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A B S T R A C T   

Operational crop yield forecasting services typically provides crop yield forecasts based on regression models 
between official yields and agro-environmental variables, among which meteorological data, crop simulation 
model or satellite-derived indicators. The reliability with which these variables infer on yields depends, among 
many other factors, also on their aggregation in the space domain, for example on the type of the crop masks 
utilized in the aggregation process from point to regional scale. This work investigates how the yield explanatory 
power of satellite-derived indicators is changing moving from time-stable arable land masks to annual crop 
group-specific masks. We compare in particular the linkage between time series of regional crop yield in Europe 
and the Normalized Difference Vegetation Index (NDVI) from Moderate Resolution Imaging Spectroradiometer 
(MODIS), when generic arable land masks or crop group-specific and year-specific information are applied to 
aggregate pixel values at regional level. Regional (Eurostat level NUTS-2) crop yield statistics were collected 
from official databases for the period 2003–2019, while NDVI data were derived from MODIS daily products at 
250 m spatial resolution for the same reference period. Regional NDVI profiles were retrieved by averaging single 
pixels time series according to the information of five crop masks, including generic arable land masks, crop 
group-specific static masks (separating winter and spring crops from summer crops), and annual crop group- 
specific masks (distinguishing between the two crop groups and varying in time). A compared correlation 
analysis between yield data and regional temporal NDVI profiles was performed assuming a linear regression 
model. Coefficient of determination R2 and Root Mean Squared Error (RMSE) were computed to assess the 
models’ errors and to analyze the effect of the aggregation on the different crop masks. Results indicated an 
improvement in yield estimation when using annual crop group-specific indicators with respect to generic and 
static products. Although not homogeneously distributed throughout Europe, advantages have been highlighted 
both in terms of accuracy and timeliness of the prediction. In most regions, the introduction of annual masks 
allowed to reduce RMSE values by 0.3 t/ha and advanced forecast times by up to 30 days. The added value in the 
use of annual crop group-specific masks concerned the two European most cultivated crops, namely soft wheat 
and grain maize.   

1. Introduction 

Increasing worldwide demand for agricultural products, combined 
with inter-annual fluctuations of global production are important 
drivers for grain price volatility on agricultural markets. Moreover, food 
security challenges are even more important to address in an era of 

global climate change (Ansarifar et al., 2021). In this context, yield 
forecasting plays a major role in anticipating production anomalies, 
allowing well-informed and timely policy actions, preventing food cri
ses, avoiding market disruptions, and contributing to overall increased 
food security (López-Lozano et al., 2015a). Crop yield prediction is a 
fundamental research topic in agricultural and environmental sciences. 
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This focuses on understanding how harvestable plant biomass is deter
mined by genotype (G), environment (E), management (M), and their 
interactions (G × E × M) (Boschetti et al., 2017; Hipólito de Sousa et al., 
2018; Cooper et al., 2020). Timely and reliable crop yield forecasts play 
an important role in supporting national and international agricultural 
and food security policies, stabilizing markets and planning food secu
rity interventions in food-insecure countries (Becker-Reshef et al., 
2020). 

Governments and public authorities, as the European Union (EU), 
have a strong need and mandate to anticipate crop production losses 
(Meroni et al., 2021). For them crop yield forecasts and crop production 
estimates are necessary to provide decision makers with timely infor
mation for rapid and effective response during the growing season. This 
information is obtained thanks to Decision Support Systems (DSS) 
providing crop yield forecasts, as in the case of the European Commis
sion’s Joint Research Centre (EC-JRC) in-house MARS (Monitoring 
Agricultural Resources) Crop Yield Forecasting System (MCYFS, Van der 
Velde et al., 2019) or the yield forecasting program of the United States 
National Agricultural Statistics Service (NASS: NASS, 2006). Such sys
tems are often based on regressive estimation models developed by 
means of official yields and agro-environmental variables, computed at 
the time of the forecast (Fritz et al., 2019). The relationship usually 
relies on historical series of statistical yields and on one or more re
gressors, selected among meteorological data, crop simulation model or 
satellite-derived indicators (Basso et al., 2013; López-Lozano et al., 
2015b). The fitting between estimators and crop yields is highly variable 
across the agronomical seasons and the reliability with which these 
variables infer on yields depends, among many other factors, also on 
their aggregation in the space domain (Pianosi et al., 2016); for example, 
on the quality and representativeness of the utilized agricultural land 
cover masks (Zhang et al., 2019; Pérez-Hoyos et al., 2020). 

Earth Observation (EO) data, exploited in form of vegetation or 
biophysical indicators, represent a key variable in the design of yield 
predictive models (Basso et al., 2013; Kouadio et al., 2014; Zhang et al., 
2019). The added-value concerns the sensitivity they have with respect 
to the agro-ecosystems combination of G × E × M factors and agro- 
practices (Bandyopadhyay et al., 2014; Hatfield and Walthall, 2015). 
Nevertheless, EO indicators show limits in their applications due to land 
cover maps availability (pixel selection - Liu et al., 2019; Zhang et al., 
2019) but also due to the bias introduced when mixed-pixels are 
considered (low-resolution bias - Boschetti et al., 2004). Improving the 
representativeness of satellite-based indicators is a challenge for oper
ational yield forecasting systems, especially when they are operative at a 
wide geographical scale (Atzberger, 2013). Remote sensing (RS) in
dicators in this context are usually spatially aggregated using crop masks 
resulting from automatic (supervised or unsupervised) classification 
methodologies (Rojas et al., 2011). Crop (binary) masks are therefore 
exploited to focus on those pixels in the satellite images belonging to the 
targeted agricultural land cover and are of fundamental importance to 
improve spatial aggregation of EO indicators to increase model predic
tion accuracy (Baruth and Kucera, 2006; Mkhabela et al., 2011). 

Ideally, a crop mask should be differentiated by specific crop type 
and updated within the season to address agricultural land use changes 
(Zhang et al., 2019). However, due to the lack of timely availability of 
ground truth data within the crop growing season, it is not normally 
practical to get up-to-date annual crop masks within the crop season 
(Waldner et al., 2015; Davidson et al., 2017). As a result, the most used 
crop masks in yield forecasting systems provide static and generic land 
cover information without considering annual variations or crop groups 
(Baruth and Kucera, 2006; Mkhabela et al., 2011; Chipanshi et al.,2015). 
A recent study proposed a semi-automatic approach to identify crop 
group-specific pure pixels (i.e., winter and spring crops and summer 
crops) at European scale, based on the implementation of a regional 
Gaussian Mixture Model (GMM) on MODIS–NDVI time series analysis 
(Weissteiner et al., 2019). Such input could be used to improve the 
predictability of crop monitoring and yield forecasting applications, as it 

introduces a new and more detailed information layer to agricultural 
land cover in Europe. In a DSS-type operative environment and with 
reference to the MCYFS, the implementation of this method could bring 
a twofold advantage: on the one hand it would allow to benefit from 
more specific agricultural land cover masks, in particular allowing the 
transition from generic layers (e.g. arable areas) to more specific ones (e. 
g. summer crops); on the other hand it would allow to implement the 
transition from general (static) selective masks to annual (dynamic) 
mask, avoiding therefore the implicit assumption of an invariant agri
cultural land use in the time domain. 

The aim of this work is to test the contribution of crop group-specific 
and dynamic information for regional yield estimation in Europe. We 
propose compared correlation analyses between yield data and regional 
temporal NDVI profiles extracted from several land cover masks to test if 
crop group-specific RS time series and even annual crop group-specific 
RS time series fit more than generic RS time series, when correlated 
with crop yields. Results are discussed in view of their applicability to 
agricultural DSS monitoring systems at regional level, with particular 
attention to the improvement of crop yield predictability along the 
agronomical season. The analyses discussed in this contribution focused 
on three main goals: (i) test the use of annual crop group-specific NDVI 
time series to estimate crop yields; (ii) analyse results distribution at 
regional scale all over EU; and (iii) evaluate the potential benefit in 
terms of yield prediction accuracy and timeliness for two different crop 
groups: winter/spring and summer crops. 

2. Materials and methods 

2.1. Study area 

The study area included all current EU Member States, except for 
Finland and Malta due to a lack of arable land areas. The area of interest 
covered a wide extent, ranging from 35◦ N to 60◦ N, and included 
different climatic conditions and agro-management practices. There
fore, to account at regional level for both climatic and technological 
characteristics, we performed the analysis at regional level, considering 
the administrative units from the Nomenclature of Territorial Units for 
Statistics at level 2 (NUTS-2 – Eurostat, 2018). Wherever possible, we 
selected for each EU Member State the five regions with the most 
prominent shares of arable land, according to the Corine Land Cover 
(CLC) 2018 agricultural classes (Kosztra et al., 2017). The final study 
area included 97 NUTS-2 regions, representative for 72% of the arable 
land in the EU and, at country level, representative for 85% (on average) 
of the national arable lands. The selected NUTS-2 regions are reported in 
Table 1 and shown on the map in Fig. 1. 

2.2. Reference data 

Regional (NUTS-2) crop yield statistics were collected from official 
databases (including Eurostat and the National Statistics Offices (Ron
chetti et al., 2022)) for the 2003–2019 reference period and used as 
reference data for computing regressions. Considering the variety of 
crops cultivated at European level, yield statistics were retained only for 
the prevalent crops inside each region. In line with Weissteiner et al. 
(2019), the main agricultural crops were first divided into two crop 
groups, namely Winter and Spring Crops (WSpCs) and Summer Crops 
(SCs). Then, for each of the selected regions, the most representative 
crop of each crop group was chosen in accordance with the average 
extent of cultivated area. Among WSpCs, soft wheat prevailed (75 out of 
97 regions), while grain maize and potato ranked first and second 
among SCs (48 and 28 out of 97 regions, respectively). The crops chosen 
for the analysis in each NUTS-2 region are reported in the maps of Fig. 2. 

The length of each reference yield time series varied according to the 
availability of statistical data for that region and crop in the official 
database, but in most cases (65%), they covered the whole period of 
analysis (i.e., from 2003 to 2019). To spot significant trends in regional 
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yield statistics (Wu et al., 2007), we performed a Mann-Kendall test with 
a significance level equal to 1% (Mann, 1945; Kendall, 1975). Where 
required, crop yield statistics were detrended assuming a linear trend 
model. A significant increasing trend was identified and removed for 17 
regions in the WSpCs group and for 35 regions in the SCs group. Regions 
with an identified trend in yield statistics are highlighted in Fig. 2 as 
hatched areas. 

2.3. Regional temporal NDVI profiles 

Starting from MODIS daily products at 250 m spatial resolution, 
regional temporal NDVI profiles were generated by aggregating pixels 
using different crop masks. For each region and year, five different NDVI 
average profiles were extracted. A detailed description of the main 
processing steps and of the applied masks is following. 

2.3.1. MODIS NDVI time series processing 
A collection of reference temporal NDVI profiles was derived for 

every selected region and year using MODIS daily product at 250 m 
spatial resolution. More specifically, the MOD09GQ product (250 m 
resolution, Terra platform) from the collection 6 was adopted in this 
study, along with MOD09GA (500–1000 m resolution) for retrieving 
additional information on quality rating and satellite acquisition ge
ometries (Vermote et al., 2015; Weissteiner et al., 2019). The datasets 
were provided by NASA LP DAAC at the USGS EROS Center and 

represented daily, global, and atmospherically corrected surface 
reflectance values in the red and near-infrared (NIR) domains. Data 
processing routines were designed and performed both in cloud 
computing, via the Google Earth Engine application (Gorelick et al., 
2017), and at desktop level via Python (Van Rossum and Drake, 2009). 
Following the approach of Weissteiner et al. (2019), MODIS data were 
first limited to cover the extent of the study area and acquisition period 
corresponding to the seasonal growing cycle of the main agricultural 
crops in Europe, from February to October. Then, noisy data were 
filtered out according to the quality flags provided in the MODIS product 
quality flags and NDVI time series at 250 m spatial resolution were 
computed from bands 1 and 2 of the MOD09GQ.006 product, as indi
cated in Rouse et al. (1974): 

NDVI =
ρNIR − ρRed

ρNIR + ρRed
(1) 

Finally, a fifth degree polynomial was applied to each pixel time 
series for smoothing and producing yearly NDVI time series. More de
tails on the filtering and quality flags used in this study can be found in 
Weissteiner et al. (2019). 

2.3.2. Retrieving regional temporal NDVI profiles 
To assess the effects of crop masks on the accuracy of yield estima

tion, regional annual NDVI profiles were retrieved by applying different 
crop masks. Five masks were considered in this analysis: a generic arable 
land mask and two crop group-specific masks for both WSpCs and SCs 
groups. The arable land mask was computed from the agricultural 
classes of the CLC 2018, while the crop group-specific masks were 
generated from the datasets of crop group-specific pure pixels presented 
in Weissteiner et al. (2019). 

The adopted masks are illustrated hereafter:  

• ArLand: generic arable land mask, computed from the CLC 2018. It 
included not-irrigated (class 2.1.1) and permanently irrigated (class 
2.1.2) arable land areas (Kosztra et al., 2017). This mask provided 
information that was characterizing the whole study area, but in a 
static and generic way. Specifically, it did neither consider inter- 
annual variations of the arable area extension nor distinguished 
crop groups.  

• HistWSpCs: historical crop group-specific mask for the WSpCs group. 
It represented a (pixel-based) probability of more than 50% to 
identify a pure pixel of WSpCs in the 2003–2019 time period. This 
mask was computed from the pure pixels of WSpCs detected each 
year (Ronchetti et al, 2021). It provided static crop group-specific 
information, without considering annual variability.  

• HistSCs: historical crop group-specific mask for the SCs group. It was 
the equivalent of the HistWSpCs mask, for the SCs group.  

• YearWSpCs: annual crop group-specific mask for WSpCs group. It 
represented the pure pixels for the WSpCs group, detected in a spe
cific year. This mask changed annually, depending on the location of 
the pure pixels identified each year. It provided dynamic crop group- 
specific information that accounted for both annual variability and 
specific characteristics of crop groups.  

• YearSCs: annual crop group-specific mask for SCs group. It was the 
equivalent of the YearWSpCs mask, for the SCs group. 

To retrieve average regional temporal NDVI profiles, a dedicated 
Python (version 3.7; Van Rossum and Drake, 2009) routine was devel
oped. This script used as inputs the MODIS NDVI time series, the 
different crop masks, and the European regional borders. It provided as 
output the desired average NDVI profiles for each region of interest (n =
97), year (n = 17) and mask (n = 5). The procedure involved a selection 
of pixels from MODIS imagery based on two criteria, namely pixels 
belonging to a specific crop mask and included within the borders of the 
target region. The selected pixels were then aggregated to compute 
regional statistics, including mean and standard deviation values, thus 

Table 1 
The NUTS-2 regions chosen for the analyses.  

Country Selected NUTS-2 regions 

AT AT11 (Burgenland), AT12 (Niederösterreich),AT21 (Kärnten), AT22 
(Steiermark), AT31 (Oberösterreich) 

BE BE23 (Prov. Oost-Vlaanderen), BE25 (Prov. West-Vlaanderen),BE32 
(Prov. Hainaut), BE33 (Prov. Liège), BE35 (Prov. Namur) 

BG BG31 (Severozapaden), BG32 (Severen tsentralen),BG33 
(Severoiztochen), BG34 (Yugoiztochen), BG42 (Yuzhen tsentralen) 

CY CY (Kýpros) 
CZ CZ02 (Strední Cechy), CZ03 (Jihozápad),CZ05 (Severovýchod), CZ06 

(Severovýchod), CZ07 (Strední Morava) 
DE DE40 (Brandenburg), DE80 (Mecklenburg-Vorpommern),DE94 (Weser- 

Ems), DEE0 (Sachsen-Anhalt), DEF0 (Schleswig-Holstein) 
DK DK01 (Hovedstaden), DK02 (Sjælland),DK03 (Syddanmark), DK04 

(Midtjylland), DK05 (Nordjylland) 
EE EE (Eesti) 
EL EL51 (Anatoliki Makedonia, Thraki), EL52 (Kentriki Makedonia),EL53 

(Dytiki Makedonia), EL61 (Thessalía), EL64 (Sterea Ellada) 
ES ES24 (Aragón), ES41 (Castilla y León),ES42 (Castilla-La Mancha), ES43 

(Extremadura), ES61 (Andalucía) 
FR FRB0 (Centre - Val de Loire), FRE2 (Picardie),FRF2 (Champagne- 

Ardenne), FRG0 (Pays de la Loire), FRI3 (Poitou-Charentes) 
HR HR03 (Jadranska Hrvatska), HR04 (Kontinentalna Hrvatska) 
HU HU21 (Közép-Dunántúl), HU22 (Nyugat-Dunántúl),HU23 (Dél- 

Dunántúl), HU32 (Észak-Alföld), HU33 (Dél-Alföld) 
IE IE04 (Northern and Western), IE05 (Southern), IE06 (Eastern and 

Midland) 
IT ITC4 (Lombardia), ITF4 (Puglia),ITG1 (Sicilia), ITH3 (Veneto), ITH5 

(Emilia-Romagna) 
LT LT01 (Sostinės regionas), LT02 (Vidurio ir vakarų Lietuvos regionas) 
LU LU (Luxembourg) 
LV LV (Latvija) 
NL NL11 (Groningen), NL13 (Drenthe),NL23 (Flevoland), NL33 (Zuid- 

Holland), NL34 (Zeeland) 
PL PL41 (Wielkopolskie), PL61 (Kujawsko-Pomorskie),PL62 (Warminsko- 

Mazurskie), PL81 (Lubelskie), PL92 (Mazowiecki regionalny) 
PT PT11 (Norte), PT15 (Algarve), PT16 (Centro),PT17 (Área Metropolitana 

de Lisboa), PT18 (Alentejo) 
RO RO21 (Nord-Est), RO22 (Sud-Est),RO31 (Sud - Muntenia), RO41 (Sud- 

Vest Oltenia), RO42 (Vest) 
SE SE12 (Östra Mellansverige), SE21 (Småland med öarna),SE22 

(Sydsverige), SE23 (Västsverige), SE31 (Norra Mellansverige) 
SI SI03 (Vzhodna Slovenija), SI04 (Zahodna Slovenija) 
SK SK01 (Bratislavský kraj), SK02 (Západné Slovensko),SK03 (Stredné 

Slovensko), SK04 (Východné Slovensko)  
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providing the desired regional NDVI profiles. 

2.4. Regression model 

A correlation analysis was performed between reference yield data 
and regional temporal NDVI profiles assuming a linear regression model. 
For each region and mask, annual yield values were compared with the 
average NDVI values of the corresponding region and year. To assess the 
evolution in time and find the best time of the year to compute re
gressions, we did not consider only NDVI peak values but all NDVI 
values, starting from the day of the year (DOY) 60 (i.e., beginning of 
March) up to DOY 270 (i.e., end of September). However, to reduce the 
number of models, NDVI values were sampled every ten days, totaling 
22 models for each region and mask. 

NDVI profiles aggregated with HistWSpCs mask and YearWSpCs 
mask were tested only with respect to yield values for the WSpCs group 

and accordingly, NDVI profiles aggregated with HistSCs mask and 
YearSCs mask with respect to yields for the SCs group. As far as NDVI 
profiles aggregated with ArLand mask concerned, correlations were 
computed for both the crop groups. 

The coefficients of determination R2 (Eq.2) were calculated to assess 
the performance of each relationship, together with the respective p- 
value to estimate its significance. The resulting metrics obtained from 
the correlations between yield and NDVI aggregated with the different 
crop masks were compared and analyzed. 

R2 =
∑n

t=1
(Ft − O )

2
/
∑n

t=1
(Ot − O )

2 (2) 

Where Ft are yield values predicted from the model for each specific 
year t, Ot are the observed yield values from the reference dataset and O 
are their average values. For both crop groups and for all the five crop 
masks used in the aggregation phase, we evaluated only relationships 
that returned a significant and high correlation, having set the level of 

Fig. 1. The European NUTS-2 regions (in yellow) selected as study area.  

Fig. 2. The prevalent crops selected inside each NUTS-2 region for (a) WSpCs and (b) SCs. Hatched areas display a significant trend in the crop yield statistics.  
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significance (α) to 5% and a threshold on R2 values equal to 0.4. This 
threshold was arbitrarily chosen as representative of a strong correla
tion. To assess both the accuracy and the timeliness of the prediction, for 
each region and crop group we selected the aggregating mask providing 
the maximum R2 value (above the threshold) and compared R2 vari
ability along the season. 

In addition, since this work is included in the context of a crop yield 
forecasting system, the correlation results obtained with NDVI profiles 
aggregated with the different masks were analyzed and compared also in 
terms of the forecasting errors, namely the Root Mean Square Error 
RMSE (Eq.3): 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n

t=1
(Ot − Ft )

2
/n

√

(3) 

To compare forecasting errors, the differences of the lowest RMSE, 
the first-in-time significant RMSE and their temporal occurrences were 
considered. 

3. Results 

This section introduces the research results in form of graphs and 
maps. To improve in readability, we chose a unique colour for displaying 
data resulting from each of the (five) compared crop masks. In partic
ular: grey (ArLand), red (HistWSpCs), blue (HistSCs), orange 
(YearWSpCs) and cyan (YearSCs). In the first subsection (§3.1), NDVI 
time series resulting from the different spatial aggregation crop masks 

are shown. The second subsection (§3.2) illustrates correlation results 
considering the whole study area, while a focus on regional comparisons 
is provided in §3.3 and §3.4, depicting the best retrieved R2 value and R2 

variability along the season, respectively. Finally, §3.5 is dedicated to 
the analyses on yield estimation errors. 

3.1. NDVI spatial aggregation 

The regional temporal NDVI profiles vary as function of the mask 
applied during the spatial aggregation phase. Fig. 3 shows eight exam
ples of NDVI profiles, extracted from selected regions and years among 
the study area. Solid lines represent NDVI mean values, while error 
shadows refer to +/- one standard deviation. Given a generic region of 
interest, NDVI profiles differ according to (i) the applied crop mask; (ii) 
the number of pixels considered in the aggregation phase; (iii) the 
temporal occurrence of the NDVI peak; (iv) the NDVI value at the sea
sonal peak; and (v) the variability of NDVI values (i.e., standard de
viations). Examples are taken from different EU regions to show the 
consistency of masks aggregation effect across the study area and across 
years. NDVI profiles suggest homogeneous distribution of crop groups in 
the arable land area when a finer delineation is observed in the transi
tion from ArLand to crop group-specific regional profiles (e.g., Fig. 3a 
and Fig. 3b). The predominance of one specific crop group in a region 
can be inferred when the ArLand and crop group regional profiles tend 
to overlap (e.g., Fig. 3c, Fig. 3d, Fig. 3e, Fig. 3f, Fig. 3g and Fig. 3h). The 
examples in Fig. 3g and Fig. 3h, are representative for the crop group 

Fig. 3. Temporal NDVI profiles extracted at regional level using five different crop masks. Solid lines display average NDVI values, shadows highlight +/- one 
standard deviation. The number of aggregated pixels is reported in brackets into the legend. Orientation maps are provided for georeferencing each example. 
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variability among regions of the same country for the year 2012. A high 
prevalence of WSpCs can be depicted in the NDVI temporal patterns in 
Fig. 3g while SCs prevail in the temporal patterns of Fig. 3h. 

3.2. Results at continental scale 

Considering the (97) regions accounted in this study, the (5) 
compared crop masks, the (2) investigated crop groups and the selected 
time stamps (22, from DOY 60 to DOY 270); a total of 12,804 regression 
models were computed. Among these, 2906 (22.7%) showed significant 
correlation results (p-value < α), for a level of significance α set to 5%. 
The distribution and the number of significant correlations spread 
region-wise as indicated in the map of Fig. 4. Although not evenly 
distributed across the study area, significant relationships were 
observed for almost all the regions under analysis (94 out of 97). On 
average, 30 significant models resulted for each region. The number of 
significant models mostly depend on the extension of arable land inside 
each region (e.g., regions with higher number of significant correlations 
were found in Spain) and the considered prevalent crop (e.g., the lowest 
number of significant correlations were found for durum wheat and 
potato). In a large part of the accounted regions, i.e. in 38 out of 97, 
significant correlations are in the range 25–50. 

Although the numbers of significant and high correlations were quite 
homogeneous considering the different aggregation masks, their distri
butions over time differed. The histograms mapping the distribution of 
the significant correlations and high correlations over time are provided 

in Fig. 5. It can be noticed that significant relationships were mainly 
localized in a time span ranging around the NDVI peaks, confirming 
what was already highlighted in other contributions (Skakun et al., 
2017; Nagy et al., 2018; Liu et al., 2020; Meroni et al., 2021; Shammi 
and Meng, 2021). As a matter of fact, the largest number of significant 

Fig. 3. (continued). 

Fig. 4. Distribution of significant correlations (p-value < 0.05) by region.  
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correlations for the WSpCs group was found approximately from DOY 90 
to DOY 150 (Fig. 5a), while for SCs group between DOY 190 and DOY 
240 (Fig. 5b). This was observed regardless of the mask considered. 

Regarding the aggregating masks, for WSpCs group, the number of 
significant correlations computed with NDVI values aggregated using 
the annual mask is higher than the other in the range from DOY 90 to 
DOY 150 and lower out of this time span (Fig. 5a). The same for the SCs 
group, where the number of significant correlations computed with 
NDVI values aggregated using the annual mask resulted higher than the 
others between DOY 180 and DOY 210 and lower out of this interval 
(Fig. 5b). 

Fig. 6 shows pairwise comparisons of correlations between NDVI 
values and crop yield, when different crop masks are used to aggregate 
NDVI data at regional level. Histograms were drawn to represent the 
total amount of significant correlations (i.e., total number of compari
sons – black bars) and the times an aggregation mask returned higher R2 

values than the opposing mask (colored bars). The same results are also 
expressed in terms of relative values by means of continuous and dashed 
lines, referring to the right y-axes of each pane. The histograms 
confirmed once more a pronounced number of significant correlations 
around NDVI peaks (proxy of crop headings), more markedly for SCs 
group than for WSpCs. By comparing correlation results, the R2 values 
from YearWSpCs aggregated models resulted higher than the outcomes 
obtained by the other models. Similar results were observed for the SCs 
group, where YearSCs aggregated indicators returned greater R2 values 
with respect to both the ArLand and HistSCs aggregated data. While R2 

values with the use of ArLand tended to prevail over HistSCs. 
The distribution of R2 average values over time for the whole dataset 

is shown in Fig. 7. Only significant correlations were included in the 
results. Overall, the R2 average values were in the range 0.3–0.65. An 
increase in R2 average values was again highlighted for DOYs close to 
the agronomical heading of the accounted crop group, except for some 
high R2 values resulting from the correlation between yield and NDVI 
aggregated using ArLand and HistWSpCs mask, for WSpCs group. R2 

average values were higher in the SCs group than in the WSpCs group, 
when compared with reference to their respective agronomical heading 

periods. NDVI profiles aggregated using YearWSpCs mask resulted in R2 

average values equal or slightly higher than the other masks in the 
period from DOY 90 to DOY 130 and lower for the remaining DOYs 
(Fig. 7a); similarly, the use of YearSCs mask allowed to obtain higher R2 

average values from DOY 180 to DOY 220 (up to greater than 0.15) and 
lower outside this interval (Fig. 7b). However, in this analysis R2 results 
were mitigated by the fact that we were considering different regions 
and several crops together. In the next sections (§3.3, §3.4), the com
parisons will instead focus on individual regions and/or crops. 

3.3. Results at regional scale 

A more detailed analysis focused instead only on the highest corre
lation results, where models returning R2 values below the threshold 
value (i.e., 0.4) were removed. The considered models decreased to 
1410 (11%), and their repartitions according to the original regressors 
are illustrated in Table 2. Comparisons between NDVI spatial aggrega
tion masks were made region by region, identifying the mask returning 
the maximum R2 value along the reference agricultural time window. 
Results are shown in Fig. 8. For WSpCs group (a), YearWSpCs prevailed 
in 33.0% of the regions, 32 out of 97, while ArLand and HistSCs ranked 
second and third (15.5% and 13.4%, respectively). In 38.1% of the 
accounted regions, correlations were not significant or with R2 values 
below the imposed threshold. The regions with a prevalence for 
YearWSpCs mask were fairly distributed in the study area, particularly 
in central and eastern Europe, including Czechia, Slovakia, Hungary, 
Romania and Bulgaria, in addition to some regions in Spain, France, 
Germany and Poland. Considering instead the SCs group, YearSCs pre
vailed in 42.3% of the regions, 41 out of 97, followed by ArLand and 
HistSCs (16.5% and 10.3%, respectively). In 30.9% of the regions were 
no significant or high correlations observed. A predominance of YearSCs 
mask was observed across the whole EU, specifically in Central and 
Eastern Europe, including some important agricultural areas of Europe, 
such as central-western France, northern Italy and eastern Romania. 

Results previously illustrated in the maps of Fig. 8 accounted for all 
the regions and all the crops of a crop group. To better evaluate the 

Fig. 5. Distribution of significant correlations over time: a) WSpCs group, b) SCs group.  
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effects of NDVI spatial aggregation masks for specific and representative 
crops, we repeated our analysis crop-wise, by selecting only the regions 
featuring a specific crop prevalence. Here, we report results for the most 
prominent crops at EU level and within the two crop groups: soft wheat 
and grain maize (Fig. 9). For soft wheat, out of 75 regions, we obtained 
in 37.3% the best results in terms of maximum R2 with NDVI aggregated 
using YearWSpCs mask. Together with the contribution of HistWSpCs 
(14.7%), more than 50% of the regions were reached; thus highlighting 
the importance of crop group-specific information in correlating with 
yields for soft wheat in Europe. For grain maize, 48 regions were 
selected and in 43.8% of these the maximum R2 value was observed with 
the aggregation by means of YearSCs mask. 

3.4. Regional variability of R2 values along the season 

Correlation results in terms of R2 values varied at regional level as 
function of time and of the spatial aggregation mask used for generating 
NDVI profiles. In Fig. 10, the distribution of R2 values by mask in the 
time domain is shown for selected regions and prevalent cultivated 
crops. The reported examples spread over the study area and are 
representative for main EU agricultural regions. Overall, significant 
correlations (solid lines) were observed in a temporal window from DOY 
90 to DOY 250. Further investigations are needed to address the sig
nificant correlations observed after DOY 220 for WSpCs group and 
before DOY 120 for SCs group, occurring off the reference crop growing 

Fig. 6. Pairwise comparisons of significant correlations between NDVI and crop yield, varying the aggregation masks. Total number of comparisons (y axis - left) and 
referring percentage (y axis - right). a) HistWSpCs vs ArLand, b) HistSCs vs ArLand, c) YearWSpCs vs ArLand, d) YearSCs vs ArLand, e) YearWSpCs vs HistWSpCs, f) 
YearSCs vs HistSCs. 
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window (i.e., after WSpCs harvesting and before SCs sowing periods). 
These correlations could be linked to the soil moisture condition in the 
pre-cropping season or to factors facilitating pests or weed spread during 
the incoming cropping season. 

R2 values for SCs group were generally higher than those obtained 
for the WSpCs group, with the exceptions of regions represented in 
Fig. 10d and Fig. 10f. This is most likely related to the high share of 
WSpCs cultivated area, much higher than SCs. In the other examples, the 
shares in the crop groups are almost equal, with only a slight prevalence 
of SCs in Fig. 10a and Fig. 10b, and of WSpCs in Fig. 10c and Fig. 10e. 
Comparing the outcomes of the correlations obtained using the different 
spatial aggregation masks, in most cases the R2 values obtained with the 
annual masks were clearly over performing the others, both in terms of 
R2 value and of early-in-time occurrence of high regression values. Only 
in Fig. 10d, we did not observe any improvements with the introduction 
of annual and crop group-specific masks, since in this region there is a 
large share of WSpCs group, as already pointed out in section 3.1 
(Fig. 3c). In Fig. 10a, Fig. 10b, and Fig. 10c, the R2 numerical im
provements brought with the exploitation of annual crop group-specific 
masks were evident in both the crop groups, both in terms of R2 values 
and earliness in the season. In Fig. 10a, R2 values from arable land mask 
were close to 0.4, while these values raised up to 0.6 when the annual 
crop group-specific masks were introduced. In Fig. 10b, R2 values 
reached 0.8 with the YearSCs mask. Furthermore, in these two regions, 
significant correlations for WSpCs group occurred up to 30 days in 
advance when annual crop group-specific masks were exploited. In 
Fig. 10c, there was a 20 days advance in significant correlations for SCs 
group when applying the YearSCs mask. In Fig. 10e and Fig. 10f, the 
improvements brought by the annual crop group-specific masks were 
evident only for one crop group. In Fig. 10e, the use of the YearWSpCs 
mask raised R2 values for WSpCs group up to 0.5 around DOY 150, 

whereas in Fig. 10f for SCs group, we observed significant correlations 
and R2 values greater than 0.4 around DOY 200 when the YearSCs mask 
was applied and ArLand and HistSCs masks did not return any signifi
cant correlations at any DOY. In all the selected examples, the general 
behavior of correlation results over time for the arable land mask was 
very similar to those of the two crop group-specific static masks. 

3.5. Yield estimation errors: RMSE 

To further assess the effects of the use of the different masks, we 
introduced the comparisons between the correlation results in terms of 
RMSE. In this section, only comparisons between annual crop group- 
specific masks and arable land mask were considered. The historical 
crop group-specific masks were left out of this analysis, as the results 
previously reported highlighted their worst performances. 

For each region, we selected the minimum RMSE obtained from the 
correlations using annual crop group-specific and arable land aggre
gated indicators; we then assessed their differences both in terms of (i) 
error values and (ii) time-occurrence. Results are displayed in Fig. 11. 
Regarding RMSE residuals in t/ha (Fig. 11a and Fig. 11b), negative 
values (green colours) indicate regions where RMSE resulting from 
correlations with NDVI values aggregated on the annual masks are lower 
than those obtained with aggregation on the arable land. Positive values 
(red colours) reflect instead lower errors when applying the arable land 
mask. Yellow colours display regions where residuals computation was 
not applicable, because the use of at least one mask returned no sig
nificant correlations (i.e., p-value greater than 0.05 for all regression 
models). Overall, the number of regions reporting negative differences 
prevailed, thus highlighting an improvement in terms of forecasting 
accuracy when correlations were based on NDVI values aggregated 
using annual crop-specific masks. Particularly, for WSpCs group 
(Fig. 11a), we observed lower RMSE values with the aggregation on 
YearWSpCs in 34 regions, whereas in 17 regions RMSE values were 
higher. For SCs group (Fig. 11b), the use of YearSCs mask returned lower 
RMSE in 36 regions, and higher values in 13 regions. Larger differences 
between the use of the annual masks and the arable land mask were 
found for the SCs group compared to the WSpCs. In the latter, most of 
the residuals were in the range 0 to 0.1 t/ha (in absolute value) and there 
were no residuals in absolute value greater than 0.2 t/ha, while in the 
former there were residuals even in the class greater than 0.3 t/ha; thus, 
indicating non-neglectable changes in yield forecasting. Residuals 
computation was not applicable in 46 and 48 regions out of 97, for 
WSpCs and SCs group respectively. In particular, for SCs group, we 
found 20 regions where the residuals computation was not applicable, as 

Fig. 7. Distribution of average R2 values over time: a) WSpCs group, b) SCs group.  

Table 2 
Number of significant correlations (p-value < 0.05) and high correlations (R2 

>

0.4) by NDVI spatial aggregation mask.  

Crop mask N◦ significant correlations (p-value 
< 0.05) 

N◦ high correlations (R2 >

0.4) 

WSpCs group SCs group WSpCs group SCs group 

Arland 487 511 244 235 
HistWSpCs 505 – 237 – 
HistSCs – 457 – 204 
YearWSpCs 483 – 225 – 
YearSCs – 463 – 265  
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Fig. 8. High correlation results (R2 greater than 0.4): (a,b) aggregation masks reaching the maximum R2 within the agricultural window; (c,d) pie plots displaying 
the shares reached by each mask (total n = 97). 

Fig. 9. High correlation results (R2 greater than 0.4): (a, b) aggregation masks reaching the maximum R2 within the agricultural window; (c, d) pie plots displaying 
the shares reached by each mask (total n = 75, WSpCs; total n = 48, SCs). Left (a, c): prevalent crop is soft wheat; right (b, d): prevalent crop is grain maize. 
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the outcomes of the use of YearSCs mask were missing. In these regions, 
the correlations between yield values and NDVI aggregated on YearSCs 
mask resulted non-significant or null, because of the lack of identified 
pure pixels. Specifically, it was not possible to compute any valid 
regression model in the northernmost countries, such as Estonia, 

Sweden, Denmark and Ireland, but also in the southernmost regions, 
including Greece and southern Italy, where summer crops cultivation is 
almost absent (Eurostat, 2018). 

Regarding RMSE time-occurrence (Fig. 11c and Fig. 11d), green bars 
represent regions where correlations with NDVI values aggregated using 

Fig. 10. Variability of R2 values with respect to the time and the applied spatial aggregation mask. Example regions: a) BG33, b) RO22, c) FRI3, d) ES41, e) ITH5, 
f) DE80. 
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annual masks returned the minimum RMSE value earlier than arable 
land aggregated indicators. Conversely, later occurrences are displayed 
with red bars. No changes in time-occurrence are shown with light-blue 
bars and yellow colours indicate regions where the comparison was not 
applicable (i.e., the same regions as in Fig. 11a and Fig. 11b). Overall, 
the number of regions where the minimum RMSE values were observed 
earlier-in-time prevailed, thus highlighting an improvement in terms of 
forecasting timeliness when correlations were based on NDVI values 
aggregated using annual crop-specific masks. For WSpCs group 
(Fig. 11c), the minimum RMSE with NDVI aggregated on YearWSpCs 
was returned earlier in 20 regions, at the same time in 19 regions, 
whereas later in 12 regions. In most cases, differences in time- 
occurrence were in the order of 10 days, but for few cases differences 
of 20 days and even more were observed. For SCs group (Fig. 11d), the 
use of YearSCs mask provided the minimum RMSE earlier in time in 26 
regions, at the same time in 10 regions, and later in 13 regions. Residuals 
varied in time from 10 days to more than 30 days, but no cases of oc
currences later than 20 days were registered. 

In the context of a crop yield forecasting system, the capability to 
provide good predictions early in the season is of paramount importance 
(Basso and Liu, 2019; Shahhosseini et al., 2020; Ziliani et al., 2022). 
Therefore, we compared for each region also the values and time- 
occurrence of the first-in-time significant RMSE resulting from NDVI- 
yield correlations when applying annual crop group-specific masks 
and arable land mask (Fig. 12). Here, for WSpCs group (Fig. 12a), there 
was a slight prevalence of positive residuals (28 regions vs 23 regions). 
This indicates that overall correlations based on NDVI aggregated on 
YearWSpCs provided greater first-in-time significant RMSE values when 
compared to correlations based on NDVI aggregated on ArLand. How
ever, RMSE variations were minimal and never exceeded 0.1 t/ha. For 
SCs group (Fig. 12b), negative residuals prevailed (green colours): in 30 

regions the first-in-time significant RMSE was lower when applying 
YearSCs mask than ArLand, and greater in 19 regions. Regarding time- 
occurrence (Fig. 12c and Fig. 12d), we noticed again the added value 
brought by annual crop group-specific indicators, which returned sig
nificant RMSE earlier in the season or at most at the same time than 
arable land indicators. Particularly, for WSpCs group (Fig. 12c), in 27 
regions significant RMSE were observed from 10 up to more than 30 
days in advance, while only in 3 regions significant RMSE occurred later 
in the season. For SCs group (Fig. 12d), in 23 regions significant RMSE 
were found earlier when using YearSCs mask, and among these, in 12 
regions the earliness is greater than 20 days. 

4. Discussion 

This section proposes a critical analysis on the obtained results, with 
close attention to already available literature contributions. The po
tential (qualitative and quantitative) added-value of annual crop group- 
specific masks for crop yield forecasting is discussed, with emphasis on 
the applicability for operational agricultural monitoring systems at 
regional level. 

4.1. NDVI time series variability 

Results provided in §3.1 support the reliability of EO time series for 
operational crop yield forecasting at regional level and show how yield 
predictive models can be improved by enhancing the specificity of NDVI 
time series, exploited in form of regressive inputs. These findings 
confirmed at European level the evidence brought by Zhang et al. 
(2019), which observed consistent improvements in maize and soybean 
(yield predicting) models in Canada when crop-specific masks were 
applied to spatially aggregate NDVI values. They highlighted the 

Fig. 11. Pairwise comparisons of the minimum RMSE: (a, c) YearWSpCs vs ArLand; (b, d) YearSCs vs ArLand. (a, b) RMSE residuals [t/ha]; (c, d) time-occurrence 
residuals [days]. 
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importance of the exploitation of annual crop-specific masks in a DSS, 
being the more appropriate to select remote sensing pixels relevant for 
crop yield forecasts. 

Results represent a methodological follow-up in crop mask exploi
tation compared to Baruth and Kucera (2006), where crop masks were 
built thanks to a disaggregation approach relying on land cover masks 
and statistical records, under the basic assumption that crops are spatial 
equally distributed within an administrative region. 

With this work we contributed to confirm that NDVI time series 
increased their crop yield predictivity in reason of an increased speci
ficity. This was particularly clear when spatial aggregations were per
formed using annual crop group-specific masks. Focusing on regional 
temporal NDVI profiles, we observed a progressive finer delineation of 
profiles at regional level in the transitions from spatial aggregations 
retrieved with generic arable land mask, to historical crop group-specific 
mask and finally, annual based crop group-specific masks. 

In regions characterized by an even repartition of winter/spring and 
summer crop groups, historical and annual based crop group-specific 
masks allowed a better delineation of the NDVI time series compared 
to those derived by the generic arable land mask, facilitating the iden
tification of two distinct temporal signatures of crop biomass accumu
lation within the agronomic season. Conversely, in regions where 
uneven proportions of winter/spring and summer crop groups prevailed, 
NDVI time series aggregated by means of a generic arable land mask 
remained close to that obtained from the prevalent crop group-specific 
masks, therefore, the correlations with yields resulted similar. Here, 
the main observed added value, was the greater ability in depicting the 
signal of the minority crop group and consequently the increased fitting 
when these data were correlated with reference yield values. 

These findings, analysed in a context of operative DSS, allow a finer 
access on crop condition and crop biomass accumulation information, 
and are of great importance since they are provided at sub-national 
scale. For example, when NDVI data aggregated at regional level by 
means of crop group-specific masks are visually inspected against a 
reference temporal profile (e.g., a medium- or long-term trend NDVI 
profile), an easier and clearer interpretation of crop season’s dynamics 
in terms of higher/lower biomass accumulation can be appreciated with 
respect to the reference profile. Furthermore, it allows a better recog
nition of crop’s delays or advancements in the current growing season. 
These aspects are even more meaningful for those regions (i) charac
terized by an unbalanced share of winter/spring and summer crops, 
where it becomes more difficult to characterize the minority crop group 
and (ii) for regions characterized by a high share of rainfed crops, given 
that they are more exposed to inter-annual yield variability and abiotic 
stressors, for example drought. 

4.2. Crop masks comparison in yield forecasting 

Regarding the compared analyses on yield forecasting crop masks, 
we observed an overall correlation improvement in the results obtained 
by means of NDVI aggregated using annual crop group-specific masks, 
while a non-relevant effect was brought by the aggregation using his
torical crop group-specific masks. The obtained improvement was both 
numerical, retrieving better correlation results, and temporal, with 
significant correlation results occurring earlier in the agronomic sea
sons. These achievements, once implemented into a crop yield fore
casting system, enable to retrieve more accurate forecasts and earlier-in- 
time yield previsions. Our findings confirmed previous contributions of 

Fig. 12. Pairwise comparisons of the first-in-time significant RMSE: (a, c) YearWSpCs vs ArLand; (b, d) YearSCs vs ArLand. (a, b) RMSE residuals [t/ha]; (c, d) time- 
occurrence residuals [days]. 

G. Ronchetti et al.                                                                                                                                                                                                                              



Computers and Electronics in Agriculture 205 (2023) 107633

14

Liu et al. (2019), Zhang et al. (2019) and Shao et al. (2015) for case 
studies in Canada and Midwestern United States, respectively. These 
authors observed an increase in R2 values ranging from +0.05 to +0.2 
when crop-specific masks (even static) instead of generic masks were 
applied to spatially aggregate RS variables before feeding linear and/or 
non-linear regression yield predicting models. In our study, similar 
growths in R2 values were achieved at a finer (regional) scale Europe- 
wide. Moreover, we proved that the introduction of annual crop 
group-specific masks (i.e., dynamic) provided an added value in terms of 
prediction timeliness and lead also to reduce forecasting errors for both 
winter/spring and summer crop groups. In some regions up to more than 
0.3 t/ha (SCs group). The better correlation performances of NDVI 
aggregated using annual crop group-specific masks, were due to the 
capability in capturing inter-annual variations of crop-groups biomass 
productions and crop growth timing, especially at sub-national level. 
Hence, returning small changes in NDVI values (Gitelson, 2004). The 
increased skills of crop yield prediction observed by using annual masks 
were consistent with previous works (Mkhabela et al., 2011; Panek and 
Gozdoski, 2020), stating that a variation of NDVI by 0.1 units could 
result in an increase in grain yields from 0.2 to 2 t/ha, depending on the 
regions and crops of interest. 

Looking at the results obtained for the two crop groups, larger ben
efits were observed for the SCs group than the WSpCs. More specifically, 
in SCs, annual crop group-specific masks led to a higher number of re
gions with significant and high correlation models, as well as a more 
marked rise in R2 values (and decrease in RMSE) with respect to arable 
land and historical masks. One explanation could be that summer crops 
in the prevailing agricultural areas of Europe are generally more 
spatially clustered than winter/spring crops (Zhang et al., 2019), espe
cially in Central Europe (Panek and Gozdoski, 2020), where the best 
results were retrieved in terms of R2 values and RMSE. Furthermore, 
within SCs group, the yields of individual crops are quite correlated each 
other (Liu et al., 2019). This results in an advantage for yield forecasting, 
without the need to differentiate between single crops in the same crop 
group, even when the crops are mixed, both in time and space, in the 
same area. The quality of NDVI profiles could be another influencing 
factor: MODIS NDVI time series in Europe are more cloud-contaminated 
during the winter/spring season than during the summer crop season, as 
already proven by many authors (Armitage et al., 2013; King et al., 
2013; Whitcraft et al., 2015; Slawik et al., 2016). However, it should be 
noticed that even for WSpCs group we identified some improvements in 
yield prediction when introducing annual crop group-specific in
dicators, although to a quantitative lesser extent compared to SCs. For 
WSpCs group, annual crop group-specific masks could help in returning 
satisfying R2 values and significant RMSE from 10 to more than 30 days 
in advance with respect to static masks, providing an improvement in 
the timeliness of yield estimates. Retrieving proper annual masks for SCs 
group could be challenging in some cases, but whenever available, 
annual crop group-specific indicators led to higher R2 values (+0.2) and 
lower RMSE (<-0.1 t/ha) quite early in the season, providing an 
improvement both in the accuracy and timeliness of yield estimates. 
These improvements brought by the use of annual masks could also be 
extended to the two most representative crops within each crop group, 
namely soft wheat and grain maize. This gives greater interest in 
exploiting RS annual crop group-specific indicators for yield forecasting, 
considering the importance of these two crops for Europe (Kelly, 2019; 
Svanidze and Đurić, 2021; Revilla et al., 2021). 

The advantages obtained by means of the annual masks were wide
spread throughout the considered study area, but with regional con
cerns. Improvements were not highlighted for regions where (at least) 
one of the following five conditions were found. (i) Summer crops were 
absent or poorly cultivated; (ii) agricultural areas were large and/or 
homogeneously spread; (iii) the available reference time series were too 
short for computing a reliable regression model (six are the minimum 
years according to Nagy et el., 2018); (iv) the shares of cultivated areas 
were low, likely to non-relevant agricultural regions. To cope with this 

latter case, Liu et al. (2019) suggested to introduce new variables into 
the models, for example meteorological data or to increase the spatial 
resolution of RS data. Both these approaches were studied to estimate 
wheat yields in Latvia and Belgium, with limited improvements (Van
noppen et al., 2020; Vannoppen and Gobin, 2021). Finally, (v) intro
ducing annual crop group-specific masks was challenging in regions 
where crops distributions within the same group were highly variable in 
time and it was not possible to define a prevalent crop. The greatest 
difficulties in this sense were observed in regions where the proportion 
between crops progressively changed during the reference time period, 
as observed from the regional statistics. Therefore, the annual masks 
were marked by crops shift, while static masks were unable to catch 
these changes. In the case of Europe, this last hypothesis is confirmed by 
previous studies, which reported a transition between rapeseed and 
wheat cultivations (Rondanini et al., 2012; Eurostat website). 

Despite the potential of the implementation of annual crop group- 
specific masks into an operative yield forecasting system, it should 
also be highlighted that a limiting factor in their application is the 
availability of crop masks for the ongoing season (Zhang et al., 2019), 
because not ready in time for yield forecasting. With reference to this, 
there are two possible approaches individuated as potential solutions 
and deserving further research investigations: the first one relates to the 
use of the “previous year mask”, which was highlighted as a good proxy 
for the distribution of crops in the current year (Becker-Reshef et al., 
2018); the second one refers to the design and implementation of an 
algorithm for identifying in-season crop group-specific pure pixels and 
exploiting the last available annual crop group-specific indicators as a 
reference database. 

5. Conclusions 

This study proposed a compared analysis between crop masks which 
serve to spatially aggregate Remote Sensing indicators and improve the 
crop yield predictability in Europe at regional-scale level. Generic arable 
land mask, crop group-specific static masks and annual crop group- 
specific masks were tested. Results proved that the use of annual 
masks brought benefits for both crops monitoring and yield estimation 
at regional scale in EU. Specifically, annual crop group-specific masks 
favoured better analysis and interpretation of NDVI time series and 
improved accuracy and timeliness of crop yield forecasts. General im
provements were observed in the use of annual crop group-specific 
masks for data aggregation in the whole study area. The best perfor
mances for annual masks were found for regions characterized by ho
mogeneous shares of winter/spring and summer crops areas, and for soft 
wheat and grain maize areas, mostly in Central and Eastern Europe. 
Regarding the two crop categories, for WSpCs group we pointed out 
major advantages in the earliness of the estimate but limited improve
ments in the accuracy, while for SCs group both the accuracy and the 
timeliness of the estimate significantly improved. In order to make 
operational use of annual masks for a yield forecasting system, an issue 
still to be addressed remains the availability of in-season crop group- 
specific masks. 
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