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Abstract

A continuum theory based on thermodynamics has been developed for modeling diffusional creep of
polycrystalline solids. It consists of a coupled problem of vacancy diffusion and mechanics where the
vacancy generation/absorption at grain boundaries is driven by grain boundary dislocations climb. The
model is stated in terms of general balance laws and completed by the choice of constitutive equations
consistent with classical non-equilibrium thermodynamics. The kinetics of diffusional creep is derived
from physically-based mechanisms of climb of dislocations at grain boundaries, thus introducing a depen-
dence of diffusional creep on the density and mobility of boundary dislocations. Several representative
examples have been solved using the finite element method and assuming representative volume elements
made up of an array of regular-shaped crystals. The effect of stress, temperature, grain size, and grain
boundary dislocation mobility is analyzed and compared with classical theories of diffusional creep. The
simulation results demonstrate the ability of the present model to reproduce the macroscopic stress and
grain size dependence observed under both diffusion and interface controlled regimes as well the evolution
of this dependency with the temperature. In addition, the numerical implementation of the model allows
to predict the evolution of microscopic fields through the microstructure.

1 Introduction

At elevated homologous temperatures, the plastic deformation of crystalline solids can be dominated by
diffusion-controlled processes since the mobility of atoms and vacancies increases rapidly with temperature.
Such mechanisms include the so-called diffusional creep in which a plastic deformation results as a con-
sequence of self-diffusion of atoms in individual crystals. Diffusional creep dominates the creep material
response at low stress levels compared with the stress required for dislocation glide. Moreover, diffusional
creep is strongly related to the presence of grain boundaries since grain boundary dislocation climbing is
enhanced at these temperatures and this process involves the generation or absorption of vacancies. The
amount of grain boundaries, and therefore the grain size, strongly influences the creep behavior, leading to
a grain size dependence of the material of the type “smaller is weaker” [1]. This size effect, found at high
temperature, is opposite to the characteristic grain size effect of polycrystals at room temperature, when
deformation is based on dislocation glide and a grain size dependence appears due to dislocation pilling up
[2, 3].

The possibility of diffusion-induced creep in polycrystalline solids was first proposed in the pioneering
works of Nabarro [4], Herring [5] and Coble [6]. In their theories, a steady state creep rate ε̇ was estimated
by considering two concurrent processes, namely the operation of vacancy source and sink at grain-boundary
(GB) and the diffusion between sources and sinks. If the rate of generation/absorption of vacancies at GB is
much faster than the rate of diffusion, the latter is the rate controlling process and boundaries act as perfect
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sinks and sources for vacancies. In such a case, ε̇ ∝ σ/d2 [5] if the diffusion takes place through the lattice,
and ε̇ ∝ σ/d3 [6] in case of dominant GB diffusion (d is the grain size and σ the applied stress).

Subsequently, Ashby [7, 8], Burton [9], and Artz et al. [10] relaxed the hypothesis of perfect boundaries
in the calculation of diffusional creep rates. In particular, Ashby [7] proposed that the operation of vacancy
sources and sinks is the consequence of climb of dislocations along GB. In this view, the rate of vacancy
creation and annihilation can be limited either if the GB dislocation density is insufficient [9], or if the GB
dislocation mobility is affected by the presence of impurities, solutes, or precipitates [10]. In both cases,
a ε̇ ∝ σ2/d relation was predicted when creep deformation is interface controlled, showing a higher stress
dependence than in the case of perfect boundaries.

More recently, numerous studies have proposed continuum models for describing diffusional creep of
polycrystalline aggregates. In the seminal work of Needleman and Rice [11], a diffusion-driven plastic strain
was incorporated at the interfaces among grains with perfect GBs. The proposed formulation was established
in terms of a variational principle and solved numerically through the finite element method. This formulation
was extended by Cocks [12] in order to account for imperfect GBs. Similarly, the transient response of
polycrystalline aggregates separated by sharp GBs, has been analyzed when GB-sliding is coupled with GB-
diffusion by Wei et al. [13]. However, all these studies consider that atomic diffusion takes place only at the
interface among grains.

Continuum formulations for the coupled phenomena of diffusion and mechanics in the overall polycrys-
talline solid can also be found in the literature. Garikipati et al. [14] developed a lattice-based model in
which the diffusional process is posed in terms of vacancy diffusion. In this work, a plastic strain was assigned
in the GB regions to model the effect of creep and it was introduced as result of atoms diffusing towards
the boundary without considering the dislocation-based mechanisms underlying the mechanism. Moreover,
the rate of GB plastic strain was introduced through a penalty-like parameter in order to retrieve the case
of perfect boundaries, leading to a diffusion controlled process independent on the grain boundary charac-
teristics. A similar approach for modeling diffusional creep was pursued recently by Villani et al. [15]. The
model proposed also included creep deformation in the grain interior due to inhomogeneous flux of vacancies
and dislocation plasticity. However, the resulting governing equations have not been derived by following a
clear thermodynamical framework, which is crucial when coupled multi-physical processes are considered.
In addition, as in [14], vacancy generation/annihilation in the grain boundary is assumed instantaneous such
that only diffusion controlled regime can be considered.

A remarkable study on the thermodynamics of diffusional creep can be found in the work by Mishin
et al. [16], where the creep deformation was assumed to be driven by mechanisms involving site genera-
tion/annihilation and flux of vacancies. The rate of dissipative processes was identified based on thermody-
namic restrictions but the kinetics of GB processes was again not addressed in detail. Similarly, a rigorous
thermodynamical framework for diffusion and creep of crystalline systems was proposed by Svoboda et al.
[17]. However, their theory aimed to model the chemo-mechanical processes involved with dislocation climb
in the grain interior, rather than focusing on GB diffusional creep.

The objective of this paper is to develop a crystal-level continuum model capable of describing diffusional
creep of polycrystalline solids based on GB dislocation mechanisms. In particular, the following aspects
characterize the present study.

• The theory is formulated as a coupled problem of vacancy diffusion and mechanics where vacancy
sink and sources in the grain boundaries are linked to dislocation climb. Governing equations are
derived using a consistent thermodynamic framework as desirable for this class of multi-physics pro-
cesses. In such a way, the kinetics of GB processes is correctly identified as function of its conjugated
thermodynamic force.

• Diffusional creep is assumed to occur by climb of GB dislocations as proposed by Ashby [7, 8]. Dif-
ferently from most existing continuum models, the creep kinetics is derived from physically-based
mechanisms of dislocations at the grain boundary. This allows to study the evolution of diffusional
creep as a function of grain boundary dislocation properties, such as their mobility and the density
within the GB. The formulation is able to describe creep processes controlled by diffusion or by vacancy
generation at the interfaces.

• In the scope of the present study, the solid is subjected to conditions such that diffusional creep
is the dominant plastic deformation mechanism. Accordingly, other inelastic contributions, such as
dislocation plasticity in the lattice and GB sliding, are not considered here.

2



• The impact of grain size, applied stress, temperature, and GB dislocation mobility is studied through a
series of representative examples. To this end, the proposed governing equations are solved numerically
through the finite element method.

The paper is organized as follows. The fundamental hypothesis of the model along with the basic
conservation laws and equations describing the mechanics of diffusional creep will be discussed in Section
2. Thermodynamic restrictions are derived in Section 3 from thermodynamic principles stated in terms
of conservation of energy and entropy imbalance. Subsequently, in Section 4, constitutive theory provides
consistent specifications for diffusion, mechanical stress, and kinetics of GB processes. The final form of
governing equations is summarized in Section 5, where the extreme limits of diffusion controlled and reaction
controlled creep are identified. Section 6 is devoted to the discussion of numerical examples, while Section 7
closes the paper with some concluding remarks.

2 Conservation laws and diffusional creep

A crystalline solid is modeled as a binary system consisting of two diffusing species, namely atoms (A) and
vacancies (V ). Atoms and vacancies reside in specific sites called lattice sites (L). For simplicity, pure crystals
or solid solutions with small content of second species are considered, so only one type of atom need to be
considered for the thermodynamics. Atoms are conserved in the solid while vacancies are not because of
vacancy emission/absorption at climbing dislocations in GBs.

Following [15], a diffuse description of grain boundaries is adopted here by introducing the following
phase-field function

φGB
(
d̄
)

=

[
cosh

(
rG 2d̄

dGB

)]−1

, (1)

where d̄ is the distance of any point in the lattice to the closest grain boundary, dGB is the thickness of
the grain diffuse boundary, and rG is a coefficient. As GB migration is not considered in this study, the
phase-field function is time-independent. According to Eq. (1), φGB is a smooth function of the distance to
the closest GB with values ranging from 0 to 1. For a point situated in a grain boundary φGB = 1, while
for points in the lattice φGB → 0. In the diffuse interface description, GBs possess a narrow region of finite
thickness, whose magnitude depends on dGB and rGB . An example of the considered function φGB for an
idealized polycrystal is reported in Fig. 1.

Figure 1: Plot of the phase-field function defined in Eq. (1) for an idealized polycrystalline aggregate. By
choosing rG = 5.3, it results that φGB(dGB/2) = φGB(−dGB/2) = 0.01.

2.1 Balance of diffusing species

Based on the previous hypothesis, the conservation laws for atoms and vacancies read
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ċA + div
[
~hA

]
= 0 , (2a)

ċV + div
[
~hV

]
= φGB sV . (2b)

In equations (2), cA and cV are molar concentrations - i.e. the number of moles per unit volume - of atoms

and vacancies, respectively; a superposed dot indicates a partial time derivative; ~hA and ~hV are molar fluxes;
sV is the molar rate of generation/absorption of vacancies at grain boundaries. Since atoms diffuse because
of vacancy diffusion, the following condition holds

~hA = −~hV . (3)

In addition, all the available lattice sites are occupied either by atoms or vacancy, thus

cA + cV = cL , (4)

where cL is the molar concentration of lattice sites. By combining equations (2), (3), and (4) it can be easily
proved that

ċL = φGB sV . (5)

It thus results that lattice sites can be altered at GB because of vacancies creation or annihilation.

2.2 Balance of momentum

Assuming the inertial forces to be negligible, the balance of momentum yields

div [σ] +~b = ~0 , (6)

where σ is the symmetric Cauchy stress tensor, while ~b is the body force per unit volume.

2.3 Mechanics of diffusional creep

The microscopic aspects of diffusional creep are related to the motion of boundary defects as suggested
by Ashby [8]. The key idea is that the operation of vacancies emission/absorption at GBs originates from
climbing boundary dislocations, which are actually the sinks and sources. GB dislocations have Burgers’
vectors (bb) which are not, usually, lattice vectors, and therefore their motion is constrained to take place in
the boundary plane. The application of a stress field normal to the grain boundary makes dislocations move
along the boundary plane, as reported in Fig. 2a. If so, dislocations move by a combination of glide and climb
motions, which depends on the orientation of the Burgers’ vector with respect to the GB. Only boundary
dislocations with a component of their Burgers’ vector normal to the boundary (bn) move non-conservatively,
thus emitting/absorbing vacancies. This causes a flux of vacancies and a counter-flux of atoms.

At a continuum scale, the motion of boundary dislocations involves, in general, both relative normal and
shear translation of the crystals that meet at the boundary (see Fig. 2b). Their relative magnitude at any
point depends on the orientation of the Burgers’ vector relative to the boundary. In particular, the amount of
normal displacement is the non-conservative part that originates from climb of boundary dislocations. For the
scope of this paper, attention is paid to the normal translation only, being the latter the component involved
with emission/absorption of vacancies, and thus relevant for diffusional creep. Therefore, we assume that
boundary dislocations move only by climb along the grain boundary. A similar idealization of the boundary
structure is usually adopted while considering the discrete source and sink model of diffusional creep, as for
example in [10]. Based on the considered assumptions, the plastic deformation rate due to diffusional creep
at GB is defined as

ε̇diff = β̇ (~nGB ⊗ ~nGB) , (7)

where ~nGB is the unit normal of the grain boundary, while β̇ denotes the rate of diffusional creep.
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Figure 2: (a) Schematic of the boundary mechanisms of diffusional creep involving the motion of dislocations
along grain boundaries [8]. (b) Relative translation of the grains that meet at the boundary due to a general
orientation of GB dislocations.

The strain rate due to diffusional creep ε̇diff is uniaxial and possesses both deviatoric and volumetric
components. The latter one can be easily calculated as follows

tr[ε̇diff ] = β̇ .

Therefore, according to [18], the rate of diffusional creep β̇ can be related to the rate of emission/absorption
of vacancy as

sV =
β̇

vA
, (8)

being vA the molar volume, i.e. the volume of a mole of atoms. In addition, by exploiting Eq. (5), it results
that

ċL = φGB
β̇

vA
. (9)

Equations (8) and (9) establish a direct coupling between GB deformation and diffusion of vacancies.
The accumulation or loss of intrinsic point defects, such as vacancies, also causes a local distortion of the

lattice both at grain boundary and in the grain interior. Such deformation is usually considered to be purely
volumetric, i.e. the removal of atoms causes a local shrinkage of the lattice. The following eigenstrain ε̇V is
then introduced

ε̇V = ωV ċV I ,

where ωV is the coefficient of chemical expansion of vacancies, i.e. one third of the relaxed volume per mole
of vacancies. To account for the mechanics of diffusional creep, the strain tensor ε is decomposed additively
in

ε = εel + φGB ε
diff + εV , (10)

where εel refers to the elastic part of the strain. The GB phase-field function φGB has been introduced
in order to restrict the impact of εdiff to GBs only. Note that additional inelastic mechanisms, such as
dislocations plasticity in the lattice and GB sliding are not considered in this study.
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3 Thermodynamics

In this section, the classical laws of thermodynamics will be stated for the model at hand. Notation and
basic assumptions follow from the paper by Salvadori et al. [19], to which the reader can refer for further
details. In what follows, P indicates a generic subregion of the solid with closed boundary ∂P. Note that P
might include bulk crystals and GBs.

3.1 Energy balance

The energy balance for the problem at hand, for quasi-static interactions, yields

U̇(P) =Wu(P) +Qu(P) + Tu(P) , (11)

with U denoting the net internal energy of P, Wu the mechanical external power, Qu the power due to heat
transfer, and Tu the power due to mass transfer. The individual contributions read

U(P) =

∫
P
udV ,

Wu(P) =

∫
P
~b · ~v dV +

∫
∂P
~t · ~v dA,

Qu(P) =

∫
P
sq dV −

∫
∂P

~q · ~ndA,

Tu(P) = −
∫
∂P

uµA ~hA · ~ndA−
∫
∂P

uµV ~hV · ~ndA,

where u is the specific internal energy per unit volume, ~t is the surface traction, ~v is the velocity, sq is the rate
of energy per unit volume at which heat is generated by sources, ~q is the heat flux, and ~n the outward normal
of ∂P. In the mass contribution Tu, scalars uµA and uµV denote the change in specific energy provided by
a unit supply of moles of atoms and vacancies, respectively.

Standard application of the divergence theorem, balance laws (2), (6), and Eq. (3), leads from (11) to

∫
P
u̇dV =

∫
P
σ : ε̇ dV +

∫
P
sq −div [~q] dV +

∫
P

(uµV − uµA) (ċV − φGBsV )−∇ [uµV − uµA] ·~hV dV. (13)

where ε is the strain tensor, i.e. ε̇ = sym [∇ [~v]]. Equation (13) must hold for any region P, since the latter
is arbitrary. The local form of the energy balance is then stated as follows

u̇ = σ : ε̇+ sq − div [ ~q ] + (uµV − uµA) (ċV − φGBsV )−∇ [uµV − uµA] · ~hV . (14)

3.2 Entropy imbalance

The entropy imbalance for the problem at hand, for quasi-static interactions, yields

Ṡ(P) ≥ Qη(P) + Tη(P) , (15)

where S is the net internal entropy of P, Qη is the exchanged entropy per unit time due to heat transfer,
and Tη the exchanged entropy per unit time due to mass transfer. The individual contributions read

S(P) =

∫
P
η dV ,

6



Qη(P) =

∫
P

sq
T

dV −
∫
∂P

~q

T
· ~ndA,

Tη(P) = −
∫
∂P

ηµA ~hA · ~ndA−
∫
∂P

ηµV ~hV · ~ndA,

where η is the specific internal entropy per unit volume, while T is the absolute temperature. In the mass
contribution Tη, scalars ηµA and ηµV denote the change in specific entropy provided by a unit supply of
moles of atoms and vacancies, respectively.

Standard application of the divergence theorem, balance laws (2), (6), and condition (3), leads Eq. (15)
to its local counterpart

η̇ − sq
T

+ div

[
~q

T

]
− (ηµV − ηµA) (ċV − φGBsV ) +∇ [ηµV − ηµA] · ~hV ≥ 0 .

Taking advantage of identity (14) and of the sign definiteness of temperature, the local form of the entropy
imbalance can be rewritten as follows

T η̇ − u̇+ σ : ε̇+ µ (ċV − φGBsV )−∇ [µ ] · ~hV −
1

T
~q · ∇ [T ]− ηµ~hV · ∇ [T ] ≥ 0 , (17)

where ηµ = ηµV − ηµA. In eq. (17), µ = µV − µA is the so-called diffusional potential, i.e. the difference
between the chemical potential of vacancies and the chemical potential of atoms. According to [19]

µA = uµA − T ηµA and µV = uµV − T ηµV .

3.3 Helmholtz free energy and thermodynamic restrictions

The Helmholtz free energy density per unit volume ψ, defined as

ψ = u− T η ,

will be used henceforth as thermodynamic potential for the present theory. It thus follows that

ψ̇ = u̇− Ṫ η − T η̇ ,

which can be inserted in (17) to obtain the following free energy imbalance

ψ̇ + Ṫ η − σ : ε̇− µ (ċV − φGBsV ) +∇ [µ ] · ~hV +
1

T
~q · ∇ [T ] + ηµ~hV · ∇ [T ] ≤ 0 .

Assuming isothermal conditions the final form of the entropy imbalance reads

ψ̇ − σ : ε̇− µ (ċV − φGBsV ) +∇ [µ ] · ~hV ≤ 0 . (18)

In order to model different coupled responses at grain boundaries and in grain interiors, ψ is split into a
GB energy ψGB and a bulk contribution ψbulk as

ψ = (1− φGB)ψbulk + φGB ψGB . (19)

We further consider the following functional dependence of the free energies

ψbulk = ψbulk (cV , ε
ce) and ψGB = ψGB (cV , ε

ce , β) , (20)

where εce = εel+εV defines the chemo-elastic strain1. The internal variable β, defined in Section 2.3 accounts
for combined chemo-mechanical processes associated with diffusional creep. Hence, owing to equations (8)

1This is not the only possible choice, as discussed in [19]. Focusing on the functional dependence on the strain only, the
Helmholtz free energy could be written as a function of the whole strain tensor and its inelastic counterpart

ψ = ψ
(
ε, εdiff , ...

)
(21)
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and (9), the evolution of sV and cL at GBs can be expressed in terms of β. Similarly, cA is fully determined
by cV and β, thus it will not be considered as an independent field from now on.

Applying a standard chain-rule, the partial time derivative of ψ from (19) and (20) reads

ψ̇ = (1− φGB)

[
∂ψbulk
∂cV

ċV +
∂ψbulk
∂εce

: ε̇ce
]

+ φGB

[
∂ψGB
∂cV

ċV +
∂ψGB
∂εce

: ε̇ce +
∂ψGB
∂β

β̇

]
, (22)

which, substituted into (18), gives

[
(1− φGB)

∂ψbulk
∂εce

+ φGB
∂ψGB
∂εce

− σ
]

: ε̇ce +

[
(1− φGB)

∂ψbulk
∂cV

+ φGB
∂ψGB
∂cV

− µ
]
ċV +

+φGB

(
∂ψGB
∂β

+
µ

vA

)
β̇ − φGB σ : ε̇diff +∇ [µ] · ~hV ≤ 0 .

The latter, which is usually referred as the Clausius-Duhem inequality, must hold for any value of the time
derivative of cV and of the chemo-elastic strain εce. Since they appear linearly in the inequality, the factors
multiplying them must be zero. The following restrictions thus apply

σ = (1− φGB)
∂ψbulk
∂εce

+ φGB
∂ψGB
∂εce

, (23a)

µ = (1− φGB)
∂ψbulk
∂cV

+ φGB
∂ψGB
∂cV

. (23b)

The remaining terms constitute the total energetic dissipation

Diss = −φGB
(
∂ψGB
∂β

+
µ

vA

)
β̇ + φGB σ : ε̇diff −∇ [µ ] · ~hV ≥ 0 , (24)

which consists of chemical, mechanical, and diffusional contributions. Equation (24) can be further rear-
ranged by considering that

φGB σ : ε̇diff = φGB (σ : ~nGB ⊗ ~nGB) β̇ ,

from which we can define tn = σ : ~nGB ⊗ ~nGB as the normal traction at GBs. It thus results that

Diss = φGB

(
tn −

∂ψGB
∂β

− µ

vA

)
β̇ −∇ [µ ] · ~hV ≥ 0 . (25)

Under the assumptions of the Curie symmetry principle, fluxes and thermodynamic forces of different ten-
sorial character do not couple. Inequality (25) is then satisfied by the following conditions

φGB

(
tn −

∂ψGB
∂β

− µ

vA

)
β̇ ≥ 0 , ∇ [µ ] · ~hV ≤ 0 . (26)

4 Constitutive theory

4.1 Stress tensor and diffusional potential

Both in grain boundaries and grain interiors, the Helmholtz free energy density ψ is decomposed into two
separate parts: a mechanical contribution ψmech and a chemical contribution ψch

ψbulk (cV , ε
ce) = ψmechbulk (cV , ε

ce) + ψchbulk (cV ) ,

ψGB (cV , ε
ce , β) = ψmechGB (cV , ε

ce) + ψchGB (cV , β) .

8



The mechanical part of the free energy is function of the elastic strain and it is defined as a quadratic form

ψmechbulk (cV , ε
ce) =

1

2

(
εce − εV

)
: Cbulk :

(
εce − εV

)
, (27a)

ψmechGB (cV , ε
ce) =

1

2

(
εce − εV

)
: CGB :

(
εce − εV

)
, (27b)

where Cbulk and CGB are fourth-order elasticity tensors in bulk and GB regions.

The chemical part of the free energy is defined by an ideal solution model [20] as follows

ψchbulk (cV ) = cV E
bulk
V +RT cL

[
cV
cL

ln

[
cV
cL

]
+
cL − cV
cL

ln

[
cL − cV
cL

]]
, (28a)

ψchGB (cV , β) = cV E
GB
V +RT cL(β)

[
cV
cL(β)

ln

[
cV
cL(β)

]
+
cL(β)− cV
cL(β)

ln

[
cL(β)− cV
cL(β)

]]
, (28b)

where EbulkV and EGBV are energies of formation of vacancies in bulk and GB regions, while R is the universal
gas constant. The first part of (28a) and (28b) is of energetic nature, i.e. is the energy associated with
one mole of vacancies in the lattice. The second part is the entropy of mixing multiplied by the absolute
temperature. Note that, in view of equation (5), the concentration of lattice sites cL in GB regions is not
constant in general. Indeed, its evolution depends on the internal variable β according to Eq. (9).

The stress tensor σ and the diffusional potential µ descend from thermodynamic restrictions (23) that,
in view of definitions (27) and (28), yield

σ =
[
(1− φGB)Cbulk + φGB CGB

]
:
(
εce − εV

)
, (29a)

µ = (1− φGB)EbulkV + φGB E
GB
V + (1− φGB)RT ln

[
cV

cL − cV

]
+ φGB RT ln

[
cV

cL(β)− cV

]
− ωV tr [σ] .

(29b)

Finally, in case that cV � cL, the evolution of cL in grain boundaries in Eq. (29b) can be neglected. With
this simplifying hypothesis, the diffusion potential can be rewritten as

µ =
[
(1− φGB)EbulkV + φGB E

GB
V

]
+ RT ln

[
cV
cL

]
− ωV tr [σ] . (30)

4.2 Flux of vacancies

The constitutive definition of ~hV must satisfy the constraint reported in Eq. (26). The generalized Fick’s
law offers a thermodynamically consistent choice for the flux of vacancies

~hV = −MV ∇ [µ ] , (31)

where MV is the (positive definite) second-order mobility tensor of vacancies. By means of equation (23b)
it results that

~hV = −MV

(
∂ψmechGB

∂cV
+
∂ψchGB
∂cV

− ∂ψmechbulk

∂cV
− ∂ψchbulk

∂cV

)
∇ [φGB ] +

−(1− φGB)MV

[(
∂2ψmechbulk

∂c2V
+
∂2ψchbulk
∂c2V

)
∇ [cV ] +

(
∂2ψmechbulk

∂cV ∂εce
+
∂2ψchbulk
∂cV ∂εce

)
: ∇ [εce]

]
+

9



−φGBMV

[(
∂2ψmechGB

∂c2V
+
∂2ψchGB
∂c2V

)
∇ [ cV ] +

(
∂2ψmechGB

∂cV ∂εce
+

∂2ψchGB
∂cV ∂εce

)
: ∇ [εce] +

(
∂2ψmechGB

∂cV ∂β
+
∂2ψchGB
∂cV ∂β

)
: ∇ [β]

]
.

To account for a different mobility of vacancies in the boundary regions, the mobility tensor is specialized
as follows

MV = (1− φGB)
cV
RT

(
cL − cV
cL

)
Dbulk
V + φGB

cV
RT

(
cL(β)− cV
cL(β)

)
DGB
V ,

with Dbulk
V and DGB

V referring to the diffusivity tensors of vacancies in the lattice and in GBs, respectively.
In the simple case of cV � cL, the vacancy flux becomes

~hV =−
(
EGBV − EbulkV

)
MV∇ [φGB ]− (1− φGB)Dbulk

V

[
∇ [cV ]− ωV

RT
cV ∇ [tr[σ]]

]
+

− φGBDGB
V

[
∇ [cV ]− ωV

RT
cV ∇ [tr[σ]]

]
.

(32)

Remark. The diffusivity of vacancies can be estimated from the coefficient of atomic diffusion, usually
determined from experimental evidence. The flux of atoms yields (see Herring [5] for details)

~hA = −MA∇ [−µ ] ,

where MA is the mobility of atoms. Assuming only diffusion through the lattice and cV � cL, the mobilities
can be expressed as

MA =
Dbulk
A

RT
cL , and MV =

Dbulk
V

RT
cV ,

being Dbulk
A the lattice diffusivity of atoms. In view of Eq. (31) along with the condition ~hA = −~hV , MA

and MV must equate, giving

Dbulk
V = Dbulk

A

cL
cV

. (33)

The same applies for GB diffusion.

4.3 Rate of diffusional creep

A possible definition of the rate of diffusional creep in accordance with thermodynamic restrictions (26) is

β̇ = LGB

(
tn −

∂ψchGB
∂β

− µ

vA

)
, (34)

where LGB is a non-negative kinetic constant. The evolution of β is then driven by a force of chemo-
mechanical nature. Note that for cV � cL, ∂ψchGB/∂β → 0.

To further understand the physical meaning of LGB , it is necessary to rearrange equation (34). The goal
is to link the continuum definition of diffusional creep with dislocation based mechanisms. Following the
discussion of Section 2.3, the microscopic aspects of diffusional creep are related to climb of GB dislocations.
In this view, β̇ can be expressed by adaptation of the Orowan equation to climbing dislocations as

β̇ = vdis ρm bn , (35)

where vdis is the average velocity of dislocations along GBs, ρm is the density of mobile boundary dislocations,
and bn is the component of Burgers’ vector normal to the boundary 2. Similarly, the driving force for
diffusional creep can be rewritten as

2The density of GB dislocations is directly linked with the nature of the particular GB and therefore it will depend on the
GB missorientation and inclination. Frank-Bilby’s equation [21, 22] can be used as a tool to obtain the dislocation content of
each grain boundary and therefore to provide a dependency of the density of mobile dislocation, ρm with the GB geometry.
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(
tn −

∂ψchGB
∂β

− µ

vA

)
=
F dis
bn

, (36)

with F dis indicating the average climb force per unit length acting on GB dislocations. Owing to equations
(35) and (36), the rate of diffusional creep (34) is then equivalent to

vdis = Mdis F dis ,

where Mdis = LGB/ρm/b
2
n defines the dislocation mobility in the same spirit of Ashby [7]. Therefore, the

kinetic constant LGB can be expressed in terms of density and mobility of GB dislocations as follows

LGB = Mdisρmb
2
n . (37)

The values of Mdis and ρm will depend on the nature of each GB. In the case of Mdis, it will generally
depend on the composition and microstructure of the alloy considered through the lattice distortion caused
by different alloy species or the presence of small precipitates. The value of ρm will be linked to the
geometrical definition of the grain boundary (missorientation and inclination) and might be influenced by
the stress acting on it. In this work we will only consider pure metals so grain boundary dislocation mobility
is determined by the kinetics of atoms rearrangement in the boundary. If such, the mobility is said intrinsic
or local and yields [10],

M I
dis =

CI D|A bb
k T

, (38)

where D|A is the atomic diffusion, bb the Burgers’ vector of GB dislocations, k the Boltzmann’s constant,
and CI a constant of about unity. Respect the density of mobile GB dislocations, as stated before, it will
depend on the particular geometry of each grain boundary and on the stress state acting on it. A simple
election of the density of GB mobile dislocation is given by

ρm =
CD t

2
n

G2 b2b
, (39)

where CD is a constant —that will in general depend on the total density of GB dislocations and will be
therefore dependent on the GB geometrical description— and G is the shear modulus. Such a dependence
of ρm on the applied stress can be derived assuming conditions that lead to a steady state value of mobile
dislocations, as proved by Kocks et al. [23]. More complex evolution laws for ρm can also be employed.
However, for the scope of the present work, the estimation of ρm through Eq. (39) is considered sufficient.

5 Summary of the governing equations

Based on the theory developed in the previous sections, diffusional creep in polycrystalline solids involves a
coupled problem of mechanics with diffusion and generation/annihilation of vacancies at grain boundaries.
The molar content of vacancies is usually negligible compared to that of atoms, thus the condition cV � cL is
assumed from now on. Moreover, by exploiting the condition cV � cL, the evolution of cL can be ignored as
its impact on equations (30) and (??) Governing equations are written in terms of vacancies concentration cV ,
displacements ~u, and GB reaction coordinate β. Field equations are defined in a spatial region Ω, typically a
RVE consisting of a collection of grains, and in a time interval [t0, tf ]. A summary of the governing equations
is reported below.

1. Transport and generation/annihilation of vacancies at GB

˙cV + div
[
~hV

]
= φGB sV , (40a)

where ~hV and sV are given by (32) and (8), respectively.

2. Balance of forces
div [σ] = ~0 , (40b)

with the stress tensor σ given by (29a).
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3. Rate of diffusional creep

β̇ = Mdis ρm b
2
n

(
tn −

µ

vA

)
, (40c)

with µ defined by (30).

To ensure the solvability of equations (40), boundary conditions are prescribed along Neumann ∂NΩ and
Dirichlet ∂DΩ boundaries. For the problem at hand, Neumann boundary conditions are

~hV · ~n = hV , (41a)

σ~n =~t , (41b)

while Dirichlet Boundary conditions read

cV = cV ,

~u = ~u .

Initial conditions are specified for concentrations of vacancies cV and for the reaction coordinate β. As-
suming equilibrium conditions at initial time, the initial concentration of vacancies is function of temperature
and applied mechanical pressure

c0V = cL exp

[
− (1− φGB)EbulkV + φGB E

GB
V

RT
+
ωV
RT

tr [σ]

]
.

5.1 Diffusion controlled and interface controlled creep

Diffusional creep is triggered by the imbalance of two different forces as denoted in Eq. (40c): (i) a
mechanical-like force, i.e. tn, which results from the application of a stress, (ii) a chemical-like force, i.e.
µ/vA, which is proportional to the diffusional potential. Since the latter depends on cV and this volume
fraction evolves according to equation (40a), the rate of plastic strain at GB depends on diffusion as well.
Depending on the rates of the concurrent processes of vacancies diffusion and generation/annihilation, bound-
aries are said perfects or imperfects. A quantitative estimation can be obtained as shown next. Considering
vacancy diffusion (Eq. 40a) only in the grain boundary (φGB = 1) and considering isotropic diffusivity —

i.e. DGB
V = D|GBV I — in the vacancy flux (Eq. 32) leads to

ċV + div

[
D|GBV ∇ [cV ]−

D|GBV ωV
RT

cV ∇ [tr[σ]]

]
=
Mdis ρm b

2
n

vA

(
tn −

µ

vA

)
. (42)

Introducing the following adimensional variables

~x∗ =
~x

l̄
, c∗V =

cV
c̄
, σ∗ =

σ

σ̄
, µ∗ =

µ c̄

σ̄
,

where l̄ is a reference length, c̄ is a reference concentration, and σ̄ a reference stress, equation (42) is equivalent
to

ċ∗V +
D|GBV
l̄2

div∗
[
∇∗ [c∗V ]− ωV σ̄

R T
c∗V ∇∗ [tr[σ∗]]

]
=
Mdis ρm b

2
n σ̄

vA c̄

(
t∗n −

µ∗

v∗A

)
, (43)

where v∗A = c̄ vA and ωV σ̄/(RT ) are adimensional constants. From equation (43), τD = l̄2/D|GBV identifies
the characteristic time controlling the diffusional process, while τS = vA c̄/Mdis ρm b

2
n σ̄ is the characteristic

time of the GB reaction. Therefore, the following adimensional magnitude
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ε =
τD
τS

=
l̄2Mdis ρm b

2
n σ̄

D|GBV vA c̄
, (44)

controls the ratio between the rate of the two processes. On the one hand, if ε� 1 diffusion is much slower
than vacancies generation/annihilation, highlighting the presence of perfect boundaries: the creep rate is
diffusion controlled. On the other hand, for ε � 1 operation of vacancies sink/source is the rate limiting
process and creep is said reaction or interface controlled.

5.1.1 Diffusion controlled creep

When ε� 1, the time required for (40c) to reach equilibrium is much smaller than the time scale of diffusion.
In such event, it can be assumed that the kinetics of GB dislocation is so fast that its driving force equilibrates
instantaneously. The diffusional potential in the boundaries is then given as a function of the applied stress
as µeq = tn vA. It follows that the equilibrium concentration of vacancies at GB yields

ceqV = ĉV exp

[
tn vA
RT

]
, (45)

being ĉV = cL exp(−EVf /RT +ωV /RT tr[σ]) the reference-state concentration of vacancies. Boundaries with
positive applied tn are sources of vacancies, while boundaries with negative tn act as sinks. The creep rate
is then controlled only by the kinetics of diffusion of vacancies between sinks and sources. Note that the
boundary values of µ and cV agree with theories of diffusion controlled creep, see Herring [5] and Coble [6]
for instance.

5.1.2 Interface controlled creep

When ε � 1, diffusion is so fast that accumulation of vacancies at grain boundaries is prevented. The
distribution of the diffusional potential is given by solving ∇ [µ ] = ~0, without resorting to eq. (40a). Creep
rate is then controlled by Eq. (40c) solely.

6 Numerical examples

(a) (b)

Figure 3: Idealized solid microstructure made up of a regular array of square grains (a). Geometry and
boundary conditions used in the simulations (b).
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6.1 Geometry and assumptions

The aim of this section is to analyze diffusional creep of polycrystalline solids by means of numerical analyses.
To this end, a 2D plane-strain regular array of square grains of size d is used as solid microstructure, as
shown in Figure 3a. Grain boundaries will correspond to pure tilt GB The solid is deformed by applying
a constant macroscopic shear stress σ (−~ex ⊗ ~ex + ~ey ⊗ ~ey). For simplicity, stiffness in the bulk and in GBs
are assumed equal (Cbulk = CGB) and isotropic. Eq. (29a) reduces to

σ =
2G(1 + ν)

3 (1− 2ν)
tr
[
εce − εV

]
I + 2Gdev [εce] , (46)

where G is the shear modulus and ν the Poisson’s coefficient. The computational domain can, therefore, be
limited to the one depicted in Fig. 3b. To account for the mechanical influence of adjacent grains, external
boundaries are constrained to remain flat throughout the analysis. In addition, the normal component of
the flux of vacancies at external boundaries is set zero because of symmetry. The solid is assumed to be
stress-free at initial time t0 = 0 s. Assuming EbulkV = EGBV = EV , the initial concentration of vacancies
yields

c0V = cL exp

[
− EV
RT

]
.

Due to the model symmetry, horizontal and vertical GB would have different total number of GB dislo-
cations. However, we have considered for simplicity that the mobile dislocation density, ρm, on all the GB
follows the same equation neglecting the possible effect of GB missorientation. The density of mobile dislo-
cations is then simply computed as ρm = σ2/G2/b2n. Following Artz et al. [10], bb = b/3 and bb/bn =

√
2,

where b is the Burgers’ vector of lattice dislocations. The concentration of lattice sites is taken as the inverse
of the molar volume, i.e. cL = 1/vA. The effect of the eigenstrain εV is neglected by taking ωV = 0 m3/mol.

The diffusivity tensors are specialized as follows

Dbulk
V = D| bulkV I and DGB

V = D|GBV (I − ~nGB ⊗ ~nGB) , (47)

with D| bulkV and D|GBV referring to the diffusion coefficient of vacancies in the lattice and in grain boundaries,
respectively. Diffusion is considered isotropic in the grain interior, while in the boundaries is not. This is
assumed in order to prevent diffusion of vacancies across different grains. Diffusivity of vacancies are derived
from atomic diffusivity according to Eq. (33). Such parameters are usually expressed as Arrhenius laws [24]

D| bulkA = Dbulk
0 exp

[
−Qbulka

RT

]
, D|GBA = DGB

0 exp

[
−QGBa
RT

]
,

where Dbulk
0 and DGB

0 are pre-exponential factors, while Qbulka and QGBa are activation energies for atomic
diffusion. Similarly, the shear modulus yields

G = G0 +G0
T − 300

TM

TM
G0

dG

dT
,

where G0 is the shear modulus at 300 K, TM the melting temperature, and TM
G0

dG
dT the coefficient of temper-

ature dependence of G. Material parameters representative of pure copper are used in the simulations that
follow. Their numerical values are listed in Table 1.

Governing equations are solved numerically through the Finite Element Method by implementing the sys-
tem of equations (40) in the open-source computing platform FEniCS [25]. Further details of the numerical
implementation are reported in Appendix A.

6.2 Steady-state and transient evolution of diffusional creep

In this section we simulate the response of a polycrystal of grain size d = 100µm subjected to shear stress σ =
10 MPa at temperature T = 900 K (homologous temperature of 66%). The load is applied instantaneously
after the initial time t = 0 s and is kept constant throughout the analysis. Grain boundaries are defined
through the GB indicator function introduced in Eq. (1). Following Villani et al. [15], a constant GB
thickness dGB = 4µm is selected as a compromise between reality and tractable computations. Note that the
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Material Parameters Ref.

Pre-exponential bulk diffusion Dbulk
0 2.0× 10−5 m2/s [24]

Pre-exponential GB diffusion DGB
0 1.0× 10−7 m2/s This study

Activation energy for bulk diffusion Qbulka 1.97× 105 J/mol [24]

Activation energy for GB diffusion QGBa 1.04× 105 J/mol [24]

Molar volume of atoms vA 7.1× 10−6 m3/mol [24]

Vacancy formation energy EV 1.225× 105 J/mol [15]

Melting temperature TM 1356 K [24]

Burgers’ vector of lattice dislocations b 2.56 Å [24]

Shear modulus at 300 K G0 42.1 GPa [24]

Temperature dependence of G TM
G0

dG
dT −0.54 − [24]

Poisson’s coefficient ν 0.285 − [24]

Table 1: Material parameters representative of pure copper adopted for the numerical simulations.

selected grain boundary thickness is several orders of magnitude greater than reality (∼ 0.5 nm). Therefore,
to compensate this model limitation, the GB diffusivity was estimated ad hoc, as to match numerical results
with analytical formula by Coble [6]. Accordingly, a pre-exponential factor DGB

0 = 1× 10−7 m2/s has been
assigned.

Figure 4 shows the evolution of the average shear strain and strain rate against time. The strain grows
non-linearly in time, right after the application of the load, with decreasing rate as time advances. A steady-
state condition is reached after about 5000 s, for which it results a constant strain rate γ̇ = 1.35 × 10−8

1/s.
The evolution of vacancy concentration and stress component σ22 at grain boundary y = 0 is depicted

in Fig 5. It results that cV is in equilibrium with the applied normal stress σ22 according to Eq. (45).
Therefore, for the considered grain size d, applied stress σ, and dislocation mobility, boundaries behave like
perfect sinks/sources for vacancies. The stress relaxes at GB junction (x = 0), while attains a maximum
at x = ±0.5. This happens as diffusion, and then creep rate, is faster at GB junctions where concentration
gradients are higher. Similarly, cV > c0V everywhere in the horizontal boundary except at the quadruple
junction where stress is zero.

The distribution of vacancies, stress and plastic strain rate are represented in Fig. 6 at steady-state.
Vacancies accumulate in the horizontal GB, where normal stress is positive, and deplete in the vertical one,
where stress in negative. The average rate of generation of vacancies equates that of absorption, so that the
overall content of point defects does not change as deformation proceeds. Similarly, the stress concentrates
in grain interiors while relaxes at GB junctions, where the rate of plastic strain is maximum.

6.3 The effect of GB dislocation mobility on diffusional creep

We now consider the effect of the GB dislocation mobility by simulating the same case study of Section 6.2
with different mobilities. To show the transition from perfect to imperfect grain-boundaries, the dislocation
mobility is defined as Mdis = M I

dis/α, with α ranging from 1 to 0.001. The resulting creep curves are
depicted in Figure 7. As predictable, the lower the dislocation mobility, the lower the strain rate attained at
steady state. In addition, Mdis impacts on the transient response: for low dislocation mobility a steady-state
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(a) (b)

Figure 4: Plot of the average shear strain (a) and strain rate (b) against time for a polycrystal of grain size
d = 100µm. The solid is subjected to shear stress σ = 10 MPa at temperature T = 900 K. The average shear
strain is computed as γ = 1/AΩ

∫
Ω

(ε22 − ε11)/2 dA, with AΩ denoting the RVE area.

(a) (b)

Figure 5: Normalized vacancy concentration (a) and normal stress (b) in the horizontal GB as a function
of x coordinate at intervals of 1000 s. Analyses are performed on a polycrystal of grain size d = 100µm
subjected to shear stress σ = 10 MPa and T = 900 K.
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(a) (b) (c)

Figure 6: Contour plots of (a) normalized vacancy concentration, (b) stress norm, and (c) norm of strain
rate at time t = 10000 s. Results are obtained for a polycrystal of grain size d = 100µm subjected to shear
stress σ = 10 MPa at temperature T = 900 K.

condition is achieved almost immediately after loading.

(a) (b)

Figure 7: Comparison between the simulated evolution of average shear strain (a) and strain rate (b) obtained
for different assigned GB dislocation mobilities. Analyses are performed on a polycrystal with d = 100µm
subjected to a shear stress σ = 10 MPa at temperature T = 900 K. The average shear strain is computed as
γ = 1/AΩ

∫
Ω

(ε22 − ε11)/2 dA, with AΩ denoting the RVE area.

Figure 8 gathers stress and vacancy distribution in the horizontal grain boundary at steady state for
different mobilities. In both graphs, the extreme cases of diffusion controlled and interface controlled creep
are clearly shown. On the one hand, for Mdis = M I

dis, creep is diffusion controlled, cV and σ22 attains a non
uniform distribution in the GB as discussed previously. On the other hand, for Mdis = M I

dis/1000, creep is
reaction controlled: the kinetics of diffusion prevent vacancies from accumulating or depleting in GB regions.
In such a case, the creep rate β̇ is uniform on grain boundaries inducing a uniform stress which does not
relax at GB junctions.

For intermediate mobilities, i.e. M I
dis/10 and M I

dis/100, results are in-between the extreme cases of
perfect and imperfect boundaries. Note that the chemo-mechanical response for M I

dis/10 does not differ
significantly from the one of intrinsic mobility. Indeed, the GB reaction kinetics depends little on dislocation
mobility if boundaries are nearly perfect.
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(a) (b)

Figure 8: Vacancy concentration (a) and normal stress (b) in the horizontal GB as a function of x coordinate
at steady state (t=10000 s) for varying GB dislocation mobility. Results are obtained for a polycrystal of
grain size d = 100µm subjected to shear stress σ = 10 MPa at T = 900 K.

6.4 Stress and grain size dependence

In this section, we investigate the impact of grain size and applied stress on the steady-state creep rate.
Grain size dependence is studied by simulating creep tests of polycrystals with d ranging from 20 to 200
microns and applied stress σ = 10 MPa. The role of stress is analyzed on a polycrystal of grain size 100µm
for σ = 1÷ 10 MPa. Stress and grain size dependence is evaluated for high and low GB dislocation mobility,
i.e. M I

dis and M I
dis/1000 respectively.

Figure 9 presents the numerical predictions at T = 900 K for the material parameters listed in Table 1.
Results are compared with the analytical formula by Coble, for which the steady-state creep rate yields

γ̇C =
150σ δD|GBA vA

d3RT
, (48)

where δD|GBA is the boundary thickness times the diffusion coefficient for mass transport in the grain boundary.

For pure copper, δD|GBA = 2.0× 10−15 exp(−1.97× 105/R/T ) m3/s [24]. Numerical results with M I
dis are in

agreement with Coble’s formula, suggesting that in the range of selected grain size and loading stress, creep
is diffusion controlled. Slope in Fig. 9a is ∼ −3 as mass transport is dominated by GB diffusion. Indeed, at
the considered temperature D|GBA � D| bulkA .

The stress and grain size dependence changes drastically with decreasing GB dislocation mobility. As-
suming M I

dis/1000, γ̇ ∝ σ3/d. This confirms that for low mobility, the GB reaction kinetics is no longer
limited by diffusion. Creep is then interface controlled. The strain rate is proportional to the applied stress
and GB dislocation density, as shown in Eq. (40c). Accordingly, a slope 3 is obtained in Fig. 9b since ρm is
taken proportional to the square of the applied stress.

Grain size and stress dependence on creep rate is also studied when diffusion takes place through grain
interiors. In such a case, the GB diffusivity is taken equal to the one prescribed in the lattice, i.e. D|GBA =

D| bulkA . Simulations have been performed in the same way as described above, but with temperature T = 1100
K. Figure 10 depicts the present numerical outcomes along with the analytical steady-state creep rate
estimated by Herring [5]

γ̇H =
8σD|GBA vA
d2RT

. (49)

Similarly to the case of dominating GB diffusion, Fig. 10a shows that a transition from high to low dislocation
mobility induces a change in the dependence of creep rate on grain size. On the one hand, for M I

dis, the
numerical predictions are similar to Herring’s formula. However, the simulated creep slope is slightly less
than the one predicted by Herring, suggesting that creep is not completely diffusion controlled. On the other
hand, for low mobility slope is 1 and creep is reaction controlled as described previously.
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(a) (b)

Figure 9: Log-log plot of steady-state creep rate against grain size (a) and against applied stress (b) at
temperature T = 900 K. Numerical predictions with different mobilities are compared with the analytical
formula by Coble Eq. (48). Squared marker identifies individual results obtained for the simulated grain size
and applied stress.

(a) (b)

Figure 10: Log-log plot of steady-state creep rate against grain size (a) and against applied stress (b) at
temperature T = 1100 K. Numerical predictions with different mobilities are compared with the analytical
formula by Herring Eq. (49). Squared marker identifies individual results obtained for the simulated grain
size and applied stress.
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Stress dependence typical of reaction controlled creep is obtained for Mdis/1000 as well, as shown in
Fig. 10b. However, a similar slope is also obtained for high dislocation mobility where simulations are in
disagreement with Herring’s formula. Therefore, in case of diffusion through the lattice and in the range of
prescribed stress and grain sizes, creep is not diffusion controlled even for high dislocation mobility. This
conclusion relies on Eq. (44) which clearly shows that the resulting creep regime does not depend exclusively
on the dislocation mobility, but also on applied stress, grain size, and atomic diffusivity in GB regions.

6.5 Temperature dependence

The influence of applied temperature on steady-state diffusional creep is investigated in this last numerical
example. Simulations are performed adopting the same geometry and boundary conditions used in Section
6.2, i.e. assuming grain size d = 100 µm and constant applied stress σ = 10 MPa. In addition, following
the discussion of the previous sections, the dislocation mobility is set equal to the intrinsic mobility M I

dis

in order to retrieve the diffusion controlled regime. To evaluate the role played by temperature, different
analyses have been performed with applied temperature ranging from 800 to 1300 K (58 % to 96% times the
melting temperature).

Figure 11: Plot of the average steady-state
shear strain against temperature for a polycrys-
tal of grain size d = 100µm, subjected to shear
stress σ = 10 MPa, and with assigned intrinsic
mobility at GB dislocations. Numerical pre-
dictions are compared with the analytical for-
mulas by Coble (48) and Herring Eq. (49).
Squared marker identifies individual results ob-
tained for different applied temperatures.

The simulated steady-state creep rate is plotted against the applied temperature in Figure 11 along with
the formulas by Coble (48) and Herring (49). With the selected temperature representation of the horizontal
axis, the curves of Coble and Herring result in intersecting straight lines. Note that the intersection point
can be viewed as the transition temperature between Coble and Herring creep. As expected, the former
dominates diffusional creep for temperatures lower than the transition temperature, while Herring-like creep
rules creep for higher applied temperatures.

A similar transition from Coble to Herring creep is recovered from the numerical results as well. Indeed, for
low temperatures, the simulated steady-state creep rate is in agreement with Coble’s theory. Subsequently,
as temperature increases, the numerical results progressively deviate from Coble’s line and until tending
to Herring’s line. Accordingly, the transport of vacancies progressively switches from dominant boundary
diffusion to diffusion through the lattice.

6.6 Discussion

Simulations have been performed imposing conditions such that diffusional creep is the dominant deformation
mechanism, i.e. for low applied stress and high homologous temperature. In such conditions, the impact of
GB dislocation mobility on creep has been studied in several case studies.

Numerical outcomes have shown the model capability of simulating the typical grain size and stress
dependence of diffusion controlled and reaction controlled creep. Owing to the general form of the employed
reaction kinetics (40c), these results are obtained naturally by tuning the mobility of GB dislocations. For
the considered grain sizes and applied loads, boundaries tend to behave as perfect sources and sinks for
vacancies if the intrinsic mobility is employed. Decreasing the mobility of dislocations implies a transition
towards reaction controlled creep. Moreover, it has been shown that the creep regime does not depend
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exclusively on the dislocation mobility. In fact, the GB reaction kinetics is also ruled by dislocation density,
applied stress, grain size, and GB atomic diffusion.

The model allows the transient macroscopic response (or primary creep) to be investigated in view of the
resulting kinetics of diffusional creep. It was observed that transient creep is influenced by the mobility of
boundary dislocations. In particular, the transient regime is suppressed for low dislocation mobility since a
steady-state condition is reached immediately after the application of the load.

In this model, grains are separated by diffuse grain boundaries. Although this may constitute a model
limitation, since a realistic GB thickness cannot be assigned, such a choice allows us to study effectively the
chemo-mechanical response at GB junctions. Indeed, there is no need of introducing additional constraints
at boundary junctions, as usually pursued in models that implement sharp GBs.

To counterbalance the choice of a large diffuse GB thickness, the atomic diffusivity at GBs has been
reduced accordingly. This affect the GB dislocation mobility as well, in view of Eq. (38). Therefore,
the modified GB diffusivity does not impact on the interplay between vacancy diffusion and operation of
vacancies emission/absorption in GBs.

If dislocation mobility is sufficiently high, the evolution of vacancies and normal stress highlights a strong
coupling between diffusion and mechanics. In such a condition, stress and vacancy concentration do not
distribute uniformly in boundaries. Stress relaxes at GB junctions where diffusion is fast and do not limit
the GB reaction kinetics. While far from boundary junctions, diffusion limits the kinetics of dislocation
climb causing the stress to increase.

7 Conclusions

A coupled diffusion-mechanical framework to study diffusional creep of polycrystalline solids has been de-
veloped and numerically implemented. The model is based on thermodynamics and dislocation physics, and
relies on the assumption that diffusional creep stems from climb of dislocations along grain boundaries under
applied stress [7, 8] which induces generation/annihilation of vacancies.

The governing equations of the problem have been derived in accordance with thermodynamic principles.
In particular, the driving force of climb of GB dislocations has been identified as the sum of forces of
mechanical and chemical nature. The kinetics of dislocation climb has been derived from physically-based
mechanisms, enforcing a dependence on density and mobility of boundary dislocations.

The classical limits of diffusion controlled and interface controlled creep have been discussed in view of
the proposed governing equations. The occurrence of these two creep regimes is analyzed by comparing the
kinetics of diffusion and vacancy emission/absorption in GBs. The competition between these two mecha-
nisms induces a creep response depending on the applied conditions — i.e. applied stress and temperature
—, polycrystal microstructure — i.e. grain size, grain boundary network— and crystal properties such as
dislocation and vacancy mobilities, molar volume of atoms, Burgers’ vector, elastic properties and activation
energies.

Quantitative results of the proposed theory have been discussed in the second part of the paper where
several representative numerical examples of creep of polycrystalline solids are reported. Firstly, the impact of
dislocation mobility on diffusional creep has been analyzed, showing the different chemo-mechanical response
at grain boundaries and GB junctions depending on the attained creep regime. In particular, in conditions
such that diffusion controlled creep is attained, vacancies accumulate/deplete at GB and GB junctions are
regions of stress relaxation. Secondly, the influence of applied stress and grain size on the simulated steady-
state creep rate has been highlighted. The numerical outcomes have been compared with the classical theories
of Herring [5] and Coble [6], obtaining good agreement when a high dislocation mobility is employed. Finally,
the dependence of temperature is investigated, showing a continuous transition from Coble to Herring creep
as temperature increases.

The prediction of the transient evolution and steady-state distribution of stress and vacancy concentration
is potentially crucial for the simulation of failure (tertiary creep) of polycrystalline aggregates. In this regard,
simple phenomenological models of ductile fracture, e.g. Gurson-based model [26], where stress and plastic-
strain drive nucleation and growth of voids, could be coupled to the present formulation to predict failure.
Alternatively, keeping track of vacancy concentration would allow the application of physically-based models
of ductile fracture where void growth is induced by vacancy condensation [27].
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Appendix A Numerical implementation

A.1 Non-dimensional governing equations

Governing equations (40) are rewritten in non-dimensional form prior to their numerical implementation.
The following adimensional variables are then introduced

x∗i =
xi
l̄
, t∗ =

t

t̄
, c∗V =

cV
c̄
, c∗L =

cL
c̄
, u∗i =

ui
l̄
, σ∗i =

σi
σ̄
, (50)

where l̄, t̄, c̄, σ̄ are reference length, time, concentration, and stress, respectively. By means of definitions
(50), governing equations (40) are equivalent to

∂c∗L
∂t∗

+ div∗
[
~h∗V

]
= φGBs

∗
V , (51a)

div∗ [σ∗] = ~0 , (51b)

∂β

∂t∗
= L∗GB

(
t∗n −

µ∗

v∗A

)
. (51c)

where

div∗
[
~h∗V

]
=

3∑
i=1

∂h∗V i
∂x∗i

, div∗ [σ∗] =

3∑
i=1

3∑
j=1

∂σ∗ij
∂x∗j

~ei ,

and

~h∗V =
t̄~hV
c̄ l̄

, s∗V =
t̄ sV
c̄

L∗GB = LGB t̄ σ̄ , t∗n =
tn
σ̄
, µ∗ =

µ c̄

σ̄
, v∗A = vA c̄ .

Equations (51) have the same form of equations (40), but are formulated in terms of non-dimensional
variables. Similarly, the non-dimensional counterpart of the constitutive laws (30), (29a), and (32) can be
easily derived by means of (50), obtaining3

µ∗ = E∗V + (RT )∗ ln

[
c∗V
c∗L

]
− ω∗V tr [σ∗] ,

σ∗ = C∗ : εel ,

~h∗V = −(1− φGB)
[
Dbulk∗
V ∇∗ [c∗V ]−Dbulk∗

Σ c∗V ∇∗ [tr[σ∗]]
]
− φGB

[
DGB∗
V ∇ [c∗V ]−DGB∗

Σ c∗V ∇∗ [tr[σ∗]]
]
.

where

E∗V =
EV c̄

σ̄
, (RT )∗ =

RT c̄

σ̄
, ω∗V = ωV c̄ , C∗ =

C

σ̄
,

Dbulk∗
V =

Dbulk
V t̄

l̄2
, DGB∗

V =
DGB
V t̄

l̄2
, Dbulk∗

Σ =
Dbulk∗
V ωV σ̄

RT
, DGB∗

Σ =
DGB∗
V ωV σ̄

RT
3It is assumed that Ebulk

V = EGB
V = EV for simplicity.
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A.2 Weak form

FEniCS [25] is an open-source computing platform for solving PDEs through the Finite Element Method.
The governing equations have to be formulated in variational (or weak) form and implemented in symbolic
language. The weak form results from multiplying the strong form of governing equations (50) by a suitable
set of tests functions and performing an integration upon the domain, exploiting the integration by parts
formula with the aim of reducing the order of differentiation in space.

Note that the first order derivative of ~hV , in Eq. (51a), can be eliminated by applying the integration
by parts. However, its constitutive definition contains the second order derivative of displacement field ~u.
The latter is undetermined in standard finite element since ~u is approximated with global C0 polynomials.
To include the effect of stress gradient, we then follow the approach adopted in [28], in which an additional
variable Σ is defined as

Σ = tr [σ] , (53)

which will be considered as an independent field variable from now on. Eq. (53) is then added to the set of
governing equations (50) for the numerical implementation of the problem.

The overall weak form of the problem is derived considering each governing equation separately at first.
In what follows, the asterisk is omitted for the sake of readability. From the mass balance Eq. (51a), one
obtains ∫

Ω

ĉV

{
∂cV
∂t

+ div
[
~hV

]}
dV =

=

∫
Ω

ĉV
∂cV
∂t

dV +

∫
Ω

(1− φGB)∇ [ ĉV ] ·
{
Dbulk
V ∇ [cV ]−Dbulk

Σ cV ∇ [Σ]

}
dV +

+

∫
Ω

φGB∇ [ ĉV ] ·
{
DGB
V ∇ [cV ]−DGB

Σ cV ∇ [Σ]

}
dV +

∫
∂NΩh

ĉV hV dA = 0 .

(54)

The weak form of Eq. (51b) reads∫
Ω

~̂u · div [σ ] dV = −
∫

Ω

∇S
[
~̂u
]

: σ(cV , ~u,Σ, ) dV +

∫
∂NΩσ

~̂u · ~tdA = 0 . (55)

From equation (53), one obtains ∫
Ω

Σ̂
{

Σ− tr [σ(cV , ~u,Σ) ]
}

dV = 0 .

For the numerical implementation in FEniCS, it was convenient to solve Eq. (51c) in weak form as well.
To avoid the usage of the logarithm appearing in the definition of µ, (51c) has been rewritten in the following
equivalent form

cV − cL exp

[
−EV
RT

+
ωV Σ

RT
+
vA tn(cV , ~u,Σ)

RT
− vA β̇

LGB RT

]
= 0 ,

whose weak form is simply∫
Ω

β̂

{
cV − cL exp

[
−EV
RT

+
ωV Σ

RT
+
vA tn(cV , ~u,Σ)

RT
− ∂β

∂t

vA
LGB RT

]}
dV = 0 .

Note that in equations (54) and (55), boundary conditions (41) have been applied along with the condition
that test functions ĉV and û, are null on the Dirichlet boundary. In conclusion the overall weak form, in the
time interval [t0, tf ], reads
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Find V = {cV , ~u, β, Σ} ∈ V [0, tf ] such that

∫
Ω

ĉV
∂cV
∂t

dV +

∫
Ω

(1− φGB)∇ [ ĉV ] ·
{
Dbulk
V ∇ [cV ]−Dbulk

Σ cV ∇ [Σ]

}
dV +

+

∫
Ω

φGB∇ [ ĉV ] ·
{
DGB
V ∇ [cV ]−DGB

Σ cV ∇ [Σ]

}
dV +

∫
Ω

∇S
[
~̂u
]

: σ(cV , ~u,Σ) dV +

+

∫
Ω

β̂

{
cV − cL exp

[
−EV
RT

+
ωV Σ

RT
+
vA tn(cV , ~u,Σ)

RT
− ∂β

∂t

vA
LGB RT

]}
dV +

+

∫
Ω

Σ̂
{

Σ− tr [σ(cV , ~u,Σ) ]
}

dV,

∫
∂NΩh

ĉV hV dA−
∫
∂NΩσ

~̂u · ~tdA = 0

for all V̂ =
{
ĉV , ~̂u, β̂, Σ̂

}
∈ V .

(56)

The identification of the functional space V falls beyond the scope of this work.

A.3 Discretization in time

The evolution in time of problem (54) is approximated using the Backward Euler method. The time interval
[t0, tf ] is divided into Nt temporal steps ∆t = (tf − t0)/Nt. In addition, we define

V |n = V (~x, n∆t) , ∆V |n+1 = V |n+1 − V |n n = 1, 2, ... Nt (57)

Therefore, for any time step n = 1, 2, ... Nt, the discretized weak form in time reads

Find V |n+1 = {cV |n+1, ~u|n+1, β|n+1, Σ|n+1} ∈ V such that

∫
Ω

ĉ
∆cV |n+1

∆t
dV +

∫
Ω

(1− φGB)∇ [ ĉV ] ·
{
Dbulk
V ∇ [cV |n+1]−Dbulk

Σ cV |n+1∇ [Σ|n+1]

}
dV +

+

∫
Ω

φGB∇ [ ĉV ] ·
{
DGB
V ∇ [cV |n+1]−DGB

Σ cV |n+1∇ [Σ|n+1]

}
dV +

+

∫
Ω

∇S
[
~̂u
]

: σ(cV |n+1, ~u|n+1,Σ|n+1) dV +

+

∫
Ω

β̂

{
cV |n+1 − cL exp

[
−EV
RT

+
ωV Σ|n+1

RT
+
vA tn(cV |n+1, ~u|n+1,Σ|n+1)

RT
− vA ∆β|n+1

LGB RT ∆t

]}
dV +

+

∫
Ω

Σ̂
{

Σ|n+1 − tr [σ(cV |n+1, ~u|n+1,Σ|n+1) ]
}

dV,

∫
∂NΩh

ĉV hV |n+1 dA−
∫
∂NΩσ

~̂u · ~t|n+1 dA = 0

for all V̂ =
{
ĉV , ~̂u, β̂, Σ̂

}
∈ V .

The resulting discretized weak form has been solved in a monolithic scheme. Linear triangular elements have
been selected for the spatial discretization of solution and test functions. The finite element mesh has been
generated using Gmsh [29]. To better approximate the solution fields close to GB, a finer mesh has been
defined in boundary regions.
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