fow by integrating many IoTdevices and software. Tese advanced IOTs and cyber layers introduced new
types of vulnerabilities and could compromise the stability of smart grids. Some anomalous consumers leverage these vulnerabilities,
launch theft attacks on the power system, and steal electricity to lower their electricity bills. Te recent developments in numerous
detection methods have been supported by cutting-edge machine learning (ML) approaches. Even so, these recent developments are
practically not robust enough because of the limitations of single ML approaches employed. Tis research introduced a stacked
ensemble method for electricity theft detection (ETD) in a smart grid.Te framework detects anomalous consumers in two stages; in
the frst stage, four powerful classifers are stacked and detect suspicious activity, and the output of these consumers is fed to a single
classifer for the second-stage classifcation to get better results. Furthermore, we incorporate kernel principal component analysis
(KPCA) and localized random afne shadow sampling (LoRAS) for feature engineering and data augmentation. We also perform
comparative analysis using adaptive synthesis (ADASYN) and independent component analysis (ICA). Te simulation fndings
reveal that the proposed model outperforms with 97% accuracy, 97% AUC score, and 98% precision.

1. Introduction

With the rapid increase of the world population, conven-
tional cities are becoming overpopulated, which brings forth
numerous challenges. A recent United Nations report es-
timates that the world population will reach 9.7 billion by
2050. Overpopulation faces several challenges such as trafc
congestion, energy shortages, lack of a healthcare system,
natural resource depletion, and water shortages [1].

Smart cities are the feasible substitutes for traditional cities,
which ofer promising solutions to mitigate the challenges

posed by overpopulation. Smart cities leverage many tech-
nological advancements, such as the IoT, smart grid, industrial
IoT, smart homes, 6G network, smart health care, renewable
energy, and energy community [2], to optimize resource al-
location and improve the inhabitants’ quality of life. Figure 1
exhibits a futuristic smart city integrated with many techno-
logical advances. Te smart grid is one of the primary stake-
holders in futuristic smart cities. As the smart grid is arguably
the paramount aspect of a smart city, it provides an un-
interrupted power supply to the entire system and acts as the
soul of a smart city, while, in the event of unavailability of
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a smart grid for a considerable duration, all other features of the
smart city will inevitably be ceased [3].

Te emergence of the smart grid with IoT devices in-
troduces many technological advances in the rapid devel-
opment of smart cities. Tis enables more advanced and
efcient energy systems by integrating cutting-edge com-
munication, monitoring, and control to the conventional
power grid architecture. It optimizes energy fow, stabilizes
grid structure, supports renewable energy sources, and pro-
vides a bidirectional communication among power genera-
tion, distribution network, and end consumers. Tese
collective features result in an energy framework that is not
only more dependable and sustainable but also resilient.
Many countries like China, the USA, Germany, Brazil, and
Japan are making many eforts to develop conventional grids
into smart grids and use clean energy to power their smart
grids [4]. According to a recent report, it is estimated that the
USA invests 3.6 billion dollars in the smart meter market in
the year 2022. Te world’s second-largest economy China is
anticipated to reach a projected market size of 15.4 billion by
2030, which captures the compound annual growth rate of

9.4% of the market size by 2022 to 2030. Moreover, Canada
and Japan are two more notable regional markets, with
growth rates of 6.7 and 5.9, respectively, by the period of
2022–2030 [5]. Te smart grid incorporates a variety of IoT
devices (e.g., smart meters, sensors, and data centers) and
software (e.g., cyber layer). Tis introduces many security
risks, such as cyberphysical attacks and manipulation of
communication systems and IoTdevices in smart grids. Some
suspicious consumers leverage these security risks to launch
physical attacks (bypassing smart meters) and cyber theft
attacks (injecting false meter readings) to lower their elec-
tricity bill [6]. Cyberattacks are more discreet and versatile as
compared to physical attacks, as they can be launched re-
motely from any corner of the world. Moreover, the regions
with widespread electricity theft face power quality problems,
and more frequently, brownouts and blackouts happen.

Tese security risks compromise the stability and opera-
tion of smart gird. It causes high revenue loss for the country
and seriously jeopardizes public safety. According to a recent
report, worldwide electricity utilities faced 96 billion dollars of
loss annually in 2014 because of electricity theft [7]. As a result,
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Figure 1: Futuristic smart city with smart grid application.
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electricity tarif increases for all consumers by passing all
economic losses to all honest consumers. Similarly, electricity
theft has been afecting other sectors most (e.g., healthcare
system and industrial system). In contrast, electricity theft
afects uninterrupted power supply to the industrial systems,
which causes huge production interruptions and losses of
millions of dollars in terms of delays in completing orders for
their customers. Moreover, the healthcare system is the most
vulnerable and highly afected by electricity theft, which causes
interruptions in critical health equipment and life-saving
procedures and highly compromises patient care. Further-
more, energy theft is caused by various circumstances, in-
cluding weak economic situations and high energy tarifs [8].
Terefore, it is necessary to have an electricity theft detection
framework to secure the smart grid from malicious con-
sumers. Te conventional detection methods, which depend
on manual on-site inspection, take a lot of time and money.

Data-oriented methods of electricity theft detection are
becoming more popular as smart meters generate huge
amounts of electricity consumption data. Te data-driven
approach uses ML techniques to detect variations in the
consumption history and identify abnormal consumption,
which highly relates to energy theft. We take electricity
consumption data from the State Grid Corporation of China
(SGCC) for the evaluation of our proposed system model.

1.1. Contribution. Te major contributions and novelty of
our article are highlighted as follows:

(1) Te introduced stacked framework amalgamates the
inherent perks of two-stage sample analysis,
resulting in improved suspicious activity detection,
high convergence rate and enhanced the overall
efciency of the smart grid.

(2) Tis research achieves a signifcant contribution by
utilizing KPCA as a powerful nonlinear feature ex-
traction technique to handle the curse of di-
mensionality in the presence of such a high-
dimensional dataset.

(3) Te class imbalance is a major issue as there is
frequent occurrence of theft events. Terefore, we
incorporate the LoRAS approach to combat the class
distribution issue.Te LoRAS technique strategically
generates augmented samples, which allows a more
accurate and balanced representation of the theft
class. It helps the classifer to prevent bias and im-
prove the generalization of the classifer.

(4) Furthermore, we perform a comparative analysis by
integrating independent component analysis (ICA)
and adaptive synthesis (ADASYN) techniques for
feature engineering and data augmentation, re-
spectively, on the same framework.

2. State-of-the-Art Work

2.1. Machine Learning-Based ETD. Te related work is
discussed in detail in Table 1, which identifes the research
gaps, proposed solutions, contributions, and existing

limitations. To address the issues of theft-based nontechnical
losses (NTLs), Reference [9] proposed a pattern-based and
context-aware technique for ETD. To compute the chance of
malevolent consumers, the suggested technique takes into
account the appropriate calendar context and aspects of
daily power usage for a specifc day.Te K-nearest neighbors
(K-NN) and dynamic temporal warping (DTW) are used in
this technique, with K-NN being used to rank the change
from time to time of the given day and DTW being used to
accurately record the link between two consumption pat-
terns. Tis study describes several types of theft attacks and
evaluates the viability of the suggested strategy. Te fndings
showed that the suggested technique had a false-positive rate
(FPR) of 1.1%, a true-positive rate (TPR) of 93%, and an
overall F1 score of 94% all of which support the model’s
efectiveness in identifying power theft. Tese results sup-
port the idea that the technique performs better than earlier
works in terms of low FPR and high detection rates.

Te implicit assumption that malevolent users manip-
ulate smart meter readings to values far lower than their real
power consumption hinders the efectiveness of the current
electricity theft detection methods. Attacks involving sub-
stantial power theft are referred to as large-amount elec-
tricity thefts (LETs). However, some malevolent users could
be circumspect enough to execute small-amount energy
theft (SET), where smart meter readings are changed to
numbers only a bit lower than the true values, mostly to
avoid detection. In order to overcome this constraint,
Reference [10] provides a detector that can successfully
counter SET and LET attacks. Tis detector examines
measurements of a central observer meter and reported
readings from users using a Shewhart control chart and
a cumulative sum (CUSUM) control chart in combination. It
comprises an electricity theft detection phase that seeks to
promptly identify the existence of LET/SET assaults and
a malicious user identifcation phase that seeks to precisely
identify malicious users. Te suggested detector has un-
dergone extensive testing, and the fndings indicate that it
performs well across a number of measures.

However, recent developments are not practical enough,
in part because of the weaknesses of the ML algorithms used.
Study in [6] proposed a covert power stealing approach for
a set of smart houses by simulating typical consumption
patterns and simultaneously hacking nearbymeters. Existing
techniques are nearly unable to identify such an assault since
the modifed data hardly deviate from accurate use records.
First, establish and defne two degrees of consumption
deviations, interpersonal-level and home-level, to address
this issue. Next, develop a feature extraction strategy that can
identify the relationship between assaults and loyal clients.
Finally, create a fresh detection model based on deep
learning. Numerous tests using real-world data demonstrate
that the disclosed assault might avoid common mainstream
detectors while still generating large profts. Additionally,
the suggested countermeasure performs better than cutting-
edge detection techniques.

Power loss, which includes both nontechnical and
technical loss, represents the efective utilization rate of
energy, as well as the management level of power networks.
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Reference [11] provides a data-driven combination ap-
proach for systematically identifying power loss abnor-
malities in distribution networks (DN), including
anomalous position, anomalous kind, and timing. Tere are
three steps to the detection process: abnormal position
detection, aberrant feeder detection, and abnormal time
detection. Te data-driven algorithm based on electricity
sales data and daily power supply initially detects probable
anomalous feeders from all feeders in DN. Te control chart
is then used to thoroughly monitor the variation of each
anticipated abnormal feeder’s power loss and determine its
abnormal time. Numerous real data experiments indicate
that the suggested data-driven combination algorithm can
detect and evaluate anomalous power loss in DN.

Because stealing tendencies spread among consumers,
collaborative energy theft, such as village fraud, has become
especially widespread. In [12], a group of electrical thieves
who steal energy at a consistent ratio was considered. When
several electrical thieves are in the same location, conven-
tional correlation-sorting algorithms may struggle. To cir-
cumvent this constraint, we frst develop a mathematical
model of NTL using load data from fxed ratio electricity
thieves (FRETs). Following that, an intriguing correlation
pattern was noticed and investigated, which may be used to
locate FRETs. Suggest a correlation analysis-based detection
approach based on this trend. It uses standardized co-
variance to assess the relationship between the user data and
NTL. FRET detection is accomplished by addressing
a combinatorial optimization problem. In practice, a similar
framework was also created. Finally, numerical tests using an
actual dataset and an electrical theft dataset from an elec-
tricity theft emulator (ETE) are carried out to confrm the
proposed method’s efcacy and superiority in terms of
accuracy, stability, and scalability.

2.2. Deep Learning-Based ETD. Energy theft is difcult to
spot in a traditional power infrastructure due to restricted
communication and data transfer.Te combination of smart
meters and big data mining technologies results in sub-
stantial technical advancement in the feld of ETD. Reference
[13] presented an ETDmodel based on convolutional LSTM
to detect electricity theft consumers. Electricity usage data
are reshaped quarterly into a 2-D matrix and utilized as the
sequential input to the convolutional LSTM. Te convolu-
tional NN contained in the LSTM can more efectively learn
data characteristics on multiple quarters, days, weeks, and
months. Furthermore, the suggested model includes batch
normalization. Tis methodology facilitates the integration
of raw-format power consumption data directly into the
proposed ETD model, thereby reducing training overhead
and improving model deployment efciency. Results from
the case study indicate that the convolutional LSTM model
proposed demonstrates robustness, outperforming both
multilayer perceptron and CNN-LSTM models in terms of
performance metrics and generalization capabilities.
Moreover, the fndings demonstrate that employing K-fold
cross-validation techniques can enhance the accuracy of
ETD prediction.

Te authors in [14, 26] suggested deep learning algo-
rithms for detecting power theft. A three-stage approach for
feature selection, extraction, and classifcation has been
developed. Te average hybrid feature signifcance identifes
the most signifcant traits and high priority throughout the
selection process. Te feature extraction methodology le-
verages the ZFNET method to eliminate undesirable fea-
tures. We used the LSTM approach included in the CNN
methodology to identify electric fraud. To generate optimum
values for CNN-LSTM hyperparameters, meta-heuristic
approaches such as Blue Monkey Optimization (BMO)
and Black Widow Optimization (BWO) are utilized. Te
adjustment of the classifer’s hyperparameters aids in better
data training. Following the thorough simulation, our
suggested approaches, CNN-LSTM-BMO and CNN-LSTM-
BWO, obtained 91% and 93% accuracy, respectively. All of
the previous comparable strategies are outperformed by the
proposed approaches. Te performance of models has
achieved great accuracy and a low error rate. However, the
integration of the Synthetic Minority Oversampling Tech-
nique (SMOTE) causes overftting and data-bridging efects.

Te author in [15] proposed a unique unsupervised data-
driven strategy for detecting power theft in AMI. Observer
meter data, fuzzy c-means (FCM) clustering, and wavelet-
based feature extraction are all used in the process. To
distinguish between legitimate and fraudulent users, a new
anomaly score is created according to the level of cluster
membership information given by FCM clustering. Using
a publicly accessible smart meter dataset, we conduct ab-
lation research to assess the infuence of key aspects of the
proposed technique on performance. Te fndings reveal
that all main components of the suggested technique greatly
increase performance. Te suggested technique is compared
against a collection of baselines, including state-of-the-art
methodologies that employ smart meter data from com-
mercial and residential consumers. Te comparative fnd-
ings show that the suggested technique outperforms the
baseline methods in terms of detection performance.

Te increasing adoption of household smart meters and
energy monitoring devices facilitates the collection of ex-
tensive data for analyzing residential electricity con-
sumption. Tese data can be leveraged to enhance the
detection of electricity leakage and theft, identify instances
of tampering and data fraud, and pinpoint powerline
failures. Te time window approach is initially presented in
[16] to extract the characteristics and potential periodicity
of home electrical data. A multilayer hierarchical network
(MLHN) is then created to identify anomalies in single
sensor data and categorize numerous groups of sensor data,
respectively, by combining the denoising capacity of the
autoencoder with the induction capability of the feedfor-
ward neural network. Te experimental fndings reveal that
as compared to the provided method, the accuracy of
identifying aberrant data and data categorization is greatly
enhanced.

Te existence of malicious, aberrant data packets in a dc
microgrid’s cyber layer might impede control objectives,
causing voltage instability and changing load dispatch
patterns. As a result, recognizing abnormal data is critical for

International Transactions on Electrical Energy Systems 5
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restoring system stability. Reference [17] addresses two
critical research questions: (1) Which data-driven detection
strategy provides the highest detection performance in dc
microgrids against stealth cyberattacks? (2) How does
combining two features (current and voltage data) for
training increase detection performance when compared to
utilizing a single feature (current)? Research found that (1)
using an uncontrolled deep recurrent autoencoder anomaly
detection technique in dc microgrids outperforms other
standards in terms of detection performance. Te autoen-
coder is trained using nonthreatening data supplied by
a multisource dc microgrid model. (2) Using current and
voltage data together for training results in a 14.7% im-
provement. Te efectiveness of the results is demonstrated
using experimental data acquired from a dc microgrid
testbed during stealth cyberattacks.

In [18], author proposed using deep (stacked) autoen-
coders with a sequence-to-sequence (seq2seq) structure
based on LSTM. Te depth of the autoencoders’ structure
aids in capturing intricate data patterns, while the seq2seq
LSTM model allows for data exploitation due to its time-
series nature. We examine the detection performance of
a basic autoencoder, a variational autoencoder, and an
autoencoder with attention (AEA), fnding that seq2seq
structures outperform fully linked ones. Depending on the
simulation fndings, the AEA detector outperforms existing
state-of-the-art detectors by 4–13% and 4–21% in terms of
false alarm rate and detection rate, respectively. Reference
[27] covered the subject of energy theft and present de-
tection systems, providing insight into future research ob-
jectives. After examining how attackers tamper with meter
readings, we conduct a comprehensive assessment of all
current detection approaches, which are divided into
measurement mismatch-based methods and machine
learning. Electricity theft’s negative impacts, as well as its
political and social implications, are also discussed. Te
survey can assist relevant academics set future research
paths, particularly in the feld of creating new efective ways
for detecting electricity theft.

Te authors in [19] introduced a method for detecting
theft that employs extensive characteristics in the time and
frequency domains in a deep NN-based classifcation ap-
proach. Te authors also addressed dataset shortcomings
like missing data and class imbalance via data interpolation
and synthetic data generation. We analyzed feature signif-
icance across temporal and frequency domains, and conduct
experiments in a combined, PCA-reduced feature space.
Furthermore, a minimal redundancy maximum relevance
technique is applied to validate key features that enhanced
power theft detection performance by tuning hyper-
parameters with a Bayesian optimizer and utilizing an
adaptive moment estimation (Adam) optimizer to test
various critical parameter values for optimal confguration.
Finally, it demonstrates the proposed method’s competi-
tiveness in contrast to other approaches assessed using the
same dataset. Proposed methods acquired 97% area under
the curve (AUC), which is 1% better than the best AUC in
previous research, and 91.8% accuracy, which represents the
second highest on the benchmark.

Te broad use of modern metering infrastructure pro-
vides a chance to identify power theft by evaluating data
obtained from smart meters. Existing models, however,
perform poorly in detecting power theft because most of
them are unable to recognize the time dependency, peri-
odicity, and latent features from complicated electrical
consumption data. In [20], a Graph CNN and an Euclidean
CNN are coupled to produce a unique model for detecting
power theft. On the one hand, a novel approach to graph
theory is used to describe the high-dimensional power
demand curves as a graph. Next, the GCN performs graph
convolutional operations to represent the time dependency
and periodicity. On the other hand, CNN uses Euclidean
convolutional techniques to extract the latent characteristics
from the power load curves. Numerical simulations dem-
onstrate that the suggested model outperforms the industry
standards in detecting energy theft by combining the ad-
vantages of GCN and CNN.

Several cutting-edge ETD approaches are investigated,
and their advantages and disadvantages are analyzed in [28]
in a thorough overview. Modern ETD approaches are cat-
egorized using three levels of taxonomy. Diferent energy
theft methods and their efects are examined and summa-
rized, and various performance metrics to compare the
efectiveness of suggested tactics are taken from the litera-
ture. Future research is advised to address the difculties
presented by various ETD approaches and their mitigation.
It has been noted that the work on ETD lacks knowledge
management strategies that might improve both ETD and
theft tracking. Both for ETD and future energy theft pre-
vention, this can be helpful.

Electromechanical and digital power meters coexist with
smart meters, presenting challenges in monitoring NTL and
fraud. Traditional electromechanical meters, read monthly
by operators, contrast with smart meters that provide high-
resolution power readings. Sampling frequencies vary, with
some customers’ usage recorded every 15minutes and
others monthly. Given the extensive historical monthly
consumption data already held by businesses, leveraging
these data for predictive analytics could enhance NTL
management on smart grids. In order to concurrently train
and forecast input consumption curves collected once per
month or every 15minutes, Reference [21] proposed
a multiresolution deep learning architecture. Te suggested
algorithms are examined using a sizable data collection of
consumers, both with and without fraudulent actions,
gathered from the Uruguayan utility company UTE and
a public access dataset with artifcial fraud. Results dem-
onstrate that the multiresolution architecture outperforms
methods developed for a certain class of meters.

Energy theft-related electrical loss, also known as NTL, is
one of the issues with the electricity grid system. Te un-
anticipated electrical losses put the grid system’s stability and
sustainability in threat. One way to address the issues with
NTL is through the identifcation of energy theft through
data analysis. Te unequal class dataset of collected power
use is the key issue with data-based NTL identifcation. To
address the data unbalanced problem of NTL, deep re-
inforcement learning (DRL) is used in [22] to approach the

6 International Transactions on Electrical Energy Systems
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NTL detection problem.Te suggested technique’s beneft is
that it uses the classifcation method to employ incomplete
input features rather than using a preprocessing method to
choose input features. Moreover, as compared to typical
NTL detection methods, additional preprocessing pro-
cedures to maintain the dataset are not required. According
to the simulation fndings, the suggested technique out-
performs traditional methods in a variety of simulation
scenarios.

Te smart grid is increasingly concerned about elec-
tricity theft. Using energy by electric utilities without an
agreement and manipulating meter readings to reduce or
avoid paying the electricity bill are examples of unauthorized
consumers using energy. Signifcant research has been done
in the past ten years to stop and fght stealing. A basic
summary of the development of power theft detection,
comprising threat models, datasets and input features
employed, procedures and approaches, and assessment
metrics, is provided in [29] and compared the efectiveness
of each detection method as well.

Te authors in [23] examined how well power theft
detectors defend themselves from evasion assaults. By
inserting adversarial samples, such assaults lower the re-
ported electricity reading levels and trick the power theft
detectors. Repeatedly creating adversarial samples based on
an electrical reading and its nearby readings suggests sig-
nifcant evasion techniques that trick the benchmark de-
tectors. Depending on the attacker’s knowledge of the
detector’s parameters or datasets, we use white-box, gray-
box, and black-box settings to analyze the efects of evasion
assaults. According to the proposed research, the perfor-
mance of benchmark detectors can degrade in white-, gray-,
and black-box conditions by up to 35.8%, 26.9%, and 22.2%,
respectively. Successively merging a convolutional-
recurrent, attentive autoencoder, and feedforward NNs
presents an ensemble learning-based anomaly detector to
identify undetected assaults (traditional and evasion), which
is trained entirely on benign data. Te suggested model
provides steady detection performance with maximal
adversarial sample injection levels, with average degradation
being just 0.7–3%, 0.9–2.1%, and 0.4–1.7% in white-, gray-,
and black-box conditions, respectively.

A two-step technique for detecting energy theft is in-
troduced in [24] to locate electricity theft users and forecast
probable stolen electricity (PSE) in order to maximize f-
nancial gain. Te convolutional layer is used in the con-
volutional autoencoder (CAE), a neural network model, in
the frst stage to extract and recognize the anomalies of
electricity fraud users against the regularity and periodicity
of typical power consumption parameters. Te Tr-XGBoost
technique, a fusion of the Extreme Gradient Boosting
(XGBoost) algorithm and the Transfer Adaptive Boosting
(TrAdaBoost) training method, is applied in the second stage
for predicting the probable suspected electricity (PSE) of
each detected power theft user. Tr-XGBoost establishes the
relationship between the extracted electricity characteristics
and the PSE of each fraudulent electricity user. Based on the
predicted PSE, a selection of electricity theft users for

investigation is made to maximize economic return. Case
studies conducted on the IEEE 33-bus test system and a low-
voltage distribution system in a Chinese province illustrate
the efcacy of the proposed two-step strategy in enhancing
the accuracy of electricity theft detection and increasing
economic returns through more precise PSE predictions
than other state-of-the-art algorithms.

Te SMs are located at the consumers’ side for moni-
toring and billing of the electricity used. Some theft con-
sumers manipulate SM by injecting false readings to lower
their electricity bills. A functional encryption (FE)-based
theft detection method is proposed in [30]. Where the
monthly electricity consumption data are frst encrypted to
cyphertext, then system operator (SO) uses this cyphertext
to: (1) determine the EC bill using the dynamic pricing
method, (2) real-time monitor the smart grid load, (3) ML-
based approach for the detection of the anomalous con-
sumers without manipulating the privacy of consumers.

Te FPR of data-based energy theft detection approaches
is too signifcant for completing the practical needs because
of diverse electricity consumption trends. Tis signifcantly
limits the performance of data-based approaches. A low
false-positive rate (LFPR) with a deep neural network
(DNN)-based model is proposed [25] for the detection of
electricity theft. Particle swarm optimization (PSO) is used
for the optimization of the proposed model. Te simulation
results proved that the proposed model outperforms with
0.29% of FPR and 99.42% of AUC score, while the proposed
model is tested on the Irish dataset.

Te smart meter generates huge amounts of data in term
of consumption history. Real-life consumption data of
consumers acquired by data mining technology have class
imbalance issues, and this leads many artifcial intelligence-
based theft detectors to be prone to underftting. Te author
[31] proposed a local outlier factor (LOF) and k-means
clustering approach. In this, k-means analyzes the con-
sumption history of the consumer and determines the load
profles far from the cluster center, while LOF is used to
determine the degree of anomaly of outlier consumers.

In [32], the author proposed a stacked autoencoder
(SAE) and the undersampling and resampling based on
random forest approach to address the electricity theft issue
to carry out the prerequisite of the energy utility. In this, SAE
is used to extract the latent features from electricity con-
sumption history. Afterward, undersampling and resam-
pling techniques are employed to tackle the class imbalance
issue. To determine the degree of anomalous consumer,
a random forest is used to analyze the load profle of each
consumer. However, the proposed model is evaluated on
two cases of diferent datasets, and results proved that the
proposed model outperforms.

With the developments of advanced metering in-
frastructure (AMI), the energy resources are much closer to
the consumers. However, a large amount of false data in-
jection (FDI) cases are reported due to the use of the cyber
layer in AMI. Te author [33] introduced ML, deep learning
(DL), and parallel computing-based theft detection
approach.

International Transactions on Electrical Energy Systems 7

 itees, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2024/5566402 by Z

ahid U
llah - PO

L
IT

E
C

N
IC

O
 D

I M
IL

A
N

O
 , W

iley O
nline L

ibrary on [02/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



2.3. Problem Statement. Real-world energy consumption
data often contain high-class distribution problems. Te
dominant class samples predominate over the other mi-
nority class samples, which causes the classifer to be biased
toward the majority class. Data augmentation of minority
classes through the oversampling method is the most widely
used method to combat the class distribution problem. Te
research in [14] integrated SMOTE oversampling method to
balance the minority (theft) class with majority class.
However, SMOTE generates similar examples to the ma-
jority class, which causes overftting of the classifer. Another
study in [34] employed undersampling method to reduce
majority class samples to balance.

It discards majority class samples contain less in-
formation, and it ends up losing information. Moreover, the
study in [13] uses ConvLSTM for classifcation of theft and
honest samples by reshaping the energy usage into a 2-D
matrix. Tis study achieves better results; however, it in-
creases computational costs. Electricity consumption data
contain redundant information and irrelevant features,
which increases computational overhead and reduces the
generalization of the fnal classifer. Study in [35] explains
that DL models are sufered from high computation while
processing redundant information.We proposed a stacked
ensemble method to address the above issues in electricity
theft. Te process of the proposed method can be observed
in Figure 2 and section Teft Detection Framework.

3. Theft Detection Framework

In this research, the suggested system model works in four
steps and can be observed in Figure 3. Te missing values
and outlier detection are performed in the frst unit. Te
curse of high dimensionality and class distribution issues are
addressed in the second and third units, respectively. In the
last unit, the cleaned data are fed to the stacked ensemble
network. Tis network classifes energy consumption sam-
ples at a base level, where four strong machine learning
classifers are integrated. Tese classifed samples are then
fed to the meta level of this network, where a single classifer
is used for second-stage classifcation. Finally, we perform
a comparative analysis of the suggested framework using
ADASYN and ICA for data augmentation and di-
mensionality reduction, respectively. Furthermore, a com-
plete fowchart can be seen in Figure 2.

4. Data Preparation

Tis section of research represents the preprocessing of the
dataset along with missing values imputation and outlier
treatment. Furthermore, feature engineering is performed
on electricity consumption data. Lastly, the class imbalance
issue is further discussed.

4.1. Data Description. Te energy consumption dataset is
obtained from smart meters and publicly released by SGCC.
Te dataset consists of the daily energy consumption of
10000 consumers from January 01, 2014, to October 31, 2014,
and is characterized as a time series. Te samples are

categorized between two classes’ theft and honesty, where
9100 samples belong to the normal class, and the rest of the
900 samples relate to the theft class. Furthermore, detail
about the dataset can be observed in Table 2 [36].

4.2. Retrieving Missing Values. Te electricity consumption
data contain many missing values, denoted as Not a Number
(NaN). Communication and hardware failure is the primary
cause of missing values. Te performance of the classifers is
considerably afected by missing values; therefore, in time-
series data analysis, missing values cannot be ignored. Te
efective way of recovering missing values is the mean/
median of the previous and next neighboring correct values
in the dataset. In this research, we employed a simple
imputer method to recover missing values [37], which is
written as follows:

F xi,t  �

xi,t−1 + xi,t+1

2
, xi,t ∈ NaN,

Fxi,t, else,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

where xi denotes the missing or NaN values in the dataset.
Te NaN values can be recovered by (1).

4.3. Outlier Treatment. Realistic energy consumption data
contain some missing values known as outliers that have
a negative impact on the training of the classifer. Tis
increases the training time and afects the performance of
the classifer. Te local outlier factor (LOF) presented in
[38] is used to mitigate the outliers in a dataset and recover
the data. Figure 4 exhibits the LOF score and outliers in the
dataset.

4.4. Data Scaling. Te preprocessed data may have some
features with high magnitude and dispersed over a wide
range, resulting in high training time. Terefore, it is nec-
essary to normalize the preprocessed data to a consistent
scale, while preserving the relative diference in the values.
Tis study employs the normalized formula to overcome the
mentioned problem. Te normalized method sets the range
of numerical values between 0 and 1.

Fxi,t �
xi,t−1 + xi,t+1

max xxi,T  − min xxi,T 
. (2)

5. Addressing Class Distribution

5.1. Localized Random Afne Shadow Sampling. Te class
imbalance issue is one of the major concerns in the elec-
tricity dataset. As normal (honest) samples are easily
available, theft samples are rarely available in the historical
data. Tis huge class diference causes the theft detection
framework to have misleading results toward the majority
class while neglecting the minority class. Working with
electricity theft, the detection of theft samples is more im-
portant as compared to honest samples. It is a challenging
task to establish a framework that precisely separates the

8 International Transactions on Electrical Energy Systems
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minority class samples in imbalance learning, where there
are many honest samples and few minority class samples.
Terefore, we employed a new oversampling method that
synthetically generates minority class samples to balance
uniform class distribution. Te LoRAS oversampling
method developed by [39] is integrated in this research to
balance between both classes. Te minority class samples are
dispersed throughout the feature space, which creates
a hindrance for the theft detection framework to learn the
features of the minority class that distinguish them from the
majority class samples.

Initially, the LoRAS algorithm generates a set of shadow
data samples from each of the data samples in the minority
class. It generates shadow data samples by adding noise to
the original minority class sample. A function often known
as sample variance of the feature decides how much noise is
added in the sample.

Next, the LoRAS algorithm selects a random subset of
shadow data samples from each of the K-nearest neighbors
(KNNs) of each original sample in the minority class after
creating the shadow data points. Te number of selected
shadow data points is equal to the number of features. Te
new samples are created by the LoRAS algorithm by ap-
plying a random afne combination of the selected shadow
data points. Te selected shadow data points are combined
linearly to form an afne combination, and the coefcient of
linear combination is selected randomly. Finally, this pro-
cess iterates until the desired number of augmented data is
generated. Te algorithm of the LoRAS method can be
observed in Algorithm 1. Mathematically, it is defned as
follows [39]:

E[X] � E X′ ,

� μ � (μ(μ1, . . . , μ|F|)),

Var[X] � Var X′ 

� σ2
k

k − 2
 

� σ′2 � α′21 , . . . , α′2|F| ,

(3)

where E[X] and Var[X] show the expectation and variance
of the random variable X, respectively.

Theorem 1. It is stated that |F|> 2, and then, LoRAS al-
gorithm has low variance as compared to SMOTE.

Proof. A shadow sample S is a random variable S�X+B
that is synthetically generated by adding noise B to a mi-
nority data point X,which is named as Cmin, where noise B is
added by following normal distribution N(0, σB).

E[S] � E[X] + E[B] � μ,

Var[S] � Var[X] + Var[B]

� σ2 + σ2B.

(4)

Te above equation is expressing that a LoRAS sample is
generated by using random afne combination (RAC) of
a set of shadow samples that are elements of neighborhood
of X, which is denoted as NkX. Te coefcients of the RAC
are chosen randomly. Te Dirichlet distribution (set of
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Figure 2: Flowchart of the proposed ensemble method.
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probabilities) is the coefcient of RAC a1. . .a |f|, in which
all parameters assume that they have equal values to 1, which
concludes that all features are equally important. For
a random sample, i, j Σ1, . . . , |F|,

E αi  �
1

|F|
,

Var αi  �
|F| − 1

|F|
2
(|F| + 1)

,

Cov αi, αj  �
−1

|F|
2
(|F| + 1)

.

(5)

Here, covariance is a statistical measure that quantifes
the correlation between two random variables, A and B,
denoted as Cov (A, B). It represents how variations in one
variable are associated with variations in the other variable.

E[L] � E α1 E S
1

  + . . . + E α|F| E S
|F|

  � μ, (6)

where L is used to estimate a parameter called u and L is
unbiased estimator of u. For j, k, l ϵ 1, . . . , |F|{ }, it means this
holds all possible values of j, k, and l in a specifed range.

Cov αkS
k
j , α1S

l
j  � E αkS

k
jα1S

l
j  − E αkS

k
j E α1S

l
j  � E αkαl μ2j −

μ2j
|F|

2

� Conv αk, αl(  +
1

F
2


⎡⎣ ⎤⎦μ2j −
μ2j
F
2


� μ2jConv αk, αl( ,

(7)
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Figure 3: Illustration of the proposed system model for electricity theft detection.
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where there is no direct relation between the product of αk

and αl and the variables Sk
j and Sl

j.

Var Lj  � Var α1S
1
j + . . . + α|F|S

|F|
j 

� Var α1S
1
j + . . . + Var α|F|S

|F|
j   + 

|F|

k�1


|F|

l�1
, l≠ kConv αkS

k
j , αlS

l
j 

�
μ2j(|F| − 1) + 2 σ2j + σ2Bj |F|

|F|(|F| + 1)
−
μ2j(|F| − 1)

|F|(|F| + 1)
� 2

σ2j + σ2j 

|F| + 1
.

(8)

□

Table 2: Dataset description.

Time frame Normal consumers Teft consumers Total consumers
Jan-01-2014 to Oct-31-2014 9100 900 10000
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Figure 4: Outliers in the dataset.

Initialize Algorithm
(1) Input: Training data

Output: Results
(2) Load dataset
(3) Training samples S� S1, S2,. . ., Sn⟹ S�Number of Samples
(4) Naff < k∗ |Sp|

(5) For each minority class parent data p in Cmin do
where Cmin is minority class parent samples.

(6) Determine K-nearest neighbors for p and append p⟶ neighbors
(7) Initialize neighborhood shadow samples as an empty list

For each parent data point q in neighborhood do
(8) Shadow points⟵ draw |Sp| shadow samples for q drawing noise from normal distribution with corresponding standard

deviation Lσ containing elements for each features Append shadow points to the neighborhood shadow sample.
Repeat

(9) Selected points⟵ select Naff random shadow points form neighborhood samples afne weights⟵ create and normalize
random weights for selected points generate LoRAS sample point⟵ selected points. Afne weights

(10) Append generated LoRAS sample points to LoRAS set
(11) Until Ngen resulting points are created003B

Return resulting set of generated LoRAS data points as LoRAS set

ALGORITHM 1: Localized random afne shadow sample oversampling.
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6. Handling Curse of Dimensionality

6.1. Kernel Principal ComponentAnalysis. Generally, there is
a strong correlation between historical EC data, resulting in
redundant features between input samples. Te kernel
principal component analysis (KPCA) [40] is an improved
version of PCA, and it has the capability of extracting
nonlinear relationship between features by incorporating
nonlinear kernel function. PCA is a linear method that
captures the most correlated features in the data. However, it
faces trouble capturing intricate relationships and nonlinear
patterns between samples in the data. KPCA discovers these
nonlinear and complex features by mapping features using
the kernel function. Te KPCA technique computes prin-
cipal components (PC) by leveraging the functionality of the
kernel function. Tis helps KPCA to efectively discover
hidden nonlinear and discriminative features that are unable
to be detected by linear projection.

Tis process decreases the dimensionality of EC data,
increases the thoroughness efciency, and improves the
extraction speed of features from nonlinear data. In spite of
that, there is no established theory that exists for the se-
lection of kernel function in a real situation. Consequently,
the selection of the kernel function is set on by multiple
trials. Te main concept behind this is that it applies
a nonlinear mapping technique to convert the nonlinear
original sample into a linearly separable high-dimensional
feature, and then, PCA is carried out in this space. While the
initial input variable matric XM×N is carried out for EC data
of S sample points each day, we suppose that a total of Z
samples are as follows:

M �

X11 X12 . . . X1N

X21 X22 . . . X2N

⋮ ⋮ ⋮ ⋮

XM1 XM2 . . . XMN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� X1, X2, . . . , XM( 
T
. (9)

Afterward, kernels are applied to the data and nonlinear
projection is converted to a high-dimensional input linear
feature. Te polynomial kernel is given as follows:

θ � 1 + xi.xj 
d
, (10)

where xi is ith and xj is jth sample of the M for degree
d polynomial. Te resulting matrix θ ϵMn×n is centered
using the following equation:

θ � θ −
2
n

 θkj +
1
n
2  θkl. (11)

Te detailed working of KPCA is found in
Algorithm 2 [41].

6.2. Adaptive Synthesis. Te class distribution is one of the
major problems in the electricity consumption dataset be-
cause the majority class samples can be found easily while
the minority class samples are rarely available. Te dataset
with high imbalance class causes biased results and degrades
the performance of the classifer. Te following is the

detailed step-by-step working of the adaptive synthesis
(ADASYN) oversampling technique:

Step 1: Determine the ratio between minority and
majority samples by:

d �
ma

mb

, (12)

where ma are the minority samples and mb are the
majority samples. Te algorithm is initialized when the
value of d is lower than the threshold.
Step 2: Determine the number of synthetic data to be
generated.

H � mb − ma(  × β, (13)

whereH is a total number of samples to generate. Te β
is the desirable minority to majority data ratio after
ADASYN.
Step 3: Determine the nearest neighbors for minority
samples and fnd the value of ri.

ri �
Majority

K
, (14)

where ri shows the infuence of the majority class for
every nearest neighbor.
Step 4: Determine the number of synthetic samples
required to generate per nearest neighbor.

Hi � Hri. (15)

Step 5: Choose two minority samples xi and xzi in the
selected nearest neighbor randomly.Ten, calculate the
new synthetic sample.

Si � Xi + Xzi − Xi( λ, (16)

where λ is a random value between 0 and 1. Si is
a synthetic sample. Te xi and xzi are the minority
samples in nearest neighbor. Algorithm 3 represents
the detailed working of ADASYN oversampling
method [42].

7. Feature Engineering

7.1. Independent Component Analysis (ICA). ICA [43] is an
unsupervised ML approach, and we employed it to tackle
high-dimensional data. Tis method initiates by identifying
fundamental trends within the dataset, which could manifest
as thematic categories like sports or politics in textual data,
or predominant trends in time-series data. For feature re-
duction, ICA serves as an efective alternative to PCA. ICA
involves a linear decomposition of observed data into sta-
tistically independent components (ICs). Te model posits
x�As, where x represents the observed signal vector, A is
a scalar matrix denoting the mixing coefcients, and s is the
vector of source signals. ICA determines a separating matrix
W such that y�Wx�WAs, with y being the vector of ICs.
Independence stands as a more robust assumption than

12 International Transactions on Electrical Energy Systems
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decorrelation achievable through techniques like PCA or
factor analysis. In ICA, independence is conceptualized as
each component ofering no insight into the higher-order
statistics of other components. Despite this, various methods
exist for estimating ICA, and the algorithm for ICA can be
found in Algorithm 4 [43].

7.2. Stacked Ensemble Architecture. Stacked ensemble
method frst suggested by [44]. Te primary goal of stacked
ensemble method is to reduce generalization errors in ML
models. As explained in [36], the stacked ensemble method
is the advanced form of cross-validation. It integrates
multiple groups of learners using the winner-takes-all ap-
proach to boost overall prediction efciency.

In the stacked ensemble method, multiple groups of
learners are sorted in a hierarchical structure at a base level,
where predictions are made on the data. Te predictions
from base learners serve as the input for the meta level. Te
stacked ensemble method consists of three major compo-
nents. First, the training data are sliced into k non-
intersecting subsets for training the classifers. Second,
a group of multiple learners is selected for the base level to
make predictions on the validation set. Finally, the pre-
dictions from base learners serve as input features for
second-stage classifcation at the meta level. Te meta-
classifer is trained on predictions from the base classifer
as the target variable. Afterward, unseen data are passed to

the trained meta-classifer for fnal predictions. In the frst
layer (K-fold), the preprocessed, clean, and balanced dataset
X is split into a training dataset Sn and a test dataset Tq.

Te training dataset Sn � Xn, yn, n � 1, 2, . . . , N is fur-
ther split into K-folds (F1, F2, . . . , Fk), where X are features
and y is the target variable. Te test dataset
Tq � (Xq), q � 1, 2, . . . , Q. On the second component, re-
ferred as base-level layer, it involves of P base models (Mp),
defned as M1, M2, . . ., Mp. For every base learner (M1,
M2,. . ., MP), distinct trainings are performed with K
trainings and 1/k samples are set aside for the testing process
to make predictions. Te predictions form all base learners
are combined with their actual labels and create new data.
Tese new data are then fed to the meta-level classifer
(Ymeta) as (y1, y2, . . ., Yp) for training and fnal predictions.
Te integrated stacked ensemble architecture can be ob-
served in Figure 5.Temethodology of the stacked ensemble
framework can be observed in Algorithm 5.

7.3. K-Nearest Neighbor. Te K-NN is a supervised learning
[45] nonparametric approach widely used for classifcation
and regression problems. It is a lazy approach and performs
every step for the classifcation of the dataset. It is an easy-to-
implement, simple, and efcient approach. It requires the
value of K and the distance between nearest neighbors for
classifcation and regression. Tis approach is based on
voting for the nearest neighbor and the distance from the

Initialize Algorithm
(1) Input: Training data

Output: Results
(2) Load data construct the kernel matrix K
(3) Training samples S� S1, S2,. . ., Sn⟹ S�Number of Samples
(4) Ki,j � K(Xi, Xj)

(5) Step 2: Apply Matrix Gram K for kernel matrix K. K � K − 1n · K − K · 1n + 1n · K · 1n

(6) Step 3: apply Kak � λkNak to solve vector ai.
(7) Step 4: Compute kernel principal components yk (x) yk(x)�ϕ (x)Tvk �  Ni � 1akik(Xi, xj)

ALGORITHM 2: Kernel principal component analysis.

Initialize Algorithm
(1) Input: Training data

Output: Results
(2) Load data set
(3) Training samples S� S1, S2,. . ., Sn⟹ S�Number of Samples
(4) Step 1: Calculate the ratio between majority and minority samples d� ma/mb (1) ma and mb minority and majority class samples,

respectively.
(5) Synthetic samples generated for minority class. H� (mb − ma) × β (2) β denotes synthetic required samples and its range is (0, 1)
(6) Calculate Euclidean distance for each minority class sample by using K-nearest neighbor algorithm and also the ratio is calculated.

Rx � δx × K−1, x � 1, . . . , ma (3) δx is majority class samples from K-nearest neighbor RnX � (Rx/x�1
ma

Rx) (4)
(7) Number of synthetic samples from each minority sample is calculated by gx � Rnx × S (5). For every synthetic gx, data are

generated, by equation (6) Hx � ux + (uzx − ux) × λ (6), where (uzx − ux) is the diference in vector n dimensions and λ is
a random number.

ALGORITHM 3: Adaptive synthesis.

International Transactions on Electrical Energy Systems 13
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L1

L2

L3

Lk

KNN

SGDC

RDC

Training and Validation phase
of Base level Classifiers 

HGBC
New
data Meta Level

Classifier 

Test
data 

Test
data

Training
data

Electricity 
consumption data

Theft/Honest
Logistic

regression

Figure 5: Structure of stacked ensemble method.

Initialize Algorithm
(1) Input: Training data

Output: Results
Step 1 Preparing data

(2) Load dataset
(3) Training samples S� S1, S2,. . ., Sn with number of x features x� x1, . . . , xN

T⟹ S � Number of Samples
(4) Normalize each feature fi by (fi − mi)/2σi, where miandσi are the mean and standard deviation of fi, respectively.

Step 2 Performing ICA
(5) Apply ICA to the new dataset, and store the resulting weight matrix W of dimension (N+ 1)× (N+ 1).

Step 3 Shrinking small weights
(6) For each N+ 1 independent row vector Wi of W, compute the absolute mean ai � 1/N + 1

N+1
j�1 |wij|.

(7) For all wij in W, if |wij| < α . ai, then shrink |wij| to zero, where α is a small positive number.
Step 4 Extracting feature candidates

(8) For each weight vector Wi, project it onto the original input feature space, i.e., delete weights wic � (wi, N + 1) corresponding to
the output class, resulting in new weight matrix W of dimension (N+ 1)×N to the original input data x, construct a (N+ 1)-
dimensional vector whose components fi

′s are new feature candidates.
Step 5 Removing unappropriate features

(9) From features F� fi � Wix, i  1 . . . N + 1. Ten set Fs � F
(10) For each feature fi, if corresponding weights for class wic is zero, then exclude fi from Fs.
(11) For each feature fi, if corresponding weights wij � 0 for all j 1,. . .,N, then exclude fi from Fs.
(12) Resulting Fs contain fnal N extracted features.

ALGORITHM 4: Independent component analysis.

Input: Training dataset D� (X1, Y1), (X2, Y2), . . ., (Xn, Yn); Base-Level Classifer L1, L2, . . ., Ln; Meta-Level Classifers J.
(1) for t� 1,2, . . ., T do
(2) ht � Lt (D);
(3) end for
(4) D’�ϕ
(5) for i� 1, 2, . . ., m do
(6) for t� 1, 2, . . ., T do
(7) zit � ht (xi);
(8) end for
(9) D′�D′ U ((zi1, zi2, . . . ., ziT), yi);
(10) end for
(11) h′� L (D′)

Output: H(x)� h′ (h1(x), h2(x), . . . , hT(x))

ALGORITHM 5: Ensemble stacking.

14 International Transactions on Electrical Energy Systems
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nearest neighbor to the selected data point. Te Euclidean
distance is used to calculate the distance, and it is defned as
the distance between two places along a line. First, it per-
forms Euclidean distance (1) for a selected sample and
between its neighbor samples. Te complete process is as
follows:

Step 1: Select the training and testing samples.Tere are
n number of groups for training and testing samples.
Each group has x number of features and labels ai.
Step 2: Calculate the Euclidean distance d for number of
groups in training and testing samples. Euclidean
(E)� 

k
i�1(ai − bi)

2 (1)
Step 3: Te labels and corresponding distance used to
create a new samples collection of the data samples.

A � E1, a1( , E2, a2( , . . . En, an( . (17)

Step 4: Arrange the calculated distance A and labels ai

according to Euclidean distance (E).
Step 5: Choose the samples from the arranged calcu-
lated distance A.
Step 6: Select the class of label according to the highest
frequency as the fnal result for testing data.

7.4. Stochastic Gradient Decent Classifer (SGDC).
Gradient decent (GD) [46] is a generic and powerful full
optimization method used to fnd the minimum values of
the function. Here, the word “gradient” is defned as the
slope on the curve and the gradient is visualized as moving
from the highest point to the lowest point in order to fnd
the minimum point on the curve.Te GDmethod has three
methods, namely, batch, stochastic, and mini-batch gra-
dient descent. Te stochastic gradient descent method
completes its training by randomly selecting the samples
from the whole dataset. As the normal gradient descent
method selects the whole dataset for training to avoid noise,
which increases computation overhead, the SGDC resolves
this issue by incorporating the random subset of the
samples from the dataset for each iteration. Te subset
consists of one sample in each iteration, and it computes
the gradient of cost function for each sample, which in-
creases the performance and speed of SGDC as compared
to normal GD. Te algorithm of SGDC can be observed in
Algorithm 6, and the following is the step-by-step expla-
nation of SGDC:

(1) Compute the derivative of the loss function for each
feature; J(0) � (yhat – y)2(x), where x is the fea-
tures, yhat represents predicted labels, and y is the
actual value.

(2) Find the gradient of the loss function in step 1 with
respect to each feature in the dataset. Tis shows the
direction of the minimum increase of the loss
function and the direction toward a minimum of the
function.

(3) Select a random initial feature value from the dataset
to start theta0.

(4) Update the feature value for each iteration in the
direction of the negative gradient. Tis updates the
feature values in the direction where the loss func-
tion is decreased.

(5) Calculate the step size using: Step size�Gradient ∗
learning rate. Tis determines the update size, which
will be used for feature values in each iteration.

(6) Find new feature value by following the formula:
New value� old value–step size. New feature value is
calculated by subtraction step size () from previous
feature value. Tis step is continued for each feature.
We subtract the step size because the new value is
updated perpendicular to the gradient.

7.5. Ridge Classifer. A ridge classifer (RDC) is an extension
of ridge regression, which is used to handle classifcation
tasks. It performs classifcation task by employing ordinary
linear regression. It works in two ways: frst, it enhances the
method’s ability to generalize, and second, it works with
binary labels rather of real-valued labels [46]. Te following
is the logistic function:

Logistic(z) �
1

1 + e
−z. (18)

It modifes the logistic regression (LR) cost function by
including an L2 regularization penalty, which prevents the
model from overftting. Ridge classifer consists of three
working phases explained below.

7.5.1. Initial Phase. In this phase, diferent parameters are
controlled for the working of the classifer. Te following are
the parameters:

(1) Alpha: It is used to improve classifcation and to
overcome the variation of estimations. It is known as
regularization constant.

(2) Max iteration: Defning how many iterations are
used for solvers.

(3) Solver: Tere are many internal solvers in the ridge
classifer training samples. For some instances, the
auto option chooses an appropriate solver (i.e.,
Cholesky kernel, sparse cg, and Cholesky).

7.5.2. Fit Phase. A matrix X and a vector Y are provided to
the classifer during ft phase.Te feature vector that maps to
the class y that is in the corresponding element in the vector
Y corresponds to each row x of the matrix X, while the
classifer creates a coefcient vector that best fts all of the
data after learning from the data.

7.5.3. Prediction Phase. In this part, the classifer generates
the classes for every row of the matrix by incorporating the
matrix X and vector Y. Moreover, the working of the ridge
classifer can be observed in Algorithm 7 [47].

International Transactions on Electrical Energy Systems 15
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7.6. Histogram Gradient Boosting. Histogram Gradient
Boosting (HGB) classifer is an advanced version of gradient
boosting technique [48]. Te traditional gradient boosting is
a greedy algorithm, which considers all possible decision tree
splits and selects the optimal split. Tis approach increases
the computation time when working with large datasets.
However, the HGB method converts feature values into bins
or histograms. Each histogram represents a specifc range of
feature values, which helps the algorithm to calculate the
sum of gradients for each histogram. Tis helps the algo-
rithm in faster processing speed and reduces memory usage
as compared to traditional gradient.

Te training sample S possesses a number of n features in
the dataset. Te histogram of equal density is created for
each feature, and all feature values are replaced by the index
of histograms. While computing the gain, the left child, right
child, and current node have the necessary sum of gradients.
Te computation process is more faster by adding the
gradients stored in every bin. Initially, GB has the com-
plexity of O(n log n) and is changed to O (nbinss) after
applying histograms. In gradient boosting algorithm, the
value of bins can be changed by maxbin parameter. In short,
this is the main reason for increasing the performance of the
modifed GB framework. Furthermore, working of HGB is
explained in Algorithm 8 [49]

7.7. Logistic Regression. Logistic regression (LR) is a super-
vised learning algorithm, used for binary classifcation [50].
LR works by creating a matrix of input features S and
multiplying it with a matrix of weights θ. Te output of LR is
passed to the sigmoid function:

Y(a) �

�������
1

1 + e
−x,



(19)

where a� θtS. Te algorithm of LR is as follows. For reader’s
interest, the detailed working of LR can be found in this [50]
article. Te following Algorithm 9 presents the working of
the LR technique.

8. Simulation Results and Discussion

8.1. Performance Metrics. For the evaluation of our pro-
posed scheme, comprehensive performance metrics were
used on the test data (30%) to assess the robustness and
efectiveness of the suggested scheme for malicious sample
identifcation.

8.1.1. Confusion Matrix. Te CM is a method used to
summarize the possible distinct outcomes of the classifers
and can be observed in Figure 5. Te CM is based on true

Initialize Algorithm
(1) Input: Training data

Output: Results
(2) Load dataset
(3) Training samples S� S1, S2,. . ., Sn⟹ S�Number of Samples
(4) Determine the derivative of loss function for each feature J(0)� (y − y)2(x), where y is the actual value and y is predicted value in

term of X.
(5) Calculate the gradient of loss function.
(6) Select a random initial value for the feature to start θ
(7) Update the gradient function by inducing the feature value
(8) Calculate step size by (Step size�Gradient∗ learning Rate)
(9) Compute new feature value (New value� old value− step size)
(10) New value in opposite direction of the gradient. θ1 � θ0(stepsize∗ j(θ))

(11) Shufe the data points after each iteration
(12) Repeat 5 to 8 unless the gradient becomes closer to zero.

ALGORITHM 6: Stochastic gradient decent classifer.

Initialize Algorithm
(1) Input: Training data

Output: Results
(2) Load dataset
(3) Training samples S� S1, S2,. . ., Sn⟹ S�Number of Samples
(4) Step 1: For each test data X ϵ X-test.
(5) Calculate the classifcation parameter vector a a� arga min‖X − Xiai

2
2‖ + λ‖ai‖

2
2, where λ is the regularization parameter and i

represent each class.
(6) Step 2: Perform projection of new test samples x onto the subspace of each class i by a as xi � Xi

i

(7) Calculate distance between the test space sample x and the class specifc subspace xi

(8) Te test sample x is assigned to that class whose distance is minimum.

ALGORITHM 7: Ridge classifer.

16 International Transactions on Electrical Energy Systems
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positive (TP), false positive (FP), true negative (TN), and
false negative (FN). TP (1, 1) shows the theft consumers
accurately detected as theft by the model. FP (0, 1) displays
honest consumers identifed as theft by the model. TN (0, 0)
shows the normal consumer identifed as normal by the
mode. FN (1, 0) shows the theft consumer identifed as
normal by the classifer. Based on these performance met-
rics, we evaluated our proposed scheme by incorporating
diferent metrics, such as accuracy, precision, recall, and
F1 score.

8.1.2. Accuracy. Accuracy is a candid performance metric
which indicates the all correct predictions made by the
classifer out of all predictions.

Accuracy �
No.correct prediction
Total predictions

. (20)

8.1.3. Precision/Positive Prediction Score (PPS). PPS is the
proportion of correctly predicted positive (theft) labels from
all positive predictions by the model.

Precision �
TP

TP + FP
. (21)

8.1.4. Recall/True-Positive Rate (TPR). It represents the
proportion of samples classifed as positive out of all positive
class.

Recall �
TP

TP + FN
. (22)

8.1.5. F1 Score. It is the harmonic mean of both TPR and
PPS, and it gives equal weights to both TPR and PPS to
accurately measure the efciency of the model.

Initialize Algorithm
(1) Input: Training data

Output: Results
(2) Load dataset
(3) Training samples S� S1, S2,. . ., Sn⟹ S � Number of Samples
(4) Node Set⟵ 0⟹ tree nodes in current level
(5) Row Set 0, 1, 2,. . .⟹ data indicate in tree nodes
(6) for i to d do
(7) for node in node Set do
(8) used Rows⟵ row se [node]

for k� 1 to m do
H⟵ new Histogram ()
⟹ Build histogram
for j in used rows do
bin⟵ I.F[k][j].
bin H[bin].y⟵ H[bin].y+ I.y [j]
H[bin].n⟵ H[bin].n+ 1

(9) Find the best split on histogram H.
(10) Update rowset and nodeSet according to the best split points.

ALGORITHM 8: Histogram gradient boosting.

Initialize Algorithm
(1) Input: Training data

Output: Results
(2) Load dataset
(3) Training samples S� S1, S2,. . ., Sn⟹ S�Number of Samples
(4) Create matrix of input features Z
(5) Multiply Z matrix with weights matrix
(6) Pass the data to Sigmoid Function (Y) g(z)� 1/1 + e−x

(7) Map the data on S curve
(8) Samples are classifed by threshold with S curve

ALGORITHM 9: Logistic regression algorithm.

International Transactions on Electrical Energy Systems 17
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F1 Score � 2∗
Precision∗Recall
Precision + Recall

. (23)

8.1.6. Matthew’s Correlation Coefcient (MCC). TeMCC is
used tomeasure the performance of binary classifer, and it is
a single value, which ranges from +1 to −1.Te classifer with
a value closer to +1 indicates the best performance, where
as the value negative to −1 refers to the worst performance.
It is defned as: MCC � TP∗TN−

FP∗ FN/
�����������������������������������
(TP + FP)(TP + FN)(TN + FP)(TN + FN)


.

8.1.7. AUC Score. It is the most reliable metrics while
working with imbalanced dataset. It shows the overall
performance of the classifer, the higher value indicates the
best performance of the classifer.

8.1.8. Area under the Receiver Operator Curve (AUC-ROC).
Te classifer with higher AUC-ROC perfectly separates
both classes. Te AUC-ROC plots TP against FP on the y-
axis and x-axis, respectively. It ranges from 0 to 1 when
a classifer falls below 0.5, which shows that the classifer is
randomly guessing.

8.1.9. Area under Precision-Recall Curve (PR-AUC).
While working with the electricity consumption dataset, the
PR-AUC is the most appropriate evaluation metric, which
focuses on minority class (theft) or class of interest. PR-
Curve is the graphical representation of precision and recall
while working on a dataset with unequal class distribution. It
is obtained by the average of precision calculated at each
recall threshold, which makes it useful diagnostic for the
detection of class of interest.

8.1.10. Execution Time. It is the time taken by the model to
process the information passed to the input. It is measured in
seconds, nanoseconds, and microseconds.

8.2. Simulation Settings. Te experimental setup is per-
formed on Intel Core i5 processor with 16GB RAM as il-
lustrated in Figure 3. Te proposed framework is
implemented and tested using Python IDE. Te daily elec-
tricity consumption data are taken from SGCC [36], where
9100 samples are benign, and the rest of 900 samples are
suspicious and makes the proportion of 91% of honest
samples, and 9% are theft samples as explained in Table 2.
We take the best experimental values of our proposed
method after many simulations.

8.3. Experimental Results and Discussion. In this section, we
evaluated our proposed framework, by accuracy, precision,
recall, AUC score, AUC-ROC, and F1 score.

8.4. Discussion of Simulation Results with LoRAS and KPCA.
In this case study, we employed the LoRAS algorithm to
mitigate the class distribution issue and KPCA for feature
engineering on the dataset as delineated in Table 3. Te
proposed scheme combination ofers high accuracy as
LoRAS generates more realistic samples by integrating lo-
calized random afne on the minority class for sample
augmentation. Te majority class samples predominate over
the minority class samples, resulting in the bias of the
classifer toward the majority class. Furthermore, the in-
tegration of KPCA helps to reduce computational time by
discarding the redundant information from the dataset.

Figure 6 illustrates that the proposed scheme attains
superior performance, showcasing higher values. Notably,
the HGBC classifer stands out with commendable results,
benefting from its afliation with the boosting family.

It can be clearly observed in Figure 6 that the suggested
method achieves superior values. Notably, the HGBC
classifer archives remarkable results as compared to other
base classifers due to the afliation of HGBC with the
boosting family. However, our proposed method surpasses
the HGBC by achieving 97% accuracy and 93% MCC as
compared to HGBC with 96% accuracy and 91% MCC. Te
complexity of HGBC makes less efcient than our proposed
model. HGBC lacks due to the complexity of the algorithm.

Furthermore, Figure 7 exhibits that our proposed model
achieved the highest AUC-ROC score of 97%, which is the
highest value among all other benchmark techniques. Figure 8
illustrates the PR-AUC of our proposedmodel, and it is proved
that the proposed scheme surpasses all other techniques by
achieving 98% of PR-AUC. Moreover, we evaluated our
proposed model by using CM. As seen in Figure 9, the pro-
posed approach achieved the lowest FN. As delineated in
Table 3, our proposed approach achieved 93% MCC score,
which is higher than all other techniques. However, SGDC
achieves the lowest MCC values as it is stuck in capturing the
complex patterns in the data that cause lower MCC. To further
verify the efectiveness of our proposed method, we also cal-
culated the values of FPR, FOR, FNR, and FDR in Figure 10 for
base and meta-level classifers. Te values near the zero clearly
indicate the efectiveness of our proposed method.

8.5. Discussion of Simulation Results with ADASYN and ICA.
Te simulation values are quite diferent as we apply ICA for
feature engineering and ADASYN for oversampling the
minority class in this case study. We can see the bar plot in
Figure 11, and our proposed method outperforms other
techniques with the combination of ICA and ADASYN.
However, simulation values are lower than a previous
case study.

Since ICA is a linear method, it might not be appropriate
for handling nonlinear datasets. Tis limitation results in
longer processing time for the classifers. Moreover,
ADASYN is sensitive to noise, which cases lower
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Table 3: Simulation values with LoRAS and kernel principal component analysis.

Classifers Accuracy AUC score F1 score Precision Recall MCC AUC-ROC PR-AUC Execution time
(s)

KNN 65 65 50 87 35 37 65 77 3
HGBC 96 94 93 96 94 91 94 97 48
RDC 66 94 74 60 96 40 65 79 1
SGDC 60 60 72 56 76 33 63 78 1
Proposed 97 97 97 98 95 93 97 98 1min 7
GridSearch 97.5 97 97 99 95 93.51 97 98 2min 27
CNN 93 92 94 93.5 93 88 — — 5min 38
LSTM 55 58 48 65 56 18 — — 8min 53

100

80

60

40

20

0
KNN HGBC RDC SGDC Proposed

Classifiers

Accuracy
AUC Score

F1-Score
MCC

65 65

50

37

96949391

66 66

74

40

60 60

72

33

97 97 97
93

Figure 6: Evaluation results with LoRAS and KPCA.
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Figure 7: AUC-ROC curve with LoRAS and KPCA.
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Figure 8: PR-AUC with LoRAS and KPCA.
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Figure 9: Confusion matrix with LoRAS and KPCA.
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Figure 10: FNR, FPR, FDR, and FOR values of base level and meta-level subjected to LoRAS and KPCA.
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performance of this combination. Figure 12 illustrates that
the proposed method achieves an AUC-ROC score of 94%,
which is lesser than the previous one with 97%. Similarly,
Figure 13 exhibits the overall PR-AUC curve with 95%,

which is quite lower than the previous case study with 98%.
To validate the efectiveness of the previous case study, CM
can be observed in Figure 14. Here, FN needs to be reduced
because in electricity theft, these are the real culprits that
steal electricity and afect the stability of the smart grid.
Moreover, the results in Table 4 exhibit the numerical values
of the proposed method with ICA and ADASYN. Finally,
Figure 15 clearly proves the superiority of the previous study
as the FOR, FNR, FDR, and FPR values are a little bit higher.
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Figure 11: Evaluation results with ADASYN and ICA.
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Figure 12: AUC-ROC with ADASYN and ICA.
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Figure 13: PR-AUC with ADASYN and ICA.
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Figure 14: Confusion matrix with ADASYN and ICA.
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9. Conclusion

In this study, we analyzed the limitations of existing theft
detection methods in smart grids. As the smart grid is the
heart of a smart city, any disturbance in smart grid operation
will paralyze all the functionality of the smart grid. We
proposed a stacked ensemble method for detecting elec-
tricity theft in a smart grid. Furthermore, the efectiveness of
the proposed method was tested with two diferent case
studies. In the frst study, we combine LoRAS and KPCA for
data augmentation and feature engineering. Meanwhile, in
the second study, we use ADASYN and ICA for over-
sampling and dimensionality reduction. Finally, all simu-
lation results verify the efectiveness of the frst case study.

10. Future Work

We have developed a stacked machine learning-based model
for the mitigation of electricity theft in smart grids to en-
hance the functions of smart cities. In future developments,
the mitigation of nontechnical losses moves toward deep
learning methods. Deep learning presents a viable alterna-
tive to traditional machine learning models, which could
fnd it difcult to handle the processing demands of large
datasets. Deep learning algorithms can analyze large

amounts of data quickly and accurately by utilizing complex
neural network designs. Tis makes it possible to identify
possible cases of electricity theft more precisely and
promptly.
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