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Abstract

This study introduces a new technique to recover the implicit discount factor in the
derivative market using only European put and call prices: this discount is grounded in
actual transactions in active markets. Moreover, this study identifies the implied cost of
funding, over OIS, of major market players.
Does a liquid equity market allow arbitrage? The key idea is that the (unique) forward
contract -built using the put-call parity relation- contains information about the market
discount factor: by no-arbitrage conditions we identify the implicit interest rate such that
the forward contract value does not depend on the strike.
The procedure is applied to options on S&P 500 and EURO STOXX 50 indices. There is
statistical evidence that, in the EURO STOXX 50 market, the implicit interest rate curve
coincides with the EUR OIS one, while, in the S&P 500 market, a cost of funding of, on
average, 34 basis points is added on top of the USD OIS curve.

Keywords: Forward price, put-call parity, implied interest rate, cost of funding, synthetic forward

JEL Classification: E43, G12, G13.

Cite as: Azzone, A. & Baviera, R. (2021). Synthetic forwards and cost of funding in the equity
derivative market. Finance Research Letters, 41.

Address for correspondence:
Roberto Baviera
Department of Mathematics
Politecnico di Milano
32 p.zza Leonardo da Vinci
I-20133 Milano, Italy
Tel. +39-02-2399 4630
Fax. +39-02-2399 4621
roberto.baviera@polimi.it

1

ar
X

iv
:2

01
1.

03
79

5v
2 

 [
q-

fi
n.

M
F]

  2
 J

an
 2

02
2



Synthetic forwards and cost of funding

in the equity derivative market

1 Introduction

The term structure of interest rates is a crucial input in the derivative market. It is used for
determining the discount rate for expected payoffs in a given currency.
The main research question we consider in this letter is: when dealing with liquid exchange-traded
derivatives, which is the interest rate term structure used by market makers?
In general, interest rates used in derivative pricing are not “risk-free” because contingent claim
evaluation should depend on the risks of the investment and in particular, on the funding risk and
on the risk of default of one of the two counterparties in the derivative contract.1

When dealing with exchange-traded derivatives the situation should be simpler: the presence of
a clearinghouse with margin calls allows neglecting the market participants’ default risk. Before
the Great Financial Crisis of 2007, the answer was to consider the Libor curve as the discounting
term structure (see e.g. Hull and White 2013, p.14). After the crisis, the difference between
Libor rates with different tenors enlarged to several tenths of basis points (see, e.g. Henrard 2014,
and references therein) making this answer less obvious; more recently the situation has become
even more complicated, in particular after July 2017, when the Chief Executive of U.K. Financial
Conduct Authority (FCA) in a famous speech (Bailey 2017) increased market expectation that
Libor benchmarks will be discontinued within a few years (see, e.g. Henrard 2019, for a clear and
exciting discussion on the Libor fallout from a quantitative perspective).

The Overnight Index Swap (OIS) curve has emerged as a possible candidate for the risk-free curve
for derivative discounting in the aftermath of the crisis. The OIS is a swap derived from the
unsecured interbank overnight rate (OR), which is, for example, the EONIA rate for Euros2 and
the Effective Federal Fund Rate (EFFR) for US dollars3. This OR can be considered a good
proxy of a risk-free rate and it is the interest rate most commonly paid on margins. Moreover, the
OIS curve presents several advantages: it is a curve based on liquid swaps. The bootstrap of the
discounting curve is as simple as the well-established pre-crisis methodology (see, e.g. Ron 2000).

The approach of selecting the interest rate term structure from a practitioner perspective appears
relatively clear. We are particularly interested in a market maker who operates in a given exchange-
traded derivative market. Often he considers the OIS curve for discounting, allowing for a spread
that accounts for other risks or costs not included in the “risk-free” rate.
We call this spread “cost-of-funding” because it can be seen as the implicit additional cost in
operating in this derivative market. We reformulate our research question for this practitioner:
which is the cost of funding (if any) of operating in a liquid exchange-traded derivative market?
The answer to this question has both operational and management implications. On the one side,
for his daily activity, the market maker should build and monitor an indicator on this spread, to

1For a dealer, the expected loss due to a possible default by the counterparty is related to the credit value
adjustment and the expected gain due to a possible default by the dealer itself is referred to as the debt value
adjustment; the funding risk is associated with the funding valuation adjustment. This pricing approach can be
found in excellent textbooks (see, e.g. Gregory 2012, Brigo et al. 2013).

2Substituted by the Euro short-term rate (eSTR) starting from the 2nd of October 2019, i.e. after the period
of analysis considered in this letter.

3USD OIS market is mainly based on this rate. The OIS swap trading volumes based on the Secured Overnight
Financing Rate (SOFR) is negligible w.r.t. the total OIS volume at the time of writing.
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use a discounting curve in line with other market participants; on the other side, this spread has
relevant consequences on the management of a financial firm. If, within a financial institution, the
cost of funding of a given business unit of market-making is larger than the market, it is rather
difficult that this unit can be competitive in the derivative market where it operates. Determine at
which cost of funding each business unit should operate is a relevant management decision within
a financial firm. This letter introduces an elementary indicator that can monitor in real-time the
funding cost and point out a possible stress in funding liquidity.

We consider all options on the EURO STOXX 50 and the S&P 500, respectively the most liquid
equity index in the Euro area and in the U.S.A. (see e.g. Dash and Liu 2009, Bai et al. 2019, Vo
and Daly 2008, Ñı́guez 2016).
This study builds over the put-call parity of European options. The idea of using put-call parity
to obtain the implied interest rates dates back to Brenner and Galai (1986), who consider under-
lyings that do not pay dividends. Frankfurter and Leung (1991) and Naranjo (2009) extended
this methodology to options on an underlying that pays dividends. To apply their techniques it is
necessary to know both the forward prices and the forward dividends. They infer future dividends
from realized ones and discuss the differences between the discount factor observed in the market
and the discount factor obtained from the LIBOR and Treasury curves.

This study presents an alternative approach that allows us to obtain the implicit interest rates
using only option prices and a no-arbitrage condition on an option portfolio known as synthetic
forward.4 The implicit interest rates of the S&P 500 and EURO STOXX 50 options markets are
computed with a simple technique. Together with OIS discounting term structure, this technique
allows a market maker to build an elementary measure of the cost of funding that can be obtained
instantly from option prices.

The rest of the letter is organized as follows. Section 2 shows the methodology to find the implicit
interest rates using only option prices and describes the dataset. Section 3 infers the S&P 500 and
the EURO STOXX 50 implicit discount factor and the corresponding cost of funding. Section 4
concludes.

2 The methodology and the dataset

This section shows how to obtain the discount factor from market data using only call and put
prices. We present the dataset and discuss the data preprocessing techniques.

The absence of arbitrage condition allows us to write, at value date t0 and at a fixed maturity T ,
the put-call parity for European options (see, e.g. Hull 2003, Ch.8 p.174) w.r.t. the forward price
F and the strike price K

C(K)− P (K) = B(t0, T )(F −K) , (1)

where C(K) and P (K) are respectively the European call and put option prices and B(t0, T ) is
the market discount factor between t0 and T .
Instead of considering a standard forward contract, a trader in this market can mimic this position
using call and put options with the same strike price and the same maturity to create a forward
position: this position is called synthetic forward. The synthetic forwards are frequently traded
in the equity derivative markets: they identify –for several maturities– the most liquid forwards
in the market.

4Synthetic forwards are perfectly synchronized with option prices. There is empirical evidence that, in some
markets, they are more reliable than quoted futures (see e.g. Muravyev et al. 2013, Hao et al. 2020).
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A synthetic forward G(K) with maturity T is a portfolio that comprises of a long call and a short
put at a given strike price K. Forward prices in t0 with the same maturity T are all equivalent
whatever strike K is considered and, due to the no-arbitrage condition, they should have the same
price.5 The market implied discount factor B(t0, T ) is the (unique) factor such that the forward
price

F =
G(K)

B(t0, T )
+K (2)

does not depend on the strike K: this is the main idea of the letter. This is a linear problem in
B and F . We discuss its solution in Section 3.

We consider all quoted S&P 500 and EURO STOXX 50 option prices6 observed at 3:00 p.m.
London Time each business day from the 1st of November 2018 to the 19th of July 2019 excluding
days from the 20th of December 2018 to the 6th of January 2019 and from the 13th of April 2019
to the 2nd of May 2019. For both indices, the most liquid options expire on the third Friday of the
first six months after the value date and then on March, June, September, and December in the
front year and June and December in the next year. In the EURO STOXX 50 case also June and
December contracts for the following years are available.7 In Table 1 we provide the descriptive
statistics of some relevant quantities in the options’ dataset. We report the number of strike for
each maturity, the straddle position, C(K) + P (K), and the synthetic forward plus the strike,
G(K) +K.

market quantity mean median std q0.05 q0.95

S&P 500 #Strikes 131 95 67 77 250
S&P 500 C+P 585.70 488.00 396.56 130.02 1389.42
S&P 500 G+K 2794.00 2796.75 118.61 2583.45 2991.30

EURO STOXX 50 #Strikes 44 46 19 16 73
EURO STOXX 50 C+P 584.59 533.55 331.27 172.90 1226.35
EURO STOXX 50 G+K 3201.73 3202.50 170.15 2918.05 3485.50

Table 1: Descriptive statistics. Mean, median, standard deviation (std), and quantiles (q) 5%, 95% of
some relevant quantities in the options’ dataset we analyze. We report the number of strikes for each
maturity and value date, the straddle position, C(K) +P (K), and the synthetic forward plus the strike,
G(K) + K.

The dataset also includes the OIS rates at 3:00 p.m. London Time (USD and EUR) with a time-
to-maturity equal to 1-12, 15, 18, and 21 months and 2, 3, 4 and 5 years. The OIS interest rate
curve is bootstrapped following the standard methodology (see, e.g. Henrard 2014, Baviera and
Cassaro 2015). Eikon Reuters provides all financial data.
The dataset provides call/put bid and ask prices for each available maturity. Data pre-processing
criteria are simple: we filter out the options that do not satisfy two basic liquidity criteria and we
discard maturities with just one or two strikes. As first liquidity criterion, we filter the so-called
“penny options”, i.e. options at a very low price. All options, whose value is less than 0.1 (S&P

5We could build an arbitrage position on synthetic forwards with the same maturity and different strikes via the
so-called box strategy: i.e. a position composed by a long synthetic forward at a given strike and a short synthetic
forward at a different one. For this strategy -that is equivalent to a long or short cash position- we can neglect
margin (MVA) and capital (KVA) adjustment.

6We consider the CBOE European options on the S&P 500 index (option prices are reported by the U.S.A.
Options Price Reporting Authority) and the Eurex European options on the EURO STOXX 50 index. Eikon
Reuters option chains are respectively 0#SPX*.U and 0#STXE*.EX.

7For each value date t0 we observe 10 to 13 liquid synthetic forward maturities in the S&P 500 market and 18
to 19 contracts’ maturities in the EURO STOXX 50.
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500 or EURO STOXX 50) index points, fall within this class. Then, options with a wide bid-ask
spread are discarded. We filter out options with a ratio ask-bid/ask larger than 60%. This second
liquidity criterion excludes strikes for which either bid or ask prices for call and put options are
not available.

3 S&P 500 and EURO STOXX 50 implicit interest rates

In this section, we infer the market discount factor from option prices and analyze it for the two
option markets. We verify whether the market discount factor corresponds to the EUR or USD
OIS curve and find statistical evidence that a cost of funding of 34 basis points is added to the
OIS curve in the S&P 500 case.

In the market, we observe bid and ask prices for every different strike and a fixed maturity. The
bid synthetic forward is obtained by selling the call and buying the corresponding put, vice-versa
for the ask price. Mid prices are the arithmetic average of bid and ask prices.

Gbid (K) := Cbid (K)− P ask (K)

Gask (K) := Cask (K)− P bid (K)

G (K) :=
Gbid (K) + Gask (K)

2
.

(3)

Figure 1: S&P 500 forward prices observed at 3:00 p.m. London Time of the 1st of April 2019 with
maturity on the 21st of March 2020. Forward prices are obtained via synthetic forwards in (2) for different
strikes: we assume B(t0, T ) = B(t0, T ), the USD OIS discount factor. We plot in red the bid prices, in
blue the ask prices, and in green the mid prices. Notice that the mid prices are linear w.r.t. the strike.
This fact denotes a market implied discount factor B(t0, T ) lower than the USD OIS one, as explained
in the text.

In Figure 1, we plot an example of one year S&P 500 forward prices F in (2) using the discount
factor B(t0, T ) of the USD OIS curve obtained via the bootstrap. We can notice a linear behavior
w.r.t. the strikes.
By non-arbitrage principle, the forward F should be constant in K. Thanks to equation (2), we
observe from Figure 1 that also the ratio G(K)/B(t0, T ) is a decreasing linear function of K, but
with an angular coefficient greater than −1, because it cannot compensate the linear term K in
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(2). Hence, in absolute value, the actual angular coefficient of G(K)/B(t0, T ) should be larger
that the one of G(K)/B(t0, T ): we infer that the actual discount B(t0, T ) is lower than the OIS
one B(t0, T ).

The discount factor used in the market B(t0, T ) can be obtained as the angular coefficient in the
linear regression

Gi = −B(t0, T )Ki +B(t0, T )F + εi i = 1, .., N (4)

for the different strikes {Ki}i=1,..,N available at value date t0 and maturity T , where εi are some
error variables. Its least squares estimation is

B(t0, T ) = −
∑N

i=1(Ki − K̂)(Gi − Ĝ)∑N
i=1(Ki − K̂)2

(5)

where

Ĝ :=
1

N

N∑
i=1

Gi , K̂ :=
1

N

N∑
i=1

Ki . (6)

We observe that the regressions are very precise with an R2 above 0.9995 for all value dates t0
and all maturities T in the dataset analyzed.

This result is equivalent to state that a spread is added to the USD OIS curve. The funding spread
(or cost of funding) can be defined in several ways; the simplest one is

s :=
1

T − t0
ln
B(t0, T )

B(t0, T )
(7)

where B(t0, T ) has been obtained from the bootstrap of the OIS curve and time intervals are
measured according to an Act/365 convention.8 The elementary indicator (7) allows the market
maker to monitor in real-time the cost of funding in the derivative market where he operates; it
allows also to detect possible situations of stress in funding liquidity.

We measure this spread for all value dates t0 and all maturities T in the whole options’ dataset. In
Figure 2 we plot the spread over the USD OIS curve w.r.t. the synthetic forward time-to-maturity
(ttm) T − t0. It seems that a spread of 34 basis points is applied to the USD OIS curve for
maturities higher than one month.

8This is equivalent –up to a fraction of basis point– to consider a cost of funding s over the overnight rate OR.
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Figure 2: Spread over USD OIS in the S&P 500 case. The spread (7) is plotted against the time-to-
maturity (ttm), for ttm longer than one month. The average spread of 34 basis points over the OIS curve
seems constant over the different maturities (continuous red line). We observe a higher variance for short
term maturities.

We fit the spread s as a function of the ttm and we test the statistical significance of the results.
We can accept the null hypothesis of no slope with a p-value of 11% and we reject the null hy-
pothesis of zero intercept with a p-value below 10−16. The intercept estimated assuming no slope
is of 34 basis points.

We follow the same procedure for the EURO STOXX 50 forward prices, the spread over the EUR
OIS curve is reported in Figure 3.

Figure 3: Spread over the EUR OIS curve in the EURO STOXX 50 case. The spread (7) is plotted
against the ttm, for ttm larger than one month. The average spread seems to be zero over the different
maturities (continuous red line).

We accept the null hypothesis of no intercept with a p-value of 23% and we accept the null
hypothesis of no slope with a p-value of 81%. In Table 2 we report a summary of the estimated
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slope and intercept parameters together with the statistical test p-values for both option markets.
We can conclude that dealers in the S&P 500 market are subjected to a cost of funding, constant
w.r.t. the ttm, on average of 34 basis points, the same does not apply for dealers in the EURO
STOXX 50 market.

market parameter estimate p-value

S&P 500 Intercept 33 < 10−16

S&P 500 Slope 1 0.11
EURO STOXX 50 Intercept −1 0.23
EURO STOXX 50 Slope 0 0.81

Table 2: Spread over OIS. Estimated intercept and slope of the spread over the OIS curve in basis
points (USD OIS curve for S&P 500 and EUR OIS curve for EURO STOXX 50). We accept the null
hypotheses of no slope for both markets. We refuse the null hypothesis of zero intercept only for the S&P
500 market. There is statistical evidence that dealers in the S&P 500 are subjected to a cost of funding,
constant w.r.t. the ttm: the intercept estimated assuming no slope is of 34 basis points. No spread is
observed for the EURO STOXX 50.

We observe in both Figure 2 and 3 a higher variance for short maturities. This is due to the
fact that only the product of the spread and the time-to-maturity is relevant for the forward: for
shorter maturities, the no-arbitrage condition is granted by a larger range of values for the spread.

Four robustness tests are performed. (i) We fit a weighted linear regression (see, e.g. Strutz
2010, Ch.3, p.51) to tackle heteroskedasticity problems. The weights are selected as one over the
square of the linear regression residuals. (ii) We change the penny-option and the bid-ask spread
thresholds respectively in the range (0, 1) and (30%, 90%) to verify the robustness w.r.t. the
excluded strikes. (iii) We extend the analysis window up to the 1st of October 2019 (the last
date before the EONIA is discontinued2) and limit the analysis to ttm larger than either 6 or 12
months. (iv) We do not discard the maturities with less than three valid strikes. In all robustness
tests, results do not change up to a single basis point.

Let us underline that this methodology allows us to determine also the forward price obtained
via synthetic forwards. This forward price is obtained from the put-call parity relation (2) using
the B(t0, T ) that includes the cost of funding: at a given maturity T , the forward ask price is the
lowest forward ask in (2) and the forward bid price is the highest forward bid. In Figure 4 we
show an example of the forward bid and ask prices obtained in this way.
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Figure 4: Example of the construction of the forward price via synthetic forwards. We show bid (in
red) and ask (in blue) forward prices (2) of the EURO STOXX 50 at the 1st of April 2019 for the 21st

of June 2019 maturity. Only prices not discarded by the two liquidity criteria described in the text are
considered. We also plot the forward ask price (continuous light blue) and bid price (continuous light
red) obtained as the lowest and highest values respectively. Notice that the length of the bid-ask interval
changes with the strikes signaling different liquidity for different strikes.

4 Conclusions

Which discount factor should be used in exchange-traded derivatives? This study exploits the
implications of the put-call parity to develop a methodology that allows us to recover the discount
factor implied by option prices on S&P 500 and EURO STOXX 50 indices. A dealer in the option
market can use this technique to real-time monitor the funding spreads of market players. The im-
plicit discount factor is the one such that a forward contract, built using the put-call parity relation,
does not depend on the strike. We compute the S&P 500 and EURO STOXX 50 option markets’
implicit discount factors and evaluate the cost of funding over the curve obtained bootstrapping
OIS derivatives. We have statistical evidence of a cost of funding of, on average, 34 basis points on
top of the USD OIS curve in the S&P 500 case and no cost of funding for the EURO STOXX 50
case. This cost of funding is constant for all liquid maturities up to several years for both markets.

Hence, the natural question is: why do we observe a spread over USD and no spread over EUR
OIS? The reason should be sought in the differences between the two underlying money markets.
Let us remind that the FED Target range indicates only some target rates, while in Europe the
corridor system denotes the real rates at which ECB serves as lender of last resort to the financial
system. In the USD market the two rates, the collateralized one (SOFR) and the uncollateralized
one (EFFR), differ for a spread that can be significant in several days. A dysfunctional repo
market, indicated by a sharp spike in the SOFR, has been observed several days in the analyzed
period;9 besides, a disruption in the repo market has been signalled by the well-known repo blow-
up of the 17th of September 2019, when the spread between the two fixings (SOFR and EFFR)
topped to almost 3 percent and prompted the Federal Reserve to inject tens of billions of dollars

9For example, during the period of analysis starting from the 1st of November 2018 and ending on the 1st of
October 2018, apart from the end of months (and, in particular, the End-of-Year), spikes outside the FED Fund
range are observed in 15 days. Let us notice that, in all these days, SOFR is always larger than the upper side of
the range.
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of reserves into money markets (see e.g. Barrett and Hamilton 2020, Tilford et al. 2019). While,
as we have already underlined in the introduction, the OIS market is mainly based on the EFFR,
the volumes in the money market are mostly concentrated on the repo rate, with SOFR volumes
more than ten times larger than EFFR ones (see, e.g. Schrimpf and Sushko 2019). These funding
disruptions in the USD money market, not observed in the EUR market, suggest that market
players could require a spread over OIS as a premium for the additional liquidity risk observed in
this market. As for future research, one main promising direction is evident: it could be interesting
to understand whether this funding spread is connected to the implied/historical volatility on the
two indices.
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