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Adiabatic pumping via avoided crossings in stiffness modulated quasiperiodic beams

Emanuele Rivaa,∗ Vito Casieria, Ferruccio Restaa, and Francesco Braghina
a Department of Mechanical Engineering, Politecnico di Milano, Italy, 20156

(Dated: June 22, 2020)

In this manuscript we report on adiabatic pumping in quasiperiodic stiffness modulated beams.
We show that distinct topological states populating nontrivial gaps can nucleate avoided cross-
ings characterized by edge-to-edge transitions. Such states are inherently coupled when a smooth
variation of the modulation phase is induced along a synthetic dimension, resulting in topological
edge-to-edge transport stemming from distinct polarizations of the crossing states. We first present
a general framework to estimate the required modulation speed for a given transition probability
in time. Then, this analysis tool is exploited to tailor topological pumping in a stiffness modulated
beam.

I. INTRODUCTION

The study of topological insulators in physics has
drawn great interest in the past years, due to the op-
portunity to achieve defect immune and lossless energy
transport within different research fields and physical
platforms, such as photonics [1, 2], quantum systems
[3, 4], and acoustics [5–8] among others. In mechanics,
topologically protected edge waves have been extensively
studied in analogy with quantum systems. Indeed, the
systematic combination of topology to the study of non-
trivial band structures has opened a new branch of stud-
ies under the name of topological mechanics [9]. Topi-
cal examples include elastic analogues to the Quantum
Hall Effect (QHE) [10–13], the Quantum Spin Hall Ef-
fect (QSHE) [14–17] and Quantum Valley Hall Effect
(QVHE) [18–22], which are associated with robust prop-
agation mechanisms of technological relevance for next
generation applications involving elastic wave manipula-
tion, isolation and waveguiding.
Other approaches to topology-based design leverage non-
trivial topological properties emerging from a relevant
higher-order parameter space projected in lower dimen-
sional physical systems [23–26]. In this context, the pro-
jection of a nontrivial topology to a physical set of pa-
rameters reflects on modulation families (either spatial
or spatiotemporal), which can be exploited to manipu-
late wave propagation and the localization phenomenon
[26, 27]. Recently, 2D rotationally symmetric quasicrys-
tals have been shown to exhibit aperiodic Hofstadter
spectrum, which can be populated by two-way propagat-
ing modes spatially localized within the bulk or in corre-
spondence of the external edges [28–30]. 1D Fibonacci-
based phononic circuits have been theoretically and ex-
perimentally studied, with emphasis on the self-similar
dynamic behavior and modified propagation velocity [31–
33]; a similar configuration have been successfully em-
ployed to tailor topological transport of photons across a
Fibonacci chain [34].
According to the bulk-edge corresponding principle, the
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formation of localized edge states is inherently linked
with the topological characteristics of the wavenumber-
parameter space [35–37]. In other words, the edge state
localization can be parameterized through a projection
phase [38, 39]. When such a parameter is smoothly var-
ied along a second dimension, the edge state transforms
from being left (right) to right (left) localized, therefore
establishing a topological pump [40–44]. Recent exam-
ples include mechanical lattices with periodic couplings
[45], elastic plates with smoothly varying square-wave
modulations [46], acoustic systems with spatially modu-
lated geometry [47], and magneto-mechanical structures
with time-varying parameters [48]. In general, an adia-
batic transformation of the edge state is necessary for a
successful realization of a topological waveguide. This re-
quires a slow variation of the phase parameter in space or
time, as shown in Ref. [49] for a chain of pre-compressed
cylinders with controllable contact stiffness. In contrast,
higher modulation velocities eventually leads to scatter-
ing of energy to bulk modes, Bloch mode conversion, and
nonreciprocity [49, 50].
In the attempt to provide an estimate of the required
speed of modulation in edge-to-edge transformations,
we report on a quasiperiodic stiffness modulated beam.
This specific configuration supports topological bound-
ary modes, whose frequency and mode polarization is
function of a modulation phase parameter, which is suit-
ably varied in time through established techniques [51–
54]. It is illustrated that distinct topological modes can
populate the same gap and - through a smooth variation
of the phase parameter in time - can nucleate crossing
states, or avoided crossings [55, 56]. This phenomenon is
also known as band veering and mode veering in the con-
text of elastic wave propagation and structural dynam-
ics [57–60] and generally implies coupled crossing states,
expanding the range of opportunities in topology-based
waveguiding through a phase modulation.
Moreover, we estimate the required speed of variation of
the phase for a given transition probability, as a func-
tion of few critical parameters of the crossing states. We
demonstrate that, depending upon the phase speed of
variation along the temporal dimension, a localized state
can simply cross the intersection (fast modulation) with-
out shape modification, or can split in two separate states
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localized at both edges (intermediate speed of modula-
tion) or can fully transform into a state localized at the
opposite boundary (slow modulation). To this end, we
first present the theoretical framework to compute transi-
tion probabilities applied to a simple spring mass system
through a paraxial approximation of the equation of mo-
tion. Then, the same theory is applied to study adiabatic
and non-adiabatic transformations in the quasiperiodic
beam.
This study is relevant for the optimization of pumping
protocols in mechanics, which suits applications involv-
ing wave splitting and de-multiplexing, such as nonde-
structive evaluation, signal transmission and realization
of logic circuits based on elastic wave propagation.

II. ADIABATIC TRANSFORMATIONS
THROUGH AVOIDED CROSSINGS

We start considering a simple 2 mass-spring system
illustrated in Fig. 1(a)-I in which the point masses
m1 and m2 are respectively grounded through linear
springs k1 (φ(t)) = k0 [1− α cos (φ)] and k2 (φ(t)) =
k0 [1 + α cos (φ)] that are smooth functions of time
through a control phase parameter φ (t) = φi + ωmt,
where φi and ωm are the initial phase and the angu-
lar velocity, respectively. α is the stiffness modulation
amplitude. It is assumed that m1 = m2 = m. In addi-
tion, a linear time-invariant spring k12 = εk0 is placed
between the first and second mass and represents a weak
coupling between the mass displacements x1 and x2, for
a sufficiently small value of ε. Upon linear momentum
balance, one can write the elastodynamic equations gov-
erning the motion of the system:

ẍ1 + ω2
1x1 − Γ

√
ω1ω2x2 = 0

ẍ2 − Γ
√
ω1ω2x1 + ω2

2x2 = 0
(1)

in which ω1,2 =
√

(k1,2 + k12) /m and the off-diagonal

terms are independent of time. Γ = k12/
√
m2ω1ω2 repre-

sents the coupling coefficient, which is analogue to Rabi’s
frequency for quantum systems. Eq. 1 is written in com-
pact form:

Mẍ + Kx = 0 (2)

one can seek Ansatz solutions in the form x = x̂0eiωt

yielding the adiabatic frequencies ω±, i.e. the frequencies
corresponding to the coupled states through the param-
eter Γ. That is:

ω± =

√
1

2

[
ω2
1 + ω2

2 ±
√

(ω2
1 − ω2

2)
2

+ 4Γ2ω1ω2

]
(3)

it is evident that, for Γ = 0, one gets uncoupled states
ωD± = ω1,2. Under this condition, ωD± are known as di-
abatic frequencies. The location of the states is mapped

through Eq. 3 upon varying the modulation phase φ and
is illustrated in Fig 1(b), where ΩD (φ)± = ωD± (φ) /ω0

is a dimensionless frequency, with ω0 =
√
k0/m. Sim-

ilarly, a dimensionless angular velocity of modulation
Ωm = ωm/ω0 is defined. The investigation domain is
limited in the neighborhood of φ = π/2 around which,
for Γ = 0, the lower and upper diabatic frequencies ΩD−
and ΩD+ (represented in red) are linear and coincident for

ΩD± = 1. Interestingly, for φ = π/2 and ΩD± = 1 the spec-
trum undergoes a transformation such that the associ-

ated mode polarizations xD− (φi) = [1, 0]
T

and xD+ (φi) =

[0, 1]T interchange each other, i.e. xD− (φi) → xD+ (φf )

and xD+ (φi) → xD− (φf ). To elucidate this concept, xD−
and xD+ are displayed in Figs. 1(a) II− III employing

dashed and solid red curves for xD1 and xD2 , respectively.
In contrast, Γ 6= 0 implies opening of the crossing cone
and coupling between otherwise degenerate states. The
adiabatic spectrum ΩA± (φ) emerges when nonzero cou-
pling is considered and, specifically, it deviates from the
diabatic spectrum when the coupling between states is
stronger, as shown by the black curve in Fig. 1(b).
The corresponding mode polarizations xA− and xA+, rep-
resented by the black curves in Fig. 1(a) II− III, can
be regarded as smooth perturbation to the diabatic so-
lutions due to weak coupling Γ. In other words, one can
evaluate diabatic states by assuming adiabatic solutions
and nullifying Γ, which is generally unknown in more
complicated case-studies, such as quasiperiodic systems.
To overcome this issue, we hereafter present a systematic
approximation of diabatic states and coupling parameter,
which will be used later in the paper to estimate tran-
sition probabilities in adiabatic transformations. Let us
consider the system for φ = φi, which is sufficiently far
away from φ = π/2, such that the adiabatic and diabatic
states ΩA± (φi) and ΩD± (φi) and corresponding polariza-

tions xD± (φi) and xA± (φi) are approximately coincident.
We also observe that, if Γ = 0, the diabatic eigenvector
basis ΨD = [xD− (φ) ,xD+ (φ)] remains unaltered with φ
(except from the crossing point at φ = π/2, in which
the eigenvectors simply exchanges each others). This im-
plies that, under of change of coordinates x = ΨDq, the
modal displacements q are uncoupled for any φ value,
that is: (

−ω2Mq + Kq (φ)
)
q = 0 (4)

where Mq = (ΨD)T IΨD and Kq (φ) = (ΨD)TKΨD are
the diagonal mass and stiffness matrices, respectively. In
contrast, if Γ 6= 0 the adiabatic eigenvector basis ΨA un-
dergoes a smooth modification for φi → φf (see Fig. 1(a)
II− III), starting from initial and final values that well
approximate the diabatic basis ΨD.
Enforcing ΨD

i,f ≈ ΨA
i,f , a new change of coordinates

x = ΨA
i,fq reflects into a symmetric stiffness matrix

Kq (φ) = (ΨA)TKΨA, in which the off-diagonal terms
embody the modal coupling K12

q = K21
q . The coefficients

of Kq (φ) are illustrated in Fig. 1(c) and are evaluated
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(a) (b) (c)

FIG. 1. (a)-I Schematic of the spring-mass system. The adopted parameters are: m = 1, φi = 0.45π, φf = 0.55π, k0 = 1,

α = 0.3 ε = 0.005. (a)-II Diabatic and adiabatic mode polarizations xD =
[
xD1 , x

D
2

]T
and xA =

[
xA1 , x

A
2

]T
associated with the

top branch Ω+; (a)-III and to the bottom branch Ω−. Displacements relative to diabatic states are represented with red lines,
while adiabatic states are illustrated with black curves. (b) Adiabatic, diabatic and approximated diabatic states upon varying
the modulation phase parameter φ ∈ [φi, φf ]. The yellow band represents the locus of diabatic states ΩD

1 characterized by the

same polarization xD ≈ [1, 0]. (c) Estimated coefficients of the stiffness matrix in generalized coordinates. K̂1,1 and K̂2,2 are

the diagonal terms, which are displayed with solid and dashed black lines, respectively. K̂1,2 = K̂2,1 are the off-diagonal terms
(blue line) representing the coupling between states.

employing the change of coordinates x = ΨA
i q for φi <

φ < π/2 and x = ΨA
f q for π/2 < φ < φf to compensate

for the eigenfrequency interchange. As expected, K12
q

reaches the maximum value of ε for φ = π/2 and is re-
sponsible for the frequency and shape difference between
diabatic and adiabatic states. It is therefore straightfor-
ward to conclude that enforcing K12

q = K21
q = 0 into

Eq. 4, the modal coupling breaks and, as a result, one
gets approximated diabatic frequencies which, in turn,
are illustrated with blue dots in Fig 1(b). It is worth
mentioning that this procedure yields an estimation of
the coupling, as ΨA

i,f only approximates ΨD
i,f . Such es-

timation becomes more accurate as the adiabatic basis
ΨA
i,f converges to ΨD

i,f .
Now, in the attempt to find the transition probabilities
for an eigensolution ΩA− (φi) for t = 0 belonging to the

bottom branch ΩA− to jump to the upper branch ΩA+
for smooth modulations φ (t) = φi + ωmt, we proceed
with the following approximation of the equation of mo-
tion, with the aim to present a mechanical analogue to
the Landau-Zener model. We remark that, at this step,
the temporal evolution of the diabatic states ΩD1,2 (t) is
known and corresponds to the path that preserves the
starting mode polarization unaltered through xDi → xDf ,

which is highlighted with a yellow band for ΩD1 (t) in Fig.
1(b). Let’s assume the following solution for the elasto-
dynamic Eq. 2:

x =
1

2

[
a (t) eiω1(t)t + a∗ (t) e−iω1(t)t

]
(5)

where a = [a1, a2]
T

are the complex envelopes of oscil-
lators’ displacement and ω1 (t) = ΩD1 (t)ω0 the temporal
evolution of ΩD1 during the transformation. A similar

relation holds for ω2 (t) = ΩD2 (t)ω0, while for ease of
visualization, the time dependence of ω1 and ω2 in the
derivation is implicitly assumed. Differentiating Eq. 5
with respect to time:

ẍ =
1

2

[
c (t) eiω1(t)t + c∗ (t) e−iω1(t)t

]
with :

c (t) = ä− i2ȧ (ω1 + ω̇1t)− a
(

i[ω̈1t+ 2ω̇1] + [ω1 + ω̇1t]
2
)

(6)

It is now considered a paraxial approximation of the
equation of motion, thus neglecting the higher order
derivatives for ω1 and a, i.e. ω̈1t << ω̇1, ω̇1t << ω1

and we assume that ω̇1 << ω2
1 :

c (t) = ä− i2ȧω1 − aω2
1 (7)

with ä << i2ȧωi + aω2
1 , and we get to:

c (t) = −i2ȧω1 − aω2
1 (8)

Plugging Eq. 5-8 into Eq. 1 yields the following dynam-
ical system akin to the Schrödinger equation:

− 2iω1ȧ1 = Γ
√
ω1ω2a2

− 2iω1ȧ2 + (ω2
2 − ω2

1)a2 = Γ
√
ω1ω2a1

(9)

which can be rewritten as a second-order ordinary dif-
ferential equation with time-varying coefficients, by dif-
ferentiating the first equation and merging it with the
second:

ä1 +
ω̇1 + i

[
ω2
2 − ω2

1

]
/2

ω1
ȧ1 +

Γ2

4

ω2

ω1
a1 = 0 (10)
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To further simplify the equation it is assumed that
ω̇1ȧ1 ≈ 0, and we consider that the frequency difference
between ω± is a linear function of time, which allows for
the following approximations:

ω2
1 + ω2

2

2ω1
≈ ω2 − ω1 ≈ βt;

Γ2ω2

ω1
≈ Γ2 ≈ Γ2|π/2 =

(
k12

mωCR

)2 (11)

where ωCR is the diabatic frequency evaluated in the
crossing point φCR = π/2. β is proportional to the mod-
ulation angular velocity:

β =
d (ω2 − ω1)

dt
= ωmγ (12)

and the term γ = ∂ (ω2 − ω1) /∂φ is a constant that ap-
proximates linear behavior of the diabatic states in the
neighborhood of ωCR. We finally get to:

ä1 + iβtȧ1 +
Γ2
CR

4
a1 = 0 (13)

where ΓCR is Γ evaluated in correspondence of the cross-
ing point and represents the frequency separation be-
tween states for φ = φCR. The probability function
P (t) = |a1 (t) |2 for the energy to keep the same modal
shape is quantified through Eq. 13, for a given ini-
tial condition [a1 (t0) , a2 (t0)], which are normalized such
that |a1 (t) |2 + |a2 (t) |2 = 1. Also, seeking asymp-
totic solutions for t → ∞ yields a constant probability

P (t→∞) = e−
π
2

Γ2
CR
β , which defines the energy distri-

bution between the states Ω± at the end of the transfor-
mation.
Finally, assuming that at the initial time instant the en-
ergy is entirely located in the bottom state, we enforce
initial conditions for a1 to be |a1(t0)| = 1, which allows
for a numerical solution of Eq. 13 in terms of temporal
evolution of transition probabilities.
We complete the first part of the manuscript numeri-
cally solving Eq. 1 with φi = 0.45π, α = 0.3, m = 1,
k0 = 1, ε = 0.005 and upon comparison between the
numerically computed time histories x (t) with respect
to the corresponding probabilities. Specifically, the sys-
tem is excited using a narrowband tone burst excita-
tion for a sufficiently long time period T with a force
F = [1, 0]T sin(ΩA− (ti)ω0t)(1 − cos(2π/T t)) having cen-

tral frequency ΩA− (ti) computed at initial time ti, in order
to excite only the state belonging to the bottom branch.
After the energy is injected to the target state ΩA− (ti),
three distinct smooth modulations φ = φi + ωmt are im-
posed assuming Ωm = 1.3·10−3, 1.9·10−4, and 1.6·10−5,
which correspond to probabilities of P = 0.9, 0.5, and
2.4 · 10−4 respectively, evaluated upon inversion of the

probability function:

Ωm = − π

2ω0

Γ2
CR

γ log (P )
(14)

Consistently with prior works [54], Eq. 14 illustrates a
relationship between the angular velocity Ωm, the slope
γ, and frequency separation ΓCR of the avoided cross-
ing, for a given probability P . That is, the higher the
frequency separation, the higher the angular velocity can
be for a generic value of P .
To validate the aforementioned considerations, three
spectrograms are computed employing a fourier trans-
form of the displacement field in reciprocal space
x̂ (ω, κx, t), by properly windowing the temporal history
using a moving Gaussian function [45]. For ease of vi-
sualization, the second dimension is eliminated by con-
sidering the RMS value along κx. The spectrograms
in Fig. 2(a-c) are in good agreement with respect to
the steady-state and temporal probabilities displayed in
Figs. 2(d-f) which, in turn, well describe the transi-
tions occurring through the phase modulation. We re-
mark that, for a better visualization of the steady state
probability value, the time simulation duration is in-
creased to Tsim, whereby the final phase modulation time
Tf = (φf−φi)/ωm is highlighted with a vertical blue line.
Specifically, Fig. 2(a,d) display a fast transition with
frequency shift and without eigenvector transformation,
which is consistently described by the probability P = 0.9
for a state to keep the same polarization and therefore
to jump from ΩA− to ΩA+. Fig. 2(b,e) instead describe
frequency splitting, in which half (P = 0.5) of the energy
remains to ΩA− and half jumps to ΩA+. Finally, Fig. 2(c,f)
illustrate an almost adiabatic transition with eigenvector
transformation, in which the starting state remains lo-
cated at the bottom branch ΩA−, which yields the almost
zero probability for the state to keep the initial polariza-
tion.
It is worth mentioning that the steady state probability
P (t→∞) and the corresponding time history obtained
from numerical integration of Eq. 13 exhibits a small dif-
ference in the steady-state behavior, especially when the
numerical integration duration is short. This mismatch
results from the different time domains considered for
computing the aforementioned solutions which, in one
case is [0,∞] and in the second case is [0, Tf ].

III. EDGE-TO-EDGE PUMPING IN A
QUASIPERIODIC BEAM

Consider now a real and application-oriented case-
study, in which a plain aluminum beam is equipped with
periodically placed smart piezoelectric patches, for a to-
tal of N = 24 pairs bonded on the top and bottom sur-
faces. The coupling between electrical and mechanical
domains enables stiffness modulation when subjected to
certain electrical boundary conditions which, in the case
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(a) (b) (c)

(d) (e) (f)

FIG. 2. (a-c) spectrograms |ŵ (Ω, t) |RMS of the simulated spring mass system under narrowband spectrum tone burst excitation
adopting three different angular velocities Ωm. (a) Fast modulation Ωm = 1.3 · 10−3. (b) Intermediate angular velocity
Ωm = 1.9 · 10−4 and (c) slow modulation Ωm = 1.6 · 10−5. (d-f) Estimated probability for a state belonging to ΩA

− to keep
the same polarization and jump to ΩA

+ in correspondence of φCR = π/2 for distinct angular velocity values. The black curve
represents the dynamic probabilities without the approximation introduced in Eq 11. Red curve: probability time history
through full approximation of the equation of motion. The asymptotic solution is illustrated with black dashed lines.

at hand, are negative capacitance (NC) shunts. In addi-
tion, the circuit’s components are temporally modulated
in time providing effective Young’s modulus variation ac-
cording to a predetermined modulation law. Such a con-
figuration has been successfully employed in prior stud-
ies concerning space-time modulations [52] and shown in
Fig. 3(a). The corresponding physical and geometrical
properties are reported in Appendix A. Let’s assume that
consecutive sub-elements are stiffness modulated in the
following fashion:

Ek = Es,0 [1 + α cos (2πθk + φ (t))] (15)

where Es,0 is the mean effective Young’s modulus of the
sandwich structure and α a dimensionless modulation
amplitude. θ is the projection parameter that charac-
terizes the discrete sampling from the sinusoidal func-
tion to the kth piezo stiffness, and defines the wavelength
of the modulation along the beam. φ (t) = φi + ωmt is
a phase parameter which is a smooth function of time,
whereby its linear variation corresponds to a modula-
tion traveling toward either positive or negative x co-
ordinates, depending on the sign of ωm. Interestingly,

such a modulation embodies nontrivial topological prop-
erties, which reflects into a fractal spectrum associated
with θ variations, and investigated employing a constant
modulation phase φ = 0, as shown through the Hofs-
tadter butterfly in Fig. 3(b). For ease of visualization,
we employ a greater number of sub-elements S = 240
and we impose continuity conditions for the displace-
ments and rotations in correspondence of the left and
right boundaries, to geometrically resemble a ring. The
analyzed domain is limited within θ ∈ [0, 1], since f is
2π-periodic with θ, i.e. f (2πθ) = f (2π + 2πθ). More-
over, since cos(2πθ) = cos(2π(1 − θ)), then f(2πθ) is
symmetric about θ = 0.5 and f (2πθ) = f (2π − 2πθ).
The resulting spectrum, representative of the supported
states, reveals the presence of well separated frequency
gaps. The nontrivial nature of such gaps is quantified
through a graphical interpretation of the Integrated Den-
sity of States (IDS), which is illustrated in Fig. 3(c). The
frequency separation between the Bulk bands reflects on
sharp jumps in the IDS as a function of θ, which is suit-
ably described through a linear function IDS = n+mθ
and represented with dashed red lines. A label for the
gaps Cg = m is defined as the slope m of such lines and
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(a) (b)

(c) (d) (e)

FIG. 3. Schematic of the beam under clamped-clamped boundary conditions and quasiperiodic stiffness modulation. Quasiperi-
odicity is achieved by means of non-repeating control signals k−1, k, k+ 1, . . . able to locally alter the electrical parameters of
the NC shunt. In the schematic, a temporal modulation of R1 is assumed. (b) Hofstadter butterfly associated with a commen-
surate realization of a stiffness modulated beam upon varying the projection parameter θ. The vertical dashed line corresponds
to the configuration adopted to study edge-to-edge transitions. (c) Integrated Density of States (IDS) as a function of θ. The
IDS is characterized by sharp jumps in correspondence of the bandgaps and identified by straight lines IDS = n + mθ. The
slope of the lines m determines the labels of the gap Cg = m. (d) Spectrum of the system for θ = 0.075 and upon varying
the modulation phase φ. A pair of states is spanning the gap and generate the avoided crossing. (e) I Zoomed view of the
avoided crossing. Adiabatic states in black and approximated diabatic states in red. In the figure, the schematic of the expected
polarization for each branch is illustrated. (e) II− III Estimated Modal Dependence Factor (MDF) between modes #25, #26
and full spectrum.

inherently linked to the topological modes supported by
the beam [39]. We now focus our attention above the
first trivial gap (Cg = 0), and we employ a quasiperiodic
configuration of the system, whose projection parame-
ter θ = 0.075 corresponds to the red dashed line in Fig.
3(b). The associated spectrum upon varying the mod-
ulation phase φ is illustrated in Fig 3(d) and exhibits a
first nontrivial gap (Cg = 1) at approximately 6 kHz. In-
terestingly, a pair of topological edge states is observed
when cyclic variation of φ are considered, whose depen-
dence with φ manifests as avoided crossing. The topo-
logical characteristics and localization properties of sim-
ilar quasiperiodic configurations have been extensively
discussed in [45]. Here, instead, we investigate on the
avoided crossing dynamics, which is observable within
[φi, φf ] = [2.82π, 2.88π]. A zoomed view in the neigh-
borhood of φCR is illustrated in Fig 3(e), corresponding

to mode polarizations which are left and right localized
for fA− (φi) , f

A
+ (φf ) and fA+ (φi) , f

A
− (φf ) respectively,

providing opportunities for edge-to-edge transitions, sim-
ilarly to section II.
In contrast to simple spring-mass systems, the modal
coupling and diabatic frequencies are unknown and, for
an estimation of the latter, we exploit the numerical pro-
cedure previously discussed. To this end, the adiabatic
basis ΨA

i and ΨA
f are computed through a finite element

approximation of the system based on Euler Bernoulli
beam theory (each unit cell is discretized using 10 finite
elements, for a total of NF.E. = 240), yielding the follow-
ing eigenvalue problem:(

−ω2M + K
)
w = 0 (16)

which is sufficiently accurate to describe the dynamic be-
havior of the beam within the frequency range of inter-
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(a) (b) (c)

(d) (e) (f)

FIG. 4. (a-c) Spectrograms |ŵ (f, t) |RMS resulting from the numerical time history obtained through narrowband burst
excitation of the quasiperiodic beam. The shape of the force is tailored to favor the excitation of the left-localized mode. The
modulation phase is varied with three different angular velocity levels ωm. (a) Fast modulation ωm = 20π. (b) Intermediate
angular velocity ωm = 3.15π. (c) Slow modulation ωm = 0.26π. (d-f) Corresponding displacement field in space and time.
(d) without edge-to-edge transition. (e) with 50% energy left localized and 50% right localized. (f) Complete edge-to-edge
pumping.

est. Such basis are then exploited to perform a change of
coordinates w = ΨA

i,fq and therefore used for an evalu-

ation of the generalized mass Mq = (ΨA
i,f )TMΨA

i,f and

stiffness Kq = (ΨA
i,f )TKΨA

i,f matrices. In analogy with

section II, the coefficients K25,26
q and K26,25

q are respon-
sible for the coupling between the otherwise degenerate
states, whereby setting K25,26

q = K26,25
q = 0 breaks the

modal interactions and converts adiabatic frequencies fA±
to the corresponding diabatic approximations fA± → fD± .

A comparison between fA± (black curves) and fD± (red
lines) is illustrated in Fig 3(e), whereby on one hand,
the adiabatic curves are converted into diabatic states
nullifying the modal coupling. On the other hand, the
small gap between estimated states for φ = φCR is jus-
tified by the approximation ΨD

i,f ≈ ΨA
i,f . Moreover, an

estimation of the coupling between modes 25, 26 and the
full spectrum is shown in Fig. 3(e) II− III in terms of
Modal Dependence Factor (MDF), whose computation is
addressed following a procedure detailed in Appendix B.
As expected, the state belonging to fA− (i.e. mode # 25)

couples only with fA+ (mode # 26) through the coupling
coefficient K25,26

q . While mode # 26 mainly couples with

# 25 except for from small interactions with # 27 in cor-
respondence of φi and φf .
Now, based on the diabatic frequency estimation, the
required angular velocity ωm is evaluated as a function
of the target steady-state transition probabilities P , the
frequency separation ΓCR, and the crossing slope γ, in
agreement to Eq. 14. The estimated probabilities and
modulation angular velocities are then validated numer-
ically by solving the adiabatic and non-adiabatic tran-
sition problems. Specifically, a narrowband input spec-
trum, which is able to favor only the excitation of the
left localized state, is considered. To this end, the shape
of the input force is set coincident to the mode polariza-
tion wA of the 25th state computed for φ = φi. Later,
the phase parameter is varied using three distinct val-
ues for ωm = 20π, 3.15π, 0.26π [rad/s]. The resulting
displacement field is used to recover the energy content
in reciprocal space ŵ (f, κx, t), which is then reduced to
ŵ (f, t), by taking the RMS value along κx. In case of
fast modulation (ωm = 20π), the probability for the ini-
tial state to keep the same polarization (i.e. to jump from
ΩA− to ΩA+ for φCR) is 0.9, which is confirmed by the as-
sociated spectrogram in Fig. 4(a). Consequently, the
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temporal evolution of the beam’s displacement (see Fig.
4(d)) illustrates that the topological state remains left lo-
calized (except for some energy that leaks to the right),
which reflects the mode polarization xA associated with
the branch the solution belongs to. When the intermedi-
ate angular velocity of ωm = 3.15π is applied to the sys-
tem, corresponding to P = 0.5, the energy content splits
between two states which are left and right localized re-
spectively, as shown in Fig. 4(b,e). Finally, a slow mod-
ulation, characterized by ωm = 0.26π and P = 2.4 ·10−4,
results in a complete edge-to-edge transition from the
left to right boundaries, therefore achieving a topologi-
cal pump. The corresponding spectrogram demonstrates
that the edge-to-edge transition occurs with a frequency
shift, so that the initial state keeps belonging to the bot-
tom branch with negligible scattering of energy to the
neighboring modes.

IV. CONCLUSIONS

In this manuscript it is demonstrated that the coupling
between distinct topological states populating the same
gap leads to the formation of avoided crossings charac-
terized by edge-to-edge transitions. The avoided cross-
ing dynamics is investigated in the context of quasiperi-
odic stiffness modulated beams and, specifically, we have
shown a systematic procedure to break the modal cou-
pling upon approximation of the diabatic frequencies and
corresponding basis, which is used to estimate the re-
quired modulation angular velocity for a given edge-to-
edge transition probability. The results presented in the
paper can be of technological relevance for applications
involving elastic energy splitting and demultiplexing, fre-
quency conversion and waveguiding in phononic circuits.
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Appendix A: Data of the quasiperiodic beam

In this manuscript the analysis are performed consider-
ing the electroelastic beam illustrated in Fig. 3(a), which
is made of an aluminum substrate with cross section b
x H = 20 mm x 1 mm and total length l = 576 mm.
An array of piezoelectric patches, separated by a 2 mm
distance, consists of 24 piezo-pairs bonded on opposite
surfaces with material density ρp = 7.9 kg/dm3, short
circuit Young’s modulus Ep = 62 GPa, and size b × hp

FIG. A1. Schematic and adopted notation of stiffness for the
patch (Ep), the sandwich (Es) and of relevant modulation
parameters.

× lp = 20 × 1 × 22 mm. The boundary conditions are
clamps applied to both beam’s ends.
Each patch is connected to a shunt circuit emulating a
series negative capacitance (NC), for a total of 48 shunts,
which provide an effective stiffness decrease to the beam
sandwich when the circuit is active [52].
In the case at hand, the modulation law reflects the elec-

trical boundary conditions applied to the piezoelectric
patches in agreement with the circuit schematic in Fig.
3(a) which, in turn, locally alters the effective Young’s
modulus of the material in the following fashion:

ESUp = Ep
CN − CTp
CN − CSp

(A1)

where CN = C0
R2

R1
is the value of the synthetic NC

shunt under the assumption of infinite bias resistance R0

[61, 62]. Other circuit parameters are listed in Tab. A1.
A continuous modulation of R2 allows for a smooth vari-
ation of the associated equivalent sandwich stiffness Es,
which is function of the shunted Young’s modulus ESU :

Es =
EalIal + 2ESUp Ip

IAl + 2Ip
(A2)

where:

Ial =
bH3

12
, Ip =

bh3p
12

+ bhp(
H

2
+
hp
2

)2 (A3)

where Eal = 70 GPa and H = 1 mm are the substrate
Young’s modulus and thickness. The modulation param-
eters α and Es,0 used Eq. 15 are depending on the max-
imum and minimum achievable values for Es (t):

α =
Em
Es,0

= 0.275

Em =
Es,MAX − Es,MIN

2

Es,0 =
Es,MAX + Es,MIN

2

(A4)
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Name Value Units Description
R1 0-7.5 kΩ −
R2 13.7 kΩ −
R0 1000 kΩ Bias resistance
C0 4.4 nF NC capacitance
Cp 7 nF piezo patch capacitance
d31 -1740 pm/V piezo strain coefficient
k31 0.351 − piezo coupling coefficient

TABLE A1. NC shunt circuit parameters.

In a similar way, the equivalent density of the layered
part writes:

ρs =
ρalAal + 2ρpAp
Aal + 2Ap

(A5)

which is constant in time, where ρal = 2700 Kg/m3.

Appendix B: Modal dependece factor

Let’s consider the ith solution resulting from the eigen-
value problem:

(K(φ)− λiM)Ψi = 0 i = 1, . . . , n (B1)

where λi = ω2
i and the eigenvectors are mass normalized,

such that Ψi
TMΨj = δij , and δij is the Kronecker delta.

Similarly to Fox and Kapoor [63], we compute a sensitiv-
ity of λi with respect to the modulation phase φ, which
is representative of the rate of change of λi in response
to a variation of φ. Differentiating eq. B1 one gets:

dλi
dφ

= Ψi
T (
dK(φ)

dφ
−λi

dM

dφ
)Ψi = Ψi

T dK(φ)

dφ
Ψi (B2)

where dM/dφ = 0, since the density is not modulated.
The eigenvector sensitivity dΨi/dφ writes:

dΨi

dφ
=
∑
r 6=i

Ψi
T dK(φ)

dφ
Ψr

∆λir
Ψr =

∑
r 6=i

κir
∆λir

Ψr (B3)

where ∆λir is the difference between ith and rth eigen-

values and κir = Ψi
T dK(φ)

dφ Ψr is the modal coupling be-

tween ith and rth states. If two eigenvalues λi and λk
are sufficiently far from the remaining states, such that
the term ∆λik makes their contribution negligible, the
expression B3 simplifies as:

dΨi,k

dφ
' κik

∆λik,ki
Ψk,i (B4)

with κik = κki. Now, the effective coupling between
states i and k is quantified through the Modal Depen-
dence Factor (MDF):

MDFik =
(
κik

∆λik
)2∑

r 6=i(
κir

∆λir
)2

(B5)

which is the ratio between the modal coupling between
modes i, k and the coupling of mode i to all modes ex-
cepts for itself. A graphical representation of MDFik
is illustrated in 3(e) II − III for modes 25 and 26 upon
varying φ.
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