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Traditional Extreme Value Statistics (EVS) applied to block maxima sampled anomalies of components produced 
by Laser-Powder Bed Fusion may produce important inaccuracies in the estimated characteristic defects. In fact, 
the typical presence of multiple defect types may significantly affect the fitted maxima distributions obtained 
from different sampling volumes. In this work, we show how the limitations of traditional EVS can be overcome 
by applying supervised machine learning (ML) algorithms to classify the defects before estimating the maxima 
distributions for each defect type. The ML-assisted EVS provided maxima distributions unaffected by the different 
sampling volumes. The obtained maxima distribution lead to robust estimates of exceedance curves and finally, 
by employing the Shiozawa curve, to robust fatigue strength predictions.
1. Introduction

Fatigue behavior of additively manufactured (AMed) components 
has been an important research topic for several years. Many studies 
showed the relationship between fatigue properties and typical Addi-

tive Manufacturing (AM) features, in particular for surface roughness 
and internal defects. Yadollahi and Shamsaei [1] provided an overview 
on the effect of defect and surface roughness on the fatigue strength 
of AM materials. Masuo et al. [2] evaluated the effect of Hot Isostatic 
Pressing (HIP) and polishing on the fatigue life of Ti6Al4V, by investi-

gating the change in surface roughness and internal defect size. Pegues 
et al. [3] investigated the surface roughness and size effect on the fa-

tigue life of Ti6Al4V. Barricelli et al. [4] improved the estimates of 
fatigue life of annealed Ti6Al4V by accounting for shielding effect and a 
more accurate measurement of surface roughness. Beretta et al. [5] cor-

related surface roughness and the size of defects at the origin of fracture 
for as-built AlSi10Mg. Lee at al. [6] investigated the variability of sur-

face roughness across different locations on the build platform and its 
effect on fatigue behavior for an L-PBF 316L stainless steel. Sanaei and 
Fatemi [7] provided a comprehensive review on the effect of volumet-

ric defects on fatigue behavior. Romano et al. [8] described the effect of 
the size of artificial and natural defects on fatigue strength of AlSi10Mg. 
Nezhadfar et al. [9] compared fatigue behavior for different Al-based al-

loys, quantifying the defects size at the origin of fracture. Teschke et al. 
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[10] validated a defect-based fatigue modeling on a titanium aluminide 
alloy, studying the defects at the origin of fracture. Sausto et al. [11]

investigated the effect of defect type and size on the axial and torsional 
fatigue life of AlSi10Mg. The main conclusion is that also for AM ma-

terials a direct link exists between the maximum defect and fatigue 
life [12–14], which can be described by the well-known Kitagawa-

Takahashi diagram [15]. In recent years, Machine Learning (ML) has 
also been successfully employed to investigate the influence of fault 
characteristics on the high-cycle fatigue performance of AMed alloys. 
ML models allow to overcome the frequent constraint given by the lack 
of data [16,17] and to account for the effect of post-processing [18], 
microstructure [19], and defect location, size and morphology [20,21]. 
In fact, physics-informed ML approaches overcome the constraints of 
classical fracture mechanics and predict the fatigue finite life of ma-

terials in the presence of defects with unparalleled precision [22,23]

and with significant computational efficiency, thus reducing the cost 
of structural integrity qualification [24]. Whether a pure fracture me-

chanics approach or a ML method is employed to estimate fatigue life, 
paramount importance has to be given to properly identifying the size 
of the potential “killer” defect which dictates the fatigue life of a com-

ponent. To this aim, several studies have been devoted to estimate the 
extreme defects starting from the internal defects’ distribution obtained 
with X-ray micro-computed tomography (CT scan) [25]. CT scan has 
been widely employed on AM components thanks to its versatility and 
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Nomenclature√
area Square root of the defect area (Defect size)√
area𝑖 Failure initiating defect size√
area𝑓 Defect size at failure√
area𝑐𝑟𝑖𝑡 Critical defect size

∇𝑤𝐸 Gradient vector

𝛼 Learning rate

𝛾 Shape parameter of the GEVD

Δ𝜎 Fatigue strength (stress range)

Δ𝐾𝑖 Cyclic SIF at failure initiating defect

Δ𝑤 Gradient

𝜇 Location parameter of the GEVD

𝜎 Scale parameter of the GEVD

𝑎 Maximum semi-axis of the equivalent ellipsoid

𝑏 Medium semi-axis of the equivalent ellipsoid

𝑐 Minimum semi-axis of the equivalent ellipsoid

𝐶 Coefficient of Paris-Erdogan curve

𝑑′ Exponent of Shiozawa curve

𝐸 Cost function

𝐹 Distribution function

ℎ Height of sampling disk

𝐾 ′
𝑓

Coefficient of Shiozawa curve

𝑚 Exponent of Paris-Erdogan curve

𝑁𝑖 Number of cycles spent in crack initiation

𝑁𝑓 Number of cycles to failure

𝑁𝑝 Number of cycles spent in crack propagation

𝑝 Parameter for the approximated surface area of the equiv-

alent ellipsoid

𝑝% Percentile

𝑃𝑒 Exceedance probability

𝑃𝑓 Failure probability

𝑅 Load ratio

𝑆𝑒𝑙 Surface area of the equivalent ellipsoid

𝑉𝐵𝑀 Block Maxima sampling volume

𝑉𝑒𝑙 Volume of the equivalent ellipsoid

𝑉𝑟𝑒𝑓 Prospective material volume

�̂�𝑝 Characteristic defect

𝑌 Shape factor

Abbreviations

AM Additive Manufacturing

AMed Additively Manufactured

CT scan X-ray micro-computed tomography

DT Decision Tree

EVS Extreme Value Statistics

EV Extreme Value

GEP Gas-Entrapped Porosity

GEVD Generalized Extreme Value Distribution

HCF High-Cycle Fatigue

HIP Hot Isostatic Pressing

L-PBF Laser-Powder Bed Fusion

LEVD Largest Extreme Value Distribution

LoF Lack-of-Fusion

ML Machine Learning

NN Neural Network

SEM Scanning Electron Microscope

SIF Stress Intensity Factor
the possibility of obtaining a large volume of data with a relatively low 
cost and time investment [26]. Moreover, recent standards for the quali-

fication of AM processes and components require the employment of CT 
scan for investigating material anomalies, together with fractographies 
after fatigue tests [27]. However, transferability between specimens and 
components remains an open point. The starting point for these inves-

tigations is that there is a well-known size-effect that needs to be taken 
into account to evaluate fatigue life through a suitable statistical model-

ing [28–30]. This size-effect relates maximum defect size and relevant 
volume: the larger the volume the higher the probability of finding a 
large defect. This is well described by Extreme Value Statistics (EVS), 
which has been successfully employed to estimate the maximum de-

fects [31,51,32,33]. However, for AM materials, exponential or Gumbel 
probability charts tend to show complex plots, which is a typical indi-

cator of different types of defects being sampled together [34,35]. This 
is not surprising, considering that, within non-HIPed AM components, 
three main defect typologies have been extensively described in the lit-
erature [36–40], namely: i) gas-entrapped porosity (GEP), ii) keyhole 
porosity, iii) lack-of-fusion (LoF). Recognition of defect typology was 
initially done with the identification of simple thresholds using features 
obtained with the most common CT scan post-processors [41,42]. How-

ever, supervised ML approaches have recently shown promising results 
in the automated identification of the defect typology. Poudel et al. [43]

trained two machine learning algorithms on a set of pre-classified defect 
to perform automatic identification of defect’s types. Ye et al. [44] used 
machine learning to improve defect classification on low resolution CT 
scan using information coming from high resolution CT scan performed 
on the same coupons. Vandecasteele et al. [45] evaluated the transfer-

ability of a defect classification algorithm for LoFs and keyhole porosity 
across different materials and for different process parameters. Altmann 
et al. [46] showed that supervised classification models perform signif-

icantly better than unsupervised models to correctly identify GEP, LoF 
2

and keyhole pores from binary images.
The aim of this paper is to apply supervised machine learning ap-

proaches in order to improve the estimated maxima defects distribution 
obtained with EVS by fitting distributions for each defect typology. In 
this way, it would be possible to properly capture the size-effect for 
each distribution and thus to improve fatigue strength predictions.

2. Materials and methods

The fatigue specimens used in this study were fabricated by laser-

powder bed fusion (L-PBF). The specimens were manufactured using an 
SLM 280HL v1.0 system equipped with two 400 W Yttrium fibre lasers 
working in parallel in a build chamber that measures 280x280x350 
mm3 (SLM Solution Group AG). The build chamber was flooded with 
argon to reach oxygen levels lower than 0.2% during the printing pro-

cess. The printing parameters were as follows: beam power P = 350 W, 
hatch distance h = 0.13 mm and scan speed v = 1650 mm/s. The se-

lected layer thickness was t = 50 μm and produced an energy density 
of 32.63 J/mm3. The building platform was pre-heated up to 150 ◦C. 
The scan strategy adopted stripes rotated by 67◦ after each layer and 
the scanning order was two contours, followed by the hatch scanning. 
AlSi10Mg powder, produced by ECKA Granules, was characterized by 
a mean granule size of 37 μm, 𝐷10 = 21 μm and 𝐷90 = 65 μm with 
a flowability of 80 s/50 g. Before separating the specimens from the 
building platform, the build job was subjected to an artificial ageing 
heat treatment (200 ◦C for 4 hours).

Fig. 1 shows the specimens dimensions: the gauge section had di-

ameter equal to 9.6 mm and length equal to 5 mm. An overstock of 
0.2 mm on all surfaces and a 30 mm longer lower part were consid-

ered to allow machining operations. All the specimens were printed in 
the vertical (z) direction, i.e. with the loading axis corresponding to the 

building direction.
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Fig. 1. (a) HCF specimen geometry (all dimensions in [mm]) with two exemplary defects at the origin of fracture: (b) a gas-entrapped pore and a lack-of-fusion. 

Adapted from [11].

2.1. Fatigue tests

Fatigue tests were conducted on a servo-hydraulic MTS Landmark 
testing machine with a maximum force capacity of 100 kN. The tests 
were carried out in force control at 25 Hz under completely reversed 
loading conditions (i.e. with a load ratio 𝑅 = 1). Specimens that sur-

vived 5 ⋅ 106 cycles were considered run-outs and retested at a higher 
load. More details on the specimens and the fatigue tests can be found 
in [11].

2.2. Fracture analysis

After the fatigue tests, the specimens were subjected to ultrasonic 
cleaning in ethanol to remove dust and particles from the fracture sur-

faces. The fracture surfaces were subsequently analyzed with a stereo 
microscope and with a Zeiss EVO 50 Scanning Electron Microscope 
(SEM). The defect size expressed as 

√
area of the defect projected on 

the xy plane (i.e.: perpendicular to the loading direction) was measured 
with the software ImageJ.

2.3. X-ray micro-computed tomography

After the fatigue tests, the grip ends of the HCF specimens were 
investigated by means of CT scan to reveal the volumetric anomalies 
induced by the manufacturing process. The volume to be investigated 
was selected considering the indications of ESA standards ECSS-Q-ST-

70-80C [27] for qualification of AM processes, which requires as a 
minimum the scan of the gauge section of 24 axial fatigue specimens. 
Considering slightly larger specimens than the one employed in this 
study, with a diameter equal to 10 mm and a 20 mm gauge length, 
the prospective volume to be investigated was approximately 38,000 
mm3. The same volume was obtained by cutting cylindrical portions 
with height equal to 30 mm from five grip ends of the HCF specimens, 
having a diameter of 18 mm. The tomograph employed was a Zeiss 
Metrotom 1500, while the scanning parameters were: detector pixel 
pitch equal to 113 μm, focal spot size of 30 μm, voltage of 210 kV, 
magnification of x9.3, resulting in a voxel size of 15 μm. The rather 
large voxel size was selected in order to easily analyze large material 
volumes while retaining a good enough description of the defects’ fea-
3

tures.
The volumetric defects population was obtained using VGStudio 
Max software version 3.4.2, employing the EasyPore algorithm, which 
allows to obtain sub-voxel precision for the segmentation [47]. A rel-

ative difference of 80% on the threshold, set equal to the iso-value 60 
between air and material peaks of the intensity histogram, was found 
to lead to a good identification and shape reconstruction of the defects. 
These values were iteratively obtained by visually checking the identi-

fied anomalies on a small material volume. For CT scan, the minimum 
defect size that can be accurately identified is typically in the order 
of three times the voxel size, thus a threshold on the minimum defect 
size was set to 50 μm. Fig. 2 shows the defects typologies revealed by 
the analysis: Gas Entrapped Porosity (GEP) or pores, cluster of pores, 
Lack-of-Fusion (LoF).

2.4. Supervised machine learning

Supervised machine learning requires pre-classified data to help re-

veal the entangled relationship between samples in a specific domain, 
i.e. defect features for categorization (GEP, LoF, etc.). A wide range 
of techniques exists to perform this task. The common ground here is 
that the data needs to be pre-classified and is then given as input to 
the algorithm as a training data set. The pre-classification performed on 
the training data set is used by the algorithm to automatically perform 
the intended task on new data sets [48]. Supervised machine learning 
can be implemented as a stand-alone element or as part of a larger 
or automated artificial intelligence workflow. It can also follow the 
implementation of an unsupervised machine learning algorithm. Un-

supervised learning techniques do not need any information about the 
classes of the features used for the training and they allow to solve the 
clustering problem and then provide the input for the next step in the 
workflow [49]. Supervised machine learning can be distinguished from 
reinforcement learning, because for supervised machine learning there 
is a direct error measure between the prediction and the target in every 
iteration, which tells whether the loss function is satisfied. Unlike rein-

forcement learning, there is no rewarded agent, but a classical gradient 
descent rule is evaluated continuously:
Δ𝑤 = 𝛼∇𝑤𝐸 (1)
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Fig. 2. Schematics of the CT scan of the grip portions of the HCF specimens (red region) and examples of volumetric defects obtained from the analysis (not to scale).
where 𝛼 is the learning rate, 𝐸 is the cost function, and ∇𝑤𝐸 is the 
gradient vector. Although applying the concept of supervised machine 
learning is relatively straightforward, it requires large training data sets. 
However, the recent development of high throughput CT scan provides 
large data for the classification problem of defects. In this work, we 
decided to use the neural network (NN) classifier of Matlab, which is 
a multilayered perceptron. We applied backward propagation in the 
training stage by feeding the network the class information of the fea-

tures we obtained from CT scan analysis. The training process was 
automated and employed bayesian optimization over 100 iterations. In 
this process, the weights and coefficients of the neurons across all lay-

ers were optimized for the given training data set. We also applied a 
decision tree (DT) in Matlab, which is a tree-like prototype of choices 
with a grade of possible significance, in support of the neural network. 
Although it has been used historically as a decision-making tool, we em-

ployed the decision tree as a classification algorithm following the work 
of Poudel et al. [43]. For the decision tree, arrowheads distribute infor-

mation to nodes and each node may be split into sub-nodes based on 
graded functions. The decision tree terminated with leaves showing the 
final results of the classification [48].

3. Results

3.1. Block maxima sampling

Defect size can be expressed by the 
√

area parameter [50], which 
refers to the square root of the area of the defect projected onto a plane 
perpendicular to the applied stress. VGStudio Max allows to directly 
extract the defect areas projected on the xy, xz, yz planes of the xyz ref-

erence system [47]. Therefore, with proper alignment of the scanned 
component, it’s a trivial process to obtain the defect sizes for all the de-

fects revealed by CT-scan analyses. The defect data can be subsequently 
analyzed with the statistics of extremes by performing Block Maxima 
(BM) sampling [51]. In this work, BM sampling was carried out on the 
complete set of defect data by piling up the five volumes of the grip 
ends of the specimens and then dividing the obtained cylinder in disks 
of fixed height ℎ, each with sampling volume 𝑉𝐵𝑀 = ℎ ⋅ 𝜋 ⋅ 𝑟2. For each 
sampling disk, the largest defect was recorded and the obtained maxima 
were fitted with the Generalized Extreme Value Distribution (GEVD), 
4

which has distribution function [52]:
𝐹 (𝑥) =

⎧⎪⎪⎨⎪⎪⎩
exp

(
−

(
1 + 𝛾 ⋅

𝑥− 𝜇

𝜎

)− 1
𝛾
)

for 𝛾 ≠ 0

exp

(
−exp

(
−𝑥− 𝜇

𝜎

))
for 𝛾 = 0

(2)

Where:

• 𝛾 is the shape parameter.

• 𝜇 is the location parameter.

• 𝜎 is the scale parameter.

For 𝛾 = 0 we have a Type I GEVD, also known as Gumbel distribution 
or Largest Extreme Value Distribution (LEVD).

Different sampling volumes were considered for the analysis, sim-

ply by changing the height ℎ of the sampling disks. Fig. 3 shows four 
Extreme Value Distributions obtained for increasing values of sam-

pling volume: 𝑉𝐵𝑀 = 25.5 mm3, 𝑉𝐵𝑀 = 127 mm3, 𝑉𝐵𝑀 = 520 mm3 and 
𝑉𝐵𝑀 = 1270 mm3. The distributions’ parameters, reported in Table 1, 
were fitted using maximum likelihood method for GEVD [53] and mo-

ments method for the LEVD [54]. Maximum likelihood is a method 
in which the distribution parameters are obtained by maximizing the 
probability that the sample data belongs to the selected distribution. 
Moments method provides estimates of the distribution parameters us-

ing the average and the standard deviation of the sample data. It mini-

mizes the difference between the observed moments of the sample data 
and the analytical moments of the distribution. From Fig. 3, it’s pos-

sible to see how the maxima defect distribution changes significantly 
with the sampling volume:

• for 𝑉𝐵𝑀 = 25.5 mm3 the distribution is a Type II GEVD (Fréchet dis-

tribution) which follows closely the data for small values of 
√

area, 
while it doesn’t fit properly the largest values of 

√
area.

• for 𝑉𝐵𝑀 = 127 mm3 the distribution is still a Type II GEVD, with a 
higher value of 𝛾 . In this case, the distribution well fit all the data.

• for 𝑉𝐵𝑀 = 520 mm3 the distribution has become a LEVD that pro-

vides a good fit for the maxima. However, any information on the 
change of shape moving from smaller defects to larger defects is 
lost.

• for 𝑉𝐵𝑀 = 1270 mm3 the distribution is still a LEVD, with a slightly 

higher slope.
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Fig. 3. Extreme value distributions for different sampling disk volumes: (a) GEVD with 𝑉𝐵𝑀 = 25.5 mm3 ; (b) GEVD with 𝑉𝐵𝑀 = 127 mm3; (c) LEVD with 𝑉𝐵𝑀 = 520
mm3; (d) LEVD with 𝑉 = 1270 mm3.
𝐵𝑀

Table 1

Estimated parameters of EV distributions 
obtained on sampling volumes 𝑉𝐵𝑀 =25.5, 
127, 500, 1270 mm3.

𝑉𝐵𝑀 𝛾 𝜇 𝜎

[mm3] [μm] [μm]

25.5 0.1661 97.25 13.89

127 0.3919 112.39 15.83

520 0 133.73 38.59

1270 0 152.65 44.02

The severe effect of the sampling volume on the fitted Extreme Value 
Distributions may be evidenced by estimating characteristic defects for 
different reference volumes 𝑉𝑟𝑒𝑓 . The characteristic defect �̃�𝑝 on 𝑉𝑟𝑒𝑓
having exceedance probability (1-𝑝)%, corresponding to the 𝑝𝑡ℎ per-

centile, may be estimated with [35,53]:

�̂�𝑝 =

⎧⎪⎪⎨⎪⎪⎩
𝜇 + 𝜎

𝛾
⋅

((
−log

(
𝑝

𝑉𝐵𝑀
𝑉𝑟𝑒𝑓

))−𝛾

− 1

)
for GEVD

𝜇 − 𝜎 ⋅ log

(
𝑉𝐵𝑀

𝑉𝑟𝑒𝑓

)
− 𝜎 ⋅ log

(
−log(𝑝)

)
for LEVD

(3)

In Table 2 we considered three characteristic defects for each fitted 
distribution and reference volume: a lower bound defect having 90% ex-

ceedance probability (𝑝10), the average defect (𝑝50) and an upper bound 
defect having 10% exceedance probability (𝑝90). It’s evident how the es-

timated characteristic defects drastically change with the sampling vol-

ume, in particular for very small reference volumes 𝑉𝑟𝑒𝑓 . BM sampling 
performed with large sampling volumes (𝑉𝐵𝑀 = 520 mm3, 𝑉𝐵𝑀 = 1270
mm3) leads to estimated characteristic defects on 𝑉𝑟𝑒𝑓 = 5042 mm3 with 
very small values. However, for smaller sampling volumes (𝑉𝐵𝑀 = 25.5
mm3, 𝑉𝐵𝑀 = 127 mm3) the estimated characteristic defects are signif-

icantly bigger. On the other hand, for larger reference volumes, e.g. 
𝑉𝑟𝑒𝑓 = 2000 mm3, the estimated lower bound (𝑝10) and average defects 
(𝑝50) do not differ as much among the EV distributions, while the upper 
bound defects (𝑝90) are significantly apart.

The differences evidenced between the maxima distributions may 
5

be attributed to the presence of different types of defects. In fact, each 
Extreme Value Distribution is the results of maxima data from differ-

ent defect populations. This effect is clearly depicted by Fig. 4, where 
defect size as 

√
area is reported alongside compactness and sphericity 

parameters for all defects. Compactness and sphericity were selected as 
simple shape descriptors for the defects, since they are directly provided 
by VGStudio Max, and are defined as:

𝐶𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 = 𝑉𝑑𝑒𝑓𝑒𝑐𝑡∕𝑉𝑠𝑝ℎ𝑒𝑟𝑒,𝑐𝑖𝑟𝑐𝑢𝑚𝑠𝑐𝑖𝑏𝑒𝑑 (4)

𝑆𝑝ℎ𝑒𝑟𝑖𝑐𝑖𝑡𝑦= 𝑆𝑠𝑝ℎ𝑒𝑟𝑒,𝑒𝑞𝑢𝑖𝑣𝑜𝑙𝑢𝑚𝑒∕𝑆𝑑𝑒𝑓𝑒𝑐𝑡 = 3
√

36𝜋 ⋅ 𝑉 2
𝑑𝑒𝑓𝑒𝑐𝑡

∕𝑆𝑑𝑒𝑓𝑒𝑐𝑡 (5)

Where 𝑉 is the volume, 𝑆 is the area of the external surface, the cir-

cumscribed sphere is the sphere circumscribed to the defect and the 
equivolume sphere is the sphere having the same volume as the defect. 
Defects sampled with BM are highlighted with red crosses and refer to
sampling volume 𝑉𝐵𝑀 = 25.5 mm3 for Fig. 4(a) and to 𝑉𝐵𝑀 = 520 mm3

for Fig. 4(b). Independently of the sampling volume, two distinct pop-

ulations appear to be sampled with BM: defects with low compactness 
(<0.25) and sphericity (<0.8), presumably pore clusters and LoFs high-

lighted in orange and blue, and defects with high compactness (>0.25) 
and sphericity (>0.8), presumably pores highlighted in green.

3.2. Defect classification with supervised machine learning algorithms

The manual separation of defects revealed by CT scan into the ob-

served classes is an extremely inefficient task to be performed individu-

ally for each defect. Recently, supervised machine learning algorithms, 
such as neural network and decision tree, have been successfully em-

ployed on Ti6Al4V specimens realized by L-PBF for the automatic clas-

sification of pores, LoFs and keyhole porosity. Following the procedure 
described in [43], 1107 defects were individually classified: pores, clus-

ters and LoFs.

Fig. 5 shows defect size, compactness and sphericity of the hand-

picked defects. As expected, pores lie in the region with high sphericity 
and compactness. The regions of cluster of pores and LoFs significantly 
overlap. For this reason, pore clusters were assimilated into the LoFs 
class and only two classes were employed for the training of defect 
classification algorithms: pores and LoFs. Following the work of Poudel 

et al. [43], several shape descriptors were calculated for all the de-
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Table 2

Estimated percentiles 𝑝10 , 𝑝50 , 𝑝90 on 𝑉𝑟𝑒𝑓 =50, 500, 1000, 2000 mm3 from EV distributions 
obtained on sampling volumes 𝑉𝐵𝑀 =25.5, 127, 500, 1270 mm3 .

𝑉𝑟𝑒𝑓 𝑝10 𝑝50 𝑝90 𝑉𝑟𝑒𝑓 𝑝10 𝑝50 𝑝90
50 mm3 [μm] [μm] [μm] 500 mm3 [μm] [μm] [μm]

𝑉𝐵𝑀 = 25.5 mm3 95 113 150 𝑉𝐵𝑀 = 25.5 mm3 133 159 213

𝑉𝐵𝑀 = 127 mm3 92 104 140 𝑉𝐵𝑀 = 127 mm3 122 152 239

𝑉𝐵𝑀 = 520 mm3 11 58 130 𝑉𝐵𝑀 = 520 mm3 100 146 219

𝑉𝐵𝑀 = 1270 mm3 -26 26 109 𝑉𝐵𝑀 = 1270 mm3 75 128 211

𝑉𝑟𝑒𝑓 𝑝10 𝑝50 𝑝90 𝑉𝑟𝑒𝑓 𝑝10 𝑝50 𝑝90
1000 mm3 [μm] [μm] [μm] 2000 mm3 [μm] [μm] [μm]

𝑉𝐵𝑀 = 25.5 mm3 148 177 237 𝑉𝐵𝑀 = 25.5 mm3 164 197 264

𝑉𝐵𝑀 = 127 mm3 137 177 291 𝑉𝐵𝑀 = 127 mm3 158 209 359

𝑉𝐵𝑀 = 520 mm3 127 173 246 𝑉𝐵𝑀 = 520 mm3 154 200 273

𝑉𝐵𝑀 = 1270 mm3 105 158 241 𝑉𝐵𝑀 = 1270 mm3 136 189 272

Fig. 4. Defect size, compactness and sphericity parameters of all the defects revealed by CT scan, with defects sampled with Block Maxima highlighted with red 
crosses for Sampling volume: (a) 𝑉𝐵𝑀 = 25.5 mm3; (b) 𝑉𝐵𝑀 = 520 mm3. Green ellipses encircle to possible pores, while blue and orange ellipses refer to possible LoFs 
and pore clusters.
Fig. 5. Defect size, Compactness and Sphericity of identified pores, pore clusters 
and lack-of-fusions.

fects. However, since the defects features were directly obtained from 
VGStudio Max, a different approach was employed for the equivalent 
ellipsoid. In this work, the equivalent ellipsoid was defined as the el-

lipsoid having the same projected areas as the defect. The axes 𝑎, 𝑏, 𝑐
6

where calculated as:
⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑎 =𝑚𝑎𝑥

(√
1
𝜋
⋅

area𝑥𝑦⋅area𝑦𝑧
area𝑥𝑧

,

√
1
𝜋
⋅

area𝑥𝑧⋅area𝑦𝑧
area𝑥𝑦

,

√
1
𝜋
⋅

area𝑥𝑧⋅area𝑦𝑧
area𝑥𝑦

)
𝑏 =

(√
1
𝜋
⋅

area𝑥𝑦 ⋅area𝑦𝑧
area𝑥𝑧

,

√
1
𝜋
⋅

area𝑥𝑧⋅area𝑦𝑧
area𝑥𝑦

,

√
1
𝜋
⋅

area𝑥𝑧⋅area𝑦𝑧
area𝑥𝑦

)
∩ �̄� ∩ 𝑐

𝑐 =𝑚𝑖𝑛

(√
1
𝜋
⋅

area𝑥𝑦⋅area𝑦𝑧
area𝑥𝑧

,

√
1
𝜋
⋅

area𝑥𝑧⋅area𝑦𝑧
area𝑥𝑦

,

√
1
𝜋
⋅

area𝑥𝑧⋅area𝑦𝑧
area𝑥𝑦

)
(6)

so that 𝑎 ≥ 𝑏 ≥ 𝑐.

The volume of the ellipsoid 𝑉𝑒𝑙 was thus obtained with the formula:

𝑉𝑒𝑙 =
4
3
𝜋𝑎𝑏𝑐 (7)

The surface of the ellipsoid 𝑆𝑒𝑙 was calculated with the approximated 
formula:

𝑆𝑒𝑙 = 4𝜋𝑐2 𝑝

√
(𝑎𝑏)𝑝 + (𝑎𝑐)𝑝 + (𝑏𝑐)𝑝

3
(8)

where 𝑝 = 1.6075 was used, leading to a negligible error (<1%).

The complete set of features employed for the classification was as 
follows:

• Compactness (see Equation (4));

• Sphericity (see Equation (5)).

• Maximum axis of the equivalent ellipsoid;

• Sparseness: Ratio between the volume of the defect and the volume 

of the equivalent ellipsoid.
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Fig. 6. Defect size, Compactness and Sphericity of identified Pores and Lack-of-Fusions with: (a) Decision Tree; (b) Neural Network.
• Roundness: Ratio between the diameter of the sphere having the 
same volume as the defect and the maximum axis of the equivalent 
ellipsoid;

• Aspect Ratio: Ratio between minimum and maximum axes of the 
equivalent ellipsoid;

• Elongation: Ratio between medium and maximum axes of the 
equivalent ellipsoid;

• Extent: Ratio between the volume of the defect and the volume of 
the bounding box;

• Ellipsoidity: Ratio between the surface of the equivalent ellipsoid 
and the surface of the defect.

The two selected classification algorithms, neural network and de-

cision tree, were trained with five-fold cross validation on 70% of the 
1107 hand-picked defects, using all the shape descriptors as input. The 
remaining 30% were used for testing of the algorithms. The structure of 
the neural network in terms of number of layers, number of neurons per 
layer and of the activation algorithm were selected by the optimization 
performed in Matlab using a grid search optimizer with 10 divisions 
with a 3600 s time limit. The optimization resulted in a neural net-

work consisting of 3 layers with neurons as follows: first layer with 13 
neurons, second layer with 13 neurons and third layer with 2 neurons. 
We used a Bayesian optimizer for the decision tree, with an acquisition 
function for 30 iterations without a training time limit. The obtained 
accuracies were as follows:

• DT, with 98.8% training accuracy and 99.1% testing accuracy.

• NN, with 99.1% training accuracy and 98.8% testing accuracy.

We then used the constructed contingent functions of the classifi-

cation algorithms on the complete set of data, to classify the defects 
as either pores or LoFs. Fig. 6 shows all the defects classified by the 
different algorithms: blue squares represent LoFs, while green circles 
represent Pores. The algorithms separated the defects as:

• DT: 123948 Pores; 20355 LoFs.

• NN: 106055 Pores; 38248 LoFs.

Despite the significant differences in the relative numbers of pores and 
LoFs, the largest defects (size>100 μm) of the two populations coin-

cided. This was extremely promising, since it should lead to negligible 
7

differences between the maxima distributions after BM sampling.
Table 3

Percentage of sampled pores and LoFs from Neural Net-

work classification in Extreme Value distributions.

Pores LoFs

𝑉𝐵𝑀 [mm3] 𝑛𝑝𝑜𝑟𝑒𝑠 pores% 𝑛𝐿𝑜𝐹𝑠 LoFs%

127 1193 79.6 306 20.4

256 205 68.6 94 31.4

520 33 44.6 41 55.4

1270 13 44.8 16 55.2

4. Discussion

4.1. Analysis of BM sampled data

After performing the defect classification, it was possible to deter-

mine the effect of the presence of different defects types onto the fitted 
EV distributions for the different sampling volumes defined in Section 3.

Fig. 7 shows the fitted EV distributions with the sampled maxima 
divided into the pores and LoFs classified with the neural network algo-

rithm. Table 3 reports the number and percentage of pores and LoFs for 
the different sampling volumes. The differences between the EV distri-

butions may then be attributed to the different ratio of defects extracted 
out of the two defect populations:

• for small sampling volumes the ratio of LoFs and clusters to pores 
is quite low, thus the smaller maxima (pores) have a higher weight 
on the fitted GEVD, which can not follow the larger maxima (LoFs).

• for large sampling volumes the ratio of LoFs and clusters to pores 
significantly increases, hence why the fitted LEVD follows better 
the larger maxima.

4.2. ML-assisted BM sampling

After the classification, BM sampling was performed separately on 
the two classes, with the same procedure described in Section 3.

Fig. 8 shows the LEV distributions for pores and LoFs classified with 
neural network algorithm for different sampling volumes, while the fit-

ted parameters are reported in Table 4. In order to sample the maxima 
out of at least 20 defects, the minimum sampling volume was increased 
to 127 mm3. The lower tail of the LoFs’ LEV distributions is not fully 
captured by the fitted parameters and the smaller maxima defects seems 
to follow a slope similar to the one of pores distribution. This is a pos-

sible indicator that the defects below 
√

area = 100 μm are all pores 

clusters, which share the same density as the pores. However, it is im-
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Fig. 7. Sampled pores and LoFs from Neural Network classification in Extreme Value distributions with sampling disk volumes 𝑉𝐵𝑀 : (a) 127 mm3 ; (b) 256 mm3 ; (c) 
520 mm3; (d) 1270 mm3 .
Table 4

Estimated parameters of EV distributions for pores and 
LoFs classified with Neural Network.

Pores LoFs

𝑉𝐵𝑀 𝜇 𝜎 𝜇 𝜎

[mm3] [μm] [μm] [μm] [μm]

127 109.30 9.20 87.97 37.58

256 115.28 8.98 99.20 43.31

520 120.07 8.87 114.40 46.92

1270 127.59 9.05 135.57 52.80

Table 5

Estimated percentiles 𝑝10 , 𝑝50 , 𝑝90 on 𝑉𝑟𝑒𝑓 = 50 and 2000 mm3 from 
Pores and Lack-of-Fusions LEVDs, sampled after defect classification 
with Neural Network algorithm.

Pores LoFs

𝑝10 𝑝50 𝑝90 𝑝10 𝑝50 𝑝90
[μm] [μm] [μm] [μm] [μm] [μm]

𝑉𝐵𝑀 𝑉𝑟𝑒𝑓 = 50 mm3

127 mm3 93 96 121

256 mm3 93 96 121

520 mm3 92 95 119

1270 mm3 90 94 118

𝑉𝐵𝑀 𝑉𝑟𝑒𝑓 = 2000 mm3

127 mm3 127 138 155 160 205 276

256 mm3 126 137 154 152 204 286

520 mm3 125 135 152 139 195 284

1270 mm3 124 135 152 114 177 276

portant to underline that the larger maxima (LoFs) are well described 
by all fitted LEVDs and that clusters of pores may act as a single defects 
8

rather than as individual pores.
Table 5 reports the estimated characteristic defects onto 𝑉𝑟𝑒𝑓 = 50
mm3 and 𝑉𝑟𝑒𝑓 = 2000 mm3 for the pores and LoFs distributions. It is 
possible to see how the estimates are now stable with different sam-

pling volumes. No estimates are reported for 𝑉𝑟𝑒𝑓 = 50 mm3 from LoFs 
distribution since the number of LoFs on such a small reference volume 
would be too few to be correctly estimated with the Gumbel distribu-

tion.

5. ML-assisted extreme value statistics

The results have shown how the traditional EVS did not provide ro-

bust estimates. Fig. 9(a) shows the current routine to estimate maxima 
defect distributions from CT scan data using EVS [7,34,51,55,56]:

1. Specimens are subjected to CT scan.

2. Internal defects are revealed with dedicated post-processors.

3. BM sampling is performed onto the defects.

4. EVS is employed to fit the maxima defect distributions and make 
predictions onto relevant volumes.

Following the results obtained with the stabilized Extreme Value dis-

tributions after Machine Learning-assisted defect classification, the au-

thors propose a new way to estimate defect distributions from CT scan 
of AMed components as shown in Fig. 9(b):

1. Specimens are subjected to CT scan.

2. Internal defects are revealed with dedicated post-processors.

3. A selection of defects representative of different types are individ-

ually classified.

4. ML algorithms are trained using the identified defects and then 
employed to classify all the defects revealed by CT scan.

5. BM sampling is performed separately onto the different defects 

types.
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Fig. 8. Largest Extreme Value distributions of pores and LoFs for Neural Network classification algorithm with sampling disk volumes 𝑉𝐵𝑀 : (a) 127 mm3; (b) 256 
mm3; (c) 520 mm3 ; (d) 1270 mm3 .
9

Fig. 9. Extreme Value Statistics on CT scan data: (a) current route; (b) proposed new route.
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Fig. 10. Comparison between killer defects observed on fracture surfaces from 
[11] and estimated maxima distributions from CT scan data obtained using BM 
with a sampling volume of 127 mm3 and transformed to the occurrence volume 
by Eq. (9).

6. EVS is employed to fit the maxima defect distributions and make 
predictions onto relevant volumes for each defect type.

An important limitation to consider is that the machine learning 
algorithm is valid only for the specific combination of material, pro-

cessing parameters and CT measurement setup. A change in one of these 
aspects will require to perform the complete training procedure of ML 
models. It is also important to underline that the authors do not intend 
to propose a general recipe for the analysis, because different anoma-

lies can have different effects on material properties (e.g.: porosity can 
have a significant effect on toughness and static resistance).

Once the anomaly distribution on the 𝑉𝐵𝑀 sampling volume has 
been obtained, then the prospective distribution of the maximum defect 
on a reference volume 𝑉𝑟𝑒𝑓 can be obtained as:

𝐹 (𝑥)𝑚𝑎𝑥,𝑉𝑟𝑒𝑓 = [𝐹 (𝑥)𝑚𝑎𝑥,𝑉𝐵𝑀 ]𝑛 (9)

where 𝑛 = 𝑉𝑟𝑒𝑓

𝑉𝐵𝑀
is the so called return period of the largest defect in 𝑉𝑟𝑒𝑓 .

Applying Eq. (9) to the two different distributions for pores and LoFs 
to the prospective occurrence volume for the axial fatigue specimens, it 
is then possible to estimate the distribution of defects at the origin of 
fatigue failures. The comparison with the results of the test campaign on 
axial and torsional specimens is shown in Fig. 10, where it can be seen 
that the estimated distributions for the two different anomaly types are 
quite close to the experimental results.

6. Application to fatigue assessment

6.1. Simple model for effect of defects on fatigue life

It has been extensively proved how volumetric anomalies may act, 
and thus be modeled, as short cracks [7,8,11,32,57,58]. For unified 
assessment of stress amplitude and defects (

√
area), a relevant model 

is the Shiozawa curve [59], successfully employed on Al-Si alloys 
by Tenkamp et al. for cast AlSi7Mg and AlSi10Mg as well as L-PBF 
AlSi10Mg [60,61]. The main conditions on the validity of Shiozawa are 
that: i) the fatigue behavior is crack propagation dominated (𝑁𝑝 ≫ 𝑁𝑖); 
ii) the failure-initiating defects 

√
area𝑖 are relatively small compared 

to the final fatigue crack size at failure √area𝑓 (
√

area𝑓 ≫
√

area𝑖). 
Hereby, the Paris-Erdogan law is integrated from the initial defect size √

area𝑖 to fatigue crack size at failure √area𝑓 resulting in the following 
10

equations:
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Table 6

Estimated parameters of Sh-

iozawa curve for the investi-

gated L-PBF AlSi10Mg.

𝐾 ′
𝑓

1∕𝑑′

42.428 7.9662

Δ𝐾𝑖 =
[
𝐶(𝑚− 2)

2

]−1∕𝑚
⋅

(
𝑁𝑓√
area𝑖

)−1∕𝑚

(10)

Δ𝐾𝑖 =𝐾 ′
𝑓
⋅

(
𝑁𝑓√
area𝑖

)𝑑′

(11)

Comparable to S-N diagrams, the cyclic stress intensity factor at the 
failure-initiating defect Δ𝐾𝑖 (y axis) is plotted against the quotient of 
number of cycles to failure 𝑁𝑓 and failure-initiating defect size 

√
area𝑖

(x axis) according to Equation (11) and the results appear in a dou-

ble logarithmic diagram as a straight line, analogous to the common 
Woehler lines. Δ𝐾𝑖 is estimated by using the Murakami approach for 
short cracks [57]:

Δ𝐾𝑖 =Δ𝜎 ⋅ 𝑌 ⋅
√
𝜋 ⋅

√
area𝑖 (12)

Where the shape factor 𝑌 is equal to 0.65 for surface defects and to 0.5 
for volumetric (internal) defects.

The fatigue behavior for the investigated L-PBF AlSi10Mg mate-

rial was characterized by Woehler (Fig. 11a) and Shiozawa diagrams 
(Fig. 11b). Hereby, the coefficient of determination (r2) is significantly 
better for Shiozawa curves as the effect of different failure-initiating 
defects sizes and positions is taken into account (Fig. 11c). By using Sh-

iozawa law, the estimated critical defect sizes by traditional as well as 
ML-assisted EVS can be transformed into fatigue limit or strength for a 
given number of cycles to failure using:

𝑁𝑓 =
√

area ⋅

⎡⎢⎢⎢⎣
Δ𝜎 ⋅

√
𝜋 ⋅

√
area ⋅ 𝑌

𝐾 ′
𝑓

⎤⎥⎥⎥⎦
−1∕𝑑′

(13)

Or

Δ𝜎 =
𝐾 ′
𝑓√

𝜋 ⋅
√

area ⋅ 𝑌
⋅

[
𝑁𝑓√
area

]−𝑑′

(14)

Where 𝐾 ′
𝑓

and 1∕𝑑′ are fitting parameters (
√

area expressed in [m]) 
and are reported in Table 6 for the present AlSi10Mg alloy.

6.2. Application of the ML-improved EVS to anomaly description

Anomaly exceedance curves are the most simple tool for a proba-

bilistic assessment [62,63]. In details, once damage tolerance calcula-

tions have allowed to determine the critical defect size 
√

area𝑐𝑟𝑖𝑡 , the 
failure probability is:

𝑃𝑓 = Pr[
√

area >
√

area𝑐𝑟𝑖𝑡] = 𝑃𝑒(
√

area𝑐𝑟𝑖𝑡) (15)

where the probability of exceedance for 
√

area𝑐𝑟𝑖𝑡 is calculated for the 
relevant material volume [64]. Considering Eq. (9) can be calculated 
as:

𝑃𝑒(𝑥) = 1 − 𝐹 (𝑥)𝑚𝑎𝑥,𝑉𝑟𝑒𝑓 (16)

The impact of the new ML-assisted EVS has been evaluated by determin-

ing the anomaly exceedance curves for a prospective material volume 
by adopting the traditional EVS and the ML-assisted one.

The improvements of the new method are particularly evidenced in 
Fig. 12, which shows the exceedance curves onto a prospective volume 

𝑉𝑟𝑒𝑓 = 50 mm3, realized with the EV distributions for sampling volumes 
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Fig. 11. Assessment of fatigue behavior by: (a) S-N curve according to Woehler, (b) Shiozawa curve and (c) benchmark for coefficients of determination between 
Woehler and Shiozawa law.

Fig. 12. Comparison of exceedance curves on 𝑉𝑟𝑒𝑓 = 50 mm3 using sampling volumes 𝑉𝐵𝑀 = 127 mm3 and 520 mm3 for: (a) traditional method; (b) proposed new 

route.

𝑉𝐵𝑀 = 127 mm3 and 520 mm3 with the traditional method (Fig. 12(a)) 
and the proposed new method (Fig. 12(b)).

Typical target failure probabilities are between 𝑃𝑓 = 10−5 and 𝑃𝑓 =
10−6 [65] and are shown with a grey area on the exceedance curves. 
It is possible to see how traditional EVS for 𝑉𝐵𝑀 = 127 mm3 leads to 
completely different critical defects in the typical failure probabilities 
region, compared to 𝑉𝐵𝑀 = 520 mm3. On the other hand, ML-assisted 
EVS the predictions are consistent for the two 𝑉𝐵𝑀 s. The differences 
evidenced with the traditional EVS may lead to severe underestimation 
of material strength.

6.3. Prospective fatigue strength distribution

As the defect size is extremely critical in the HCF regime, the 
√

area-

specific fatigue strength depending on the failure probability was de-

termined for 106 cycles and a reference volume 𝑉𝑟𝑒𝑓 = 50 mm3, using 
the distribution obtained with traditional and ML-assisted EVS onto 
𝑉𝐵𝑀 = 127 and 520 mm3. Fig. 13 shows the computed fatigue strength 
Δ𝜎 from Shiozawa (Equation (14) with 𝑁𝑓 = 106 and 

√
area expressed 

in [m]) against the failure probability 𝑃𝑓 from the exceedance curves 
(Equation (16) with 

√
area expressed in [μm]). Both equations are a 

function of 
√

area, thus each point on the diagram implicitly repre-

sents a defect size. The single 𝑃𝑓 curve shown for the ML-assisted EVS 
(Fig. 13b) was obtained as the combination of the failure modes by 
adopting a Weakest Link [65] approach:
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𝑅 = 1 − 𝑃𝑓 =𝑅𝑝𝑜𝑟𝑒𝑠 ⋅𝑅𝐿𝑜𝐹𝑠 (17)
and considering Eq. (16), the failure probability results to be:

𝑃𝑓 = 1 −
(
𝐹𝑝𝑜𝑟𝑒𝑠

) 𝑉𝑟𝑒𝑓

𝑉𝐵𝑀 ⋅
(
𝐹𝐿𝑜𝐹𝑠

) 𝑉𝑟𝑒𝑓

𝑉𝐵𝑀 (18)

which becomes competing risk model as proposed in [35,66].

The traditional EVS for 𝑉𝐵𝑀 = 127 mm3 leads to a dramatic un-

derestimation of fatigue strength or performance of the material, with 
a difference of more than 50 MPa from the estimate obtained with 
𝑉𝐵𝑀 = 520 mm3. Using ML-assisted EVS, the gap between different 
𝑉𝐵𝑀 s can be reduced to around 5 MPa. In relation to the fatigue 
strength the difference is lower than 5% compared to more than 50% 
gap for traditional EVS, that means a more reliable assessment of criti-

cal defects size and fatigue strength for the threshold failure probability 
(10−5 to 10−6) of common regulations [65].

Finally, it is possible to observe how the estimates obtained with tra-

ditional EVS for 𝑉𝐵𝑀 = 520 mm3 and ML-assisted EVS are quite similar, 
especially in the target failure probability region. This can be attributed 
to the fact that, for the considered volume 𝑉𝑟𝑒𝑓 = 50 mm3 and for low 
failure probabilities, the most detrimental defects are the rare defect 
such as the LoFs, which are well described by the maxima distribution 
on 𝑉𝐵𝑀 = 520 mm3.

It is worth remarking that this statement is only valid for 𝑉𝑟𝑒𝑓 = 50
mm3 (and larger volumes), while for much smaller material volumes 
the presence of pore anomalies becomes the main source of failures. 
This kind of analysis can be simply done for any 𝑉𝑟𝑒𝑓 by using Eq. (9)
and Eq. (17).
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Fig. 13. Estimated fatigue limit Δ𝜎 on 𝑉𝑟𝑒𝑓 = 50 mm3 using Shiozawa and exceedance curves for sampling volumes 𝑉𝐵𝑀 = 127 mm3 and 520 mm3 for: (a) traditional 
method; (b) proposed new route.
7. Conclusions

This work analyzed the CT scans of Alsi10Mg specimens manufac-

tured by L-PBF. The analysis of CT data showed that traditional EVS 
may produce significant inaccuracies in the estimates of the largest 
defects in a volume. In fact, the presence of different defect types, ob-

served both on the fracture surfaces and from the CT scan data of HCF 
specimens, significantly affected the fitting of block maxima sampled 
defects for different sampling volumes. The limitations of traditional 
EVS could be overcome by applying supervised machine learning algo-

rithms to classify the defects. Therefore, a new ML-assisted EVS proce-

dure was proposed. Despite the fact that the approach needs a training 
of the ML algorithm (for given material, process and CT can parame-

ters), the advantages of the procedure are:

• ML-assisted EVS provides stable maxima distributions, unaffected 
by the sampling volume, unlike the GEVD applied on traditional 
EVS.

• The stable maxima distributions may be employed to construct ro-

bust anomaly exceedance curves for each type of anomaly. For a 
𝑉𝑟𝑒𝑓 = 50 mm3, the differences in the region of target failure prob-

ability for different sampling volumes are extreme: for traditional 
EVS the defect size ranges from 500 μm to several mm, while for 
the ML-assisted EVS the defect size range is from 500 μm to 600 
μm.

• The exceedance curves may be used to determine which defect 
type is more detrimental for different material volumes. For in-

stance, exceedance curves on large material volumes (𝑉𝑟𝑒𝑓 ≥50 
mm3) showed that rare defects, i.e. lack-of-fusions, were the ones 
governing the region of target failure probability.

• Provided that fatigue life is propagation dominated, combining the 
exceedance curves with the Shiozawa curve it is possible to ob-

tain robust fatigue strength predictions. For a 𝑉𝑟𝑒𝑓 = 50 mm3, the 
difference in fatigue strength prediction for different sampling vol-

umes within the region of target failure probability was less than 
5%, while the traditional EVS approach showed a gap of more than 
50%.
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