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Adversarial Data Augmentation
for HMM-based Anomaly Detection

Alberto Castellini, Francesco Masillo∗, Davide Azzalini∗, Francesco Amigoni, and Alessandro Farinelli

Abstract—In this work, we concentrate on the detection of anomalous behaviors in systems operating in the physical world and for
which it is usually not possible to have a complete set of all possible anomalies in advance. We present a data augmentation and
retraining approach based on adversarial learning for improving anomaly detection. In particular, we first define a method for
generating adversarial examples for anomaly detectors based on Hidden Markov Models (HMMs). Then, we present a data
augmentation and retraining technique that uses these adversarial examples to improve anomaly detection performance. Finally, we
evaluate our adversarial data augmentation and retraining approach on four datasets showing that it achieves a statistically significant
performance improvement and enhances the robustness to adversarial attacks. Key differences from the state-of-the-art on adversarial
data augmentation are the focus on multivariate time series (as opposed to images), the context of one-class classification (in contrast
to standard multi-class classification), and the use of HMMs (in contrast to neural networks).

Index Terms—Data Augmentation, Anomaly Detection, Adversarial Learning, HMMs, Robotic Systems, Cyber-Physical Systems
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1 INTRODUCTION

Newly conceived intelligent systems that operate in the
physical world are required to reliably work over long
periods of time under changing and unpredictable envi-
ronmental conditions. In robotic applications, for instance,
this is referred to as long-term autonomy (LTA) [1]. In this
context, anomaly detection plays a paramount role because
it allows to identify as soon as possible situations that
diverge from the desired (i.e., safe/optimal) ones. A key
property of anomalies in autonomous robotic systems and
Cyber-Physical Systems (CPSs) is that they are often related
to (dynamical) behaviours of the whole system, rather than
to specific components (e.g., a specific sensor or actuator).
Hence, they can be detected from observations acquired by
multiple sensors and spanning some time intervals, rather
than from single instantaneous observations. This requires
the analysis of multivariate time series to identify behavioural
anomalies. The literature about detectors for anomalous
(dynamical) behaviours is still in its early stages and further
efforts are needed to meet the requirements of autonomous
robotic systems and CPSs.

In this work we focus on Hidden Markov Models
(HMMs) [2] as they represent a powerful and widely used
mathematical model for learning robot behaviour [3] and
for encoding noisy time series [4]. Moreover, HMMs are
known to be robust to spatio-temporal variations and can
successfully model intelligent systems behaviours in several
LTA contexts, where similar sequences of actions (tasks)
are typically repeated multiple times [5], [6]. In particular,
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in [7] an online approach has been proposed for detect-
ing anomalous behaviours of robot systems involved in
complex LTA scenarios. The methodology uses HMMs to
model the nominal (expected) behaviour of a robot and the
Hellinger distance [8] to evaluate the dissimilarity between
the probability distribution of subsequences of observations
(i.e., multivariate sensor time series) in a sliding window
and the emission probability of the related HMM hidden
states. The advantage of using such a distance measure in-
stead of standard measures (e.g., the likelihood of observa-
tion subsequences) is twofold: first, the Hellinger distance is
bounded and thus lends itself to simpler interpretation and
thresholding; second, it is less noisy, hence more informative
and discriminative [7]. For simplicity, in the following we
refer to the online algorithm proposed in [7] as HMM-
Hellinger-based Anomaly Detector (HHAD).

A key issue for behavioural anomaly detection in
robotics and CPSs is the lack (or paucity) of anomalous
examples and the noise that characterizes data in these
contexts. To address this issue, in this paper we propose
an adversarial data augmentation and retraining approach for
HHAD (called HHAD-AUG). Following the recent promis-
ing trends of adversarial example generation and adversar-
ial attack generation for machine learning models [9], we
base our data augmentation method on adversarial exam-
ples, namely, perturbed time series [10], [11], [12], [13], that
have the advantage of not requiring any prior knowledge
about the application domain and data conformation. In
particular, we generate adversarial examples for nominal
points, the only knowledge available at training time, using
two algorithms. The first algorithm (called H-ADV) uses a
loss function1 based on the Hellinger distance between the
observed and the expected data distributions (i.e., model
parameters) and the second (called L-ADV) uses a loss

1. Throughout the manuscript we use term “loss” as a synonym of
“anomaly score”.
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function based on sample likelihood. We mathematically
derive the gradients of both loss functions and present a
procedure to use them to augment the original dataset. We
then use adversarial data augmentation to improve the de-
tection performance of HHAD (in terms of F1-score) when
limited amounts of training data is available, but we show
that the methodology we propose achieves performance im-
provements also when models are trained on large datasets.
Notice that we focus on anomaly detection as a one-class
classification problem, in which examples of the anomalous
class are not considered in the learning phase, hence the
only way to perform data augmentation is to generate new
nominal examples.

In contrast to the literature on generating adversarial
examples, we focus on time series rather than images and
we consider HMMs rather than deep neural networks. Re-
cently, an approach for performing adversarial attacks on
(univariate) time series classifiers was proposed [12], but it
is based on neural network classifiers, hence it requires large
datasets. Our method employs the definition of adversarial
attacks for time series used in [12] but it is oriented to HMM-
based anomaly detectors, which achieve strong results on
multivariate time series also on small datasets [7]. Moreover,
the proposed method focuses on anomaly detection as one-
class classification, a key difference with respect to [12].

We evaluate our data augmentation and retraining ap-
proach on four public datasets, three known real-world
benchmarks for anomaly detection in robotic systems and
CPSs, i.e., Tennessee Eastman [14], SWaT [15], and ALFA
[16], and one created by the authors using aquatic drones
developed in a EU H2020 project, i.e., INTCATCH [17].
The experimental evaluation of the proposed approach
shows that (i) H-ADV and L-ADV can generate meaning-
ful adversarial examples for HHAD; (ii) HHAD-AUG can
employ these new examples to significantly improve the
performance of HHAD; (iii) using examples from both H-
ADV and L-ADV outperforms state-of-the-art augmentation
methods; (iv) using examples generated by H-ADV is better
than using examples generated by L-ADV (i.e., the former
wins on three datasets and ties on one), hence we consider
H-ADV as the best method to generate adversarial examples
for data augmentation of HHAD; (vi) the low computational
complexity of H-ADV and the high parallelizability of L-
ADV allow for a fast data augmentation and retraining of
HHAD. The generated examples are guaranteed to have
small distance from the original examples, according to the
definition of adversarial examples for time series [12].

In summary, the main contributions of this work to the
state-of-the-art are the following:

• we propose an algorithm able to generate adversarial
examples for a one-class anomaly detector based on
HMMs and working with multivariate time series
(Section 4.1);

• we propose an algorithm for data augmentation
based on adversarial examples which improves the
performance of the anomaly detector (Section 4.2);

• we evaluate, with positive results, both adversarial
generation and data augmentation on four datasets
of multivariate sensor signals acquired from au-
tonomous robots and industrial CPSs (Section 5).

2 RELATED WORK

Three research topics are mainly related to our work:
data augmentation, adversarial example generation, and
anomaly detection in autonomous robots and CPSs.

Data Augmentation. Data augmentation techniques are
used to increase the amount of available data by adding
slightly modified copies of already existing data with the
aim of regularizing and reducing overfitting when train-
ing a machine learning model. In [18], data augmentation
methods for images are surveyed. The main goal of data
augmentation, both for images and for other types of data,
is to prevent class imbalance and model overfitting due to
data limitations, by adding synthetic examples to available
datasets [19].

Time series data augmentation is not an established
practice. The majority of the state-of-the-art approaches for
time series do not use data augmentation, and the first sur-
veys on these techniques have been presented only recently
[20], [21]. Methods related to adversarial training are still
not considered in the literature related to time series data
augmentation. Most data augmentation techniques for time
series [20], [21], [22], [23], [24] are instead based on random
transformations, such as, addition of random noise, slicing,
cropping, scaling, random warping in the time dimension,
and frequency warping.

Adversarial data augmentation, also called adversarial
training [25], is the process of augmenting a dataset using
adversarial examples (a.k.a. adversarial attacks) to achieve
two main goals, namely, making classifiers more robust to
adversarial attacks and reducing their test error on clean
inputs, i.e., improving the accuracy of the classifier on the
test set. This practice has been very recently applied to
image classifiers [18], where adversarial data augmentation
has been used to improve generalization to unseen domains.
In [26], an iterative procedure is proposed to augment a
dataset with examples from a fictitious target domain that is
hard under the current model. The methodology is inspired
by recent developments in distributionally robust optimiza-
tion and adversarial training. For instance, in [27], a good
performance under adversarial input perturbations is guar-
anteed by considering in the learning optimization problem
a Lagrangian penalty for perturbing the data distribution in
a Wasserstein (a distance over probability distribution) ball.
In [28], it is proposed a novel regularization term for adver-
sarial data augmentation in deep neural networks for image
classification. The methodology extends [26] and reduces
to it when the maximum-entropy term is discarded. These
approaches show that adversarial training can effectively
help when searching for augmentations [18].

Our method applies these principles to a specific one-
class classification problem (i.e., anomaly detection), for
time series data instead of images. We apply, in particular,
adversarial data augmentation to the HMM-based detector
presented in [7]. The adversarial-based strategy that we
use to generate synthetic examples makes our methodology
deeply different from traditional time series augmentation
methods, since we do not need prior knowledge about
the application domain to generate data transformations.
Furthermore, our strategy allows to improve detection per-
formance on both the original test set and the adversarial
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attacks generated from the test set, hence it improves also
the robustness to adversarial attacks.

Adversarial Example Generation. Adversarial exam-
ples for classification models are investigated in [29] and
the analysis is specialized to neural networks for image
classification in [30], where authors notice that “imper-
ceptible non-random perturbations applied to a test im-
age can change the network prediction”. An optimization
procedure called box-constrained Limited-memory Broy-
den–Fletcher–Goldfarb–Shanno algorithm (L-BFGS) is pro-
posed in [30] to compute adversarial perturbations of im-
ages given network parameters. To overcome some time-
complexity issues of this method, another approach called
Fast Gradient Sign Method (FGSM) has been proposed [9].
It produces sub-optimal adversarial examples, in terms of
distance from the original example, but being very fast it
has quickly become popular and has inspired other ap-
proaches. Two methods that produce smaller perturbations
than FGSM while ensuring good efficiency are Deepfool
[31] and the Carlini-Wagner method [32], that use iterative
procedures based on local linearization of the classifier
function. A theoretical framework for analyzing the robust-
ness of classifiers to adversarial perturbations is proposed
in [33]. Adversarial training is used as a regularization
method for supervised and semi-supervised learning of
neural networks in [34]. A method for generating universal
adversarial perturbations is presented in [35]. Surveys on
adversarial attack methods are proposed in [36], [37].

Methodologies for generating adversarial attacks on
time series are proposed in [10], [11], [12], [13]. A strategy
based on Adversarial Transformation Networks (ATNs) is
used, in particular, in [11], [12] to generate adversarial
attacks on a target classifier of time series via a student
model trained using standard model distillation techniques.
The target classifier can be a fully convolutional neural
network or a 1-nearest neighbor classifier with Dynamic
Time Warping. The ATN takes in input a time series and
its gradient with respect to the softmax-scaled logits of the
target class predicted by the attacked classifier, and returns a
perturbed time series that represents a possible adversarial
example. If the classifier being attacked is unknown (i.e.,
black-box attack) or it is 1-nearest neighbor with Dynamic
Time Warping (i.e., white-box attack on a non derivable
classifier), then the gradient cannot be computed. In these
cases, the attack is performed on the student model which
is a neural network that imitates the classifier and it is
derivable. In [13], ATNs are extended with autoencoders to
attack multivariate time series classification models.

In our work, we consider the same definition of ad-
versarial attacks used in [11], [12], [13] but the approach
we propose has a different objective and uses a different
methodology. We propose a data augmentation technique
based on adversarial examples for improving HMM-based
anomaly detectors that work on multivariate time series,
while [11], [12], [13] propose new methodologies for gen-
erating adversarial attacks on time series. We derive the
gradient of the specific loss function of the anomaly detector,
hence our method generates adversarial examples directly
on the detector, not on a neural network that approximates
the detector. Also the target model is different: in our
case it is an anomaly detector trained using only nominal

examples, while in the literature examples of all classes are
considered to be available both in the training phase and in
the adversarial attack generation phase. The generation of
adversarial attacks has been studied also in the context of
Natural Language Processing [38], [39], where classification
models are sometimes similar to those used for time series
classification. However, to the best of our knowledge all
the methodologies proposed so far work with deep neural
network models.

Anomaly Detection in Autonomous Robots and CPS.
Anomaly detection approaches for robotic systems and
CPSs can be divided into three main categories: model-
based, knowledge-based, and data-driven. Online data-
driven methods are getting more and more popular for
autonomous robots and modern industrial CPSs. Only few
methods deal with anomalies in system behaviours. Chan-
dola et al. [40] refer to this type of anomalies as contextual
faults since they are originated by observations in specific
contexts. In other words, an observation can be considered
anomalous in a specific context but nominal in another
context [41], [42]. Recently, an approach has been proposed
for detecting anomalous process behaviours generated by
stealthy-attacks in CPSs and, in particular, in industrial
control systems [43]. Other approaches for the same appli-
cation domain have been recently presented [44], [45], some
of them based on deep learning [46], [47], [48], [49], [50],
[51], [52]. The anomaly detector that we aim to improve by
means of data augmentation, called HHAD in this paper,
considers contextual anomalies (namely, observations that
are infrequent in specific contexts) but differs from other
approaches in the literature because it represents contexts
as maximally frequent HMM states in a time window in-
stead of as sets of past observations [7]. The approaches
that most resemble HHAD are [53] and [54], in which
HMMs are trained using multimodal sensory signals for
detecting anomalies in assistive robots. At run time, the
trained HMMs provide likelihood scores for data inside
a window, which are compared to an adaptive detection
threshold to identify putative anomalies. HHAD substitutes
the likelihood estimation used in these approaches with
the Hellinger distance which is a more informative and
interpretable measure. While other probabilistic distances
[55] have been recently proposed for anomaly and change
detection, we focus on the Hellinger distance since it is part
of the original HHAD approach [7] and, as discussed there,
it is bounded and little noisy.

3 BACKGROUND AND NOTATION

In this section, we informally define the problem addressed
in this paper, the HMMs and Hellinger distance, and we
describe the HHAD algorithm. The main strategies for
adversarial example generation and data augmentation are
finally presented.

3.1 Problem Definition

Given the online one-class HMM-based anomaly detector
HHAD, introduced in [7], and trained on a dataset of
nominal multivariate time series, our goal is to improve its
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performance by augmenting the training set with adversar-
ial examples. Moreover, we aim at improving the robustness
of the detector to adversarial attacks.

3.2 Hidden Markov Models

We use HMMs [2] as a probabilistic model for the system
that generated a given d-dimensional time series X =
〈x1, . . . ,xn〉 where xt = [x1t , . . . , x

d
t ], t ∈ {1, . . . , n}, is

the multivariate observation xt at time t. An HMM is a
statistical model in which the system being modeled is
assumed to be a Markov process with K hidden states. The
mathematical notation λ = {π,A,B} is used to represent
an HMM, where π = {πi}Ki=1 is the set of initial state
probabilities, A = {aij}Ki,j=1 is the set of state transition
probabilities (i.e., aij is the probability to move from state
si to state sj), and B = {bi(xt)}Ki=1 is the set of the
probability distributions over observations in each state
(emission probabilities). In our setting, we assume a multi-
variate Gaussian distribution for the emission probabilities,
which means that B = {N (µi,Σi)}Ki=1, where µi and
Σi are the mean and the covariance matrix for state si,
respectively. To find the parameters of the HMM λ that
maximize the fit (likelihood) to an observed (sub)sequence
X we use the Baum-Welch algorithm, while to compute the
optimal HMM state sequence (known as Viterbi path) that
best explains a given observed (sub)sequence X we use
the Viterbi algorithm. The number of hidden states and the
covariance type of an HMM can be found by minimizing the
Bayesian Information Criterion (BIC), which finds a trade-
off between maximizing the likelihood of the training data
with respect to. the model and minimizing the number of
parameters required (i.e., the number of hidden states) [56].

3.3 Hellinger Distance

The Hellinger distance [8] is a [0, 1]-bounded function that
quantifies the similarity between two probability density
functions p1(x) and p2(x). In the case of two multivariate
Gaussian distributions p1(x) ∼ N (µ1,Σ1) and p2(x) ∼
N (µ2,Σ2), the Hellinger distance can be computed in
closed form as:

H2(p1, p2) = 1− det(Σ1)
1/4det(Σ2)

1/4

det
(

Σ1+Σ2

2

)1/2
·

exp

{
−1

8
(µ1 − µ2)T

(
Σ1 + Σ2

2

)−1
(µ1 − µ2)

}
.

(1)

3.4 The Online Anomaly Detector HHAD

The nominal behaviour of the system whose anomalies
should be detected is modeled as an HMM λN that is
trained using the Baum-Welch algorithm from a sequenceX
of observations collected during the nominal functioning of
the system. The number of hidden states and the covariance
type are selected by minimizing the BIC. Online anomaly
detection at time step t is performed by means of a sliding
window Wt = 〈xt−w+1, . . . ,xt〉 of length w (columns) and
with observations that contain d variables (rows), hence

Algorithm 1: Anomaly detection (HHAD) [7]
Input: Wt ← 〈xt−w+1, . . . ,xt〉, t ∈ {w, . . . , n}
K ← # hidden states, w ← window size,
λN ← Baum-Welch(X , K), τ ← threshold

Output: at ∈ {0, 1}
1 St ← Viterbi(λN ,Wt)
2 ŝt ← most frequent state in St
3 M ← {xj ∈Wt : sj = ŝt}
4 µ← E[M ]
5 Σ← E[(M − µ)(M − µ)T ]
6 if H2(bNŝt ,N (µ,Σ)) > τ then
7 at = 1
8 else
9 at = 0

10 end
11 return at

Wt ∈ Rd×w. For each example Wt, an anomaly score is
computed and, when the score exceeds a predefined thresh-
old τ , the behaviour is considered anomalous. The score is
the Hellinger distance between the estimated distribution
of the observations corresponding to the state ŝt occurring
most frequently in the Viterbi path St = 〈st−w+1, . . . , st〉 of
window Wt and the emission probability of state ŝt of λN .
See details in [7].

HHAD, formalized in Algorithm 1, receives the current
window of multivariate data Wt, the nominal HMM λN

with its number of hidden states K , the window size w
and a threshold τ ∈ R+. The returned value is a label
at ∈ {0, 1} representing the class of Wt, namely, at = 0
for nominal examples or at = 1 for anomalous examples.
Algorithm 1 is run for each window Wt that has to be clas-
sified. It first computes the Viterbi path of the multivariate
time series in Wt (line 1). For the state ŝt occurring most
frequently in the Viterbi path (line 2) a multivariate Gaussian
distribution N (µ,Σ) is fit through maximum likelihood to
the corresponding data observed in the window (lines 3-5).
Then the Hellinger distance is computed (using Equation 1)
between N (µ,Σ) and the emission probability of state ŝt in
λN (line 6). If the distance is larger than τ , then an anomaly
is reported (line 7). Otherwise, label 0 is returned (line 9).
Usually this algorithm is run with a sliding window Wt

which shifts of one time instant at a time.

3.5 Adversarial Example Generation
A formal definition of (minimal)2 adversarial perturbation for
a q-dimensional object ξ is provided in [31] as the minimal
perturbation η that is sufficient to change the label ŷ = f(ξ)
estimated by a classifier f : Rq → {1, . . . , k}, q ∈ N for
example ξ. The Lp-distance of such a minimal perturbation
is therefore:

∆(ξ; f)
.
= min

η
‖η‖p subject to f(ξ + η) 6= f(ξ). (2)

This definition requires a distance metric Lp = ‖ · ‖p
to quantify the similarity of the adversarial example to
the original one. The most used distances are L0, i.e., the
number of coordinates changed by the perturbation, L2, the

2. In [31] this is called adversarial perturbation but we specify min-
imal because adversarial examples can also be related to non-minimal
perturbations.
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standard Euclidean distance between the original and the
perturbed example, and L∞, the maximum change among
all coordinates [32]. Different distances Lp have different
impacts on the classification of the perturbed example. The
usage of a distance metric that reliably captures the ground
truth similarity is fundamental to generate good adversarial
examples3. In the context of time series data, the ground
truth of an example cannot be provided by human percep-
tion, hence it must be known in advance to evaluate the
perturbed examples. Adversarial examples are then defined
as slight perturbations of original examples that produce a
misclassification with respect to the ground truth. Since the
ground truth is not available for all examples, we use the
definition of [11], [12], [13], namely, the label predicted by
the classifier is assumed to be the ground truth and adver-
sarial examples are defined as examples whose predicted
class label is different from the ground truth label.

Fast Gradient Sign Method (FGSM) [9] is the foundation
for the approach we propose in this paper. It is untargeted,
since it does not allow to specify the target label, and
optimized for the L∞ distance metric. This method does not
guarantee to return the closest adversarial examples but it is
faster than L-BFGS [30]. Given an example ξ, FGSM searches
for an example ξ′ = ξ + ε · sign(∇ξlossf (ξ, y)), where ∇ξ is
the gradient function over variable ξ. Given the parameters
θ of the classifier f , an example ξ, its original class y in the
training set, and the cost function used to train the classifier
lossf , an adversarial example is obtained by linearizing the
loss function around the current value of θ and moving (in
Rq) in the direction that maximises the loss of f . The time
performance can be improved by efficiently computing the
gradient using backpropagation. The adversarial example
generation we propose in this paper (Section 4.1) starts
from examples ξ that are time series X and generates new
examples ξ′ that are new time series X′, with the goal
of having X′ classified differently from X by the HHAD
classifier f .

3.6 Data Augmentation
The data augmentation problem consists in extending a
dataset by adding new examples to improve the perfor-
mance of a model trained with that dataset. Standard
approaches for time series data augmentation have been
discussed in Section 2. Since usually new examples are gen-
erated from the original ones, the problem can be formalized
as the generation, from original examples ξ, of perturbed
examples ξ + η that maximize the performance of model f .
In the supplementary material (Section 3.1) we describe four
methods for time series data augmentation [21] that we use
as baselines to evaluate the performance of our method.
They are, Random Data Augmentation (R-AUG), Drift Data
Augmentation (D-AUG), Gaussian Data Augmentation (G-
AUG), and Synthetic Minority Over-sampling Technique
(SMOTE) [19] (S-AUG). We select these methods as baselines
because they are approaches that do not require specific
domain knowledge, similarly to our adversarial example
generation method.

3. In [32], authors refer to human perceptual similarity but this
concept can be extended to the similarity in the ground truth when
the compared examples are not images.

4 PROPOSED METHODS

We present two approaches for adversarial example gen-
eration on HHAD. The first uses a loss function based on
the Hellinger distance; the second a loss function based
on the likelihood. Then, we introduce our adversarial data
augmentation methodology.

4.1 Adversarial Example Generation: H-ADV and L-ADV
Our approach for adversarial example generation is out-
lined in Figure 1 and formalized in Algorithm 2 (Hellinger-
based loss) and Algorithm 3 (Loglikelihood-based loss). As
shown in Figure 1, the main idea is to take an example4 X ,
i.e., a slice of the multivariate time series X , and to pass
it to the adversarial example generator (Algorithms 2 or 3,
called H-ADV and L-ADV, respectively, in the following)
which uses some elements of HHAD (i.e., λN and τ ) to
generate the perturbationX+η. This perturbation is called
adversarial if it actually changes the class of X , as done in
the literature [11], [12], [13].

H-ADV. Algorithm 2 describes H-ADV, which uses a
loss function based on the Hellinger distance. It receives
five inputs, namely, i) a nominal example5, i.e., a slice of a
multivariate time seriesX ∈ Rd×w, where w is the length of
the considered window and xt a d-dimensional observation
at time t, ii) the nominal HMM λN used by HHAD, iii) a
parameter ε ∈ R+ representing the maximum perturbation
size for each element of X (which should be kept as small
as possible), iv) the number of steps c ∈ N in which the
interval [0, ε] is divided, v) the threshold τ for the Hellinger
distance used by HHAD. The algorithm returns an example
X ′ = X + η ∈ Rd×w close to X (i.e., inside the hypercube
with side 2ε centered in X) and perturbed in a direction
which facilitates the change of class, i.e., f(X ′) 6= f(X).
Remember that HHAD is a function f : Rd×w → {0, 1},
where 0 is the class for nominal behaviours and 1 that
for anomalous behaviours (see Algorithm 1). We do not
consider adversarial examples generated from anomalous
points since our goal is to augment the training set, which
contains only nominal data.

Given the example X , whose class is assumed to be 0
(i.e., nominal example), Algorithm 2 first computes the di-
rection of the perturbation as the sign of the maximum loss
increment sign(∇XH2(bNŝt ,N (µ,Σ))) (lines 1-7), following
the strategy of FGSM. The classifier f is HHAD, hence it
combines the application of the Viterbi algorithm and the
threshold on the Hellinger distance between data distribu-
tion in X and distribution of the HMM emission model, to
determine the class of the example. The loss function has in
general a complex form in this case, because it depends on
the maximally frequent state in X . The main obstacle in the
computation of the derivative of the loss function is related
to the solution of the inverse Viterbi problem, which is
NP-complete [57]. Intuitively, it is very complex to identify
the point X ′ of maximum increase of the loss function in
the ε-neighbourhood of X because the reference emission

4. With a slight abuse of notation, X represents both a multivariate
time series and a generic slice (window) of the time series; the latter is
sometimes also called W or Wt for a generic time t (see Section 3).

5. The algorithm assumes X to be an example of the training set
which we want to augment, hence X is nominal.
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Fig. 1: Overview of the adversarial generation process.

Algorithm 2: Adversarial example generation
based on Hellinger distance (H-ADV)

Input: X ∈ Rd×w ← original nominal example
λN ← nominal HMM, c ∈ N← # steps per state
τ ∈ [0, 1]← H2 threshold, ε← max perturbation size

Output: X ′ ∈ Rd×w: perturbed example
1 St ← Viterbi(λN ,X)
2 ŝt = most frequent state in X
3 Y ← {xj ∈X : sj = ŝt}
4 µ← E[Y ]
5 Σ← E[(Y − µ)(Y − µ)T ]
6 g = sign(∇XH

2(bNŝt ,N (µ,Σ)) // gradient in X
7 hmax = H2(bNŝt ,N (µ,Σ)) // Hellinger distance of X
8 X ′ =X
9 repeat

10 cont=False
11 X ′ =X ′ + ε

c
· g // X update

12 S′t ← Viterbi(λN ,X ′)
13 ŝ′t most frequent state for S′t
14 Y ′ ← {xj ∈X ′ : sj = ŝ′t}
15 µ′ ← E[Y ′]
16 Σ′ ← E[(Y ′ − µ′)(Y ′ − µ′)T ]
17 h′ = H2(bNŝ′t

,N (µ′,Σ′))

18 if h′ > hmax then
19 hmax = h′ // update max Hellinger
20 cont=True
21 end
22 if ŝt 6= ŝ′t then
23 // New most frequent state
24 g = sign(∇X′H2(bNŝ′t

,N (µ′,Σ′)) // update g
25 ŝt = ŝ′t
26 end
27 until (‖X′ −X‖1 ≥ d · ε) ∨ (cont==False) ∨ (hmax > τ)
28 return X ′

model bNŝt in that neighbourhood can change if the most
frequent hidden state ŝt changes. To overcome this issue, we

compute the gradient in X and assume it does not change
in a small ε

c -neighbourhood of X . Hence, we move in this
neighbourhood following the direction of the gradient in X
and then we iterate this procedure from the new point X ′

reached from X (lines 9-27). Namely, in X ′ we re-compute
the gradient of the loss in X ′ and we move according to it.
The algorithm in this way adapts the gradient of the loss
function to the reference emission model that can change
inside the ε-hypercube with side 2ε centered in X . The
gradient of this loss function can be expressed in closed
form when the covariance matrix is diagonal (see details
in Section 2.1 of the supplementary material). The process
is iterated until the border of the hypercube is reached, or
the Hellinger distance of the perturbed example starts to
decrease, or the Hellinger distance exceeds the threshold τ
(i.e., is X ′ classified as anomalous). Not all the perturbed
examples change their class; only the perturbed examples
that change their class6 are adversarial examples.

Figure 2 provides a graphical overview of the strategy
implemented by Algorithm 2. The algorithm computes the
final perturbed X ′ by iteratively performing two macro-
steps. First, it moves in the direction of the gradient of
the loss function. Second, if the reference emission model
changes in the path, then it recomputes the gradient based
on the new emission model. The point is perturbed un-
til it reaches the border of the hypercube or the deci-
sion boundary of the anomaly detector (i.e., a point in
which the example is classified as an anomaly). In the
picture the most frequent state in example X is ŝt = 1,
hence the first perturbation is computed according to gradi-
ent ∇XH2(bNŝt=1,N (µ,Σ)), that uses the emission model
of the first hidden state as a reference. Then, a change
of the most frequent state to ŝt = 2 occurs in X(1),
hence, the gradient is there recomputed according to the
parameters of the emission model of that state, namely,
∇XH2(bNŝt=2,N (µ(1),Σ(1))) where µ(1) and Σ(1) are com-
puted inX(1), and that gradient is followed fromX(1) until
the most frequent state changes again in X(2) to ŝt = 3.
Again, the gradient is recomputed according to the emission
model of state ŝt = 3 and it is followed until the decision
boundary is reached in X(3). That point represents the final
perturbation of X , which is an adversarial example since
X ′ is classified as anomalous.

L-ADV. The second algorithm for adversarial example
generation that we propose is applied to the same detector
HHAD but it generates adversarial examples following
the gradient of the likelihood of the example X instead
of the gradient of the Hellinger distance. This algorithm
for adversarial example generation is called L-ADV and
is formalized in Algorithm 3. It avoids the mathematical
calculation of the gradient of the loss function needed for the
case of the Hellinger distance. With the likelihood, in fact,
the loss does not depend on the maximally frequent state
in the window, but it can be computed using the standard
forward algorithm [58]. The gradient of the likelihood can
be recursively calculated. Note that Algorithm 3 does not
require the ε

c steps of the case of the Hellinger distance,
because it does not matter if the maximally frequent state

6. Since original examples from the training set are nominal, the
change of class makes adversarial examples anomalous.
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Fig. 2: Iterative gradient ascent strategy performed by the
adversarial generation algorithm H-ADV.

in the window changes or not. Given an observation X ,
first it computes the sign of the gradient of the likelihood
of the example given the nominal HMM (line 1), namely
sign(∇XP (X, λN )) (see details in Section 2.2 of the sup-
plementary material). Then it moves the example in the
direction of the gradient for a step ε in each dimension (line
2). The algorithm returns the perturbed example X ′. Notice
that the perturbed example X ′ is an adversarial example
only if the Hellinger distance between the maximally fre-
quent observations in X ′ and the emission model of the
maximally frequent state in X ′ is larger than threshold τ ,
namely, only if HHAD classifiesX ′ as anomalous according
to its parameters λN and τ .

Algorithm 3: Adversarial example generation
based on likelihood (L-ADV)

Input: X ∈ Rd×w ← original nominal example
λN ← nominal HMM
ε← maximum perturbation size

Output: X ′ ∈ Rd×w: perturbed example
1 g = sign(∇XP (X, λN )) // likelihood gradient in X
2 X ′ =X − ε · g // X update
3 return X ′

Complexity analysis. The time complexity of Algorithm
2 is O(c ·(wK2 + wd)), where c is the number of steps per
state, O(wK2) is the computational cost of the Viterbi algo-
rithm, and O(wd) is the cost of performing a gradient step
(cost O(1)) on each dimension and time step of the window.
The time complexity of Algorithm 3 is O(K2w2d). Being the
gradient of the HMM likelihood not computable in closed
form but only recursively, its time complexity is O(wK2),
which is considerably higher than the complexity of the
computation of the gradient of the Hellinger distance, which
is O(1) when computable in closed form. As a consequence,
the computational complexity of Algorithm 3 is quadratic in
the window length, which results in a considerable increase
of the running time (i.e., it is ≈ 400 times slower than
Algorithm 2). Fortunately, Algorithm 3 is quite parallizable,

in fact, after re-implementing it in Cython we managed to
achieve a running time similar to that of Algorithm 2 (see
Section 5). The complexities of the proposed algorithms are
summarized in the supplementary material (Section 1 and
Table 1).

Remark. As discussed later, H-ADV empirically shows
the best performance but its gradients are not derivable in
closed form for HMM with non-diagonal covariance matri-
ces of emission distributions. L-ADV should be employed
in these cases.

4.2 Data Augmentation and Retraining: HHAD-AUG

Adversarial generation procedures H-ADV and L-ADV are
here integrated in a technique for data augmentation and
retraining called HHAD-AUG. Since the two adversarial
generation procedures are used in a mutually exclusive way
we refer to the data augmentation using H-ADV as H-AUG
and to the data augmentation using L-ADV as L-AUG.
Algorithm 4 formalizes the proposed approach. It aims at
improving the performance of the anomaly detector HHAD
and its robustness to adversarial attacks. Inputs are the
nominal time series X used to train HMM λN , the original
HMM λN (having K hidden states), the window size w,
the loss function lossf (i.e., based on Hellinger distance or
on likelihood), the threshold τ for the Hellinger distance,
the maximum perturbation size ε, the number of steps c
in which ε is split during adversarial generation, and the
number of times m that adversarial examples are gener-
ated on the training set. Outputs are the augmented train-
ing set of nominal examples Ŵ , the augmented nominal
HMM λ̂N (trained on Ŵ), and the augmented threshold τ̂
learned from λ̂N and W (the original training set generated
from X).

The augmented dataset Ŵ is first initialized to the
set of examples in the training set generated by covering
the complete time series X with a sliding window of
length w (line 2). Similarly, the augmented nominal HMM
is initialized to the original nominal HMM (line 3) and the
augmented threshold to the original threshold (line 4). Then
the augmentation loop is iterated m times. The steps of
this loop are described in the following. For each training
example Wt = 〈xt−w+1, . . . ,xt〉 in the training set W (line
7) a perturbed example W ′

t is generated using algorithm
H-ADV or L-ADV (lines 9 and 11) depending on the loss
function lossf chosen for adversarial generation. The per-
turbed example W ′

t is added to the augmented set Ŵ as
a nominal example only if it is classified as an anomaly by
HHAD (lines 13-15). We use label 0 for nominal and 1 for
anomalous examples, hence the output of HHAD can be
0 or 1 and in line 14 y == 1 means that the window W ′

t

has been labeled as an anomalous. When all examples in
the training set have been perturbed, the nominal HMM is
retrained using the augmented dataset Ŵ (line 18) which
contains original examples and adversarial examples. The
retrain is performed from scratch to avoid any bias in the
HMM parameters. The threshold is then updated, only if its
value is increased, to the value of the maximum Hellinger
distance computed using the augmented HMM on examples
in the original dataset W (lines 19-22 in Algorithm 4).
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Algorithm 4: Adversarial data augmentation and
retraining (HHAD-AUG)

Input: X ← nominal d-dimensional time series,
λN ← Baum-Welch(X , K), K ← # hidden states,
m ∈ N← # iterations, ε← max perturbation size,
w ← window size, τ ← threshold,
lossf ← loss function (H2 or LL)
c ∈ N← # steps per state

Output: Ŵ augmented set of nominal examples
λ̂N aug. nominal HMM, τ̂ aug. threshold

1 W = {〈xt−w+1, . . . ,xt〉 | t = w, . . . , n} // original
training set

2 Ŵ = W // initialization of the augmented dataset
3 λ̂N = λN // initialization of the augmented HMM
4 τ̂ = τ // initialization of the augmented threshold
5 foreach i = 1, . . . ,m do
6 foreach t = w, . . . , n do
7 Wt = 〈xt−w+1, . . . ,xt〉 // select example
8 if (lossf == H2) then
9 W ′

t = H-ADV(Wt, λ̂
N , ε, c, τ)

10 else
11 W ′

t = L-ADV(Wt, λ̂
N , ε)

12 end
13 y = HHAD(W ′

t ,K, λ̂
N , w, τ̂)

14 if (y==1) then
15 Ŵ = Ŵ ∪W ′

t // add adversarial W ′
t

16 end
17 end
18 λ̂N = Baum-Welch(Ŵ,K) // retrain HMM λN

19 τ ′ = maximum value of H2 for examples in W
computed using λ̂N

20 if (τ ′ > τ̂ ) then
21 τ̂ = τ ′ // update threshold τ̂
22 end
23 end
24 return Ŵ, λ̂N , τ̂

Again, we observe that adversarial examples are added
to the augmented dataset of nominal behaviours only if
they have been classified as anomalies by HHAD. They
are added as nominal examples, hence the learning process
remains one-class also after data augmentation. This is the
main idea of our approach, and it is based on the intuition
that the adversarial examples are very close to the original
nominal examples, hence we consider them as misclassified
by the original detector. Finally, in line 7 we consider only
examples Wt from the training set in all m iterations, i.e.,
adversarial examples are not considered as original exam-
ples to generate other examples. This guarantees that the
decision boundary is not moved away from the training
examples indefinitely.

The generation of adversarial examples from each exam-
ple in the training set is iterated m times (lines 5-23). Each
time the HMM is retrained and the threshold τ̂ updated.
The algorithm augments the training setm times, iteratively,
each time using adversarial examples based on the current
version of the HMM. At the first iteration the HMM is the
original one, trained using examples from the training set
W . At the second iteration the HMM is retrained using both
the examples in the original training set and the adversarial
examples generated at the first iteration (all labeled as nom-
inal). At the third iteration the HMM is retrained another

time, considering the examples previously generated. Our
empirical analysis shown that the main improvement in
terms of F1-score of the augmented detector is achieved in
the first three iterations, hence we set m = 3 in our tests.
The updated HMM λ̂N and threshold τ̂ provide an actual
performance improvement in terms of anomaly detection
accuracy and other measures discussed in the next section.

Complexity analysis. The computational complexity of
Algorithm 4 is O(m · (|X| −w) ·ADV ), where ADV is the
complexity of one of the adversarial generation algorithms,
i.e., H-ADV or L-ADV. The computational complexity is
linear in the number of iterations, in the size of the initial
training set, and in the complexity of the adversarial exam-
ple generation algorithm. The empirical evaluation shows
that the proposed approach can scale to realistic scenarios.

5 EXPERIMENTAL RESULTS

Results of application of our approach are presented for four
application domains related to robotic and cyber-physical
systems. We evaluate the performance improvement (mea-
sured as F1-score) of the augmented detectors on different
training set sizes and provide insights about the mecha-
nisms that generate the improvement. The adversarial ex-
amples generated by H-ADV and L-ADV are shown to be
very similar to original examples (for images, we would say
that they are indistinguishable) and to yield performance
improvement if added to the training set. In fact, pertur-
bations of the same intensity but performed using (non-
adversarial) baseline augmentation methods are not able to
achieve the same performance improvement. The Python
code of the experiments is available7. Software and hard-
ware details are provided in Section 4 of the supplementary
material.

5.1 Experimental Setting
Given a specific application domain and a related dataset
D containing multiple time series for a process of interest
(in which each time series has been standardized), our
main results show that the proposed data augmentation
techniques H-AUG and L-AUG outperform the baseline
augmentation techniques R-AUG, D-AUG, G-AUG, and S-
AUG. We also show that HHAD performs as or better
than state-of-the-art detectors based on vanilla autoencoders
(AEs), LSTM autoencorders (LSTM-AEs), and one-class sup-
port vector machines (OCSVM) (see details in Section 3.2 of
the supplementary material), hence the performance of our
augmented detectors H-AUG and L-AUG exceeds not only
that of HHAD but also the state-of-the-art.

We assume to have a nominal HMM λN with K hidden
states (chosen by optimizing the BIC) and trained on a train-
ing set of nominal time series X which is part of dataset D.
Another part ofD, called T (i.e., test set) in the following, is
used to evaluate the performance of the anomaly detection
and the data augmentation and retraining algorithms. We
also assume a specific window size w and a threshold τ
learned on X as described in [7]. With these three elements,
namely, λN , w, and τ , a complete instance of the original

7. https://github.com/HHADAdversarialAugmentation/adv
data aug hmm
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anomaly detector HHAD is available. Notice that, when the
number of variables in the dataset is high, feature selection
or dimensionality reduction could be necessary to obtain
good performance of the original anomaly detector.

The main dimensions of analysis that we consider are the
type of loss function used to generate adversarial examples
(i.e., Hellinger distance or likelihood) and the size of the
training set |X|. Table 1 summarizes the parameters of all
the experiments described in the following subsections. The
number of repetitions #rep of each test on different training
sets of the same size is set to 30 in all domains. It means that,
given a training set size |X| we recompute the performance
improvement 30 times, and each time we train the HMM λN

and the threshold τ on different training sets of size |X|.

Domain
Par. TE SWaT ALFA INTCATCH

|X| 250, 500, 2500, 5000, 250, 500, 250, 500,
750, 1000 10,000 750, 1000 750, 1000
1250, 1500 20,000 1250, 1500 1250, 1500

#rep 30 30 30 30
|T | 3201 449,919 1068 6619
d 4 PCs 2 PCs 3 PCs 4 PCs
K [2,15] [2,25] [2,20] [2,15]
w 100 50 100 100
ε 0.05 0.05 0.05 0.05
m 3 3 3 3

TABLE 1: Summary of experimental parameters used in all
application domains.

5.2 Performance Measures

Anomaly detection performance of algorithm HHAD is
evaluated by F1-score [56] (Cohen’s κ-score and recall are
also reported in Section 3 of the supplementary material) on
a test set T which is kept separated from the training set
used to learn λN and τ . We consider positive the nominal
examples and negative the anomalous examples. Hence,
true positives are nominal examples correctly classified by
HHAD, true negatives are anomalous examples correctly
detected by HHAD, and so on. The value of the F1-score
must be maximized.

Data augmentation and retraining algorithms H-AUG
and L-AUG, using loss functions based on the Hellinger
distance and the likelihood, respectively, are evaluated by
two measures. First, we compute the improvement of F1-
score on the test set induced on HHAD by data augmen-
tation and retraining. This is the difference between the F1-
score on the test set after and before data augmentation and
retraining. To test the statistical significance of this difference
we apply algorithm HHAD-AUG to several training sets
containing different examples and with different size (see
results in the next sections) and then use Student’s t-test
for testing the null hypothesis that the average performance
on test sets are significantly improved. Then we evaluate
the improvement of the robustness to adversarial attacks
introduced by HHAD-AUG. We measure it as the difference
in percent success rate SR% between original and augmented
HHAD. The percent success rate (SR%) of a detector is the
percentage of perturbed examples (on the test set) that are

actually misclassified by the detector. A small SR% means
that the detector is robust to adversarial attacks generated
on the test set. Differences in percent success rate SR%
between HHAD and HHAD-AUG are shown in Tables 3,
7, 11, and 15 of the supplementary material.

5.3 Tennessee-Eastman Industrial Process (TE)

In this domain a synthetic model of a real industrial chemi-
cal process is used to evaluate process control strategies [14].
Domain and dataset description. This domain has become
popular in the Industrial Control System (ICS) security
community because it allows to test attack and defense
approaches on a realistic (although simulated) environment.
We used the dataset provided by [43] which contains in-
tegrity attacks on both sensors and actuators. We use data
related to the stealth attack named SA1. They have 41
variables and 4801 observations. A label is available for
each example, namely, 0 for nominal observations and 1
for anomalous observations. The training set is generated
taking a slice of sequential nominal observations of length
|X| ∈ {250, 500, 750, 1000, 1250, 1500} (see Table 1). The
test set is a sequence containing |T | = 3201 observations,
of which 2400 are nominal and 801 anomalous. The training
sets are selected in the interval between time steps 0 and
1599, and the test set in the interval between time steps 1600
and time step 4801. For each training set size, we generate
30 training sets (sampling the original dataset in different
positions) and we compute mean and standard deviations
of the performance in the test set.

Experimental parameters. For each training set, we re-
duce the dimensionality to the first 4 principal components
(using PCA). The number of hidden states K of the nominal
HMM λN is then selected by BIC in the interval [2, 15].
Diagonal covariance matrix is used. The window length is
w = 100 and the maximum perturbation size is ε = 0.05.
The number of iterations of the data augmentation and
retraining procedure is m = 3 (see Table 1).

Results. Figure 3 shows the main results. The x-axis rep-
resents the training set size |X| and the y-axis the F1-score
on the test set. The blue solid line is the original detector
HHAD with related 95%-confidence interval (shaded area).
Notice that this detector is exactly the one that we use
to generate adversarial examples in the initial iteration of
data augmentation. Dashed lines with other colors represent
different data augmentation strategies, namely, orange is H-
AUG, green is L-AUG, red is R-AUG, purple is D-AUG,
brown is G-AUG, and pink is S-AUG. The average perfor-
mance improvement achieved by H-AUG is statistically sig-
nificant for all training set sizes. In particular, the F1-score of
the augmented anomaly detector (i.e., HHAD with λ̂N and
τ̂ ) and show that it is higher than that of the original detector
(i.e., HHAD with λN and τ ). L-AUG provides a statistically
significant improvement only for |X| ∈ {750, 1000, 15000}.
A motivation for this is provided below. Interestingly,
HHAD augmented by baseline methods do not achieve
any significant performance improvement with respect to
the original HHAD. Overall, these results show that the
proposed adversarial data augmentation strategy is effective
in this application domain.
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Fig. 3: Average F1-score (over 30 datasets) for the original
detector HHAD and augmented detectors H-AUG, L-AUG,
R-AUG, D-AUG, G-AUG, S-AUG on different training set
sizes in the TE dataset.

Table 2 provides a quantitative evaluation of the perfor-
mance improvement achieved by each data augmentation
method with respect to the original detector HHAD. The
first two rows show, respectively, the average F1-score µF1

and related standard deviation σF1 for HHAD. Both statis-
tics are computed over 30 repeats for each training set size.
Then, for each data augmentation algorithm we show in the
white rows the average F1-score and standard deviation,
and in the gray rows the difference of average F1-score ∆F1

(i.e., augmented detector minus original detector) and the p-
value of the Student’s t-test (p-val) for the difference in the
average F1-scores. We consider performance improvements
statistically significant when the p-value is less than 0.05.
These values are highlighted in bold in the table. The im-
provement of H-AUG is large with small training sets and
it decreases as the training set size increases, as expected,
hence our methodology could be effectively used in appli-
cations with small amounts of data to improve the detection
performance. For instance, the average F1-score (µF1) of the
augmented detector H-AUG trained with 500 examples is
equivalent to the F1-score of the original detector HHAD
trained with 1000 examples.

Role of adversarial examples in data augmentation and
retraining. To investigate the role of adversarial examples
in data augmentation and retraining, we first observe that,
on average, 1.12% of the adversarial examples generated on
the training set by H-AUG and 0.15% of those generated by
L-AUG are successful (i.e., they change the HHAD classifi-
cation) in all the m iterations of the related augmentation
algorithm. This corresponds to an average of 7.63 adversar-
ial examples added to the training set by H-AUG and 1.31
by L-AUG (these values are averaged over different training
set sizes). The F1-score improvement (on the test set) of H-
AUG with |X| = 500, for instance, is obtained adding only
6.05 adversarial examples on average (over 30 repetitions on
different training sets). The small performance improvement
of L-AUG on TE is instead probably due to the too low
success rate in generating adversarial examples. Further
results are available in Section 3.3 of the supplementary
material.

Comparison with state-of-the-art anomaly detectors.
Figure 4 shows the average F1-score of the original anomaly
detector HHAD, the augmented detectors H-AUG and L-

Training set size |X| (Tennessee Eastman)
Detector Means 250 500 750 1000 1250 1500
HHAD µF1 0.151 0.554 0.786 0.842 0.931 0.955

σF1 0.177 0.184 0.146 0.096 0.043 0.028
H-AUG µF1 0.452 0.844 0.947 0.957 0.979 0.99

σF1 0.244 0.158 0.066 0.051 0.021 0.009
∆F1 0.301 0.290 0.161 0.115 0.048 0.035
p-val 9.8e-6 1.5e-8 2.3e-6 4.9e-6 8.6e-7 1.1e-6

L-AUG µF1 0.156 0.600 0.858 0.879 0.933 0.978
σF1 0.163 0.177 0.116 0.088 0.045 0.023
∆F1 0.005 0.046 0.077 0.037 0.003 0.023
p-val 0.676 0.051 0.012 0.019 0.440 3.4e-4

R-AUG µF1 0.196 0.607 0.784 0.848 0.928 0.956
σF1 0.206 0.204 0.146 0.098 0.036 0.026
∆F1 0.045 0.053 -0.002 0.006 -0.002 0.001
p-val 0.199 0.239 0.952 0.794 0.834 0.693

D-AUG µF1 0.217 0.613 0.769 0.844 0.938 0.954
σF1 0.251 0.211 0.173 0.092 0.046 0.030
∆F1 0.066 0.059 -0.017 0.002 0.007 -0.001
p-val 0.153 0.260 0.643 0.935 0.460 0.982

G-AUG µF1 0.213 0.567 0.755 0.789 0.944 0.960
σF1 0.309 0.236 0.135 0.082 0.041 0.024
∆F1 0.062 0.013 -0.031 -0.052 0.013 0.005
p-val 0.156 0.792 0.273 0.011 0.261 0.581

S-AUG µF1 0.156 0.642 0.803 0.850 0.954 0.958
σF1 0.319 0.249 0.146 0.070 0.034 0.021
∆F1 0.005 0.088 0.017 0.008 0.023 0.003
p-val 0.941 0.057 0.601 0.669 0.035 0.698

TABLE 2: Average F1-scores on the test set of the original
(HHAD) and augmented anomaly detectors (H-AUG, L-
AUG, R-AUG, D-AUG, G-AUG, and S-AUG) on different
training set sizes in the TE domain. Averages are computed
over 30 datasets, for each dataset size. Average F1-score
improvements ∆F1 with respect to HHAD are also dis-
played with p-values for testing their statistical significance.
Statistically significant performance improvements (p-value
< 0.05) are highlighted in bold.

AUG, and the three state-of-the-art (non-augmented) detec-
tors AE, LSTM-AE, and OCSVM (see details in Section 3.2
of the supplementary material), for different dataset sizes.
Clearly, H-AUG outperforms all methods. L-AUG have
slightly better performance than HHAD but worse than H-
AUG. The detectors based on artificial neural networks have
very bad performance in this case, because of the small size
of the dataset and specific data structure. OCSVM starts to
increase its performance from 1000 examples but it does not
reach the F1-scores of HHAD. Further details are provided
in Section 3.3 of the supplementary material.

5.4 Secure Water Treatment Testbed (SWaT)
As a second test on an industrial CPS we use SWaT, a scaled-
down version of a real-world industrial water treatment
plant [15]. We report the description of domain and experi-
ments, and full results in the supplementary material (Sec-
tion 3.4). Results are successful also in this case. The average
performance improvement achieved by both H-AUG and L-
AUG with respect to HHAD are statistically significant for
all training set sizes. Baseline augmented detectors R-AUG
and D-AUG in this case manage to improve the average F1-
score on the test set only for the smaller datasets but the
improvement is smaller than that achieved by H-AUG. For
larger training set sizes these two baseline methods achieve
negative or null improvement, while the proposed methods
always get significant improvement. G-AUG and S-AUG
do not achieve significant improvement with respect to.
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Fig. 4: Average F1-score (over 10 datasets) for the original
detector HHAD, augmented detectors H-AUG and L-AUG,
and state-of-the-art (non augmented) anomaly detectors AE,
LSTM-AE, and OCSVM on different training set sizes in the
TE dataset.

HHAD. The improvement of H-AUG keeps almost constant
with the increase of the training set size, showing that the
F1-score can still increase also starting from relatively large
datasets (i.e., 2500 examples). Also in this case the gain is
relevant, since the F1-score obtained by the detector aug-
mented with H-ADV on 5000 examples is larger than the F1-
score obtained by the original detector HHAD using 20,000
examples, with a “saving” of about 15,000 examples. The
average improvement of success rate ∆SR% of adversarial
attacks on the test set is always negative, meaning that the
data augmentation improves the robustness of the detector
to adversarial attacks.

5.5 UAV Fault and Anomaly Detection (ALFA)
The third domain is a robotic one related to Unmanned
Aerial Vehicles (UAV). The dataset8 presents several fault
types in control surfaces of a fixed-wing UAV for use in
Fault Detection and Isolation (FDI) and Anomaly Detection
(AD) research [16]. It includes processed data for 47 au-
tonomous flights with 23 sudden full engine failure scenar-
ios and 24 scenarios for seven other types of sudden control
surface (actuator) faults, with a total of 66 minutes of flight
in normal conditions and 13 minutes of post-fault flight
time. The platform used for collecting data is a custom mod-
ification of the Carbon Z T-28 model plane. The average per-
formance improvement achieved by H-AUG with respect to
HHAD on the ALFA domain is statistically significant for all
training set sizes. Figure 5 graphically shows these results.
L-AUG has on average better F1-score than HHAD and the
difference is statistically significant for all training set sizes
except for |X| = 250, however the amount of the improve-
ment is less than that achieved by H-AUG. Baseline methods
R-AUG, D-AUG G-AUG, and S-AUG do not achieve any
significant performance improvement except for a small
improvement obtained by D-AUG on |X| = 1500. In this
case the larger improvement is achieved by H-AUG on small
and medium-size datasets, with a maximum improvement
of the F1-score of 0.313 for |X| = 500. Out of the four, this
is certainly the most difficult dataset containing complex
behaviours of a real autonomous system, in fact, anomalies

8. http://theairlab.org/alfa-dataset

are often not recognizable at human inspection. Neverthe-
less, H-AUG manages to strongly improve the anomaly
detection performance, reaching F1-score up to 0.909 with
the larger training sets considered in our analysis. Section
3.5 of the supplementary material provides full details about
the results of experiments performed on this domain.

|X|

Fig. 5: Average F1-score (over 30 datasets) for the original
detector HHAD and augmented detectors H-AUG, L-AUG,
R-AUG, D-AUG, G-AUG, and S-AUG on different training
set sizes in the ALFA dataset.

5.6 Water Monitoring with ASV (INTCATCH)
The fourth domain is again related to mobile robots but
in this case we consider an Autonomous Surface Vessel
(ASV). The dataset [17] has been generated by an ASV called
Platypus which operates in the context of the INTCATCH
Project9, an EU H2020 project aiming at developing new
paradigms for water monitoring in river and lakes. Also in
this case the average performance improvement of both H-
AUG and L-AUG with respect to HHAD and the baseline
data augmentation techniques is statistically significant for
small training set sizes while it becomes negligible for larger
sizes. The robustness against adversarial attacks on the test
set also improves. A detailed description of the domain, the
experiments, and the results is reported in Section 3.6 of the
supplementary material.

6 CONCLUSIONS

Detection of anomalous behaviours in intelligent systems
that operate in the physical world, such as autonomous
robots and CPSs, requires tools able to represent nominal
behaviours and discover patterns that do not match with
them in sensor traces. HMMs are a viable and established
tool for modeling dynamical behaviours contained in multi-
variate time series and recent methods use them to detect
anomalous behaviours in robotic systems. The approach
of adversarial data augmentation presented in this work
improves the detection performance of such tools without
using any prior knowledge about the form of the nominal
time series, as traditional data augmentation requires. The
adversarial examples we generate are multivariate time
series very similar to the original but able to produce a

9. https://www.intcatch.eu
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significant performance improvement (up to 0.313 of F1
improvement in our empirical tests, see ∆F1 of H-AUG on
ALFA with training set of 500 samples) if used to augment
the training set of our detector. The same examples improve
also the robustness of the detector to adversarial attacks
(with an increase up to 8.6% in our experiments, see ∆SR%

of H-AUG on TE with training set of 1000 samples).
This paper paves the way for future work along several

directions. We will concentrate on three main extensions.
The first concerns the introduction of other time series
distance measures in the adversarial example generation
strategy. The second is related to the application of the
proposed approach to other types of anomaly detectors,
such as autoencoders or one-class Support Vector Machines.
The third extension focuses on the application of adversarial
data augmentation to active anomaly detection, which aims
to make the system controller actively looking for possible
anomalies to detect them more precisely and promptly.
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