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ARTICLE INFO ABSTRACT
Keywords: Operational crop yield forecasting services typically provides crop yield forecasts based on regression models
Crop masks between official yields and agro-environmental variables, among which meteorological data, crop simulation

Crop yield forecasting

L or model or satellite-derived indicators. The reliability with which these variables infer on yields depends, among
Crop monitoring

Regional forecast many other factors, also on their aggregation in the space domain, for example on the type of the crop masks

Remote Sensing utilized in the aggregation process from point to regional scale. This work investigates how the yield explanatory

NDVI power of satellite-derived indicators is changing moving from time-stable arable land masks to annual crop
group-specific masks. We compare in particular the linkage between time series of regional crop yield in Europe
and the Normalized Difference Vegetation Index (NDVI) from Moderate Resolution Imaging Spectroradiometer
(MODIS), when generic arable land masks or crop group-specific and year-specific information are applied to
aggregate pixel values at regional level. Regional (Eurostat level NUTS-2) crop yield statistics were collected
from official databases for the period 2003-2019, while NDVI data were derived from MODIS daily products at
250 m spatial resolution for the same reference period. Regional NDVI profiles were retrieved by averaging single
pixels time series according to the information of five crop masks, including generic arable land masks, crop
group-specific static masks (separating winter and spring crops from summer crops), and annual crop group-
specific masks (distinguishing between the two crop groups and varying in time). A compared correlation
analysis between yield data and regional temporal NDVI profiles was performed assuming a linear regression
model. Coefficient of determination R? and Root Mean Squared Error (RMSE) were computed to assess the
models’ errors and to analyze the effect of the aggregation on the different crop masks. Results indicated an
improvement in yield estimation when using annual crop group-specific indicators with respect to generic and
static products. Although not homogeneously distributed throughout Europe, advantages have been highlighted
both in terms of accuracy and timeliness of the prediction. In most regions, the introduction of annual masks
allowed to reduce RMSE values by 0.3 t/ha and advanced forecast times by up to 30 days. The added value in the
use of annual crop group-specific masks concerned the two European most cultivated crops, namely soft wheat
and grain maize.

1. Introduction global climate change (Ansarifar et al., 2021). In this context, yield
forecasting plays a major role in anticipating production anomalies,

Increasing worldwide demand for agricultural products, combined allowing well-informed and timely policy actions, preventing food cri-
with inter-annual fluctuations of global production are important ses, avoiding market disruptions, and contributing to overall increased
drivers for grain price volatility on agricultural markets. Moreover, food food security (Lopez-Lozano et al., 2015a). Crop yield prediction is a
security challenges are even more important to address in an era of fundamental research topic in agricultural and environmental sciences.
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This focuses on understanding how harvestable plant biomass is deter-
mined by genotype (G), environment (E), management (M), and their
interactions (G x E x M) (Boschetti et al., 2017; Hipolito de Sousa et al.,
2018; Cooper et al., 2020). Timely and reliable crop yield forecasts play
an important role in supporting national and international agricultural
and food security policies, stabilizing markets and planning food secu-
rity interventions in food-insecure countries (Becker-Reshef et al.,
2020).

Governments and public authorities, as the European Union (EU),
have a strong need and mandate to anticipate crop production losses
(Meroni et al., 2021). For them crop yield forecasts and crop production
estimates are necessary to provide decision makers with timely infor-
mation for rapid and effective response during the growing season. This
information is obtained thanks to Decision Support Systems (DSS)
providing crop yield forecasts, as in the case of the European Commis-
sion’s Joint Research Centre (EC-JRC) in-house MARS (Monitoring
Agricultural Resources) Crop Yield Forecasting System (MCYFS, Van der
Velde et al., 2019) or the yield forecasting program of the United States
National Agricultural Statistics Service (NASS: NASS, 2006). Such sys-
tems are often based on regressive estimation models developed by
means of official yields and agro-environmental variables, computed at
the time of the forecast (Fritz et al., 2019). The relationship usually
relies on historical series of statistical yields and on one or more re-
gressors, selected among meteorological data, crop simulation model or
satellite-derived indicators (Basso et al., 2013; Lopez-Lozano et al.,
2015Db). The fitting between estimators and crop yields is highly variable
across the agronomical seasons and the reliability with which these
variables infer on yields depends, among many other factors, also on
their aggregation in the space domain (Pianosi et al., 2016); for example,
on the quality and representativeness of the utilized agricultural land
cover masks (Zhang et al., 2019; Pérez-Hoyos et al., 2020).

Earth Observation (EOQ) data, exploited in form of vegetation or
biophysical indicators, represent a key variable in the design of yield
predictive models (Basso et al., 2013; Kouadio et al., 2014; Zhang et al.,
2019). The added-value concerns the sensitivity they have with respect
to the agro-ecosystems combination of G x E x M factors and agro-
practices (Bandyopadhyay et al., 2014; Hatfield and Walthall, 2015).
Nevertheless, EO indicators show limits in their applications due to land
cover maps availability (pixel selection - Liu et al., 2019; Zhang et al.,
2019) but also due to the bias introduced when mixed-pixels are
considered (low-resolution bias - Boschetti et al., 2004). Improving the
representativeness of satellite-based indicators is a challenge for oper-
ational yield forecasting systems, especially when they are operative at a
wide geographical scale (Atzberger, 2013). Remote sensing (RS) in-
dicators in this context are usually spatially aggregated using crop masks
resulting from automatic (supervised or unsupervised) classification
methodologies (Rojas et al., 2011). Crop (binary) masks are therefore
exploited to focus on those pixels in the satellite images belonging to the
targeted agricultural land cover and are of fundamental importance to
improve spatial aggregation of EO indicators to increase model predic-
tion accuracy (Baruth and Kucera, 2006; Mkhabela et al., 2011).

Ideally, a crop mask should be differentiated by specific crop type
and updated within the season to address agricultural land use changes
(Zhang et al., 2019). However, due to the lack of timely availability of
ground truth data within the crop growing season, it is not normally
practical to get up-to-date annual crop masks within the crop season
(Waldner et al., 2015; Davidson et al., 2017). As a result, the most used
crop masks in yield forecasting systems provide static and generic land
cover information without considering annual variations or crop groups
(Baruth and Kucera, 2006; Mkhabela et al., 2011; Chipanshi et al.,2015).
A recent study proposed a semi-automatic approach to identify crop
group-specific pure pixels (i.e., winter and spring crops and summer
crops) at European scale, based on the implementation of a regional
Gaussian Mixture Model (GMM) on MODIS-NDVI time series analysis
(Weissteiner et al., 2019). Such input could be used to improve the
predictability of crop monitoring and yield forecasting applications, as it
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introduces a new and more detailed information layer to agricultural
land cover in Europe. In a DSS-type operative environment and with
reference to the MCYFS, the implementation of this method could bring
a twofold advantage: on the one hand it would allow to benefit from
more specific agricultural land cover masks, in particular allowing the
transition from generic layers (e.g. arable areas) to more specific ones (e.
g. summer crops); on the other hand it would allow to implement the
transition from general (static) selective masks to annual (dynamic)
mask, avoiding therefore the implicit assumption of an invariant agri-
cultural land use in the time domain.

The aim of this work is to test the contribution of crop group-specific
and dynamic information for regional yield estimation in Europe. We
propose compared correlation analyses between yield data and regional
temporal NDVI profiles extracted from several land cover masks to test if
crop group-specific RS time series and even annual crop group-specific
RS time series fit more than generic RS time series, when correlated
with crop yields. Results are discussed in view of their applicability to
agricultural DSS monitoring systems at regional level, with particular
attention to the improvement of crop yield predictability along the
agronomical season. The analyses discussed in this contribution focused
on three main goals: (i) test the use of annual crop group-specific NDVI
time series to estimate crop yields; (ii) analyse results distribution at
regional scale all over EU; and (iii) evaluate the potential benefit in
terms of yield prediction accuracy and timeliness for two different crop
groups: winter/spring and summer crops.

2. Materials and methods
2.1. Study area

The study area included all current EU Member States, except for
Finland and Malta due to a lack of arable land areas. The area of interest
covered a wide extent, ranging from 35° N to 60° N, and included
different climatic conditions and agro-management practices. There-
fore, to account at regional level for both climatic and technological
characteristics, we performed the analysis at regional level, considering
the administrative units from the Nomenclature of Territorial Units for
Statistics at level 2 (NUTS-2 — Eurostat, 2018). Wherever possible, we
selected for each EU Member State the five regions with the most
prominent shares of arable land, according to the Corine Land Cover
(CLC) 2018 agricultural classes (Kosztra et al., 2017). The final study
area included 97 NUTS-2 regions, representative for 72% of the arable
land in the EU and, at country level, representative for 85% (on average)
of the national arable lands. The selected NUTS-2 regions are reported in
Table 1 and shown on the map in Fig. 1.

2.2. Reference data

Regional (NUTS-2) crop yield statistics were collected from official
databases (including Eurostat and the National Statistics Offices (Ron-
chetti et al., 2022)) for the 2003-2019 reference period and used as
reference data for computing regressions. Considering the variety of
crops cultivated at European level, yield statistics were retained only for
the prevalent crops inside each region. In line with Weissteiner et al.
(2019), the main agricultural crops were first divided into two crop
groups, namely Winter and Spring Crops (WSpCs) and Summer Crops
(SCs). Then, for each of the selected regions, the most representative
crop of each crop group was chosen in accordance with the average
extent of cultivated area. Among WSpCs, soft wheat prevailed (75 out of
97 regions), while grain maize and potato ranked first and second
among SCs (48 and 28 out of 97 regions, respectively). The crops chosen
for the analysis in each NUTS-2 region are reported in the maps of Fig. 2.

The length of each reference yield time series varied according to the
availability of statistical data for that region and crop in the official
database, but in most cases (65%), they covered the whole period of
analysis (i.e., from 2003 to 2019). To spot significant trends in regional
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Table 1
The NUTS-2 regions chosen for the analyses.

Country  Selected NUTS-2 regions

AT AT11 (Burgenland), AT12 (Niederosterreich),AT21 (Karnten), AT22
(Steiermark), AT31 (Oberosterreich)

BE BE23 (Prov. Oost-Vlaanderen), BE25 (Prov. West-Vlaanderen),BE32
(Prov. Hainaut), BE33 (Prov. Liege), BE35 (Prov. Namur)

BG BG31 (Severozapaden), BG32 (Severen tsentralen),BG33
(Severoiztochen), BG34 (Yugoiztochen), BG42 (Yuzhen tsentralen)

cYy CY (Kypros)

CZ CZ02 (Stredni Cechy), CZ03 (Jihozépad),CZ05 (Severovychod), CZ06
(Severovychod), CZ07 (Stredni Morava)

DE DE40 (Brandenburg), DE80 (Mecklenburg-Vorpommern),DE94 (Weser-
Ems), DEEO (Sachsen-Anhalt), DEFO (Schleswig-Holstein)

DK DKO1 (Hovedstaden), DKO02 (Sjalland),DK03 (Syddanmark), DK04
(Midtjylland), DKO5 (Nordjylland)

EE EE (Eesti)

EL EL51 (Anatoliki Makedonia, Thraki), EL52 (Kentriki Makedonia),EL53
(Dytiki Makedonia), EL61 (Thessalia), EL64 (Sterea Ellada)

ES ES24 (Aragon), ES41 (Castilla y Ledn),ES42 (Castilla-La Mancha), ES43
(Extremadura), ES61 (Andalucia)

FR FRBO (Centre - Val de Loire), FRE2 (Picardie),FRF2 (Champagne-
Ardenne), FRGO (Pays de la Loire), FRI3 (Poitou-Charentes)

HR HRO3 (Jadranska Hrvatska), HRO4 (Kontinentalna Hrvatska)

HU HU21 (Ko6zép-Dunantil), HU22 (Nyugat-Dunantil),HU23 (Dél-
Dunanttl), HU32 (Eszak-Alfold), HU33 (Dél-Alfsld)

IE IE04 (Northern and Western), IEO5 (Southern), IE06 (Eastern and
Midland)

IT ITC4 (Lombardia), ITF4 (Puglia),ITG1 (Sicilia), ITH3 (Veneto), ITHS
(Emilia-Romagna)

LT LTO1 (Sostinés regionas), LT02 (Vidurio ir vakary Lietuvos regionas)

LU LU (Luxembourg)

LV LV (Latvija)

NL NL11 (Groningen), NL13 (Drenthe),NL23 (Flevoland), NL33 (Zuid-
Holland), NL34 (Zeeland)

PL PL41 (Wielkopolskie), PL61 (Kujawsko-Pomorskie),PL62 (Warminsko-
Mazurskie), PL81 (Lubelskie), PL92 (Mazowiecki regionalny)

PT PT11 (Norte), PT15 (Algarve), PT16 (Centro),PT17 (Area Metropolitana
de Lisboa), PT18 (Alentejo)

RO RO21 (Nord-Est), RO22 (Sud-Est),RO31 (Sud - Muntenia), RO41 (Sud-
Vest Oltenia), RO42 (Vest)

SE SE12 (éstra Mellansverige), SE21 (Sméland med 6arna),SE22
(Sydsverige), SE23 (Vastsverige), SE31 (Norra Mellansverige)

SI SI03 (Vzhodna Slovenija), SI04 (Zahodna Slovenija)

SK SKO1 (Bratislavsky kraj), SKO2 (Zapadné Slovensko),SK03 (Stredné

Slovensko), SK04 (Vychodné Slovensko)

yield statistics (Wu et al., 2007), we performed a Mann-Kendall test with
a significance level equal to 1% (Mann, 1945; Kendall, 1975). Where
required, crop yield statistics were detrended assuming a linear trend
model. A significant increasing trend was identified and removed for 17
regions in the WSpCs group and for 35 regions in the SCs group. Regions
with an identified trend in yield statistics are highlighted in Fig. 2 as
hatched areas.

2.3. Regional temporal NDVI profiles

Starting from MODIS daily products at 250 m spatial resolution,
regional temporal NDVI profiles were generated by aggregating pixels
using different crop masks. For each region and year, five different NDVI
average profiles were extracted. A detailed description of the main
processing steps and of the applied masks is following.

2.3.1. MODIS NDVI time series processing

A collection of reference temporal NDVI profiles was derived for
every selected region and year using MODIS daily product at 250 m
spatial resolution. More specifically, the MOD0O9GQ product (250 m
resolution, Terra platform) from the collection 6 was adopted in this
study, along with MODO9GA (500-1000 m resolution) for retrieving
additional information on quality rating and satellite acquisition ge-
ometries (Vermote et al., 2015; Weissteiner et al., 2019). The datasets
were provided by NASA LP DAAC at the USGS EROS Center and
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represented daily, global, and atmospherically corrected surface
reflectance values in the red and near-infrared (NIR) domains. Data
processing routines were designed and performed both in cloud
computing, via the Google Earth Engine application (Gorelick et al.,
2017), and at desktop level via Python (Van Rossum and Drake, 2009).
Following the approach of Weissteiner et al. (2019), MODIS data were
first limited to cover the extent of the study area and acquisition period
corresponding to the seasonal growing cycle of the main agricultural
crops in Europe, from February to October. Then, noisy data were
filtered out according to the quality flags provided in the MODIS product
quality flags and NDVI time series at 250 m spatial resolution were
computed from bands 1 and 2 of the MOD09GQ.006 product, as indi-
cated in Rouse et al. (1974):

NDVI = Pk — Prea )
Pir T Pred
Finally, a fifth degree polynomial was applied to each pixel time
series for smoothing and producing yearly NDVI time series. More de-
tails on the filtering and quality flags used in this study can be found in
Weissteiner et al. (2019).

2.3.2. Retrieving regional temporal NDVI profiles

To assess the effects of crop masks on the accuracy of yield estima-
tion, regional annual NDVI profiles were retrieved by applying different
crop masks. Five masks were considered in this analysis: a generic arable
land mask and two crop group-specific masks for both WSpCs and SCs
groups. The arable land mask was computed from the agricultural
classes of the CLC 2018, while the crop group-specific masks were
generated from the datasets of crop group-specific pure pixels presented
in Weissteiner et al. (2019).

The adopted masks are illustrated hereafter:

e ArLand: generic arable land mask, computed from the CLC 2018. It
included not-irrigated (class 2.1.1) and permanently irrigated (class
2.1.2) arable land areas (Kosztra et al., 2017). This mask provided
information that was characterizing the whole study area, but in a
static and generic way. Specifically, it did neither consider inter-
annual variations of the arable area extension nor distinguished
Crop groups.

HistWSpCs: historical crop group-specific mask for the WSpCs group.
It represented a (pixel-based) probability of more than 50% to
identify a pure pixel of WSpCs in the 2003-2019 time period. This
mask was computed from the pure pixels of WSpCs detected each
year (Ronchetti et al, 2021). It provided static crop group-specific
information, without considering annual variability.

HistSCs: historical crop group-specific mask for the SCs group. It was
the equivalent of the HistWSpCs mask, for the SCs group.
YearWSpCs: annual crop group-specific mask for WSpCs group. It
represented the pure pixels for the WSpCs group, detected in a spe-
cific year. This mask changed annually, depending on the location of
the pure pixels identified each year. It provided dynamic crop group-
specific information that accounted for both annual variability and
specific characteristics of crop groups.

YearSCs: annual crop group-specific mask for SCs group. It was the
equivalent of the YearWSpCs mask, for the SCs group.

To retrieve average regional temporal NDVI profiles, a dedicated
Python (version 3.7; Van Rossum and Drake, 2009) routine was devel-
oped. This script used as inputs the MODIS NDVI time series, the
different crop masks, and the European regional borders. It provided as
output the desired average NDVI profiles for each region of interest (n =
97), year (n = 17) and mask (n = 5). The procedure involved a selection
of pixels from MODIS imagery based on two criteria, namely pixels
belonging to a specific crop mask and included within the borders of the
target region. The selected pixels were then aggregated to compute
regional statistics, including mean and standard deviation values, thus
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Fig. 2. The prevalent crops selected inside each NUTS-2 region for (a) WSpCs and (b) SCs. Hatched areas display a significant trend in the crop yield statistics.

providing the desired regional NDVI profiles.

2.4. Regression model

A correlation analysis was performed between reference yield data
and regional temporal NDVI profiles assuming a linear regression model.
For each region and mask, annual yield values were compared with the
average NDVI values of the corresponding region and year. To assess the
evolution in time and find the best time of the year to compute re-
gressions, we did not consider only NDVI peak values but all NDVI
values, starting from the day of the year (DOY) 60 (i.e., beginning of
March) up to DOY 270 (i.e., end of September). However, to reduce the
number of models, NDVI values were sampled every ten days, totaling
22 models for each region and mask.

NDVI profiles aggregated with HistWSpCs mask and YearWSpCs
mask were tested only with respect to yield values for the WSpCs group

and accordingly, NDVI profiles aggregated with HistSCs mask and
YearSCs mask with respect to yields for the SCs group. As far as NDVI
profiles aggregated with ArLand mask concerned, correlations were
computed for both the crop groups.

The coefficients of determination R? (Eq.2) were calculated to assess
the performance of each relationship, together with the respective p-
value to estimate its significance. The resulting metrics obtained from
the correlations between yield and NDVI aggregated with the different
crop masks were compared and analyzed.

R=3" (F-0)/3 (0,-0) @

Where F, are yield values predicted from the model for each specific
year t, O, are the observed yield values from the reference dataset and O
are their average values. For both crop groups and for all the five crop
masks used in the aggregation phase, we evaluated only relationships
that returned a significant and high correlation, having set the level of



G. Ronchetti et al.

significance () to 5% and a threshold on R? values equal to 0.4. This
threshold was arbitrarily chosen as representative of a strong correla-
tion. To assess both the accuracy and the timeliness of the prediction, for
each region and crop group we selected the aggregating mask providing
the maximum R? value (above the threshold) and compared R? vari-
ability along the season.

In addition, since this work is included in the context of a crop yield
forecasting system, the correlation results obtained with NDVI profiles
aggregated with the different masks were analyzed and compared also in
terms of the forecasting errors, namely the Root Mean Square Error
RMSE (Eq.3):

> (0= F)n 3)

To compare forecasting errors, the differences of the lowest RMSE,
the first-in-time significant RMSE and their temporal occurrences were
considered.

RMSE =

3. Results

This section introduces the research results in form of graphs and
maps. To improve in readability, we chose a unique colour for displaying
data resulting from each of the (five) compared crop masks. In partic-
ular: grey (ArLand), red (HistWSpCs), blue (HistSCs), orange
(YearWSpCs) and cyan (YearSCs). In the first subsection (§3.1), NDVI
time series resulting from the different spatial aggregation crop masks

01 =
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are shown. The second subsection (§3.2) illustrates correlation results
considering the whole study area, while a focus on regional comparisons
is provided in §3.3 and §3.4, depicting the best retrieved R? value and R?
variability along the season, respectively. Finally, §3.5 is dedicated to
the analyses on yield estimation errors.

3.1. NDVI spatial aggregation

The regional temporal NDVI profiles vary as function of the mask
applied during the spatial aggregation phase. Fig. 3 shows eight exam-
ples of NDVI profiles, extracted from selected regions and years among
the study area. Solid lines represent NDVI mean values, while error
shadows refer to +/- one standard deviation. Given a generic region of
interest, NDVI profiles differ according to (i) the applied crop mask; (ii)
the number of pixels considered in the aggregation phase; (iii) the
temporal occurrence of the NDVI peak; (iv) the NDVI value at the sea-
sonal peak; and (v) the variability of NDVI values (i.e., standard de-
viations). Examples are taken from different EU regions to show the
consistency of masks aggregation effect across the study area and across
years. NDVI profiles suggest homogeneous distribution of crop groups in
the arable land area when a finer delineation is observed in the transi-
tion from ArLand to crop group-specific regional profiles (e.g., Fig. 3a
and Fig. 3b). The predominance of one specific crop group in a region
can be inferred when the ArLand and crop group regional profiles tend
to overlap (e.g., Fig. 3c, Fig. 3d, Fig. 3e, Fig. 3f, Fig. 3g and Fig. 3h). The
examples in Fig. 3g and Fig. 3h, are representative for the crop group

10 Py
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Fig. 3. Temporal NDVI profiles extracted at regional level using five different crop masks. Solid lines display average NDVI values, shadows highlight +/- one
standard deviation. The number of aggregated pixels is reported in brackets into the legend. Orientation maps are provided for georeferencing each example.
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(e) DEEO, year 2011
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Fig. 3. (continued).

variability among regions of the same country for the year 2012. A high
prevalence of WSpCs can be depicted in the NDVI temporal patterns in
Fig. 3g while SCs prevail in the temporal patterns of Fig. 3h.

3.2. Results at continental scale

Considering the (97) regions accounted in this study, the (5)
compared crop masks, the (2) investigated crop groups and the selected
time stamps (22, from DOY 60 to DOY 270); a total of 12,804 regression
models were computed. Among these, 2906 (22.7%) showed significant
correlation results (p-value < a), for a level of significance o set to 5%.
The distribution and the number of significant correlations spread
region-wise as indicated in the map of Fig. 4. Although not evenly
distributed across the study area, significant relationships were
observed for almost all the regions under analysis (94 out of 97). On
average, 30 significant models resulted for each region. The number of
significant models mostly depend on the extension of arable land inside
each region (e.g., regions with higher number of significant correlations
were found in Spain) and the considered prevalent crop (e.g., the lowest
number of significant correlations were found for durum wheat and
potato). In a large part of the accounted regions, i.e. in 38 out of 97,
significant correlations are in the range 25-50.

Although the numbers of significant and high correlations were quite
homogeneous considering the different aggregation masks, their distri-
butions over time differed. The histograms mapping the distribution of
the significant correlations and high correlations over time are provided

N° of significant
correlations [-]

1 <10

1 10-25
B 25-50
50 -75
75

Fig. 4. Distribution of significant correlations (p-value < 0.05) by region.

in Fig. 5. It can be noticed that significant relationships were mainly
localized in a time span ranging around the NDVI peaks, confirming
what was already highlighted in other contributions (Skakun et al.,
2017; Nagy et al., 2018; Liu et al., 2020; Meroni et al., 2021; Shammi
and Meng, 2021). As a matter of fact, the largest number of significant
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Fig. 5. Distribution of significant correlations over time: a) WSpCs group, b) SCs group.

correlations for the WSpCs group was found approximately from DOY 90
to DOY 150 (Fig. 5a), while for SCs group between DOY 190 and DOY
240 (Fig. 5b). This was observed regardless of the mask considered.

Regarding the aggregating masks, for WSpCs group, the number of
significant correlations computed with NDVI values aggregated using
the annual mask is higher than the other in the range from DOY 90 to
DOY 150 and lower out of this time span (Fig. 5a). The same for the SCs
group, where the number of significant correlations computed with
NDVI values aggregated using the annual mask resulted higher than the
others between DOY 180 and DOY 210 and lower out of this interval
(Fig. 5b).

Fig. 6 shows pairwise comparisons of correlations between NDVI
values and crop yield, when different crop masks are used to aggregate
NDVI data at regional level. Histograms were drawn to represent the
total amount of significant correlations (i.e., total number of compari-
sons — black bars) and the times an aggregation mask returned higher R2
values than the opposing mask (colored bars). The same results are also
expressed in terms of relative values by means of continuous and dashed
lines, referring to the right y-axes of each pane. The histograms
confirmed once more a pronounced number of significant correlations
around NDVI peaks (proxy of crop headings), more markedly for SCs
group than for WSpCs. By comparing correlation results, the R? values
from YearWSpCs aggregated models resulted higher than the outcomes
obtained by the other models. Similar results were observed for the SCs
group, where YearSCs aggregated indicators returned greater R? values
with respect to both the ArLand and HistSCs aggregated data. While R2
values with the use of ArLand tended to prevail over HistSCs.

The distribution of R? average values over time for the whole dataset
is shown in Fig. 7. Only significant correlations were included in the
results. Overall, the R? average values were in the range 0.3-0.65. An
increase in R? average values was again highlighted for DOYs close to
the agronomical heading of the accounted crop group, except for some
high R? values resulting from the correlation between yield and NDVI
aggregated using ArLand and HistWSpCs mask, for WSpCs group. R?
average values were higher in the SCs group than in the WSpCs group,
when compared with reference to their respective agronomical heading

periods. NDVI profiles aggregated using YearWSpCs mask resulted in R
average values equal or slightly higher than the other masks in the
period from DOY 90 to DOY 130 and lower for the remaining DOYs
(Fig. 7a); similarly, the use of YearSCs mask allowed to obtain higher R?
average values from DOY 180 to DOY 220 (up to greater than 0.15) and
lower outside this interval (Fig. 7b). However, in this analysis R? results
were mitigated by the fact that we were considering different regions
and several crops together. In the next sections (§3.3, §3.4), the com-
parisons will instead focus on individual regions and/or crops.

3.3. Results at regional scale

A more detailed analysis focused instead only on the highest corre-
lation results, where models returning R? values below the threshold
value (i.e., 0.4) were removed. The considered models decreased to
1410 (11%), and their repartitions according to the original regressors
are illustrated in Table 2. Comparisons between NDVI spatial aggrega-
tion masks were made region by region, identifying the mask returning
the maximum R? value along the reference agricultural time window.
Results are shown in Fig. 8. For WSpCs group (a), YearWSpCs prevailed
in 33.0% of the regions, 32 out of 97, while ArLand and HistSCs ranked
second and third (15.5% and 13.4%, respectively). In 38.1% of the
accounted regions, correlations were not significant or with R? values
below the imposed threshold. The regions with a prevalence for
YearWSpCs mask were fairly distributed in the study area, particularly
in central and eastern Europe, including Czechia, Slovakia, Hungary,
Romania and Bulgaria, in addition to some regions in Spain, France,
Germany and Poland. Considering instead the SCs group, YearSCs pre-
vailed in 42.3% of the regions, 41 out of 97, followed by ArLand and
HistSCs (16.5% and 10.3%, respectively). In 30.9% of the regions were
no significant or high correlations observed. A predominance of YearSCs
mask was observed across the whole EU, specifically in Central and
Eastern Europe, including some important agricultural areas of Europe,
such as central-western France, northern Italy and 