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Abstract— In hybrid industrial environments, workers’ com-
fort and positive perception of safety are essential requirements
for successful acceptance and usage of collaborative robots. This
paper proposes a novel human-robot interaction framework
in which the robot behaviour is adapted online according
to the operator’s cognitive workload and stress. The method
exploits the generation of B-spline trajectories in the joint
space and formulation of a multi-objective optimisation problem
to online adjust the total execution time and smoothness of
the robot trajectories. The former ensures human efficiency
and productivity of the workplace, while the latter contributes
to safeguarding the user’s comfort and cognitive ergonomics.
The performance of the proposed framework was evaluated in
a typical industrial task. Results demonstrated its capability
to enhance the productivity of the human-robot dyad while
mitigating the cognitive workload induced in the worker.

Index Terms— Human Factors and Human-in-the-Loop;
Human-Centered Robotics; Human-Robot Collaboration

I. INTRODUCTION

The trend towards Industry 5.0 will bring humans and ma-
chines together to enable resource-efficient and user-centred
manufacturing. This vision goes beyond mere efficiency and
productivity and aims to place the well-being of workers at
the centre of industrial processes [1]. To bring this into reality,
collaborative robots (CoBots) have been increasingly adopted
in industries to relieve their human counterparts from the
physical effort (e.g. introduced by handling heavy loads [2])
and provide support in accomplishing hazardous operations
(e.g. dealing with chemical material [3]). Nevertheless, the
coexistence of humans and Cobots in the same workplace
may lead to adverse health outcomes in terms of mental stress
and anxiety [4], which should be profoundly studied.

In view of the prosperity of the next generation production
lines, it is crucial to design human-robot collaboration (HRC)
systems capable of online assessing the operator’s mental
fatigue and adapting the behaviour of the robotic teammate
when needed. Research following this principle, usually
referred to as “affective robotics” (i.e. the combination of
robotics and affective computing), relies on the monitoring
and interpretation of nonverbal communication, such as gaze
direction [5], body language [6], [7] and physiological signals
(i.e. cardiac [8], [9] and electrodermal [10] activity). The
requirement to continuously gather information about the
mental processes is motivated by the high subjectivity and
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Fig. 1: Overall procedure for psychologically safe HRC.

multidimensional construct of psychological status. Besides,
due to the cumulative nature of the mental fatigue, the
operator’s needs may vary along with the task execution.

A first attempt toward affective robotics in industrial
settings was made in [8], where the remote control of a
mobile robot was simplified when the user’s cognitive load,
estimated by analysing the heart rate variability (HRV), was
exceeding human capabilities. Assistance to stressed users was
provided by reducing the maximum velocity and assigning
an almost autonomous behaviour to the robot. Besides, the
work of [9] modelled HRC as a repeated non-cooperative
game between two self-interested players, i.e. the human
and the robot. The former is assumed to aim at minimising
his/her stress while the latter at maximising productivity. So,
the state of collaboration was estimated, and CoBot pace
adjusted accordingly. However, a great scope of improvement
is envisaged on this topic addressing not only the robot timing
but also its behaviour and adaptation capabilities.

To contribute to tackling the ambitious challenge, this paper
proposes a framework to simultaneously optimise the human
cognitive workload and productivity during the collaboration
by online adapting the CoBot’s trajectory (see Fig. 1). A multi-
objective optimisation problem is implemented to tune the
total execution time and smoothness of the joint trajectories
accomplished by the robot. The smoothness is achieved by
generating trajectories featuring continuous joint acceleration,
which yield a limited absolute value of the jerk (i.e. the third
time derivative of position). Such smooth robot manoeuvres
have shown to be more legible [11] and contribute to a safer
and more comfortable sensation by the human co-workers
[12], which might be due to their resemblance to natural
arm movements [13]. Minimum-jerk trajectories have the
potential to ensure cognitive ergonomics, reducing the mental
demand [14]. However, the pure minimisation of the jerk will
lead to slow robot motions, compromising the productivity of
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the human-robot dyad. Therefore, an objective to minimise
the total time needed for following the path is included. An
online decision-making algorithm is then implemented to
select the most appropriate solution, balancing a trade-off
between robot execution speed and the user’s mental fatigue,
which is continuously monitored by analysing HRV.

To the best of our knowledge, it is the first time that
the CoBot’s trajectory is adapted online to keep the human
cognitive workload bounded and ensure psychologically safe
HRC. The proposed framework was tested in a collaborative
task, where the human and CoBot were asked to work together
and achieve a common goal (see multimedia attachment1).

II. FAST AND PSYCHOLOGICALLY SAFE
TRAJECTORIES FOR COBOTS

The working principle of the psychologically safe HRC
framework is highlighted in Figure 1. The goal is to solve the
trade-off between system productivity and acceptable amount
of human cognitive workload in industrial tasks.

To enhance the intuitiveness and flexibility of the frame-
work, we implemented a waypoint-based trajectory planner.
Indeed, the user can easily teach the CoBot a new task by
manually positioning and orienting the joints in a sequence
of desired poses, referred to as waypoints. A path passing
through the waypoints is thus generated, whose smoothness
and the associated timing law depend on the operator’s
psychological state. Proper timing laws can be used to
generate fast CoBot trajectories, guaranteeing the productivity
of the human-robot dyad. However, work intensification in
the long term might induce a non-negligible cognitive load.
Hence, the smoothness can be tuned to safeguard the user’s
comfort and cognitive ergonomics.

Our framework monitors the human cognitive load by
analysing the heart rate variability and continuously regulates
the robot joint trajectories. The purpose is to find the most
appropriate pace of interaction for each specific user and
online adapt it to fulfil changes in the individual needs. This
allows keeping the human mental demand and stress bounded
while maximising system productivity.

A. Quintic B-spline Trajectories in the Joint Space

The trajectory planning problem exploits the formulation
of B-splines in the joint space. A general B-spline curve of
degree p is defined as

b(t) =
C+1

∑
k=1

ckNk,p(t), (1)

where Nk,p(t) are basis functions expressed recursively by
the De Boor formula [15] through the definition of a sequence
of M + 1 knots [τ1, τ2, . . . τM+1] in the interval t ∈ [0, tf]
⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

Nk,p(t) =
t−τk

τk+p−τk
Nk,p−1(t) +

τk+p+1−t

τk+p+1−τk+1
Nk+1,p−1(t)

Nk,0(t) =

⎧⎪⎪
⎨
⎪⎪⎩

1, if τk ≤ t < τk+1
0, otherwise.

(2)
1The video can also be found at https://youtu.be/ZZ8OXijARqU.
1Throughout the paper, “cognitive load” refers to the amount of mental

processing and stress inducted by HRC. Note that the term “stress” is
occasionally used as a synonym to simplify the argumentation.

The C+1 coefficients ck of the linear combination are named
control points and define a polygon in which the curve b(t)
is contained. Another key feature of this curve is that its
derivatives are continuous up to the {p−1}-th derivative, i.e.
Cp−1. For further details about B-spline curves, the reader is
referred to [16].

Within the proposed control strategy, we generate B-
spline curves of degree five to obtain trajectories with
continuous forth-derivative of the joint position, thus guaran-
teeing bounded values of joint velocity, acceleration and
jerk along the path. Moreover, p = 5 permits imposing
boundary conditions till the acceleration. Each joint trajectory
is subject to the condition of passing through W waypoints
{w1,w2, . . . ,wW }

j at a sequence of unknown time instants
{t1, t2, . . . , tW }. In the next section, the procedure to find
the optimal time intervals between consecutive waypoints is
defined.

Given the intervals vector, the knot vector τ can be filled.
The values at the extremities feature multiplicity p+1, so
that the first and last control points coincide with the desired
waypoints w1 and wW and are attained at t1 = 0 and tW =
tf. Two virtual points have been additionally introduced to
impose zero boundary conditions also for the jerk in fifth-
degree curves. As a result, each joint j position trajectory
is defined as qj(t) = b(t) with p = 5, τ is composed by
M +1 = (W +2) + 2p = W +12 knots (see Fig. 2) and the
number of required control points cjk,0 is C+1 =W+p+1 =W+6.

The derivative of a B-spline curve of degree p is a B-spline
of degree p−1. Therefore, joint velocity, acceleration and jerk
result in

q̇j(t) =
C

∑
k=1

cjk,1Nk,p−1(t), (3)

q̈j(t) =
C−1

∑
k=1

cjk,2Nk,p−2(t), (4)

...
q j(t) =

C−2

∑
k=1

cjk,3Nk,p−3(t). (5)

where the control points of d-th derivative are expressed as

cjk,d =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

cjk,0 if d = 0

(p + 1 − d)
cjk,d−1 − c

j
k−1,d−1

τk+p+1−d − τk
otherwise.

(6)

Fig. 2: B-spline curve passing through a set of waypoints (black
dots) and two virtual points (gray dots). Time intervals hl between
consecutive points, defining optimisation vector h, are highlighted.
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B. Multi-objective Time/Jerk Trajectory Optimisation

The robot trajectory based on B-splines in the joint space
is optimised by simultaneously minimising the total execution
time and the integral of squared jerk (i.e. maximise the
smoothness) along the trajectory. It is trivial to notice that the
two components have opposite effects: lessening the former
results in rapidly completed trajectories that features large
kinematic quantities values, while reducing the latter leads
to more smooth trajectories taking more time to reach the
target pose. Ultimately, we aim to find the optimal trade-off
in the current human cognitive load condition.

A multi-objective optimisation problem is designed as

min
h

ftime(h) =D
W+1

∑
l=1

hl

min
h

fjerk(h) =
D

∑
j=1
∫

tf

0
(
C−2

∑
k=1

cjk,3Nk,p−3(t))

2

dt

s.t. ∣q̇j(t)∣ ≤ v
max
j

∣q̈j(t)∣ ≤ a
max
j j = 1, . . . ,D

∣
...
q j(t)∣ ≤ ψ

max
j

hl ≥ h
lb
l l = 1, . . . ,W + 1

(7)

where the variables that should be optimised2are the time
intervals between consecutive waypoints (see Fig.2), namely
hl = τp+l+1 − τp+l, and are grouped in the decision vector

h = [h1, h2, . . . , hW+1]. (8)

The optimisation is subject to inequality constraints on the
joints velocity, acceleration and jerk. Exploiting the convex
hull property of B-splines, those constraints can be expressed
in terms of the corresponding control points, cjk,1, cjk,2, cjk,3:

∣cjk,1∣ =∣
p(cjk+1,0 − c

j
k,0)

∑
k
z=max(1,k−p+1) hz

∣ ≤ vmax
j k = 1, ..C

∣cjk,2∣ =∣
(p − 1)(cjk+1,1 − c

j
k,1)

∑
k
z=max(1,k−p+2) hz

∣ ≤ amax
j k = 1, ..C − 1

∣cjk,3∣ =∣
(p − 2)(cjk+1,2 − c

j
k,2)

∑
k
z=max(1,k−p+3) hz

∣ ≤ ψmax
j k = 1, ..C − 2.

(9)

Notice that this is a sufficient condition for the validity of the
constraints. Besides, optimisation variables are lower bounded

hlb
l = max

j=1,...D
{
∣wj

l+1 −w
j
l ∣

vmax
j

}, (10)

since any interval between a pair of consecutive waypoints
(wj

i , w
j
i+1) cannot be run at infinite velocity.

The constrained bi-objective problem is addressed using the
well-known multi-objective algorithm NSGA-II [17]. This
procedure consists of computing a set of non-dominated
solutions in the objective space, namely solutions for which

2Note that the basis function Nk,p−3 can be expressed in analytical form
as a function of h through the recursive formula in (2). This allows us to
compute the integral of the squared jerk in fjerk. However, the computation
is extremely verbose, thus a numerical integration procedure can also be
exploited at the cost of increasing the computation time.

none of the objective functions can be improved in value
without deteriorating the other objective. This set is called
Pareto optimal front F and reveals the essential trade-offs
between the objectives ftime and fjerk, represented with gray
circles in Fig.3. Each solution in F corresponds to a diverse
interval vector h in the parameter space, thus to robot
trajectories with different features. Throughout the paper,
the resulting set of interval vectors will be referred to as X .

C. Online Human Cognitive Load Monitoring

An online decision-making algorithm is implemented to
select the most appropriate interval vector h from the set X
according to the human socio-physical workload. The latter
is continuously monitored during the interaction by analysing
the heart rate variability (HRV).

HRV has been identified as a highly sensitive marker
of physiological conditions that likely alters the balance
between sympathetic and parasympathetic nervous systems.
The analysis of HRV relies on the computation of the time
intervals (also referred to as RR intervals) between two
consecutive heartbeats (i.e. R peaks) and their variation over
time. Among various metrics proposed in the literature, the
mean RR interval (RR) was selected since it appeared to
be the most sensitive measure of the mental effort and, in
contrast to other measures, was proved to be reliable also
when calculated in ultra-short recordings (10-30s) [18].

In this work, we periodically compute the mean value RRi

within a window of fixed time duration (at iteration i) and we
compare it with the value at the previous iteration RRi−1. An
intense cognitive demand leads to a decrease of RR. When
the variation exceeding a minimum value ∆r→s and RRi is
below the bound of the mean value at rest RRr, i.e.

(RRi −RRi−1 < −∆r→s ) ∧ (RRi < RRr ), (11)

a change toward higher mental workload level is detected.
In this condition, we want to choose the interval vector out
of the set X that boosts the smoothness of the desired robot
trajectory at the cost of losing performance (i.e. assigning
more importance to minimising the jerk than the total

Fig. 3: Pareto Optimal Front F (gray circles, normalised for sake
of clarity) resulting by minimum time-jerk optimisation. Blue dots
denote the front F∗ after the downsampling procedure.
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execution time). To this aim, we move in the objective space
solutions F of a number of steps

δ = ⌊
∆RRr +∆r→s

∆r→s
⌋ < 0, (12)

proportional to the variation of RR between consecutive time
windows

∆RRr = RRi −min(RRr, RRi−1). (13)

Note that if RRi−1 is above the value at rest RRr, the variation
∆RRr is performed with respect to resting conditions. Also,
the floor function in (12) ensures that a slight variation in
the stress range is mapped into a step in the solutions, while
N steps are computed with ∆RRr = −(N+1)∆r→s.

Since our final aim is to enhance productivity without
perilously increasing workers’ cognitive demand, positive RR
variations out of the range of stress (see Fig.4), i.e.

(RRi −RRi−1 > 0) ∧ (RRi ≥ RRs ), (14)

are mapped into steps in the Pareto optimal front F toward
faster but less smooth trajectories. In particular, δ is defined
as

δ = ⌈
∆RRs

∆s→r
⌉ > 0 (15)

where the variation of RR is here computed in relation to
stressful conditions, i.e.

∆RRs = RRi −max(RRs, RRi−1), (16)

to avoid pushing productivity when the subject is already
stressed. Note that ∆s→r >∆r→s, reflecting the hysteresis of
the human body to switch between different mental states [8].
This means that the minimum variation required to detect
a change in the cognitive load level from rest to stress
∆r→s is higher than the transition between stress to rest
∆s→r. Thus, we foster the minimisation of the execution time
resulting in trajectories that features large values of kinematic
quantities, though lower than the upper bounds imposed in
the optimisation inequality constraints. Moreover, the ceil
function in (15) settles on one step toward faster trajectories
when small positive variations ∆RRs are registered. More
steps are performed every multiple of ∆s→r.

Finally, no action is taken (δ = 0) with variations of RR
in [−∆r→s,0]. To prevent cumulative stress, it is checked
that RRi has not gradually reached undesirable low values
during the task. On that occasion, a step toward more relaxing
trajectories is performed (δ = −1). The reader can find the
main steps of our online decision-making algorithm in Alg.1.

D. Psychologically Safe Trajectories Generation

Once the optimal h is selected, the interpolation problem
for each joint j = 1, ..D can be solved by defining a system of
6+W equations. The six boundary conditions, namely initial
and final values assumed by q̇, q̈, and

...
q , are easily imposed

by equalling them to the corresponding first and last control
points (e.g. c0,1 = q̇(0) = initial velocity)3. The remaining
W equations express the passage of the joint trajectory q(t)
through the waypoints (e.g. q(τ(p+1)+3) = w3). Since all

3Note that q refers to the configuration vector, i.e. vector of joints positions.
Accordingly, q̇, q̈,

...
q are joint velocity, acceleration and jerk vectors.

Algorithm 1 HRV-based Decision Making

1: procedure DECISIONMAKER
2: ∆r→s ← select min RRvariation r→s
3: ∆s→r ← select min RRvariation s→r
4: for each path ∈ P do
5: Xpath ← compute Pareto solution set(path)
6: kpath ← set initial solution index
7: top:
8: for each path ∈ P do
9: hpath = Xpath[kpath, ∶] ▷ Select optimal solution

10: loop:
11: RRi ← compute mean RR
12: ∆RRi ← RRi −RRi−1;
13: if (∆RRi < −∆r→s) ∧ (RRi < RRr) then
14: δ ← using (12) ▷ Stress detected: fostering fjerk

15: else if (∆RRi > 0) ∧ (RRi ≥ RRs) then
16: δ ← using (15) ▷ Rest detected: fostering ftime

17: else if RRi < RR
max
s then

18: δ ← −1 ▷ Cumulative stress detected
19: else
20: δ ← 0
21: kpath ← kpath + δ
22: i++
23: goto top.

Fig. 4: Detection of changes in cognitive load level in relation to
RRi variations.

equations can be expressed as a linear combination of the
control points cjk,0 defining the joint position, the system can
be rewritten as the linear system

AΘj = Bj , (17)

where the matrix A depends only on the interval vector h
and is common to all joints, while the unknowns are the set
of control points

Θj =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

cj1,0
. . .

cjC+1,0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (18)

Given the optimal h computed by the time-jerk optimisa-
tion and decision-making procedure (described in previous
sections), the matrix A is computed and used in (17) to
obtain the control points for each joint j. As a result, the
optimal trajectories for robot joints are fully defined: the
desired joints position and velocity are computed by (1) and
(3), respectively, and sent to the robot.

III. EXPERIMENTS

The proposed control strategy was validated in a collabora-
tive task, where the human and the robot were required to fill
boxes before the dispatch. The task exemplified a scenario
in which the robot has to perform a repetitive activity, but
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Fig. 5: Overview of the experimental setup involving: human
operator, industrial CoBot and shared workplace.

the human intervention enables the product customisation to
fulfil task requirements and customer demand.

A. Task description

The human-robot dyad was asked to performed cyclically
the following collaborative task (experimental setup in Fig.5).
The industrial CoBot UR16e (Universal Robots, controlled at
500 Hz) equipped with the Robotiq’s vacuum gripper EPick
picked a new empty box from B1 and brings it in B2. Inside
the box, there were three codes corresponding to objects
that were present on a shelf. The participant was asked to
select the correct objects from positions A1 and C1 and place
them in A2 and C2, respectively, located in the human-robot
shared area. The CoBot, in turn, took them from the shared
workplace and inserted them into the box. The third code
matched an aluminium profile in location D1 that had to be
put directly inside the box by the participant. Finally, the
human closed the box and left it in position B3. Meanwhile,
the CoBot had grasped a new box, and a new cycle began.

The task was designed to induce a mild cognitive load, as
it occurs in real-world industrial environments. The electro-
cardiogram (ECG) signal of the participant was monitored by
Polar H10 chest strap (130 Hz) for the entire duration of the
experiment. Cardiovascular data were streamed to the CPU
running the proposed framework via Bluetooth and processed
to extract RR intervals. Every 30 seconds, the mean value of
inter-beats intervals RRi in the past window was computed
and used to enhance the collaboration. The architecture
and communications were implemented exploiting Robot
Operating System (ROS) platform.

B. Experimental protocol

Twelve healthy volunteers, seven males and five females
(26.9 ± 1.7 years old), were recruited within students and
research personeel of Istituto Italiano di Tecnologia4. Before
the beginning of the experiment, the person-specific baseline
values of ECG were recorded and the mean inter-beats interval
in resting conditions RRr was registered.

The CoBot tracked trajectories computed by interpolating
a sequence of waypoints, defined a priori by the authors, with

4The experimental protocol was approved by the ethics committee ASL
Genovese N.3 (Protocol IIT HRII ERGOLEAN 156/2020).

the method described above. The values of joints kinematic
quantities at the extremities (i.e. boundary conditions) were
fixed to zero to allow the pick and place of involved
components, while the upper bounds vmax

j , amax
j , and ψmax

j

were set following UR16e specifications. The constrained bi-
objective optimisation problem was solved using the NSGA-
II algorithm with a population size of 90. The resulting
Pareto front F and the corresponding solution set X was
then downsampled (a possible solution in Fig.3).

To define the final samples and the parameters of the
HRV-based decision-making algorithm, we referred to [8].
Accordingly, we set ∆r→s = 0.02s and ∆s→r = 0.01s. In
addition, we assumed that RR could span in the range
[RRs − σs, RRr + σr] (see Fig.6), where σs and σr are
the standard deviations registered by [8] in stress and rest
conditions. Thus, RR

max
s =RRs− σs and we determined the

final number of solutions in the downsampled set X ∗ as
(RRr+σr)−(RRs−σs)

∆r→s
≈ 15. The downsampling procedure was

then implemented exploiting the decomposition method called
Augmented Scalarization Function and computing the fifteen
solutions by recursively assigning slightly more importance to
ftime with respect to fjerk. As a result, the former element of
X ∗ was the interval vector h1 corresponding to a minimum-
jerk trajectory, while the latter, i.e. h15, defined a minimum-
time trajectory. The remaining solutions expressed a trade-off
between the two objectives. The higher the number of the
selected solution, the less was the execution time γ of a cycle.

The initial mapping between the HRV parameter and the
downsampled optimal solutions X ∗ is depicted in Fig. 6.
We assumed that, at the experiment begin, the participant
was at rest (RR0≈RRr) so we started from solution h8 (i.e.
15− σr

∆r→s
≈8). Note that the mapping depended on subject-

specific features. Indeed, the range of RR was defined from
the value RRr measured in the calibration phase and the
optimal solutions were associated accordingly.

The study employed a within-subjects testing design in
which each participant experienced three different robot
control strategies. Prior to the experiment, a training phase of
5 minutes was conducted to allow the user to familiarise with
the task. Then, three sessions of 10 minutes were performed
considering different experimental conditions. In condition (a)
and (b), the robot followed minimum-time and minimum-jerk
trajectories, respectively, for the overall duration of the test.
On the contrary, in condition (c), which was the core of this
experimental analysis, the smoothness and total execution
time of the robot trajectories were tuned online according
to the human cognitive load. The order of the conditions
was randomised, and there was a break between following
sessions to prevent learning effects and cumulative workload.

Fig. 6: Initial mapping between RR intervals extracted by ECG
signal and downsampled optimal solution set X ∗.
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C. Measurements and derived statistics

In this section, we present the adopted measurements and
derived statistics to assess the potentials of our framework.

1) Cognitive load: The cognitive workload induced by the
collaborative task in different robot control strategies was
investigated by examining the RR intervals. The latter were
normalised with respect to the corresponding person-specific
baseline, and statistical analysis using the non-parametric
Wilcoxon signed-rank test (WSRT) was performed.

2) Productivity: The production rate of each operator p in
the various conditions was evaluated in terms of completed
boxes per minute

ϕ(s)p =
60

T (s)/b
(s)
p

, (19)

where b(s)p denoted the number of cycles completed in the
overall duration T (s) of condition s (i.e. 10 min).

To estimate the participant’s performance, an error rate
statistic was defined as

ϵ(s)p =
e
(s)
p

b
(s)
p

, (20)

expressing the errors committed per cycle. An error e(s)p

was marked each time the participant failed in selecting the
objects with the correct code or did not place the objects in
time to be picked by the robot.

The average production and error rate statistics over all
participants were used to compare the testing conditions.

IV. EXPERIMENTAL RESULTS

1) Cognitive load: Figure 7 shows the results of condition
c, i.e. the online decision-making procedure based on HRV,
for three out of the twelve participants. In the plots, the
blue profile represents the mean value of RR intervals in 30-
seconds time windows, while the red line depicts the selected
solution. All participants were assumed to start from resting
conditions, so the initial robot trajectory exploited the 8-th
solution of the optimal set of intervals vectors X ∗. However,
it should be noticed that the associated mean RR intervals
differed from one participant to the other. This was because
the RR ranges were defined from the subject-specific value
RRr measured in the calibration phase. When a change toward
a higher cognitive workload level was detected (i.e. a decrease
in the blue profile), we moved toward solutions reducing the
value of the kinematic quantities (joint velocity, acceleration
and jerk) and thus generating smoother but slower trajectories
(see subject 5 in Fig.7). Conversely, solutions resulting in
fast but less smooth motions were picked when the user was
relaxed (higher jerk values in close up β of Fig.7).

Results of the comparison of normalised values of RR in the
three different experimental conditions are depicted in Fig.8.
According to the employed statistic, condition a was the most
cognitive demanding among the tested conditions. Conversely,
minimum-jerk robot movements (condition b) resulted in
minimum levels of cognitive load and could be considered
a lower bound reference for the developed workload in
HRC. Interestingly, the cognitive demand in condition c
was comparable to condition b. The statistical analysis
consistently revealed statistically significant differences of
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q for all joints and execution time γ of two task cycles.

TABLE I: Productivity statistics of different testing conditions.
(a)Minimum Time (b)Minimum Jerk (c)Tuned Online

ϕ 1.275 0.300 1.025
ϵ 0.537 0.028 0.196

RR in condition a with respect to condition b and c (WSRT
test, p-value= 4.88 ⋅ 10−4). On the contrary, the average RR
in conditions b and c could not be considered statistically
different (WSRT test, p-value= 0.064).

2) Productivity: Outcomes of the proposed productivity
statistics are reported in Tab. I. According to the data
acquired in this study, if the robot followed minimum-time
trajectories (i.e. conditions a), the production rate was clearly
high; however, the percentage of human errors was about
54%. On the other hand, tracking minimum-jerk motions,
as in conditions b, led to a few errors during the task
accomplishment but a low production rate. The average
productivity in the tuned condition c was almost comparable to
condition a, but the committed errors diminished considerably.

V. DISCUSSION

What stands out in Fig.7 is the capability of our framework
to find the most appropriate solution for each human operator
with his/her specific ranges of RR. It should also be noticed
that the needs of a specific subject may vary while performing
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Fig. 8: Normalised RR intervals during testing conditions. Signifi-
cance level are indicated at the *p<0.05, **p<0.005.

the activity due to human cumulative fatigue, task demand, or
even environmental factors (e.g. noise). Our tuning algorithm
permits online adapting robot motion characteristics and pace
of interaction according to the current human mental state (as
registered for participant 2 in Fig.7). In addition, the statistical
analysis revealed that the cognitive load induced by the
collaborative task in the tuned condition was comparable to
the reference value of minimum mental effort experienced by
the worker in HRC. This is a remarkable outcome indicating
that the proposed framework is effective in mitigating the
cognitive load in mixed human-robot environments.

Concerning the human-robot throughput, increasing the
robot speed always leads to a rise in the production rate.
Nevertheless, it severely affects the quality of the collaborative
activity. Our method guarantees excellent levels of average
productivity without compromising human performance in
terms of errors committed nor inducing mental fatigue.

Besides, it is worth mentioning that collaborative manipula-
tion tasks require constraint switching of different trajectories
dictated by sub-task requirements (e.g. q̇=0 during object
grasping), which contributes to increase the variation rate of
velocity and acceleration. This is the reason we cannot force
the velocity and smoothness of joints trajectories at the same
time, and thus, we implement time/jerk minimisation. Further
strengths of the employed multi-objective optimisation are the
no need to normalise the involved objectives and the absence
of an initialisation procedure, which are critical steps when
considering single-objective problems with weighted terms.

VI. CONCLUSIONS

This paper presented an advanced HRC strategy to safe-
guard and potentially minimise work-related cognitive load
in hybrid industrial environments. The online adaptation of
CoBot’s movements to the detected human cognitive load
turned out to be beneficial since participants maintained
almost rest conditions while upholding high production
rate. This demonstrated the potential of our framework in
solving the trade-off between system productivity and human
cognitive load. Strong points included the specificity of the
framework to each operator and sensitivity to variations of
load conditions during the task execution.

In this study, the assessment of cognitive load was limited

to the analysis of HRV. Future works could enlarge the
processing to other physiological signals (i.e. galvanic skin re-
sponse) for more robust monitoring, also considering physical
factors. In addition, it would be interesting to include a motion
capture system in the setup to track human movements during
the collaboration and detect excessive work intensification
and hazardous time pressure. This would also give us the
opportunity to add objectives in the trajectory optimisation
relative to the worker’s distance and configuration.
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