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A B S T R A C T   

In fast reactors, restructuring of the fuel micro-structure driven by high temperature and high temperature 
gradient can cause the formation of columnar grains. The non-spheroidal shape and the non-uniform temperature 
field in such columnar grains implies that standard models for fission gas diffusion can not be applied. To tackle 
this issue, we present a reduced order model for the fission gas diffusion process which is applicable in different 
geometries and with non-uniform temperature fields, maintaining a computational requirement in line with its 
application in fuel performance codes. This innovative application of reduced order models as meso-scale tools 
within fuel performance codes represents a first-of-a-kind achievement that can be extended beyond fission gas 
behaviour.   

1. Introduction 

During the normal operation of a nuclear power plant, the irradiation 
of the fuel determines the creation of gaseous fission products, mainly 
Xenon and Krypton, within the fuel grains. These gases tend to diffuse 
through the fuel polycrystalline matrix and are progressively released 
into the free volume of the fuel rod. The release of fission gases affects 
the performance of the fuel rod since their presence in the gap causes an 
increase in pressure, thus subjecting the cladding to stress, and de-
teriorates the thermal conductance of the gap, increasing the fuel tem-
perature as well. Consequently, modeling of fission gas behaviour is 
essential in the frame of the thermo-mechanical analysis of fuel rods 
[1–6]. described by dedicated fuel performance codes (FPCs) [7,8]. 

Fuel performance codes are at the top of the hierarchical multi-scale 
modeling approach that goes from the atomistic scale to the engineering 
scale [9–12]. Physics-based approaches adopted in FPCs are often rep-
resented by a set of partial differential equations (PDEs) with parametric 
dependencies. Numerical simulations at the engineering scale of the 
integral fuel rod require high computational efforts, considering the 
long calculation times and the high number of information processed 
due to the various conditions encountered throughout the life of the fuel 
rod. Accordingly, there is a need to find a compromise between 
computational complexity and the accuracy of the numerical solution. 

Several fast-running algorithms have been developed for the physics- 
based simulation of fission gas diffusion, such as FORMAS [13–15], the 
quasi-exact ANS-5.4 [15–18], URGAS [15,19], PolyPole-1 [20] and 

PolyPole-2 [21]. The widely used FORMAS algorithm adopts a lineari-
zation of the source and the diffusion term to take into account an 
expansion on the diffusion kernel. The quasi-exact ANS-5.4 algorithm is 
derived directly from the analytic solution of the diffusion equation for 
constant conditions and is affected only by discretization errors of real 
history into piecewise-constant conditions, for this reason, it is labeled 
”quasi-exact” algorithm, making it a reference solution in many nu-
merical experiments (the simulation of many power histories whose 
parameters, for example, the duration, the temperature, and the fission 
rate, are chosen randomly), as in Refs. [15,21,22], based on 
piecewise-constant power histories. 

The main limitation of these algorithms is that they adopt the radial 
part of the spherical Laplacian as the diffusion operator making them 
specific for the problem related to the isotropic diffusion in the spherical 
grains of the irradiated uranium dioxide matrix in a light water reactor. 
Therefore, it is not possible to apply them directly in other conditions. 
For instance, in fast reactors where the high fuel temperature values 
determine an intense restructuring phenomenon with consequent for-
mation of cylindrical grains [1,23,24], or in the case of uranium silicide 
[25], where we have to deal with an anisotropic diffusion dictated by the 
fuel tetragonal crystalline structure [26]. In particular, regarding the 
cylindrical grains, the steep temperature gradient established along 
them makes it necessary to use a diffusion coefficient dependent on the 
temperature profile. Moreover, the diffusion dynamics of fission gases in 
cylindrical grains is not comparable to that of spherical grains, given the 
geometrical difference. 
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Reduce order modelling (ROM) techniques allow replacing a high- 
fidelity problem with one of much lower complexity preserving the 
accuracy of the solution as much as possible [27]. Thus they are suitable 
to ensure low computational cost and hence applicability in fuel per-
formance codes, while allowing to model a wide range of conditions and 
geometries. ROMs represent a cutting-edge topic in applied mathematics 
but their potential is not yet exploited in the field of fuel performance. 
The goal of this work is thus to develop a reduced order model for the 
diffusion process of fission gases applicable to spherical and cylindrical 
grains. 

The reduced order technique adopted in this work is based on the use 
of intrusive-projection methods. The main assumption is that the vari-
ables of interest can be expressed as a linear combination of spatial 
modes multiplied by the time coefficients [28]. To construct an efficient 
reduced order model it is essential to select the correct spatial modes, for 
this reason, the proper orthogonal decomposition (POD) technique is 
herein adopted due to its ability to select the most energetic modes 
regardless of the geometry [29–31]. This technique is used to define the 
subspace of smaller dimension on which to project, through the Galerkin 
projection, the partial differential equation that governs the phenome-
non of intra-granular fission gas diffusion. The set of spatial modes that 
populate the subspace can be built starting from snapshots, i.e., solutions 
of the diffusion equation obtained through high-fidelity numerical 
simulations at different instants. Another essential element is the sub-
division of the computational procedure into an Offline phase in which 
the expensive computation of snapshots and the modes calculation can 
be performed just once and totally decoupled from the Online phase 
characterized by the fast-running ROM simulation. 

The structure of the paper is as follows: In Section 2, the mathe-
matical formulation of the intra-granular fission gas diffusion in both 
spherical and cylindrical grains is discussed. In Section 3 and Section 4 
the two main elements of the Offline procedure are outlined, in partic-
ular the Full Order Model (FOM) and the ROM. In Section 5, we describe 
the implementation of the Online phase in the physics-based grain-scale 
code SCIANTIX [32,33] and its numerical verification. In Section 6, the 
ROM for spherical grains is verified by comparing it to other 
state-of-the-art algorithms used in fuel performance codes in terms of 
accuracy and computational efficiency. Conclusions and further devel-
opment are outlined in Section 7. 

2. Mathematical problem 

The oxide fuel in fast reactors undergoes a restructuring process due 
to the high temperature and the high temperature gradient [1,24]. This 
process involves changes of the local porosity distribution (and in turn, 
of the local fuel density) within the fuel pellet and of the morphology of 
the grains, leading to the formation of three micro-structures within the 
fuel pellet. Radially, from the rim of the pellet towards its centre, three 
zones can be identified: (1) an external (roughly corresponding to 
temperature below 1600◦C) as-fabricated zone (unchanged density); (2) 
an intermediate (from 1600◦C to 1800◦C) zone with equiaxed grains 
(higher density, grain-size of around 20 μm), and (3) an internal (above 
1800◦C) zone with columnar grains (almost theoretical density, grain 
length of roughly 1 mm). The columnar grains are formed by the 
migration of the pores towards the centre by a mechanism of 
evaporation-condensation across the pore faces [1,34–36]. The pores 
gather in the centre of the pellet forming a central void. 

For both as-fabricated and equiaxed grains, the description of inert 
gas behaviour is not substantially different from that of unrestructured 
oxide fuel, since the geometry of the grains is essentially unchanged [37, 
38]. The classical description adopted in fuel performance codes relies 
on the equivalent sphere model proposed by Booth [38]. Thus exploiting 
the spherical symmetry of the problem and assuming that the grain size 
is small enough to assume uniform temperature and fission rate (and 
hence, uniform diffusivity and gas production rate) the governing 
equation of the intra-granular diffusion in fuel spherical grains can be 
written in this way: 

∂c(rs, t)
∂t

= D(T, Ḟ)
1
r2

s

∂
∂rs

(

r2
s

∂
∂rs
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)
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where t (s) is time, c
(
at m− 3) is the intra-granular gas concentration, rs 

(m) is the radial coordinate in the spherical grain, D
(
m2 s− 1) is the 

isotropic gas atom diffusion coefficient1, T (K) is the temperature, and 
S
(
at m− 3 s− 1) is the production rate of fission gas which is in turn given 

by the fission rate density Ḟ
(
fiss m− 3 s− 1)multiplied by the total yield of 

fission gas atoms y
(

at fiss− 1
)

. The analytic solution of the average gas 

concentration is well known [15,20]. 
Treating columnar grains according to Eq. (1), even considering a 

made up size of the sphere representative of the cylinder, incurs in two 
main issues: (i) the dynamics of diffusion are different in a sphere and in 
a cylinder and cannot be set equal by the selection only of a represen-
tative spherical grain radius; and (ii) given the temperature dependence 
of the diffusion coefficient and the temperature profile in the columnar 
zone, the use of a single value for the diffusion coefficient is inaccurate. 
Therefore, the assumption of spherical grains in Eq. (1), hinders a priori 
the application of this diffusion description to columnar grains. 

To properly account for the effects of steep temperature gradients 
along the columnar grain axis (i.e., the temperature gradient along the 
radius of the pellet, around 200◦C mm− 1), the physical problem of gas 
diffusion must be coupled to a 1D heat-diffusion model for the tem-
perature distribution over the z axis of the grain. This results in the 
system of coupled partial differential equations:   

where z (m) is the coordinate along the axis of the cylindrical grain i.e., 
along the radius of the pellet, rc is the radial coordinate within the cy-
lindrical grain, α (m2 s− 1) is the thermal diffusivity, Q (K s− 1) is the heat 

⎧
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1 In the application to fission gas models, the quasi-stationary approach 
proposed by Speight [39] is also adopted. It consists in lumping the diffusion 
towards the grain boundaries, the trapping rate g and the resolution rate b of 
atoms in/from intra-granular bubbles into an effective diffusion coefficient 
Deff
(
m2 s− 1):Deff = b

b+g Drestating the mathematical problem as purely diffu-
sive, with b/(b + g) called the quasi-stationary term. The intra-granular diffu-

sion problem becomes∂ct (rs ,t)
∂t = Deff

1
r2
s

∂
∂rs

(
r2
s

∂
∂rs

ct(rs, t)
)
+ Swhere ct

(
at m− 3) is the 

total intra-granular gas concentration considering both the concentration of 
single gas atoms dissolved in the lattice and the concentration of gas atoms in 
intra-granular bubbles. For the purposes of this work, which is the development 
and verification of the reduced order model describing the diffusion process, 
this equation is formally identical to Eq. (1). 
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generation rate. 
Let us consider these two diffusion problems (Eq. (1) and (2)) under 

constant conditions (i.e., the diffusion coefficient related to the spherical 
case D, the gas source term S and the heat source term Q are assumed to 
be constant in time and uniform in space). Each individual grain is 
assumed to have a grain-boundary surface that acts as a ”perfect sink”. 
This defines a mathematical boundary condition of a zero gas concen-
tration immediately adjacent to the grain boundary, i.e., c(Rs, t) = 0, 
c(rc, L, t) = 0, c(Rc, z, t) = 0 and c(rc, 0, t) = 0 for t > 0, Rc⩾rc ⩾ 0 and 
L⩾z ⩾ 0 with Rs(m), Rc(m) and L(m) being the radii of the spherical and 
cylindrical grain, and the length of the cylindrical grain, respectively. As 
initial condition (t = 0) we consider both c(rs, t) = 0 and c(rc, z, t) = 0. 
Consequently, in the spherical symmetry case, the concentration field 
satisfies the system of equations: 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂c(rs, t)
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1
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+ S

c(rs, 0) = 0 Rs⩾rs⩾0

c(Rs, t) = 0 t > 0

(3)  

while, when the cylindrical symmetry is considered, it solves the prob-
lem:   

For what concerns the temperature problem we consider as initial 
condition T(z, 0) = 2000 K (as a representative value, without lack of 
generality), a Dirichlet boundary condition of T(z, t) = 2000 K on one of 
the cylinder bases, γ1, and a null Neumann boundary condition on the 
other base (corresponding to the interface with the pellet central void), 
γ2, and on the lateral surface, γ3 (Fig. 1b). Consequently T(z, t) satisfy the 
following problem: 

⎧
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(
∂
∂z

T(z, t)
)

+ Q

T(z, 0) = 2000 K L⩾z⩾0

T(z, t) = 2000 K on z = L, t > 0

∂T(z, t)
∂z

= 0 on Rc⩾rc⩾0 or z = 0, t > 0

(5) 

For the purpose of modelling intra-granular fission gas diffusion in 
fuel performance codes, the engineering figure of merit is the weighted 
volume average in the grain of the total gas concentration along time, i. 
e., c(t) = 1

V

∫
c(t) dV with V the volume of the grain. 

Eqs. (3)–(5) represent a mathematical model describing intra- 
granular fission gas behaviour in restructured oxide fuel in fast reactor 
conditions. Such model is not exhaustive on its own and requires to be 
paired with a consistent model for the inter-granular behaviour and with 
a dedicated model for the high burnup structure [40]. Nevertheless, the 
treatment of intra-granular diffusion is the first and fundamental step in 
the modelling process. Its numerical solution is thus presented in the 
following section. 

It is worth noting that Eqs. (3)–(5) require particular care to be 
included in the frame of fuel performance codes (whereas similar de-
scriptions for oxide fuel in light water reactor conditions are generally 
applicable, e.g., Refs. [6,32,41–43]). This is due to the size of columnar 
grains (range of hundreds of microns up to a millimeter) which exceeds 
the typical size of mesh cell used in fuel performance simulations, 
contrary to the size of unrestructured spherical grains (few microns). For 
this reason, it is not possible to invoke this model in each mesh ele-
ment/quadrature point, requiring a dedicated interface between the 
grain-scale model and the rest of fuel performance pellet-scale models. 

3. Full order model 

Eqs. (3)–(5) with their respective boundary conditions has been 
implemented in OpenFOAM [44] in order to compute the so called 
snapshots [30] i.e., the solutions of the diffusion problem at different 
time steps, that will be used to build the basis functions (Section 5). To 
simplify implementation and without loss of generality, a dimensionless 
geometry has been adopted (Fig. 1). For the case of spherical domain, 
Eq. (1) have been transformed into a dimensionless form: 

R2
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= D
1
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s
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(

ρ2
s

∂
∂ρs

c
)

+ R2
s S (6)  

where ρs = rs/Rs. Simplifying the notation of the dimensionless Lap-
lacian operator we obtain: 

R2
s
∂c
∂t

= D∇2c + R2
s S (7) 

Fig. 1. Geometry used for the full order simulation implemented in Open-
FOAM. γ3 represents the surface closest to the center of the pellet while γ1 the 
furthest surface, γ2 is the lateral surface of the cylindrical grains. 
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c(rc, 0, t) = 0 Rc⩾rc⩾0, t > 0

(4)   
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The use of dimensionless coordinates allows adopting a spherical 
mesh of unitary radius (Fig. 1a) and to introduce the grain radius 
directly in the equation parameters. 

For the case of cylindrical domain, the spatial dimensionless form of 
Eq. (2) turns out to be: 
⎧
⎪⎪⎪⎨
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c
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−
1
L2

∂
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(
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∂
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c
)

= S
(8) 

where ρc = rc/Rc and ξ = z/L. The anisotropy of the cylindrical 
diffusion problem has been treated through the tensor representation of 
the diffusion coefficient. In particular, the x and y components have 
been divided by the squared length of the radius while the z component 
by the squared length of the height of the cylinder. Compacting Eq. (8) 
and introducing the tensorial diffusion coefficient: 
⎧
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In this case the dimensionless notation allows adopting a cylindrical 
mesh of unitary radius and unitary length (Fig. 1b). Then we introduce 
the radius and the length of the cylindrical grain directly as parameters 
in the equation and we treat the anisotropy of the problem in the tensor 
G. 

The parameters adopted for the simulations are collected in Table 1. 
The two simulations of diffusion in the spherical geometry and in the 
cylindrical geometry are run respectively for 7.5 × 108 s and for 1 × 107 

s. These times were chosen on the basis of the relaxation time, i.e., the 
time taken by the phenomena to reach equilibrium, and were calculated 
by dividing the square radius of the grain by the diffusion coefficient. 
Meshes with 80′000 cells are adopted for the spherical and cylindrical 
geometry. Figure (2) depicts the distribution of concentration field for 
different time steps resulting from the full-order spherical model 
implemented in OpenFOAM. Given the isotropic diffusion and the 

symmetrical geometry and mesh, we obtain a symmetrical distribution 
that at equilibrium assumes a parabolic trend along the spatial co-
ordinates. In Fig. (3), is depicted the concentration and temperature 
fields for different time steps resulting from the full-order cylindrical 
model implemented in OpenFOAM. In this case, the direction of greatest 
interest to be analyzed is the z direction of the columnar grains corre-
sponding to the direction along the fuel pellet radius and along which 
the steep temperature gradient is established. The diffusion coefficient is 
higher in the inner part of the pellet, where the temperature is higher 
and decreases moving outside. This creates a concentration gradient 
along the z axis of the columnar grain opposite to the temperature 
gradient and consequently a flux of gas moving towards the hotter part 
of the grain. This transport of gas implies a higher release since it is 
directed towards the part of the columnar grain with higher diffusivity. 

A verification in terms of exact solutions is carried out on the 
weighted volume average concentration. For the case of spherical 
diffusion, the weighted volume average concentration computed with 
OpenFOAM reaches the correct analytical asymptotic value [15,20], 
with a relative error of 0.48%. 

4. Reduced order model 

In this section, the goal is to present the procedure to obtain a POD- 
Galerkin ROM (POD-G-ROM) of Eqs. (7) and (8), considering the Finite 
Volume approximation (POD-FV-ROM) [47]. The procedure here 
described is applicable to both the spherical and cylindrical geometry. 
The main assumption in the reduced order techniques based on pro-
jection method is that the approximated solution of the problem cr(x, t) 
can be expressed as linear combination of the spatial modes φi(x) 
multiplied by the temporal coefficients ai(t). Therefore, the first step 
consists in the expansion of the field in the series of orthonormal spatial 
modes: 

c(x, t) ≈ cr(x, t) =
∑Nc

i=1
ai(t)φi(x) (11)  

where Nc is the number of modes adopted for the concentration field. For 
the diffusion in cylindrical grains it is also necessary to expand the 
temperature field: 

T(x, t) ≈ Tr(x, t) =
∑NT

i=1
bi(t)φi(x) (12)  

where NT is the number of modes adopted for the temperature field. 
In this work, the POD procedure is adopted thanks to its capability to 

select the most energetic modes, i.e., the modes representing the most 
significant features of the problem. This results into a very cost-effective 
solution retaining all the fundamental information of the model, while 
reducing its complexity. The set of spatial modes is built starting from 
the snapshots, i.e., the values of the fields c(x, t) and T(x, t) at prescribed 
times tn for n = 1, …, Ns, i.e., cn = c(x, tn) and Tn = T(x, tn), where Ns is 
the number of snapshots adopted. In the simulation of the spherical and 
cylindrical case, the frequency of snapshot sampling was set to 1.333 ×
10− 6 Hz and 1 × 10− 4 Hz respectively, in order to collect 1000 snapshots 
during the 7.5 × 108 and 1 × 107 s of simulation.2 The spatial set of 
modes is built minimizing the L2-norm of the least square difference 
between the snapshots and the projection of the snapshots in the sub-
spaces XPOD

c = span{φ1,φ2,…,φNc
} and XPOD

T = span{φ1, φ2, …, φNT
}, 

paired with the orthonormality of the modes [47]:   

Table 1 
Values and u.o.m of the parameters adopted in the simulation of fission gas 
diffusion, in spherical and cylindrical grains.  

Symbol Parameter Value u.o.m 

Sphere Cylinder 

c Concentration   mol m− 3 

T Temperature 1200  K 
Rs Spherical grain radius 5 × 10− 6  m 
Rc Cylindrical grain radius  1 × 10− 5 m 
L Grain length  1 × 10− 3 m 
Ḟ Fission rate density 3 × 1019 3 × 1019 fiss m− 3 s− 1 

D Diffusion coefficient D1 + D2 + D3 [45,46] m2 s− 1 

D1 = 7.6 × 10− 10 exp(− 4.86 
× 10− 19/kBT)  

D2 = 5.64× 10− 25
̅̅̅
Ḟ

√
exp( −

1.91 × 10− 19 /kBT)
D3 = 2× 10− 40 Ḟ  

kB (J K− 1), Boltzmann 
constant  

α Thermal diffusivity  5 × 10− 7 m2 s− 1 

S Gas source 1.5 × 10− 5 1.5 × 10− 5 mol m− 3s− 1 

Q Heat source  218.1 K s− 1  

2 The computational time required by a Intel Core i5-5300U CPU @ 2.30 GHz 
and 8 GB RAM was in the order of 5 min and 10 min for the simulations, 
respectively. 
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where δij is the Kronecker delta. Eqs. (13) and (14) are solved by 
introducing suitable correlation matrices according to the procedure 
reported in Refs. [28,47], formally solving an eigenvalue-eigenvector 
problem for both concentration and temperature: 

Eξi = eiξi i = 1,…,Ns (15)  

Kχ j = kjχ j j = 1,…,Ns (16)  

where ei and kj are the eigenvelues, ξi and χ j are the eigenvectors, and E ∈

RNs×Ns and K ∈ RNs×Ns are the correlation matrices. The (ei, ξi) and 
(

kj,

χ j

)
eigenvalue–eigenvector pairs are used to build the spatial modes as: 

φi(x) =
1
̅̅̅̅ei

√
∑Ns

n=1
ξi,ncn(x) i = 1,…,Nc (17)  

Fig. 2. The concentration distributions in the spherical fuel grain with respect to three time steps resulting from the full order simulation implemented in Open-
FOAM. The concentration field reaches the asymptotic value at 6 × 108 s. 

Fig. 3. The concentration and temperature distributions in the cylindrical fuel grain with respect to four time steps resulting from the full order simulation 
implemented in OpenFOAM. The concentration field reaches the asymptotic value at 6 × 106 s, instead, the temperature field reaches it rapidly already at 3 × 104 s. 
The top of the rectangle corresponds to the surface γ1. 
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(

x

)

,ϕj

(

x

)

〉L2 = δij (13)   

XPOD
T = arg min

1
Ns

∑Ns

n=1
‖Tn −

∑NT

i=1
〈Tn,φi

(

x

)

〉φi

(

x

)

‖
2
L2 , constrained by〈φi

(

x

)

,φj

(

x

)

〉L2 = δij (14)   
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φi(x) =
1̅
̅̅̅
ki

√
∑Ns

n=1
χi,nTn(x) i = 1,…,NT (18) 

Since the eigenvalues are sorted in descending order, the first modes 
are those retaining most of the energy of the complete solution [48]. 
This ensures that however the series in Eqs. (11) and (12) are truncated, 
the most energetic modes are saved. 

4.1. Spherical grain 

Concerning the spherical grain case, replacing the concentration c 
with cr (Eq. (11)) in Eq. (7), we obtain: 

R2
s

∑Nc

i=1
φi(x)

∂ai(t)
∂t

= D
∑Nc

i=1

(
ai(t)∇2φi(x)

)
+ R2

s S (19)  

Applying the Galerkin projection over the test functions φj(x) and 
exploiting the orthonormality of the modes with respect to the L2 inner 
product: 

R2
s
daj(t)

dt
= D

∑Nc

i=1
ai(t)

∫

Ωs

φj(x)∇2φi(x)dΩs + R2
s S
∫

Ωs

φj(x)dΩs j = 1,…,Nc

(20)  

where Ωs is the volume of the sphere. By introducing Aji and Bj, the 
following POD-Galerkin ROM (POD-G-ROM) for Finite Volume dis-
cretization (POD-FV-ROM) is obtained: 

daj(t)
dt

=
D
R2

s

∑Nc

i=1
ai(t)Aji + SBj j = 1,…,NC (21)  

with Aji = 〈φj(x),∇2φi(x)〉L2 and Bj = 〈φj(x)〉L2 . 

4.2. Cylindrical grain 

For the cylindrical grain case, we start by considering the tempera-
ture equation. The boundary conditions are enforced explicitly through 
the use of the penalty method [49]. Given γ1 the portion of the domain 
on which the Dirichlet boundary condition is applied to the temperature 
(TBC = 2000 K, Fig. 1bb): 

T(x∈ γ1, t) = TBC (22) 

Introducing the penalty factor τT, the boundary condition TBC in the 
first equation of the System (9) is enforced as follows: 

L2∂T(x, t)
∂t

= α∇2T(x, t) + L2Q + τT(T(z) − TBC(z))(δ(z − 0)+ δ(z − L))

(23) 

Replacing the temperature T with Tr (Eq. (12)), performing the 
Galerkin projection over the test functions φj(x) and exploiting the 
orthonormality of the modes with respect to the L2 inner product: 

L2dbj(t)
dt

= α
∑NT

n=1
bi(t)

∫

Ωc

φj(x)⋅∇2φi(x)dΩc + L2Q
∫

Ωc

φj(x)dΩc

− τT

∫

γ1

φj(x)

(

TBC −
∑NT

i=1
bi(t)φi(x)

)

dγ1 j = 1,…,NT (24)  

where Ωc is the volume of the cylinder. Rewriting Eq. (24) in matrix 
terms, the POD-G-ROM for finite volume discretization is: 

dbj(t)
dt

=
α
L2

∑NT

n=1
bi(t)Hji + QLj +

τT

L2

∑NT

i=1
Jjibi(t) −

τT TBC

L2 Kj j = 1,…,NT

(25)  

with Hji = 〈φj(x),∇2φi(x)〉L2 , Lj = 〈φj(x)〉L2 , Jji = 〈φj(x),φi(x)〉L2 ,γ1
, and 

Kj = 〈φj(x)〉L2 ,γ1
. 

As for the concentration, replacing c with cr (Eq. (11)) in Eq. (9) we 
obtain: 

∑NC

i=1
φi(x)

∂ai(t)
∂t

= D
1
R2

c
∇⋅

(

G⋅
∑NC

i=1
∇(ai(t)φi(x))

)

+ S (26) 

In this case, diversely from the spherical grain in which the tem-
perature and hence the diffusivity are assumed uniform within the 
domain, the relationship between the diffusion coefficient and the 
temperature field is not affine, i.e., the diffusion coefficient cannot be 
written as a linear combination of the temperature, therefore the 
dependence on temperature by the diffusion coefficient has been 
modeled by means of a linear relation: 

D = D0 + αD(T − T0) (27)  

where D0, T0 and αD are constant values. D0 is the diffusion coefficient in 
correspondence of T0 and αD is equal to the partial derivative of diffusion 
coefficient with respect to temperature obtained in correspondence of 
T0. The linearized approach allows to have an affine decomposition with 
respect to temperature. Replacing the temperature T with Tr (Eq. (12)), 
applying the Galerkin projection over the test functions φj(x) and 
rewriting the equation in matrix terms, the following POD-FV-ROM is 
obtained:  

with Xji = 〈φj(x),∇⋅(G∇φi(x))〉L2 , Mjki = 〈φj(x), 〈φk(x),∇⋅(G∇φi 

(x))〉〉L2 , Njki = 〈φj(x), 〈∇φk(x),G∇φi(x)〉〉L2 , and Pj = 〈φj(x)〉L2 . 

4.3. Summary 

With this procedure, the original PDEs systems (Eq. (1) and (2)) are 
replaced by ODEs systems (Eq. (21), (25) and (28)) in which the un-
knowns are the time-dependent coefficients ai(t) and bi(t). The ODEs 
systems for the spherical and cylindrical geometry can be expressed 
respectively as the following dynamical systems, for the spherical grain 
case: 

ȧ =
D
R2

s
aA + SB (29)  

and for the cylindrical grain case: 

ḃ =
α
L2 bH + QL + τT

(
1
L2 Jb −

TBC

L2 K
)

(30)  

ȧ =
1
R2

c

(
D0 − αDT0)aX +

1
R2

c
αDb′aM +

1
R2

c
αDb′aN + SP (31)  

where the apex indicates the transposition of the vector and the dot 
refers to the time derivative. Despite the unknowns ai(t) and bi(t) depend 
exclusively on time, the systems also provides a spatial description, since 
the spatial character is included in the matrices that have been 

daj(t)
dt

=
1
R2

c

(
D0 − αDT0)

∑NC

i=1
ai(t)Xji +

1
R2

c
αD
∑NT

k=1

∑NC

i=1
bk(t)ai(t)Mjki ++

1
R2

c
αD
∑NT

k=1

∑NC

i=1
bk(t)ai(t)Njki + SPj j = 1,…,Nc (28)   
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calculated with the orthonormal modes. The construction of the matrix 
of Eqs. (29)–(31), which represent the last step of the Offline procedure, 
is performed in OpenFOAM. 

5. Online procedure and numerical verification 

The inexpensive Online computational step, i.e., the ODEs systems 
solving, is performed in the 0-D open-source computer code SCIANTIX 
[32,33] by means of an Implicit Euler scheme in order to derive the time 
coefficients and finally reconstruct the solution. SCIANTIX is a meso-
scale module able to cover the description of intra- and inter-granular 
inert gas behaviour in nuclear fuels (e.g., UO2 or MOX fuel) and has 

been designed to be coupled in existing fuel performance codes. The 
implementation in SCIANTIX allows comparing the reduced order 
model related to the spherical case with the state-of-the-art algorithms 
to verify its performances (Section 6). The implicit numerical scheme 
adopted to solve Eqs. (29)–(31) is based on the backward Euler method: 

aj+1 =

(

I −
D
R2

s
ΔtA

)− 1(
aj + SΔt

)
(32)  

bj+1 =

(

I −
α
L2 ΔtH −

τT

L2 ΔtJ
)− 1(

bj + QΔtL −
τT TBC

L2 ΔtK
)

(33)  

aj+1 =

(

I −
1
R2

c
Δt
(
D0 − αDT0)X −

1
R2

c
αDΔt

(
bj)′M −

1
R2

c
αDΔt

(
bj)′N

)− 1(
aj

+ SΔtP
)

(34)  

where j is the time-step index and Δt is the time step. For T0 we have 
adopted the volume-weighted average temperature and through a 
sensitivity analysis on the penalty factor we selected τT = 1. At each time 
step, the code solves these ODEs for the time coefficients aj+1 and bj+1. 

For the purpose of modelling intra-granular fission gas release, the 
engineering figure of merit is the average concentration. Therefore, the 
time coefficients calculated, aj+1 and bj+1, are multiplied by the volume- 
weighted average of the modes in order to obtain the volume-weighted 
average concentration: 

Table 2 
Eigenvalues of the concentration and temperature fields in the spherical and 
cylindrical cases with respect to the number of modes adopted.  

Index Spherical case Cylindrical case 

Concentration 
eigenvalue 

Concentration 
eigenvalue 

Temperature 
eigenvalue 

1 2.44 × 109 6.07 × 104 1.44 × 1010 

2 9.54 × 105 128 5.55 × 10− 5 

3 7.43 × 103 4.02 1.29 × 10− 5 

4 183 0.320 4.93 × 10− 5 

5 8.12 0.040 3.08 × 10− 6 

6 0.585 0.004 2.09 × 10− 6 

7 0.130 7.63 × 10− 4 1.25 × 10− 6 

8 0.020 1.34 × 10− 4 8.15 × 10− 7 

9 0.015 2.95 × 10− 5 6.33 × 10− 7 

10 0.002 1.04 × 10− 5 5.31 × 10− 7  

Fig. 4. Errors of the reconstructed concentration from the ROM model of the spherical case with increasing the number of modes.  

Fig. 5. Errors of the reconstructed concentration from the ROM model of the cylindrical case with increasing the number of modes. These values has been obtained 
using one single mode for the temperature field. 
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c(x, t) =
∑Nc

i=1
ai(t)φi(x) (35) 

The number of modes that should be adopted depends on the 
reducibility of the problem which can be evaluated by checking the 
decay of the eigenvalues of the correlation matrix. In Table 2, are re-
ported the eigenvalues for the concentration and temperature fields 
respectively as a function of the number of modes. On the basis of these 
values, the concentration field, both for spherical and cylindrical cases, 
can be reconstructed with reasonable accuracy using five modes (the 
sixth accounts for 2.4 10− 8% of the sum of the first ten eigenvalues for 
the sphere case and 6.6 10− 6% for the cylinder case, respectively) 
instead for the temperature field one single mode is more than enough 
(second mode counting for 3.9 10− 13%). The same conclusions can be 
drawn by observing the errors reported in Figs. 4 and 5 for the spherical 
and cylindrical case, respectively. In Figs. 4a and 5a, are reported the 
relative errors over time obtained by comparing the average concen-
tration of the FOM with respect the average concentration calculated in 
SCIANTIX, Eq. (35), as the number of modes varies. Instead Figs. 4b and 

5b, as the number of modes varies shows the L2 error between the 
concentration field of the FOM and the concentration field of the ROM 
model reconstructed in OpenFOAM through the temporal coefficient 
extracted from SCIANTIX. As can be seen, the most reasonable choice is 
to use five modes3. 

In Figs. 6 and 7, are reported the five modes for the spherical and 
cylindrical case, respectively. Through the use of these five modes, the 
average concentration over time reconstructed in SCIANTIX is compared 
with the average concentration of the FOM (i.e., the high-fidelity solu-
tions presented in Section 3) in Figs. 8 and 9 for both cases. The 
maximum relative error between the high-fidelity solution and the 
reconstruction carried out in SCIANTIX is 0.41% for the spherical case 
and 13.01% for the cylindrical case. The higher error observed in the 
cylindrical case is not attributable to the geometry of the case. In fact, 

Fig. 6. The POD modes for the concentration in the spherical grain case resulting from the POD-FV-ROM implementation in OpenFOAM. These modes are 
parameterized in terms of the geometrical domain and the operating conditions. 

Fig. 7. The POD modes for the concentration in the cylindrical grain case resulting from the POD-FV-ROM implementation in OpenFOAM. These modes are 
parameterized in terms of the geometrical domain and the operating conditions. 

Fig. 8. Comparison between the SCIANTIX reconstruction, the high fidelity 
solution and the analytical solution at equilibrium of the spherical case in terms 
of average concentration. 

Fig. 9. Comparison between the SCIANTIX reconstruction and the high fidelity 
solution of the cylindrical case in terms of average concentration. 

3 For the sphere case, it is worth noting that state-of-the-art algorithms 
available in fuel performance codes use expansions of the concentration solu-
tion with three to six terms, which is in line with what we obtained for the 
reduced order model. 
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the reconstruction of the concentration field with an imposed temper-
ature, therefore without solving the heat equation as in the spherical 
case, returns a 1.4% error adopting five modes. Therefore, it is possible 
to conclude that this error is due to the linearization of the diffusion 
coefficient (Eq. (27)). This leaves room for future optimization of the 
proposed model using, e.g., a higher order approximation or a piecewise 
linear approximation of the diffusion coefficient. 

The high error obtained for the cylindrical case is in line with the 
uncertainty analysis carried out in Ref. [50] from which is clear that the 
diffusion coefficient represent the parameter which dominates over the 
uncertainty associated with the asymptotic average concentration. 

The difference of the spatial distribution of the concentration field 
between FOM and ROM, both for the spherical and cylindrical case, is 
reported in Figs. 10 and 11. 

Summarizing, the application of the reduced order model for the 
spherical grain case requires: (i) once and for all the calculation of the 
matrices A and B which are then encoded in SCIANTIX; (ii) at each time 
step the five coupled ODEs (Eq. (32)) are solved; (iii) at each time step, 
Eq. (35) is used to reconstruct the solution. Similarly, the reduced order 
model for the cylindrical grain case requires: (i) once and for all the 
calculation of the matrices H, J, K, L, X, M, N and P which are then 
encoded in SCIANTIX; (ii) at each time step the four coupled ODEs (Eq. 
(33) and (34)) are solved; (iii) at each time step, Eq. (35) is used to 
reconstruct the solution in terms of average gas concentration. 

6. Comparison with the state-of-the-art algorithms 

In this Section we present a random numerical experiment aimed at 
comparing the accuracy and computational time of the reduced order 
model to other numerical algorithms for time-varying condition 
currently used in fuel performance codes. Since the proposed reduced 
order model for the cylindrical grain case is a first of a kind in the field of 
fuel performance, the comparison is dedicated to the spherical grain 
case, where comparison with the state-of-the-art is possible. 

As comparisons, we selected the state-of-the-art FORMAS [13–15] 
algorithm and the quasi-exact ANS-5.4 algorithm [15–18]. In FORMAS 
the solution is obtained exploiting an expansion in a series of ortho-
normal eigenfunctions of the radial part of the spherical Laplacian. 
Among the various versions of the FORMAS algorithm, we adopt the one 
with four exponential terms [14], which is available in fuel performance 
codes, e.g. TRANSURANUS [9] and BISON [51]. This version of the 
FORMAS algorithm is thus solving four decoupled ODEs compared to 

the five coupled ODEs of the proposed algorithm. For what concerns the 
quasi-exact ANS-5.4 algorithm, it was used as a reference solution in 
several numerical experiments [15,20,52,53] because it is affected only 
by the numerical error due to discretization of a real operation history 
into piecewise-constant conditions. We adopt the ANS-5.4 algorithm 
with thirty spatial modes which guarantee excellent accuracy even in 
time-varying conditions. 

6.1. Set-up of numerical experiment 

Following the work of [20,21], the proposed numerical experiment 
consists of applying each algorithm to Eq. (1) for 1000 
randomly-generated power histories. Each power history is piecewise--
linear4. The following quantities are considered as random variables 
(sampled from uniform distributions):  

⋅ Number of linear steps [2;10];  
⋅ Time duration of each linear step [10 h; 10000 h];  
⋅ Temperature [1000 K; 3000 K];  
⋅ Fission rate [1 × 1018 fiss m− 3s− 1; 3 × 1019 fiss m− 3s− 1]. 

The conditions selected are such as to cover a fractional fission gas 
release (FGR) range of [0; 0.7]. The figure of merits for testing and 
comparing the algorithms are (i) the average concentration at the end of 
the history ct(tend); (ii) the fractional FGR f at the end of the history; and 
(iii) the execution time texe

5. The fractional FGR f is defined as: 

f :=
ccreated(tend) − ct(tend)

ccreated(tend)
(36)  

where ccreated is the concentration of gas created and tend is the final time 
of the power history. 

Fig. 10. Difference between the high fidelity concentration field and the reconstructed one for the spherical case in correspondence of three time steps.  

Fig. 11. Difference between the high fidelity concentration field and the reconstructed one for the cylindrical case in correspondence of three time steps.  

4 The random histories of the numerical experiment reported in this Section 
have been constructed as piecewise-linear since this temporal discretization is 
typically applied in fuel performance codes.  

5 For this numerical experiment, we consider the mathematical formulation 
of the intra-granular fission gas release problem based on the hypothesis of 
equilibrium between bubble trapping and resolution (quasi-stationary 
approach). The models adopted for Deff, b and g are [45,54,55], respectively. 
For the sake of the verification procedure, the choice of these models is not a 
strong requirement. 
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6.2. Results and discussion 

The results of the numerical experiment are presented in Figs. 12–14 
for the FORMAS algorithm, the ANS-5.4 algorithm, and the reduced 
order algorithm applied to Eq. (1) (from here on referred to as REDUCE). 
Each point in these figures corresponds to one of 1000 randomly- 
generated power histories. 

From Fig. 12, the deviation from the 45◦ diagonal is a measure of the 
accuracy. As can be seen, the REDUCE algorithm is able to calculate the 
intra-granular average concentration with a very good accuracy, indeed 
in the figures only a slight deviation is perceived corresponding to less 
than 1.3%. The reduced algorithm proves to be able to predict the so-
lution also in correspondence of those stories characterized by steep 

variations of the parameters, although it has been implemented in 
constant conditions. 

In Fig. 13, we have adopted the same graphic representation of the 
numerical experiment related to intra-granular average fission gas 
concentration. In this case, any deviation from the 45◦ is a measure of 
the accuracy in terms of intra-granular fission gas release. In the com-
parison figures, a deviation is perceived for release values lower than 
0.2, where the REDUCE algorithm returns a slight underestimation. This 
behaviour is due to the fact that the FORMAS algorithm used in this 
work applies an artificial correction for f < 0.1 [15] which consists in 
approximating the solution with a polynomial term when 0 ≤ f ≤ 0.1 
with a relative error < 10− 6, while the ANS-5.4 algorithm computes a 
high-fidelity solution of the diffusion problem thanks to its 

Fig. 12. Comparison between the values of intra-granular average fission gas concentration, ct , calculated by the REDUCE, FORMAS, and ANS-5.4 algorithms. Each 
point corresponds to a calculation with randomly generated conditions. 

Fig. 13. Comparison between the values of intra-granular fission gas release calculated by the REDUCE, FORMAS, and ANS-5.4 algorithms. Each point corresponds 
to a calculation with randomly generated conditions. 
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characteristics mentioned above, i.e., the high number of modes. The 
current version of REDUCE does not apply any dedicated correction for 
this regime, since being developed targeting application in fast reactor 
conditions, the range of low fission gas release is not a priority at this 
stage of the development. 

In Fig. 14, it is possible to appreciate the computational times taken 
by the three algorithms. As expected, the REDUCE algorithm takes 
longer to complete the simulation than the FORMAS algorithm, about 
1.2 times longer, since the version of FORMAS used in this work with 
four exponential terms solves four decoupled ODEs that are computa-
tionally more efficient than solving a system of five coupled ODEs. On 
the other side results that the REDUCE algorithm has a computational 
cost about 1.6 times lower than the ANS-5.4 algorithm having to solve in 
this case thirty spatial modes that correspond to thirty decoupled ODEs. 
The computational time of REDUCE appears thus to be in line with the 

requirements of fuel performance codes. 
To investigate in finer detail the accuracy of the three algorithms in 

Fig. 15 we show the relative error of the solution obtained with each 
algorithm with respect to a reference solution. This reference solution is 
obtained by increasing the number of modes of the ANS-5.4 algorithm so 
that it is sufficiently high to ensure that the truncation error is negligible, 
moreover each time interval has been discretized in 5000 sub-steps 
compared to the 1000 sub-steps used for the solution through the pro-
posed algorithms [53]. Focusing on Fig. 15a, it is possible to see that the 
accuracy of REDUCE algorithm is comparable than that of FORMAS and 
ANS-5.4, showing a relative error below one percent in more than 90% 
of the analyzed random histories. The maximum discrepancy occurs in 
correspondence of the histories characterized by strong variations of 
temperature and fission rate values due to the different implementation 
characteristics of the three algorithms. As mentioned, the FORMAS 

Fig. 14. Comparison between the values of execution time calculated by the REDUCE, FORMAS, and ANS-5.4 algorithms. Each point corresponds to a calculation 
with randomly generated conditions. 

Fig. 15. Comparison between REDUCE, FORMAS, and ANS-5.4 algorithms in terms of relative error with respect to the reference algorithm. Each point corresponds 
to a calculation with randomly generated conditions. 
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algorithm was implemented in time-varying conditions therefore man-
ages to better capture the sharp change of parameters instead the 
quasi-exact ANS-5.4 algorithm, although it has been implemented in 
constant conditions, good accuracies are obtained in time-varying situ-
ations thanks to the high number of modes used. We can therefore 
conclude that, although the reduced order model has been derived and 
implemented for application in constant conditions, it is capable of a 
complete description of the diffusive phenomenon in a wide range of 
situations, as the FORMAS and ANS-5.4 algorithms do. In Fig. 15b is 
possible to see more in detail the discrepancy already depicted in Fig. 13 
which occurs most in correspondence of the histories characterized by 
low fission gas values, which as mentioned are those of least interest for 
application in fast reactor conditions. Remarkably, the relative error 
associated with the REDUCE algorithm is highly consistent over the 
whole range of intra-granular fission gas release, despite not being 
subject to any correction for f < 0.1. 

7. Conclusions and future developments 

In this paper, a novel approach based on reduced order modelling is 
developed to solve the problem of intra-granular fission gas diffusion 
inside spherical and cylindrical grains, in terms of average intra- 
granular gas concentration. The aim of this work is to construct a nu-
merical model that is applicable in fuel performance codes and that al-
lows overcoming the hypotheses of spherical grains and uniform 
temperature and fission rate assumed in state-of-the-art algorithms. The 
proposed reduced order model employs the proper orthogonal decom-
position technique to select the most energetic modes of the intra- 
granular gas concentration from snapshots of an high-fidelity solution 
of the problem. The solution of the gas diffusion problem (i.e., the 
average intra-granular gas concentration evolution in time) is recon-
structed as combination of these modes, for both spherical and cylin-
drical grain geometry. 

When compared to state-of-the-art algorithms for the diffusion of 
fission gas in spherical grains (FORMAS and ANS-5.4), the proposed 
reduced order model shows satisfactory performances, both in terms of 
accuracy and of computational time. Thus, this methodology is in line 
with the current requirements of fuel performance codes. 

Where the proposed reduced order modelling methodology shines is 
in the application to the problem of diffusion in columnar grains, which 
can not be approached with state-of-the-art algorithms. The model can 
also be adapted to solve more general formulations of fission gas 
behaviour, for instance, including terms for bubble motion and/or 
nucleation. The integration of the proposed reduced order model in fuel 
performance codes is the natural extension of the present work. This 
further development is potentially challenging since the typical size of 
columnar grains is larger than the standard mesh cells used in fuel 
performance simulations, which may require a dedicated coupling 
scheme between the fission gas behaviour model and the fuel perfor-
mance code itself. 

After its integration in fuel performance codes, the integral valida-
tion of the proposed model to demonstrate its capabilities in providing 
consistent results will be carried out through the assessment of several 
fuel rod irradiation experiments. In particular, the spherical reduced 
order model will be validated through the GE7 irradiation experiment 
from the Risø-3 experimental program, included in the IAEA FUMEX-III 
Project [56–58] instead the available validation database on the 
SUPERFACT-1 irradiation experiment [59,60] will be considered for the 
cylindrical model. 

Summarizing, the main outcome of this work is the application of the 
reduced order methodology to the fission gas diffusion problem in 
columnar (cylindrical) grains, improving the physics-based description 
of nuclear fuel behaviour in fast reactors within engineering tools. The 
proposed methodology of developing reduced order models to be 
introduced within fuel performance codes can be extended to other fuel 
concepts (e.g., uranium silicide fuel grains) and to other phenomena 

besides fission gas behaviour (e.g., hydrogen precipitation in the clad-
ding). The current version of the proposed reduce order models have 
been implemented in the SCIANTIX code. 
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