
Citation: Andérez González, J.;

Vescovini, R. Simplified Approach to

Nonlinear Vibration Analysis of

Variable Stiffness Plates. J. Compos.

Sci. 2023, 7, 30. https://doi.org/

10.3390/jcs7010030

Academic Editor: Francesco

Tornabene

Received: 30 November 2022

Revised: 14 December 2022

Accepted: 3 January 2023

Published: 10 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Simplified Approach to Nonlinear Vibration Analysis of
Variable Stiffness Plates
Jorge Andérez González and Riccardo Vescovini *

Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano, Via La Masa 34, 20156 Milano, Italy
* Correspondence: riccardo.vescovini@polimi.it; Tel.: +39-02-2399-8332

Abstract: A formulation for the analysis of the nonlinear vibrations of Variable Stiffness (VS) plates is
presented. Third-order Shear Deformation Theory (TSDT) is employed in conjunction with a mixed
variational formulation. The solution is sought via Ritz approximation for the spatial dependency,
while time dependency is handled via Differential Quadrature (DQ) and Harmonic Balance (HB)
methods. The main advantage of the framework is the reduced computational time, which is of
particular interest to explore the large design space offered by variable stiffness configurations. The
results are validated against reference solutions from the literature. Exemplary parametric studies
are presented to demonstrate the potential of the approach as a powerful means for exploring the
nonlinear vibration response of VS plates.

Keywords: nonlinear vibrations; variable stiffness plates; semi-analytical methods

1. Introduction

The possibility of tailoring the internal load paths via variable stiffness (VS) designs is
a topic of increasing interest in the field of modern composite structures. These new designs
are achieved by allowing the fibers to run along curvilinear trajectories, thus enlarging the
design space with respect to classical straight-fiber composites.

The advantages of this design approach have been discussed in previous efforts in the
literature. The thermal and mechanical buckling behavior is assessed in [1–3], while the
nonlinear postbuckling response is investigated in [4,5]. Linear free vibrations have been
studied too, see [6], in the framework of a variable-kinematic approach. On the contrary,
a relative lack of studies is found in the field of large-amplitude vibrations, which are a topic
of crucial importance for many engineering applications, of which aerospace panels are an
example. Indeed, these structures are commonly forced to vibrate at a large amplitude by
their operating environment and so could benefit by an improved VS tailoring. Potential
advantages have been discussed in [7], where the authors developed a finite element
approach with higher-order elements in conjunction with FSDT. The study concluded
that the possibility of steering fibers allows plates to behave in a more rigid fashion with
respect to straight-fiber configurations. Despite the above mentioned potential, the field
of nonlinear vibration of VS plates appears to have been just partially explored in the
literature.

As a matter of fact, most of the works in the literature refer to the analysis of isotropic
and straight-fiber composites [8–11]. Early works rely on an analytical approach to the
subject, where classical strategies based on elliptic functions and the Galerkin and Navier
methods were proposed to handle the spatial part [12–14]. In the referenced works, the time
dependency is accounted for via perturbation approaches. Despite the inherent efficiency of
these analytical strategies, their field of employ is restricted to specific boundary conditions
and constitutive laws. The finite element method has been proposed as an excellent means
for extending the field of employ, an early application of which is found for isotropic plates
in [15]. Within the FE framework, different ways for handling time dependency are found,
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such as direct integration [16] and the Harmonic Balance (HB) method [17]. Interesting
studies combining Hierarchical finite elements and HB method are found in [18,19], where
the convergence of the solution is studied and the stability assessed via Floquet theory.

In the field of VS panels, the literature on nonlinear vibrations is still relatively scarce
and, in most cases, refers to FE-based approaches to discretize the spatial dependency.
Pioneering work in the field is due to Ribeiro and co-workers [7,20]. In these efforts, the p-
and h-version of the finite element method are used to study the forced oscillations and
steady-state free vibrations via the Newmark and HB methods, respectively. The excellent
review of [21] clarifies the potential of VS designs to shape vibration modes and frequencies
and, at the same time, the need for optimization based-approaches to handle the increased
design complexity. Another application of finite elements to the nonlinear vibrations of
VS plates is found in [22], where high-order FEM is employed in conjunction with HB and
classical lamination theory. The study is restricted to fully clamped plates, but interest-
ingly demonstrates that the highest and lowest nonlinear frequencies are achieved via VS
configuration.

Despite the above-mentioned advantages offered by a FEM-based approach, it is
believed to be of interest to explore alternative strategies that can promote computational
saving. This aspect is particularly relevant for VS configurations, as the possibility of
steering the fibers largely increases the number of the design variables. In this regard,
semi-analytical strategies are a natural candidate, as they have been employed with success
to the nonlinear analysis of isotropic and straight-fiber configurations [23,24], but have
been rarely extended to VS configurations [25].

In a previous effort by one of the authors, a simplified semi-analytical approach has
been presented with a focus on thin VS plates [25]. However, the literature is relatively
scarce when extending the field of application to moderately thick plates. Among the few
works, Refs. [26,27] should be mentioned, where the nonlinear thermoelastic dynamics is
analyzed in referring to Third-order Shear Deformation Theory (TSDT).

A new framework is proposed here to address the nonlinear vibrations of VS plates
based on TSDT. The formulation presented here appears to be the first attempt to combine
a higher-order theory and a mixed approach in the context of nonlinear vibration analysis.
Solution strategies are developed by combining the Ritz method along with the Differential
Quadrature (DQ) and the Harmonic Balance (HB) methods. A simplified, single-mode
approach is then proposed, such that preliminary assessments can be performed on the
fly. The new mixed variational framework developed here is not restricted to nonlinear
vibration problems, but can be applied to solve other nonlinear problems in the fields of
nonlinear bending and postbuckling responses.

The paper is organized as follows: Section 2 illustrates the theoretical framework by
presenting the mixed variational principle at the basis of the proposed approach; Section 3
introduces the approximations for the spatial and the time dependency; Section 4 aims
at illustrating the comparison against results from the literature and between different
strategies for handling the time dependence; then, the potential application to perform a
parametric study is presented.

2. Formulation

A formulation is developed for assessing the nonlinear dynamic response of laminated
plates with VS properties. A sketch of the structure is reported in Figure 1. The plate volume
is defined as Ω ≡ A× [−h/2 ≤ x3 ≤ h/2], where A is the plate midsurface and h denotes
the thickness. A Cartesian coordinate system is taken over the plate midsurface, where
the axes x1 and x2 run along the two planar directions; the corresponding dimensions are
denoted with a and b, respectively. The x3 axis is taken according to the right-hand rule and
runs along the thickness direction. In view of future developments, it is useful to introduce

the nondimensional coordinates ξ = 2
x1

a
and η = 2

x2

b
, such that (ξ, η) ∈ [−1 1]. The

structure is laminated with a symmetric stacking sequence, where each ply has constant
density ρ, over the domain, and is assumed to be perfectly bonded to the other plies.
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The fibers are allowed to exhibit a non-constant orientation along the in-plane directions.
Specifically, the orientation is assumed to vary linearly between the center and the edge of
the plate. The two orientations at these locations are denoted with T0 and T1, as depicted in
Figure 1.

Figure 1. VS plate: reference system and fiber path.

The orientation of each single ply is denoted here with the compact notation 〈T0|T1〉,
where the following distribution is implied [1]:

θ = 2
T1 − T0

a
|x1|+ T0 (1)

The linear distribution allows the fiber path to be defined by means of two values only.
Hence, parametric studies can be performed with relative ease, making straightforward
graphical representations for the response of interest possible. More complex fiber distribu-
tions can be specified, see, e.g., [28]. In general, they can be beneficial in further extending
the design space, at the cost of a larger number of variables to be handled.

The study of nonlinear vibrations is carried out by considering an external load in the
form of a pressure p = p(xα) directed along the axis x3. The case of uniform distribution
can be considered as a special case, as well as a concentrated force being retrieved by
introducing a Dirac delta distribution.

2.1. Kinematics and Generalized Strains

The underlying kinematic model relies upon TSDT, offering the advantage of allowing
the study of thin and relatively thick plates, with no need for a shear factor to be defined.
This model is well-known in the literature, see, e.g., [29,30], and its features are not reported
in detail for the sake of brevity. Within the present approach, the effect of normal stretching
is not accounted for.

The in-plane directions xα are denoted through the index α = 1, 2, while the out-of-
plane direction is identified by the index 3. Accordingly, the components of the displace-
ment field can be split into Uα and U3. The third-order kinematic model reads:

Uα(xα, x3, t) = uα(xα, t) + x3 ϕα(xα, t) + c1x3
3[ϕα(xα, t) + u3,α(xα, t)]

U3(xα, x3, t) = u3(xα, t)
(2)

where the expansion is carried out up to the third-order in x3. The generalized displace-
ments uα, u3 ϕα are a function of time and the planar coordinates xα only; in addition,

c1 = − 4
3h2 is a constant allowing the Cauchy equilibrium to be satisfied at the top and the

bottom of the laminate, as shown later.
A modified version of the Green–Lagrange strain tensor is introduced as:

2εik = Ui,k + Uk,i + U3,iU3,k (3)
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where the nonlinear terms are restricted to the out-of-plane displacements, consistently
with the von Kármán nonlinear plate theory; a comma followed by an index denotes differ-
entiation with respect to that index. Upon substitution of Equation (2) into Equation (3),
one obtains:

εαβ = ξαβ + x3kαβ + c1x3
3 k̂αβ, γα3 =

(
1 + 3c1x2

3

)
ζα (4)

where the strain measures are:

2ξαβ = uα,β + uβ,α + u3,αu3,β, 2kαβ = ϕα,β + ϕβ,α, 2k̂αβ = ϕα,β + ϕβ,α + 2u3,αβ

ζα = ϕα + u3,α
(5)

The terms in Equation (5) are the generalized strain parameters of the kinematic model
and are expressed as a function of the unknown displacements uα, u3 and ϕα.

2.2. Generalized Forces

The internal stresses are available from the strains by application of the constitutive
law. Under the assumption of transversally isotropic material, the stress–strain relation is
expressed as:

σαβ = Qp
αβηω(xα)εηω, σα3 = Qt

α3η3(xα)γη3 (6)

where Qp
αβηω and Qt

αβηω denote the elastic tensors for the plane stress and transverse shear
components, the overline indicating that the coefficients are expressed in the laminate sys-
tem x1− x2. Furthermore, the dependency of the coefficients on the planar coordinates xα is
reported explicitly to give evidence of a peculiar feature of non-straight fiber configurations.
By inspection of Equations (4) and (6), it is immediate to verify that σα3(xα,±h/2, t) = 0,
i.e., the Cauchy equilibrium is identically satisfied at the top and the bottom of the laminate.

Within the kinematic model illustrated earlier, the following generalized forces are
found to be energetically conjugated with the strain measures of Equation (5):

Nαβ =
〈
σαβ

〉
= Aαβηωξηω, Mαβ =

〈
x3σαβ

〉
= Dαβηωkηω + Fαβηω k̂ηω

Pαβ =
〈

c1x3
3σαβ

〉
= Fαβηωkηω + Hαβηω k̂ηω, Qα =

〈(
1 + 3c1x2

3

)
σα3

〉
= A∗α3η3ζη

(7)

where the symbol 〈·〉 = ∑k
∫ hk+1

hk
· dx3 is introduced to denote the integral over the plies

along the thickness-wise direction. The elastic coefficients appearing in Equation (7) are
obtained as:

{Aαβηω, Dαβηω, Fαβηω, Hαβηω} =
〈
{1, x2

3, c1x4
3, c1x6

3}Q
p
αβηω

〉
A∗α3η3 =

〈(
1 + 3c1x2

3

)2
Qt

α3η3

〉 (8)

Note that the laminate constitutive relations of Equation (7) are obtained under the
assumption of symmetric layup, so any integral of odd functions in x3 vanishes, providing
no contribution to laminate constitutive law.

2.3. Variational Framework

The approach developed here relies upon a weak-form formulation of the problem,
which proved to be effective in the application of direct solution methods [25,28,31,32].
The underlying variational principle is an extension of the early work due to Giavotto [33],
originally developed for thin-plates, and extended here to the case of third-order theory.
An application of the strong-form formulation of an analogous mixed strategy is found
in [34] for the postbuckling analysis of transversally isotropic plates. The formulation is
mixed inasmuch the in-plane displacements uα are removed from the set of unknowns
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and are replaced with a potential function of the membrane resultants, i.e., the Airy stress
function F ≡ F(xα). In particular, this function allows membrane forces to be derived as:

Nαβ = eαηeβω F,ηω (9)

where eαη is the 2D permutation symbol. Based on Equation (9), the in-plane strains can be
expressed as a function of F upon inversion of the first of Equation (7):

ξαβ = aαβηω Nηω = aαβηωeαηeβω F,ηω (10)

where aαβηω = A−1
αβηω is the fourth order tensor expressing the membrane compliance.

The main steps to derive the mixed variational principle are outlined below. The start-
ing point is the Hamilton’s principle, whose expression reads:

δ
∫ t2

t1

Π dt = 0 (11)

with:
Π = K− (U + V) (12)

where K and U are the kinetic and strain energy, respectively, while V is the potential of the
external loads. Owing to the kinematic model of Equation (2) and assuming that in-plane
inertia is negligible, the kinetic energy is expressed as:

K =
1
2

∫
Ω

ρ
(

U̇2
α + U̇2

3

)
dΩ =

≈ 1
2

∫
A

(
I0u̇2

3 + I1 ϕ̇2
α + I2u̇2

3,α + 2I3 ϕ̇αu̇3,α

)
dA

(13)

where odd integrals of x3 are zero as the density is assumed to be constant all over the
plate. The inertial terms Ik are obtained upon integration along the thickness of the relevant
terms appearing in Equation (13), and they are obtained as:

I0 = ρh, I1 =
17
315

ρh3, I2 =
1

252
ρh3, I3 = − 4

315
ρh3 (14)

The strain energy is readily available by recalling Equations (5) and (7):

U =
1
2

∫
Ω

(
σαβεαβ + σα3γα3

)
dΩ =

=
1
2

∫
A

(
ξαβNαβ + kαβ Mαβ + k̂αβPαβ + ζαQα

)
dA

(15)

The potential of the external loads, in the presence of a pressure acting along the
vertical direction, is:

V = −
∫

A
u3 p dA (16)

The variational principle of Equation (11) refers to the functional Π ≡ Π(uα, u3, ϕα),
which can be used within the framework of a displacement-based approach. A mixed
approach is pursued here, so the expression of the relevant functional requires some further
elaboration. Specifically, an augmented functional is introduced, where the in-plane strains
ξαβ are taken as additional unknowns of the problem. Accordingly, the in-plane strain
components must be subjected to a compatibility condition that is added to Equation (12)
to achieve an augmented functional, whose expression reads:

Πaug ≡ Πaug
(
uα, u3, ϕα, λαβ, ξαβ

)
=

= Π +
∫

A
λαβ

(
ξαβ −

1
2

uα,β −
1
2

uβ,α −
1
2

u3,αu3,β

)
dA

(17)
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where λαβ are the Lagrange multipliers enforcing the in-plane compatibility requirements.
By application of the techniques of the calculus of variations, one can easily find the
equations expressing the stationarity condition of Equation (17), i.e., the Euler–Lagrange
equations of the problem:

λαβ − Nαβ = 0
ξαβ − 1

2 uα,β − 1
2 uβ,α − 1

2 u3,αu3,β = 0
λαβ,β = 0
Qα,α − Pαβ,αβ + u3,αβλαβ + u3,βλαβ,α = I0ü3 − I2ü3,αα − I3 ϕ̈α,α − p
Mαβ,αβ + Pαβ,β −Qα = I1 ϕ̈α + I3ü3,α

(18)

The first condition of Equation (18) demonstrates that the Lagrange multipliers can be
understood as the membrane resultants—this is expected from an energy interpretation
of Equation (17). Accordingly, the third stationary condition provides the membrane
equilibrium condition, which is identically satisfied owing to Equation (9). The second
condition is the constraint equation imposed via the Lagrange multiplier technique, while
the last two equations provide the dynamic equilibrium in the vertical direction and the
rotational ones, respectively.

A new functional can be derived by substituting back the first of Equation (18) into
Equation (17) and recalling Equations (9) and (10). The following expression is so obtained:

Π∗ ≡ Π∗(u3, ϕα, F) =

= K− (U∗ + V)
(19)

which is the functional at the basis of the proposed variational approach that replaces Π in
Equation (11), and where:

U∗ =
1
2

∫
A

(
−ξαβNαβ + kαβ Mαβ + k̂αβPαβ + ζαQα

)
dA +

1
2

∫
A

Nαβu3,αu3,β dA (20)

which represent the sum of bending and shear energies with the membrane complemen-
tary one.

The functional Π∗ depends on the unknowns u3, ϕα and F only; any dependence on the
in-plane displacement components uα is removed. This is clearly seen from the expressions of
the kinetic energy K, Equation (13), the potential of external loads V, Equation (16), and the
partially inverted strain energy, Equation (20), in combination with Equations (7) and (10).

This result can be viewed as a generalization of the variational approaches of [25,28,31,32,35]
for thin plates to incorporate transverse shear deformability in the framework of third-order plate
theory. Note that the application proposed in this work regards the nonlinear vibrations, but the
same variational principle can be used for other nonlinear problems, such as the post-buckling one.

2.4. Boundary Conditions

The assumption of symmetrical layup has the effect of preventing any linear coupling
between in-plane and out-of-plane responses; see Equation (7). However, a nonlinear
coupling exists between membrane and flexural responses in the context of the von Kármán
large deflection theory, as seen from the first of Equation (5). Hence, boundary conditions
need to be specified in terms of flexural and membrane behavior. The former conditions
are those associated with the unknowns u3 and ϕα (essential) and their energy conjugated
counterparts Mαβ, Pαβ and Qαβ (natural). These conditions can be free (F), simply-supported
(S) and clamped (C) edges, according to their standard definition [29]. Capital letters denote
the edge constraint and are reported in sequence, starting from the one at ξ = −1 and
proceeding in a counterclockwise direction. In-plane boundary conditions involve the
in-plane displacements uα and the membrane forces, both expressed in terms of the Airy
stress function F. The following conditions are defined: unsupported (U), held (H) and
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immovable (I) edge. In the first case, the edge is completely free to translate; in the second
one, the edge is kept straight, while allowed to translate; in the third one, the in-plane
displacement along the normal direction is prevented. The in-plane shear vanishes in all
the three cases, as tangential displacements are free. A sketch of the conditions is reported
in Figure 2.

(a) (b)

Figure 2. Comparison between different methods: (a) in-plane conditions; (b) flexural conditions.

3. Approximate Solution

The mixed variational formulation presented earlier is well suited to be applied in
the context of direct methods. Specifically, the Ritz method is employed here for handling
the spatial dependency; the resulting ordinary differential equations (ODEs) in the time
variable are then solved using different techniques: the Differential Quadrature method
and the Arc-length Harmonic Balance method, this latter in its multi- and single-mode
formulations. The main features of both spatial and time approximation are outlined below.

3.1. Spatial Approximation via Ritz Method

The spatial dependency is approximated using global functions. This is an effective
means for solving the problem with an excellent accuracy-to-number of degrees of freedom
ratio. Within the framework of the Ritz method, the unknowns are expanded as:

u3(xα, t)
ϕx(xα, t)
ϕy(xα, t)

 =

Nw(xα)

N’x(xα)

N’y(xα)


ŵ(t)
’̂x(t)
’̂y(t)


= Nu(xα)û(t)

F(xα, t) = Nf(xα)Φ̂(t)

(21)

where Nu and Nf are the matrices collecting the trial functions, obtained as the product
between Legendre polynomials and boundary functions. The former were found to guaran-
tee numerical robustness and fast convergence properties [36], the latter are introduced to
enforce the essential boundary conditions. Note that, for the Airy stress function F, a split
is operated between the internal and boundary terms: this strategy allows the approach
to be formulated in a more convenient way, see [4]. The vectors û and Φ̂ of Equation (21)
collect the unknown amplitudes associated with the Ritz expansion.

Upon substitution of Equation (21) into Equation (19) and by imposing the stationarity
condition, one obtains the discrete equations governing the problem:

M ¨̂u + Kû + n(Φ̂, ŵ) = f

UΦ̂ +
1
2

ŵTNmn ŵ = 0
(22)



J. Compos. Sci. 2023, 7, 30 8 of 21

where M, K, and U are the mass, stiffness, and in-plane compliance matrices, respectively;
the terms n and Nmn are the vector and the matrix associated with the geometric nonlin-
earity; dot denotes derivative with respect to time. The first of Equation (22) defines the
dynamic equilibrium, the second expresses the in-plane compatibility requirements. Note
that the compatibility equation is time independent as the in-plane inertia is neglected.
Hence, a static condensation can be operated upon substitution of the second equation into
the first.

The governing equations can be further elaborated by expressing Equation (22) in
modal coordinates, via transformation û = Vq, where V is the matrix collecting the modes
of vibration retained in the modal expansion, and q are the corresponding amplitudes. It
follows that the final set of nonlinear ODEs in the time variable are obtained in the form:

q̈ + C(q) q̇ + K(q)q + n(q)(q, q, q) = f(q) (23)

where the superscript (q) is introduced to identify all the terms obtained through projection
onto the modal coordinates. It is worth noting that modal truncation allows the number of
degrees of freedom to be reduced. Linear modes are assumed here to effectively capture the
nonlinear response, which is generally acceptable unless the problem is strongly nonlinear.

Using an alternative indicial representation, which is useful for future developments,
Equation (23) can be re-stated as:

q̈k + diag(2ζk ωk) q̇k + diag(ω2
k)qk +

n

∑
rst=1

β
(q)
krst qr qs qt = f (q)k (24)

where ζk is the modal damping ratio and βkrst the coefficients of the nonlinear stiffness term.

3.2. Differential Quadrature Method

The Differential Quadrature method has been extensively used in the literature as a
means for approximating the spatial dependency in differential problems; see, e.g., [32,37].
On the contrary, the DQ method is used here for handling time dependence and trans-
forming the ODEs arising from the Ritz approximation into a set of nonlinear algebraic
equations. The application of DQ for handling time dependency is relatively rare in the
literature, but offers an intriguing approach for achieving a good balance between accuracy
and computational time [38]. A time grid is firstly generated, where the time interval
is divided into a number of Ne intervals. Each interval is characterized by a number of
sampling points denoted as N. Among the different distributions available, the Chebyshev
one was found to guarantee improved accuracy when compared to others, such as the
uniform distribution [38]. For this reason, the sampling points are taken as:

tk = t0 +
1
2

[
1− cos

(
k− 1
N − 1

π

)](
t f − t0

)
(25)

where the initial and final time are denoted as t0 and t f , respectively.
Within the framework of the DQ method, the time derivatives can be written as [39]:

dmq
dtm = D(m)q (26)
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where D(m) is a matrix of weighting coefficients expressing the order m derivatives and
given by:

D(1) =



N

∏
i=1,i 6=k,j

(tk − ti)

/ N

∏
i=1,i 6=j

(
tj − ti

)
, k 6= j

N

∑
i=1,i 6=k

1
tk − ti

, k = j

D(m) = D(1)D(m−1)

(27)

The expression above illustrates that large values of N may lead to a progressively
smaller denominator in Equation (27), with consequent effects on the stability of the
numerical solution. For this reason, the time span is divided into a number of Ne time
elements, each one containing N sampling points.

Upon substitution of Equation (26) into Equation (23), a nonlinear algebraic system is
obtained as:

[A + Anl(x, x)]x = b (28)

where the vector x is defined as x = {q11 . . . qnN}T, and n is the number of modes retained
in the modal expansion. The two matrices appearing in Equation (28) are obtained as:

A =
(
D(2) ⊗ I +D(1) ⊗C(q) + I⊗K(q)

)
Anl = I⊗K(q)

nl

(29)

Representing the expansion of the damping and stiffness matrices on the DQ sampling
points via Kronecker multiplication; the matrix I is the identity of dimension N.

The problem of Equation (28) is then modified in order to account for the initial
conditions. Specifically, the first and the last n rows of A—those associated with the first
and the last sampling points, respectively—are substituted with the initial conditions on
displacement and velocity.

The so-obtained nonlinear system is solved via Newton–Raphson iterations, which
are continued up to satisfaction of a convergence criterion. The norm of the residual is
considered for this scope.

3.3. Arc-Length Harmonic Balance Method

The Harmonic Balance method is a well-known approach for handling the temporal
dependency in nonlinear vibration problems [40,41]. In the present framework, this ap-
proach offers the advantage of allowing both stable and unstable branches to be successfully
captured. Furthermore, this method is a suitable starting point for deriving simplified
analytical solutions, as discussed next.

According to the Harmonic Balance method, a truncated Fourier series is introduced
for approximating the steady state solution as:

q(t) = Q0 +
H

∑
n=1

[Qcn cos(nΩ t) + Qsn sin(nΩ t)] (30)

where Q0 is the amplitude of the constant contribution, while Qcn and Qsn are the ampli-
tudes of the n-th cosine and sine term, respectively. In the present formulation, the ex-
pansion is carried out up to H = 5. While more terms could be retained, a number of
preliminary tests revealed this truncation to be adequate in most cases. This choice is in
agreement with previous works in the literature; see, e.g., [20,25]. The main idea of the
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approach is the substitution of Equation (30) into Equation (24) followed by the collection
of the corresponding harmonic terms. According to this procedure, one obtains:

r(x) ≡
[
−Ω2 M̃ + ΩC̃ + K̃ + ñ(x, x)

]
x− f̃ = 0 (31)

where the expressions of M̃, C̃, K̃ and ñ are relatively cumbersome and are not reported
here for the sake of brevity; the vector x collects the unknown amplitudes of the expansion
operated via Equation (30), i.e.,:

xT = {QT
0 QT

c1 QT
s1 . . . QT

c5 QT
s5} (32)

The solution of Equation (31) is performed using an arc-length strategy. In particular,
the continuation is conducted with respect to the frequency parameter Ω = λω11, where
ω11 is the linear fundamental frequency, while λ is the control parameter. Owing to the
additional unknown introduced via Ω, one constraint equation is needed. Among the
different approaches available in the literature, the Crisfield equation is considered [42]:

g(x, λ) ≡ ∆xT∆x + ∆λ2 ω2
11 − ∆l2 = 0 (33)

Incremental quantities are denoted with ∆ and refer to the previously converged solu-
tion, i.e., ∆x = x− x(k) and ∆λ = λ− λ(k); the scalar ∆l is the fixed arc-length increment.

3.4. Single-Mode Solution

The two methods illustrated earlier allow the solution to be calculated with relative
ease, the computational time being of the order of tens of seconds. In many design
situations, further time reduction can be desirable, especially when thousands of analyses
are necessary for preliminary optimization, parametric studies or analysis of the sensitivities
to the design variables. These considerations appear particularly relevant when the target
of the design process is a variable stiffness configuration: under these circumstances,
the number of design variables is generally much larger with respect to equivalent straight-
fiber designs, so the need to perform several analysis runs is even more clear. In this context,
the availability of fast design strategies is of paramount importance as any reduction in the
computational time has a multiplicative effect on the total time of the procedure. Aiming at
providing an answer to this need, a single-mode approach was developed. Hereinafter, it
will be denoted as Harmonic Balance Single-mode (HBS). This solution inherently embeds
a larger degree of approximation—it is indeed a simplified version of Equation (24)–but
allows trends to be appropriately captured in fractions of the second. The single-mode
version of Equation (24) reads:

q̈ + 2ζωq̇ + ω2q + βq3 = f cos(Ωt) (34)

The solution of Equation (34) can be found with relative ease by assuming that the
contribution of super-harmonics is negligible. The Fourier expansion of Equation (30) is
then truncated at the first term, i.e.,:

q(t) = Qc1 cos(Ω t) + Qs1 sin(Ω t) (35)

Based on the approximation of Equation (35), the cubic term appearing in Equation (34)
is expressed as:

q3 = 3Qc1Q2
s1 cos(Ωt) + 3Q2

c1Qs1 sin(Ωt) +
(

Q3
c1 − 3Qc1Q2

s1

)
cos3(Ωt) +

(
Q3

s1 − 3Q2
c1Qs1

)
sin3(Ωt)

≈ 3
4

Qc1

(
Q2

c1 + Q2
s1

)
cos(Ωt) +

3
4

Qs1

(
Q2

c1 + Q2
s1

)
sin(Ωt)

(36)
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where the expression is approximated after dropping the superharmonic terms obtained by
elaboration of cos3(Ωt) and sin3(Ωt). The final set of solving equations is obtained upon
substitution of Equation (36) into Equation (34), followed by the balancing of corresponding
harmonic terms. Two nonlinear algebraic equations are obtained in the form:

−Ω2Qc1 + 2ζωΩQs1 + ω2Qc1 +
3
4

βQc1
(
Q2

c1 + Q2
s1
)
= f

−Ω2Qs1 − 2ζωΩQc1 + ω2Qs1 +
3
4

βQs1
(
Q2

c1 + Q2
s1
)
= 0

(37)

where the unknowns are given by the amplitudes of the sine and cosine parts of the solution
postulated in Equation (35). The two equations above can be merged into one single scalar

equation if the modal amplitude |q| =
√

Q2
c1 + Q2

s1 is introduced. Accordingly, by squaring
the two expressions of Equation (37), one obtains:[(

−ω2 + Ω2 − 3
4

β |q|2
)2

+ (2ζ ω Ω)2

]
|q|2 = f 2 (38)

This simple scalar equation provides a closed-form solution for the amplitude-versus-
frequency relation. Given a frequency value Ω, the corresponding amplitude value |q| is
readily found. Note that Equation (38) is a sixth order polynomial with even powers of
|q| only. It is then possible to reduce it to a third-order polynomial equation from which a
closed-form solution is found.

4. Results

The potential of the proposed semi-analytical methods is discussed in this section.
The first part deals with the validation of the methods against reference results from
the literature. In the second part, focus is given to the comparison between different
solution strategies, i.e., DQ, HB, and closed-form solution. Specifically, the comparison is
illustrated in terms of accuracy and computational time. In the third part, the reduced time
of the closed-form approach is exploited to illustrate its potential use in the context of a
parametric study. The results are reported in the form of design charts, which are believed
to be of interest to gather a quick understanding of the structural response of variable
stiffness designs.

4.1. Validation

The proposed approach relies upon two peculiar features, regarding the combined
possibility of handling variable stiffness configurations in combination with TSDT. Ac-
cordingly, the validation requires these two aspects to be verified, independently or in
combination. Exact reference solutions are not available in the literature for TSDT plates
with non uniform stiffness distribution. For this reason, the validation phase is split into
two parts. Firstly, the comparison is illustrated for composite plates with uniform stiff-
ness, i.e., straight-fibers: indeed, results are available in exact form for this case [29] and
represent an excellent reference for validation purposes. In a second step, the comparison
is conducted for VS plates, where benchmarks are available in the form of finite element
simulations [21,43].

4.1.1. Linear Vibrations

This section deals with the validation of the formulation in terms of linear free vibra-
tions. The elastic properties of the materials considered herein are summarized in Table 1;
the density is assumed to be 1540 kg/mm3, unless otherwise specified. Different geometries
are considered in the section and specified case by case.
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Table 1. Material elastic properties.

E1 (MPa) E2 (MPa) G12, G13 (MPa) G23 (MPa) ν12

M1 f (E1/E2) 1.00 0.60 0.50 0.25
M2 120,500 9630 3580 3580 0.32
M3 173,000 7200 3760 3760 0.29
M4 131,700 9860 4210 4210 0.28

A square, simply-supported plate is investigated. Two different length-to-thickness ra-
tios a/h are considered in order to showcase the effect of transverse shearing deformability.
The material corresponds to M1 of Table 1, where the orthotropy ratio E1/E2 is varied be-
tween 10 and 40, and the cross-ply lay-up is [0/90]s. The results are presented in Table 2 in

terms of the nondimensional first linear frequency ω1 = ω
a2

h

√
ρ

E2
. The computations are

performed by considering a different number of trial functions—and so different number
of degrees of freedom ndof—and are compared against the Navier solution [29].

Table 2. Frequency parameter ω1 for straight-fiber plates: comparison with [29].

E1/E2 a/h ndof = 48 ndof = 108 ndof = 363 Exact [29]

10 5 8.2731 8.2718 8.2718 8.272
10 9.8430 9.8410 9.8410 9.841

20 5 9.5276 9.5263 9.5263 9.526
10 12.2205 12.2180 12.2180 12.218

40 5 10.7885 10.7873 10.7873 10.787
10 15.1100 15.1073 15.1073 15.107

As seen, the exact solution of the problem is matched up to the third digit with as few
as 48 degrees of freedom. The proposed expansion is indeed characterized by excellent
convergence properties and, in general, relatively few functions suffice to achieve accurate
results. When the number of trial functions is increased, the solution converges towards
the exact solution for the remaining digits. One should note that convergence is achieved
from above, meaning that an increase in the number of trial functions is always associated
with a reduction of the natural frequencies. However, this conclusion cannot be extended
to VS configurations. It should be noted that the results of Table 2 are restricted to the
first natural frequency and, in general, more trial functions could be needed if high-order
modes are of interest.

The second example deals with a VS configuration and aims at illustrating the ability
of the method to handle correctly the case on non-uniform stiffness distribution. The planar
dimensions are taken as 1000 × 1000 mm2. The thickness is equal to 10 mm, corresponding
to a ratio a/h of 100. The plate is made of the material M3 and the symmetric stacking
sequence [〈0|45〉, 〈−45|−60〉, 〈0|45〉] is assumed. The boundary conditions correspond
to simply-supported and clamped edges. The results are reposted in Table 3, where the
comparison is presented against the results using the p- and h-version of FEM [21,43],
respectively.

To emphasize the efficiency of the proposed formulation, the results are reported
by considering two expansions: in one case, the total number of dofs is taken equal
to 506, which is close to the problem size considered in [21,43]; in the second case,
the number of dofs is 156, corresponding to the smallest number of functions to guar-
antee converged results.
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Table 3. Natural frequencies (rad/s) for VS plates: comparison with [21,43].

Ref. [21] Ref. [43] Ritz Ritz
ndof = 500 ndof = 500 ndof = 506 ndof = 156

Mode SSSS CCCC SSSS CCCC SSSS CCCC SSSS CCCC

1 355.41 567.56 358.49 579.40 357.30 575.62 360.70 578.08
2 600.50 831.39 589.90 821.53 589.12 818.39 595.32 821.76
3 986.65 1253.18 960.36 1225.79 960.46 1222.74 980.81 1254.50
4 1027.55 1448.46 1075.21 1493.76 1073.03 1479.45 1086.21 1500.97
5 1309.92 1719.96 1327.88 1726.96 1322.84 1713.21 1350.30 1764.76
6 1506.90 1818.98 1474.67 1775.16 1466.67 1771.14 1690.45 1908.24
7 1743.33 2175.80 1726.71 2135.76 1718.08 2121.56 2265.94 2220.54
8 2106.31 2505.73 2137.13 2443.53 2085.50 2437.05 2324.50 2772.34
9 2171.03 2750.46 2262.35 2706.78 2227.60 2690.78 2591.59 2947.36

Close agreement can be noted in Table 3 between the Ritz solutions and the FE
ones. Using the proposed Ritz approach, a drastic savings can be achieved in terms of
problem size. The number of dofs is approximately 1/3 the finite elements to achieve
similar accuracy.

The shapes of the first four modes are presented in Figure 3. For the simply-supported
case, the modal shapes are available even in [21]. Close agreement can be noted with the
reference results both in terms of number of halfwaves as well as the skewness induced by
the plate elastic couplings. The modal shapes for the clamped plate are not provided in the
referenced works, but are reported here for the sake of completeness. These modes exhibit
similar patterns with respect to the ones of the SSSS plates, apart from the boundary effects
which lead to vanishing rotations at the four edges.

(a) Mode 1, SSSS (b) Mode 2, SSSS (c) Mode 3, SSSS (d) Mode 4, SSSS

(e) Mode 1, CCCC (f) Mode 2, CCCC (g) Mode 3, CCCC (h) Mode 4, CCCC

Figure 3. Vibration shapes of plates with layup [〈0|45〉, 〈−45|−60〉, 〈0|45〉]: (a–d) simply-supported;
(e–h) clamped.

4.1.2. Nonlinear Vibrations

A first comparison in terms of nonlinear response is conducted by referring to the
test cases proposed by Ribeiro [20]. A rectangular plate of dimensions 320 × 480 mm2 is
considered. The material is M2 and the layup is [〈θ + 45|90〉, 〈−θ|−45〉, 〈θ|45〉, 〈θ − 45|0〉]s,
with θ equal to 90. The total thickness is 1 mm. The plate is constrained at the four edges
with fully clamped and immovable boundary conditions, see Figure 2. The frequency–
response curve obtained with the DQ method is reported in Figure 4 by considering
different load intensities f , ranging from 0.2 to 1.2 N, where the external load is applied in
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the form of a concentrated load at the plate center. The modal basis is composed by the the
first, third and seventh linear eigenmodes, based on a preliminary assessment. The time
parameters for the DQ method are Ne = 42 and N = 40. The nondimensional frequencyR is

defined asR =
Ω
ω1

, with ω1 representing the first linear fundamental frequency. The peaks

of the frequency–response plots provide the backbone curve to be compared with the one
derived by Ribeiro [20] using FSDT theory, a p-FEM approach for the spatial approximation
and the Harmonic Balance Method for handling the time dependency.

Figure 4. DQ method–comparison with [20].

The results demonstrate close agreement with the reference solution. Slight discrepan-
cies occur and can be motivated by the combined effects of different kinematic theories and
different approximations for the spatial and temporal dependencies. In general, the DQ
approach in its standard implementation does not allow the unstable part of the curve to
be captured. For this reason, sudden jumps can be noted in the Ritz solution from the high-
to the low-amplitude range observed for f ≥ 0.4 N.

The same test case is analyzed to illustrate the comparison with the formulation based
on the HB method. Based on a preliminary assessment, the first and the third harmonics are
retained in the Fourier expansion. The results are summarized in Figure 5. For consistency,
the plot is presented with the same format reported for the DQ method.

Close agreement can be noted against the reference solution even in this case. The peaks
of the Ritz predictions are even closer to the solutions reported by Ribeiro. One reason
for this improved correspondence lies in the same approximation for the temporal part
employed here and in [20]. As a matter of fact, both approaches rely on the HB method.
Owing to the arc-length strategy illustrated earlier, the unstable branch is easily captured
by the proposed HB method, and no jumps occur at the larger load levels. The comparison
with the backbone curve of Figure 5 is straightforward. One can note the milder hardening
effect exhibited by the present solution: this is consistent with the treatment of the in-plane
boundary conditions, which are imposed in an average sense due to the adoption of a
mixed approach rather than a displacement-based one.
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Figure 5. HB method–comparison with [20].

A second example regards the nonlinear vibration response of the variable stiffness
plates studied in [22]. The dimensions are a = b = 500 mm, while the total thickness is 5 mm.
The plate is layered with four plies made of material M3 and stacking sequence [∓〈40|α〉]s,
where α varies between 10 and 90. The panel is fully clamped with immovable in-plane
restraints. The solution is obtained using the HBS method to illustrate the potential of
this fast strategy in estimating the nonlinear vibration frequencies. The displacements are
expanded with 10 terms along both directions, then the first mode is retained following
the procedure illustrated in Section 3.4. The results are then obtained by solution of
Equation (38).

A summary of the numerical predictions is available in Table 4, where the nonlinear

frequency parameter ω̂nl = ωnla
√

ρ
E2

is reported for different values of the maximum
nondimensional deflection and different layups.

Table 4. Nonlinear frequency parameters ω̂nl = ωnla
√

ρ
E2

: comparison with [22].

|wmax|/h = 0.2 0.6 1.0

HBS Ref. [22] HBS Ref. [22] HBS Ref. [22]

[∓〈40|10〉]s 0.316 0.325 0.335 0.345 0.370 0.383
[∓〈40|20〉]s 0.310 0.318 0.328 0.338 0.362 0.375
[∓〈40|30〉]s 0.302 0.308 0.319 0.328 0.351 0.364
[∓〈40|40〉]s 0.292 0.297 0.308 0.316 0.338 0.350
[∓〈40|50〉]s 0.282 0.287 0.297 0.304 0.325 0.335
[∓〈40|60〉]s 0.273 0.278 0.286 0.294 0.311 0.322
[∓〈40|70〉]s 0.267 0.272 0.279 0.287 0.300 0.313
[∓〈40|80〉]s 0.264 0.269 0.275 0.283 0.296 0.309

All the structures display a hardening-type response—consistently with the reference
results—with increasing values of the frequencies for increasing deflections. The compar-
ison against the finite element solution proposed by Houmat [22] reveals a good degree
of accuracy: the differences in the predicted frequency are always well below 5%. For
a given nondimensional amplitude, the reference frequencies are always larger than the
present ones. The same behavior has been observed in a previous work [25] and is mainly
motivated by the different handling of the in-plane boundary conditions. The reference
work relies upon a displacement-based approach, where in-plane constraints are enforced
in a strong-form manner. Within the mixed formulation adopted here, in-plane conditions
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are handled in a weak-form sense, leading to some additional compliance due to the local
violation of these conditions.

4.2. Comparison between Methods

In this section, an exemplary test case is presented to illustrate the comparison between
the different strategies reported in the paper. In particular, the comparison involves the
DQ and the HB methods, this latter implemented in the multi-mode and simplified, single-
mode formulations.

The plate under investigation is the same considered in Section 4.1.2, the only differ-
ence relying the stacking sequence, which is now [〈θ + 45|90〉, 〈−θ|−45〉, 〈θ|45〉, 〈θ − 45|0〉]s,
with θ equal to 0. Clamped conditions with immovable edges are considered.

The linear mode shapes of the plate are summarized in Figure 6, where the first eight
eigenvectors are summarized. These shapes tend to be relatively complex due to the
stiffness non-uniformity.

(a) Mode 1 (b) Mode 2 (c) Mode 3 (d) Mode 4

(e) Mode 5 (f) Mode 6 (g) Mode 7 (h) Mode 8

Figure 6. Vibration shapes of plates with layup [〈45|90〉, 〈0|−45〉, 〈0|45〉, 〈−45|0〉]s.

A preliminary assessment was conducted to identify the effect of adopting different
bases for studying the nonlinear response. In particular, it was found that the frequency–
response curve is mainly affected by the modes 1, 4 and 8, which are then retained in the
DQ and HB approaches for comparison purposes against the single-mode one. Further
expansion of the basis does not provide any noticeable improvements. The results are
presented in Figure 7, where the load is applied as a concentrated force in the middle and
the magnitudes are taken equal to 0.5 and 1.0 N.

Figure 7. Comparison between different methods.
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The maximum nondimensional displacements wmax/h observed in Figure 7 are 1.1
and 1.8, approximately. In the first case, the degree of nonlinearity is mild, while the
geometric nonlinear effects are much more relevant when the force is increased to 1.0 N.

As seen from Figure 7, the three methods lead to similar results when the degree
of nonlinearity is relatively small. On the contrary, slight discrepancies can be noted in
the presence of a larger degree of geometric nonlinearity. As seen, the single-mode HB
solution tends to be stiffer with respect to the multi-mode ones in the small-amplitude
regime. Here, the effect of membrane stretching is small, and the approximations due to the
integral representation of the in-plane boundary conditions are negligible. The single-mode
solution is found to be more compliant when the amplitude of vibration increases—see the
central portion of the plot in Figure 7—as far as the membrane effects are more pronounced,
and the approximations of in-plane conditions are more and more relevant.

It is interesting to provide a quantitative comparison between the three strategies
outlined earlier in terms of nondimensional deflections wmax/h and time for the analysis.
The results are summarized in Table 5, where computations are carried out with a standard
laptop with i7 processor and 16 GB of RAM.

Table 5. Comparison between different methods.

|wmax|/h Time (s)

DQ f = 0.5 N 1.0427 4.3
HB 1.0451 8.5

HBS 1.0875 << 0.1

DQ f = 1.0 N 1.6502 9.5
HB 1.6668 7.6

HBS 1.8080 << 0.1

The HB and the DQ approaches lead to similar results. This is somewhat expected,
as they differ by the handling of the time dependency, but no major sources of approxima-
tion are introduced when turning from one to another. The time for the analysis is of the
order of 10 s, which is attractive for analysis purposes. In the context of preliminary design
studies, any further time reduction is amplified by the number of runs to be performed.
In this regard, the single-mode HB approach offers an interesting trade-off between accu-
racy and CPU cost. In this case, the predictions are, in general, less accurate with respect
to the multi-modal ones. However, drastic reductions of the cpu times can be achieved,
with single runs requiring much less than a second. Therefore, the trade-off between
accuracy and computational cost is believed to be particularly interesting. The single-mode
strategy is the ideal candidate for performing parametric studies and capturing trends with
improved computational efficiency.

4.3. Parametric Studies

Based on the results of the previous section, a study is presented to illustrate the
advantages of a fast and efficient approach to perform a preliminary assessment. A VS
laminate is considered whose dimensions are 420 × 300 mm2. The total thickness is 4 mm.
The material properties of M4 are considered, and the density is equal to 1600 kg/mm3.
Simply-supported boundary conditions are considered at the four edges along with in-
plane immovable conditions. A concentrated force f of 100 N is applied at the center of
the plate.

The layup [〈T0|45〉, 90〈T0|45〉]s is considered. The goal of the assessment is investigat-
ing the influence of the angle T0 on the plate nonlinear frequency–response behavior.

The results are summarized in Figure 8, where the curves are traced with T0 ranging
from 0 to 90 with steps of 45. The configuration associated with T0 = 45 is a straight-fiber
laminate and is reported in the plot for comparison purposes.
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Figure 8. VS laminate [<T0|45>, 90<T0|45>]s: effect of angle T0.

As shown in Figure 8, the maximum deflection is achieved at the same nondimensional
frequency R for all the configurations; however, the amplitude of the deflection varies
dependently on the layup. Specifically, larger values of T0 tend to reduce the deflection peak
and increase the hardening effect. When comparing the VS solutions to the straight-fiber
ones, one can observe that larger peak reductions can be achieved thanks to steering.

On the basis of the results of Figure 8, it is concluded that the orientation angle T0 can
be tuned to meet the design requirements, leading to a much larger freedom in shaping the
laminate response as compared to a straight-fiber design. In this study, the investigation is
restricted to the frequency–response curve, but other metrics will have to be accounted for
in real design scenarios.

A second study is presented by assuming a layup [∓〈T0|T1〉]2s, where the design
parameters to be explored are given by the angles T0 and T1. For simplicity, manufacturing
constraints are not considered at this stage. Two structural responses are investigated,
corresponding to the maximum nondimensional amplitude wmax/h and the degree of
hardening θH. This latter is intended as the slope, expressed in degrees, of the linearized
force response curve in the interval betweenR equal to 1 andR∗, whereR∗ is the nondi-
mensional frequency corresponding to the amplitude peak. The lower the values of θH,
the higher the degree of hardening exhibited by the laminate.

The contour plots of Figure 9 summarize the structural behaviour for any combination
of T0 and T1. Straight-fiber configurations lie on the diagonal of the plots, so comparisons
with VS configurations can be easily drawn.

As shown, the plate response can be tuned with relative ease to match the requirements
regarding the two responses considered here. For instance, the maximum deflection can
be reduced through a VS design. Similarly, the degree of hardening can be increased or
decreased through proper selection of T0 and/or T1, depending on the design needs and
the potential requirements associated with other structural responses.
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Figure 9. VS laminate [∓〈T0|T1〉]2s: (a) maximum deflection wmax/h; (b) slope θH.

5. Conclusions

This work illustrates a new mixed formulation for the analysis of laminated plates with
non uniform stiffness properties. The effect of transverse shear deformability is included
owing to TSDT. The formulation is developed within a variational context, and appears to
be the first attempt to combine a mixed strategy with TSDT. This is of particular interest
when the application of direct solution methods is sought, as it is the case for plates
with spatially varying elastic properties. The framework derived here is not restricted to
nonlinear dynamics, but could be equivalently employed for problems in statics where
geometrical nonlinearity is of concern.

The main advantage of the approach lies in the possibility of reducing the total
number of theory-related degrees of freedom from five to four. This feature, along with the
good convergence properties of the Ritz method, allows semi-analytical procedures to be
developed with improved efficiency.

In this work, the application of the proposed variational principle is presented to
the nonlinear dynamic response of VS plates, with a focus on nonlinear free vibrations.
The main result regards the possibility of successfully combining different techniques
for handling the spatial and the temporal dependency within the proposed variational
framework. Differential Quadrature and Harmonic Balance methods were proposed
for this purpose. The accuracy and the efficiency of the procedures were illustrated by
comparison against reference results from the literature.

The time for the analysis is very attractive, with cpu times of the order of 10 s for the
multi-modal solutions and fractions of seconds for the single-mode approach. The former
allow improved accuracy and are particularly suitable for analysis purposes, the latter is
characterized by reduced accuracy, but is of particular interest when preliminary assess-
ments are of concern. In particular, the single-mode solution proved to be a powerful tool
for investigating the effect of the many design parameters typical of VS configurations.

General guidelines regarding the optimal fiber path can be hardly provided given the
dependency on the response of interest, as well as the plate geometry and its boundary
conditions. However, as demonstrated for some test cases, the additional tailoring chances
offered by a VS design can be effectively exploited.
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