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ABSTRACT

We propose a nonlinear reduced basis method for the efficient approximation of parametrized partial
differential equations (PDEs), exploiting kernel proper orthogonal decomposition (KPOD) for the
generation of a reduced-order space and neural networks for the evaluation of the reduced-order
approximation. In particular, we use KPOD in place of the more classical POD, on a set of high-
fidelity solutions of the problem at hand to extract a reduced basis. This method provides a more
accurate approximation of the snapshots’ set featuring a lower dimension, while maintaining the same
efficiency as POD. A neural network (NN) is then used to find the coefficients of the reduced basis by
following a supervised learning paradigm and shown to be effective in learning the map between the
time/parameter values and the projection of the high-fidelity snapshots onto the reduced space. In
this NN, both the number of hidden layers and the number of neurons vary according to the intrinsic
dimension of the differential problem at hand and the size of the reduced space. This adaptively built
NN attains good performances in both the learning and the testing phases. Our approach is then tested
on two benchmark problems, a one-dimensional wave equation and a two-dimensional nonlinear
lid-driven cavity problem. We finally compare the proposed KPOD-NN technique with a POD-NN
strategy, showing that KPOD allows a reduction of the number of modes that must be retained to
reach a given accuracy in the reduced basis approximation. For this reason, the NN built to find the
coefficients of the KPOD expansion is smaller, easier and less computationally demanding to train
than the one used in the POD-NN strategy.

Keywords Reduced order modeling · Kernel proper orthogonal decomposition · Proper orthogonal decomposition ·
Neural networks · Parametrized PDEs

1 Introduction

Reduced order modeling (ROM) techniques represent a very efficient approach for the numerical approximation of
problems involving the repeated solution of differential equations arising from engineering and applied sciences [10, 19,
27, 29, 33, 36, 37]. Their aim is to replace the original large-dimension numerical problem, which is typically called
either high-fidelity approximation or full order model (FOM), by a reduced problem of substantially smaller dimension,
to provide a fast and reliable approximation to the PDE solution for each newly queried parameter instance.
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Depending on the context, there are several strategies to generate the reduced problem from the high-fidelity one.
The approach followed by the reduced basis (RB) method consists in the projection of the high-fidelity problem
upon a low-dimensional subspace made of specially selected basis functions, built from a set of high-fidelity solutions
corresponding to suitably chosen parameters, e.g., through proper orthogonal decomposition (POD) [31]. The dimension
of the reduced model should be in principle fairly lower than the FOM one. POD is an example of linear dimensionality
reduction technique. Such a technique might show poor performances when dealing with highly nonlinear PDEs,
because of the need of a huge number of POD modes to reach a desired accuracy of the reduced order approximation.
Nonlinear dimensionality reduction techniques, such as kernel proper orthogonal decomposition (KPOD), have become
popular also in the field of reduced order modeling for parametrized PDEs due to their better capability of spanning
low-dimensional nonlinear trial manifolds [42, 43]. By exploiting the better representation power of nonlinear maps,
these approaches condense better information from the underlying PDE keeping an even smaller reduced dimension than
POD [38]. However, generating the reduced order approximation efficiently when dealing with nonlinear dimensionality
reduction techniques might be far from being trivial. KPOD can be either used to perform the forward mapping, i.e.
nonlinear dimensionality reduction, or the backward mapping, which is also called pre-image reconstruction [12].
Focusing on the forward mapping, KPOD projects the high-fidelity solutions by means of a nonlinear map to a high
dimensional space (called feature space), where we are likely to obtain linear separability: then, by performing a
dimensionality reduction, KPOD maps these data onto a reduced space that is in principle very similar to the space
spanned by the most relevant modes in POD [38]. By employing a suitable kernel trick – as usually done when dealing
with kernel principal component analysis (KPCA) [38] – we do not need to build the (very high-dimensional) feature
space explicitly, finally relying on a suitably modified version of the snapshots correlation (or Gram) matrix, involving
the evaluation of a bilinear kernel function instead of classical inner products. An important aspect, in this respect, is
to find a suitable strategy to map the reduced solution back onto the high-fidelity space – a task that, in the case of
POD, would simply entail the left-multiplication of the reduced approximation by the matrix collecting the vectors
representing the POD modes [31]. In the case of KPOD, for instance, this task would involve the minimization of a
discrepancy functional. The main motivations rely on the cost entailed by this stage, and the impossibility to provide a
Galerkin projection to generate the (low-dimensional) reduced-order problem, which is solved for any new parameter
instance.

For all these reasons, we propose to rely on neural network (NN) regression to determine, in a non intrusive way, the
reduced order approximation for any new parameter instance, once a reduced basis has been built through KPOD. Thanks
to their high representational power and flexibility [1, 8, 23, 44], neural networks are increasingly employed in the
numerical approximation of PDEs [10, 19, 34, 35, 36]. Several recent works have shown possible applications of neural
networks to parametrized PDEs – thanks to their approximation capabilities, their extremely favorable computational
performances during online testing phases, and their relative easiness of implementation – both from a theoretical [2, 3,
4, 24, 39] and a computational standpoint [10, 19, 28, 36]. A priori characterizations of the NN architecture complexity
in terms of the accuracy of the reconstructed solution have been reported in [24], showing that the NN complexity
should scale with the intrinsic dimension of the PDE solution manifold, i.e. with the size of the reduced basis extracted
from the PDE under investigation to properly capture its behavior. From a computational standpoint, feedforward NNs
and autoencoders, have been employed in several ways to determine the reduced order approximation in a data-driven
and less intrusive way (avoiding, e.g., the computational cost entailed by projection-based ROMs), but still relying on a
linear trial manifold built, e.g., through POD. In [16, 17, 19, 37, 41] the solution of nonlinear, time-dependent ROMs,
for any new parameter instance, has been replaced by the evaluation of NN-based regression models, built using a fixed
size feedforward neural network. Few attempts have been made in order to model the reduced order manifold where the
approximation is sought (avoiding, e.g., the linear superimposition of POD modes) through NNs, see, e.g., [14, 26]. In
the framework of deep learning, variational autoencoders have been combined with a fixed size feedforward NN and
eventually POD in [9, 10, 11] to build non intrusive ROMs similarly to [19], capturing however more details by using
the intrinsic dimension of a differential problem for the reduced order approximation, that is, the number of parameters
(plus one, to take into account the time coordinate) the solution depends on.

In this work, we propose a non-intrusive ROM technique that combines KPOD with an adaptively built NN, i.e. a NN
where the number of layers and neurons is automatically adjusted to the complexity of the parametrized PDE at hand.
This complexity is captured by the dimension of the reduced basis extracted from the FOM snapshots through KPOD.
This latter technique is, at the same time, as efficient as the POD, yet capable of collecting most of the information in a
small number of modes of the kernel matrix, thus performing data compression even more efficiently than POD.

The paper is structured as follows: in Section 2 we describe our ROM method involving a combined use of KPOD
and NN, and we apply it to a general parametrized PDEs. In Section 3 we introduce the mathematical models on which
our metholodology will be tested, i.e. wave equation and Navier-Stokes equations. In Section 4 we provide both space
and time discretizations for the two mentioned FOM, which is essential to get high-fidelity snapshots. In Section 5 we
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show the numerical results related to the KPOD-NN technique on the two test cases. Finally, we draw conclusions and
possible future developments in Section 6.

2 Reduced basis methods for parametrized PDEs using neural networks

We describe in this section the proposed method, considering for the sake of generality the solution of a nonlinear,
time-dependent parametrized PDE. Let us denote by Ω ⊂ Rd, d ≥ 1 a given domain, and by P ⊂ Rm the parameter
set, with m ≥ 1. For each µ ∈ P , x ∈ Ω, t ∈ [0, T ], let us denote by u(x, t;µ) : Rm+d+1 −→ Rl the scalar (l = 1) or
vector (l > 1) field, solution of the following problem:

∂u

∂t
+A(t;µ)u+N(u, t;µ) = f(t;µ) in Ω× (0, T )

+boundary conditions in ∂Ω× (0, T )

+initial conditions in Ω× {t = 0}.

(1)

Problem (1) can be either linear (ifN(u, t;µ) = 0) or nonlinear (ifN(u, t;µ) 6= 0); here f acts as a forcing term.

Our final goal is the efficient numerical approximation of problem (1) for different values of the parameters vector µ.
Our starting point is a full order model (FOM) obtained by introducing the semi-discrete space approximation of (1), of
the following form: 

∂uh
∂t

+Ah(t;µ)uh +Nh(uh, t;µ) = fh(t;µ) for t ∈ (0, T )

+initial conditions for t = 0.
(2)

This latter problem is generated by introducing a suitable computational grid over the domain Ω, and an (e.g.,
finite element) approximation uh(x, t;µ) of u(x, t;µ) depending on a set of Nh degrees of freedom (DOFs); for
this reason, with a slight abuse of notation, we denote by uh(t;µ) ∈ RNh the DOFs vector corresponding to the
solution; Ah(t;µ) ∈ RNh×Nh defines the stiffness matrix obtained by the discretization of the (linear) operator A,
Nh(uh, t;µ) ∈ RNh is the vector obtained by discretizing the nonlinear operator N, and fh(t;µ) ∈ RNh corresponds
to the discrete source term. We then consider a partition of the time interval [0, T ] into NT + 1 equally spaced values
{t0 = 0, t1, . . . , tj , ..., tNT = T}, and approximate the time-derivative using suitable finite difference schemes, finally
yielding the fully discretized problem, which provides our FOM. For each µ ∈ P , the FOM solution at time tj is then
denoted by ujh(µ) ∈ RNh , j ∈ {0, 1, . . . , NT }.

Several reduced order models (ROMs) for parametrized PDEs are built by sampling the parameter space and
computing a set of snapshots, that is, FOM solutions for sampled values Ph = {µ1,µ2, ...,µi, ...,µm} ⊂ P of the
parameters. For the case at hand, the snapshots matrix collecting the computed FOM solutions includes both time and
parameter dependencies, and reads:

S = [u0
h(µ1) |u1

h(µ1) | . . . |uNTh (µ1) | . . . |u0
h(µm) |u1

h(µm) | . . . |uNTh (µm)] ∈ RNh×Ns , (3)

with Ns = m× (NT +1). For the sake of simplicity, we suppose that S is built using all the snapshots in time generated
by solving the FOM with a fixed time-step ∆t, but eventually only a subset of those solutions can be considered, and, to
make the notation lighter, we denote the snapshots matrix by:

S = [s1 | . . . | sNs ].

To build the proposed ROM strategy, we start from a projection-based framework, exploiting the reduced basis
method for parametrized PDEs. We denote by {q1, q2, . . . , qn} ⊂ RNh , with n� Nh, a set of reduced basis functions
spanning a low-dimensional subspace Vn, in which the reduced order approximation of the problem solution is sought.
Such a subspace can be built in two different ways, either linearly, for instance through proper orthogonal decomposition
(POD) [19, 41], or nonlinearly (see, e.g., [10, 11, 25]). We recall that, in the case of POD, the basis functions can be
equivalently obtained either as left singular vectors of the snapshots matrix S, or as eigenvectors (up to a normalization
factor) of the Gram matrix C = S>S.

In this paper, we propose to rely on KPOD [38], which is the nonlinear counterpart of proper orthogonal decomposition
(POD), as an efficient and effective alternative to POD. Compared to POD, KPOD has the additional advantage to be
able to deal with otherwise linearly inseparable data. In particular, KPOD projects, through a nonlinear map, the FOM
snapshots to a high dimensional space, where we are likely to obtain linear separability (according to Cover’s theorem
[7]), as depicted in Figure 1.
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Figure 1: Example of application of the Cover’s theorem. Linear inseparable data become separable if projected upon a
higher dimensional space through a map Ψ(·).

In principle, we should employ an arbitrary transformation Ψ : RNh → RNZ for some very large dimension
NZ � Nh. Such a transformation is meant to flatten the nonlinear solution manifold Sh = {uh(t;µ), t ∈ [0, T ], µ ∈
P} ⊂ RNh where the FOM solution is sought. In other words, the manifold obtained as Zh = Ψ(Sh) = {Uh(t;µ) =
Ψ(uh(t;µ)), t ∈ [0, T ], µ ∈ P} ⊂ RNZ should be more readily approximated through linear subspaces. To this aim,
we would need to apply POD to the NZ ×Ns matrix containing the transformed snapshots:

SΨ = [Ψ(s1) | . . . |Ψ(sNs)] ∈ RNZ×Ns

However, we could also apply POD to the Gram matrix C̃Ψ = S>ΨSΨ, which is of size Ns × Ns as C = S>S. In
the context of KPOD, the so-called kernel trick is applied, i.e. the matrix SΨ is directly defined by introducing a
bivariate symmetric form κ : RNh × RNh → R, also referred to as kernel function, rather than the map Ψ, to avoid the
computation of the components of the matrix C̃Ψ according to the definition, that is:

(C̃Ψ)ij =

NZ∑
k=1

(SΨ)ki(SΨ)kj = (Ψ(si))
>(Ψ(sj)) i, j = 1, . . . , Ns.

Thanks to the kernel function, we can instead define:

(C̃)ij = κ(si, sj) i, j = 1, . . . , Ns,

which takes the name of kernel (similarity) matrix. A common choice is to use the squared exponential (or radial basis
function) kernel function, which yields the following kernel matrix K:

K(si, sj) = exp
(
−γ||si − sj ||22

)
∈ RNs×Ns i, j = 1, . . . , Ns. (4)

Here γ > 0 is a hyperparameter of the model, whereas si and sj are two columns of the snapshots matrix S, i.e. two
different samples in the time domain and in the parameters space.

One of the advantages of using KPOD is that it does not work in the high-dimensional latent space directly. Indeed,
it computes the projections of the FOM solutions onto the principal components, but not the principal components
themselves (as done instead in POD, or PCA). To evaluate these projections, first, we compute the eigenvectors and
eigenvalues of (4):

Kwk = λkwk k = 1, . . . , Ns, (5)

where we denote by W = [w1 | . . . |wNs ] ∈ RNs×Ns the matrix collecting the eigenvectors of K, and by Λ =
diag(λ1, . . . , λNs) ∈ RNs×Ns the matrix of the corresponding eigenvalues. Then, by analogy with POD, we compute
and collect the projected vectors:

pk =
1

σk
Swk k = 1, . . . , Ns (6)

in the matrix P =
[
p1 | . . . |pNs

]
∈ RNh×Ns , with σk =

√
λk. In POD, P would be an orthogonal matrix. Conversely,

in KPOD, we finally have to perform a reduced QR factorization of P to obtain an orthonormal basis [32]:[
Q, R̃

]
= QR(P), (7)
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where Q ∈ RNh×Nhs is an orthogonal matrix, whereas R̃ ∈ RNhs×Ns is an upper triangular matrix, being Nhs =
min(Nh, Ns).

We select n columns of Q to get the (orthonormal) reduced basis V = [q1|q2|...|qn] ∈ RNh×n. The dimension n
where the truncation occurs is determined as follows:∑Ns

k=n+1 σ
2
k∑Ns

k=1 σ
2
k

≤ ε̂, (8)

being ε̂ > 0 a given tolerance and σ2
k the square of the kth singular value. We will always use ε̂ = 10−12 in the

numerical results.

The process is summarized in Algorithm 1. So far, we have just described the forward mapping, i.e. the nonlinear
dimensionality reduction process. Due to the nonlinear nature of this technique, it is not trivial to map an element
from the reduced space (with dimension n) towards its pre-image in the input space of the high-fidelity solutions (with
dimension Nh). We refer to this mathematical problem as KPOD backward mapping.

Once V is built, we obtain the reduced coefficients by means of the linear projection VTuh(t;µ) onto Vn. We
introduce now a function Φ which represents the connection between the space of parameters, wherein we assimilate
the time independent variable to a parameter, and the projected coefficients, i.e:

Φ : T × P ⊂ Rm+1 −→ Rn s.t. Φ : (t;µ) −→ VTuh(t;µ). (9)

Similarly to what is done in [41] for the POD-NN method, we propose to rely on NN to determine the reduced order
approximation for any new parameter instance. This NN is able to perform a nonlinear regression for the KPOD-NN
method, to learn an approximation ΦNN of the map Φ. The evaluation of ΦNN for a certain (t,µ) provides a reduced
solution:

uNNn (t;µ) = ΦNN (t;µ), (10)
and consequently we come back to the high-fidelity dimension through:

uNNh (t;µ) = VΦNN (t;µ) = VuNNn (t;µ). (11)

To the best of our knowledge, a novelty is that we consider a NN where the number of hidden layers scales as dlog(n)e
and the size of each hidden layer depends on the dimension n of the reduced basis. We also have a first (input) layer
with NI = m+ 1 units (for the (t;µ) values) and a final (output) layer of size NO = n (for each single component of
the reduced solution VTuh(t;µ)). Our NN is fully connected, i.e. each neuron of a specific layer is connected to all the
neurons of the next layer only [19]. The strength of these interactions is defined by weights W i and biases [15] (as
shown in Figure 2), whose values change during the training process. In this way the NN provides a suitable lower
dimensional representation of the specific FOM that we want to approximate. We use a Parametric Rectified Linear
Unit (PReLU) as activation function of the hidden layers. This function is known to be more flexible than ReLU and
LeakyReLU while leading better NN approximations [30]. PreLU reads:

PReLU(x) =

{
αx in x < 0,

x in x ≥ 0,
(12)

where α > 0 is automatically optimized during the training phase.

The architecture is synthesized in Table 1. A schematic view of the NN is sketched in Figure 2.

Algorithm 1 KPOD as nonlinear dimensionality reduction technique for ROM.
function V=KPOD(S, ε̂, γ)

Assemble K(si, sj) = exp
(
−γ||si − sj ||22

)
for i, j = 1, ..., Ns.

Perform an eigenvalue-eigenvector decomposition: Kwk = λkwk for k = 1, ..., Ns.
Compute P =

[
p1|p2|...|pNs

]
∈ RNh×Ns , where pk = 1√

λk
Swk for k = 1, . . . , Ns.

Reduced QR factorization of matrix P:
[
Q, R̃

]
= QR(P).

Select n qk vectors according to (8).
Assemble V = [q1|q2|...|qn].

end function

For the sake of NN construction, in supervised learning, let Db = {xi,yi}
Nb
i=1 be a building set with input-output

pairs, which is split in different subsets: a training (equivalently learning) dataset Dtr = {xi,yi}
Ntr
i=1 and a validation
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Figure 2: Example of fully connected feedforward neural network with PReLU activation functions, several hidden
layers and an input layer made by time and one single parameter µ (m = 1). W i indicates weights of the connections
between the ith layer and the following one.

Layer Number of neurons
Dense + PReLU activation (input) m+ 1

Dense + PReLU activation (hidden) 1 n
Dense + PReLU activation (hidden) 2 n

... ...
Dense + PReLU activation (hidden) dlog(n)e n

Dense (output) n

Table 1: NN architecture. n is the dimension of the reduced basis, whereas m is the length of the parameter vector.
Glorot uniform initializer [13] is used to set the initial values of the weights of all layers.

one Dv = {xi,yi}
Nv
i=1, with Ntr +Nv = Nb. Inputs xi are sampled from the space of parameters, whereas outputs

yi represent the corresponding reduced coefficients. We apply the so called K-fold cross-validation [18], where the
building set is divided into K equal parts (here we use K = 5). In this respect, the network is trained K times, where
K − 1 subdivisions of the building set act as learning set, whereas the last remaining subdivision is used to validate the
model for a specific choice of the hyperparameters. Data located inside the building set are shuffled at the beginning of
the K-fold procedure so that there is a high probability for the network to learn the reduced numerical solution along
the entire time span [0, T ].

Thanks to K-fold cross-validation, we are able to perform both the training phase and the model selection. In
particular, we investigate the effects of changing the number of layers and the growth/decay of the number of neurons
of the layers in the network (e.g. linear, parabolic and hyperbolic). The selection of the best model among the different
analyzed architectures is made through the comparison of their generalization error Egen:

Egen =
1

Nv

K∑
k=1

√∑Nv
i=1(ŷki − yi)2√∑Nv

i=1 y
2
i

, (13)

where ŷki is the prediction of the neural network on fold k associated with the output observation yi. We look for the
network with the smallest generalization error. We trained different neural networks using input-output pairs coming
from the benchmark problems that will be introduced in Section 3. As the generalization error was not significantly
affected by the growth/decay strategy used to determine the number of neurons in a single layer, we selected a constant
number of neurons per layer. The selected architecture is reported in Table 1, which provided - among the tested
architectures - the lowest generalization error. In order to adapt the network complexity to the dimension n, we scaled
the number of layers as dlog(n)e.

6



Once the architecture is fixed and a NN is built and trained, we test its performances, feeding the network with a
new dataset (called test set) Dtest = {xi,yi}

Ntest
i=1 , which is made by unseen observations. In this way, we assess the

learning capability of the network. All the abovementioned operations are implemented using the Keras Python Deep
Learning library [5]. Our loss function is the discrete relative L2 norm:

Cj =

√∑Nj
i=1(ŷi − yi)2√∑Nj

i=1 y
2
i

with j ∈ {tr, v}, (14)

The network is trained over different steps, which are called epochs, considering each time a small amount of
observations of the training set, which are referred to as batches; here we consider Nbatch = 10. A small value of batch
size is known to avoid sharp local minima in the optimization process, improving the accuracy of the network [21]. We
use the Adam stochastic optimizer [22] with AMSGrad variant, β1 = 0.9 and β2 = 0.999, to find the optimal values of
weights and bias. The initial learning rate lr is set to 0.01 for the wave equation and to 0.1 for the lid-driven cavity
problem. This lets the stochastic gradient descent method better explore the landscape of local minima during the very
first epochs of training. We consider a regularization of the weights so that the network does not overfit and is able to
explore more possibilities in the training process. The final formulation of the loss function is reported here:

Cj =

√∑Nj
i=1(ŷi − yi)2√∑Nj

i=1 y
2
i

+ Θ

Nl∑
l=1

∑
o

∑
k

w2
l,o,k with j ∈ {tr, v}, (15)

where Θ = 0.01 acts as regularization parameter, wl,o,k is the oth weight of the lth layer connected to the kth neuron
of the following layer of the NN. The entire implementation of the offline and online stages of the KPOD-NN method is
described in Algorithm 2. This method is non-intrusive, because it does not need to access system operators to perform
the projection and the online evaluation of the feedforward neural network is independent of the high-fidelity numerical
scheme. For the sake of simplicity, we present an approach in which the size of the reduced space plays a role only in
the definition of the NN architecture. The underlying idea is that the higher the dimension of the reduced space the
higher should be the complexity of the NN. Still, a dependence from the dimension n can be eventually introduced in
other parameters of the NN, such as the regularization term Θ, the configuration of the optimizer, the total number of
epochs and the batch size.

Algorithm 2 KPOD-NN ROM method for unsteady PDEs.
function [V,ΦNN ]=KPOD-NN_OFFLINE(P , Ω, T , m, NT , ε̂, γ)

Generate [t0 = 0, t1, ..., tj , ..., tNT = T ] and Ph = {µ1,µ2, ...,µi, ...,µm} ⊂ P .
Compute high-fidelity numerical solutions ujh(µi), j = 0, ..., NT , i = 1, ...,m.
Set S = [u0

h(µ1),u1
h(µ1), ...,uNTh (µ1),u0

h(µ2), ...,uNTh (µm)].
V=KPOD(S, ε̂, γ).
Build and train the NN for the calculation of ΦNN .

end function
function V=KPOD-NN_ONLINE((tnew;µnew), V, ΦNN )

Evaluate the output uNNn (tnew;µnew) = ΦNN (tnew;µnew) of the trained NN for the input (tnew;µnew).
Map the solution to the high-fidelity space as uNNh (tnew;µnew) = VΦNN (tnew;µnew).

end function

3 Benchmark problems

We apply the method described in Section 2 to the following two differential problems, namely the wave equation
and the Navier-Stokes equations. The first problem is set in 1D, whereas the second one will be solved in 2D.
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3.1 Wave equation

The wave equation is a second-order hyperbolic linear PDE and reads:

∂2u

∂t2
= c2

∂2u

∂x2
in Ω× (0, T ),

u(x, 0) = A0exp−
(x−x0)2

2σ2 in Ω× {0},
u(0, t) = 0 t ∈ (0, T ),

u(L, t) = 0 t ∈ (0, T ),

(16)

with Ω = (0, L). A0 ∈ [0.5, 1], x0 ∈ [L3 ,
2L
3 ], σ ∈ [0.5, 1] and c ∈ R, with L = 4π and T = 52. We assign

homogeneous Dirichlet boundary conditions at x = 0 and x = L. The initial condition, given by a Gaussian pulse,
triggers the propagation of two waves in opposite directions. We consider intensity A0, position x0 and variability σ of
the initial pulse as input parameters of the neural network, i.e. u = u(x, t;A0, x0, σ).

3.2 Navier-Stokes equations

The Navier-Stokes equations model the flow of a viscous fluid, either incompressible or compressible, in a certain
domain Ω ⊂ R2 and in the time interval (0, T ). The unknowns in primitive variables are velocity and pressure, i.e
(u, p). The corresponding dimensionless strong form reads [40]:

∂u

∂t
+ (u · ∇)u+∇p− 2∇ ·

(
1

Re
D(u)

)
= f in Ω× (0, T ),

∇ · u = 0 in Ω× (0, T ),

u(0) = u0 in Ω× {0},
σfn = h on ΓN × (0, T ),

u = g on ΓD × (0, T ),

(17)

where Re is the Reynolds number, D(u) = 1
2 (∇u+∇uT ) is the strain tensor, and σf = −pI + 2Re−1D(u) is the

Cauchy stress tensor, being I the identity tensor. f : Ω × (0, T ) −→ R2 indicates the body forces, u0 : Ω −→ R2. h
and g denote respectively the vector fields for the Neumann boundary condition on ΓN and the Dirichlet boundary
condition on ΓD, where ΓN ,ΓD ⊆ ∂Ω with ΓD ∪ ΓN = ∂Ω and Γ̊D ∩ Γ̊N = ∅. n indicates the outward directed unit
vector normal to ΓN .

The weak formulation of (17) reads [40]: given Vg = {v ∈ [H1(Ω)]2 : v|ΓD = g}, V = {v ∈ [H1(Ω)]2 : v|ΓD =
0}, Q = L2(Ω), Wg = {v ∈ Vg : ∇ · v = 0} ⊂ Vg and W = {v ∈ V : ∇ · v = 0} ⊂ V spaces of divergence-free
functions of Vg and V respectively, find u = u(t) ∈Wg ∀t ∈ (0, T ) such that:

m

(
∂u

∂t
,v

)
+ a(u,v) + b(v, p) + c(u,u,v) = F (v) +H(v) ∀v ∈W,

b(u, q) = 0 ∀q ∈ Q,
u(0) = u0 in Ω,

(18)

where m
(
∂u

∂t
,v

)
=

∫
Ω

∂u

∂t
· v dΩ, a(u,v) =

2

Re

∫
Ω

D(u) : D(v) dΩ, b(v, p) = −
∫

Ω

p∇ · v dΩ, c(w,u,v) =∫
Ω

((w · ∇)u) · v dΩ, while F (v) =

∫
Ω

f · v dΩ and H(v) =

∫
ΓN

h · v dΓ.

The Navier-Stokes equations can be rewritten in the streamfunction formulation [40]. We introduce the quotient
space X = {[φ] : φ ∈ H2(Ω)} of scalar functions in H2(Ω) that differ up to a constant and, under the hypothesis of
simply connected domain, we consider the unique potential φ ∈ X such that v = curlφ, where curl(·) operator is
defined as follows:

curl : X −→ [H1(Ω)]2 curlφ =

(
∂φ

∂y
,−∂φ

∂x

)
(19)

The streamfunction weak formulation reads: given Φg = {ψ ∈ X : curlψ|ΓD = g} and Φ = {ψ ∈ X : curlψ|ΓD =
0}, find φ = φ(t) ∈ Φg ∀t ∈ (0, T ) such that:m

(
∂φ

∂t
, ψ

)
+ a(φ, ψ) + c(φ, φ, ψ) = F (ψ) +H(ψ) ∀ψ ∈ Φ,

φ(0) = φ0 in Ω,
(20)
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Figure 3: Lid-driven cavity problem: data and settings. Ω = (0, 1)2, Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4 = ∂Ω.

where m

(
∂φ

∂t
, ψ

)
=

∫
Ω

curl
∂φ

∂t
· curlψ dΩ, a(φ, ψ) =

2

Re

∫
Ω

D(curlφ) : D(curlψ) dΩ, c(φ, φ, ψ) =∫
Ω

((curlφ · ∇)curlφ) · curlψ dΩ, while F (ψ) =

∫
Ω

f · curlψ dΩ and H(ψ) =

∫
ΓN

h · curlψ dΓ. The ini-

tial condition is chosen in such a way that curlφ0 = u0. By construction the velocity field u = curlφ is divergence
free.

We solve the lid-driven cavity benchmark problem on a square domain Ω = (0, 1)2 as done in [40]. In Figure
3, we depict the boundary conditions assigned to ∂Ω. We consider one single parameter, i.e. the Reynolds number
Re ∈ [100, 5000], using the streamfunction formulation of the Navier-Stokes equations in 2D. We look for the steady
state of the Navier-Stokes equations, i.e. we always take the snapshot at the final time t = T = 30 only. Indeed, we
apply the KPOD-NN reduction on φ = φ(x, T ;Re).

4 Numerical discretization

In this section we discretize in space and time problems (16) and (20).

4.1 Wave equation

We use the finite difference method [32] to discretize the wave equation. We consider a partition [x0 = 0, x1, ..., xN =
L] ofN+1 equally spaced points distributed in the computational domain Ω = (0, L), and a set [t0 = 0, t1, ..., tNT = T ]
of NT + 1 equally spaced times in [0, T ]. We employ second-order centered finite differences to approximate the
derivatives of the PDE, leading to the following formulation:

uj+1
i − 2uji + uj−1

i

∆t2
= c2

uji+1 − 2uji + uji−1

∆x2
∀i = 1, ..., N − 1 ∀j = 0, ..., NT − 1,

u0
i = A0exp−

(xi−x0)2

2σ2 ∀i = 1, ..., N − 1,

uj0 = 0 ∀j = 0, ..., NT ,

ujN = 0 ∀j = 0, ..., NT ,

(21)

where ∆t = T/NT and ∆x = L/N . We rearrange the first equation in (21) to obtain uj+1
i :

uj+1
i = C(uji+1 + uji−1) + 2(1− C)uji − u

j−1
i , (22)

with C = c2
∆t2

∆x2
. We remind that the value of c

∆t

∆x
must be less or equal than 1 to satisfy the Courant-Friedrichs-Lewy

condition, which ensures the stability of the numerical scheme [32].

9



4.2 Navier-Stokes equations

Following the approach proposed in [40], we provide the space discretization of (20) by means of the NURBS-based
Isogeometric Analysis (IGA) Galerkin method. We employ the generalized-α scheme for its time approximation [6,
20].

Given an exact representation of the square domain Ω through B-splines functions, we introduce the finite dimensional
space of B-splines in the physical domain [40], say Vh, and we define Φh = Φ ∩ Vh and Φg,h = Φg ∩ Vh, being
Ns = dim(Φ) the dimension and {Ri}Nsi=1 the set of basis functions. The IGA approximation of (20) reads: find
φh(t) ∈ Φg,h ∀t ∈ (0, T ) such that:m

(
∂φh
∂t

, ψh

)
+ a(φh, ψh) + c(φh, φh, ψh) = F (ψh) +H(ψh) ∀ψh ∈ Φh,

φh(0) = φh,0 in Ω.
(23)

We can rewrite (23) in residual form: find φh(t) ∈ Φg,h ∀t ∈ (0, T ) such that:Rh
(
ψh,

∂φh
∂t

, φh

)
= 0 ∀ψh ∈ Φh,

φh(0) = φh,0 in Ω,
(24)

with Rh

(
ψh,

∂φh
∂t

, φh

)
= m

(
∂φh
∂t

, ψh

)
+ a(φh, ψh) + c(φh, φh, ψh) − F (ψh) −H(ψh). We define the vector

of discrete residuals whose components are the residuals Rh

(
·, ∂φh
∂t

, φh

)
evaluated in the NURBS basis functions

Ri i = 1, ..., Ns for the function space Φh, i.e. R
(
∂φh
∂t

, φh

)
=

{
Rh

(
Ri,

∂φh
∂t

, φh

)}Ns
i=1

, ∀t ∈ (0, T ). Moreover,

we introduce φ = φ(t) = {φi}Nsi=1 and
∂φ

∂t
= φ̇ =

∂φ

∂t
(t) =

{
∂φi
∂t

}Ns
i=1

, which are the vectors of control variables

∀t ∈ (0, T ) for the function φh and its time derivative
∂φh
∂t

respectively. Consider [t0 = 0, t1, ..., tNT = T ] of NT + 1

equally spaced times in [0, T ]. In this framework, we perform the time discretization by means of the generalized-α
method [6, 20, 40]: at time tj , given φ̇j and φj , find φ̇j+1, φj+1, φ̇j+αm , φj+αf such that:

R
(
φ̇j+αm ,φj+αf

)
= 0,

φ̇j+αm = φ̇j + αm

(
φ̇j+1 − φ̇j

)
,

φj+αf = φj + αf (φj+1 − φj),
φj+1 = φj + ∆tφ̇j + δ∆t

(
φ̇j+1 − φ̇j

)
,

(25)

where δ, αm, αf ∈ R+
0 are chosen on the basis of accuracy and stability considerations and ∆t is the fixed time step.

For further details about the numerical scheme and IGA we refer to [40].

5 Numerical results

We present some numerical results of wave equation and Navier-Stokes equations. For the first test case we compute
all the variables at the mesh nodes, i.e. at the vertices, considering a mesh with 256 elements. We use B–Splines
basis functions of degree p = 2 on uniform mesh of size h = 1/64 (4096 elements) and ∆t = 0.1 for the lid-driven
cavity problem. Indeed, IGA generally permits to obtain accurate numerical solutions using a reduced number of mesh
elements than the Finite Element Method (FEM) [40]. This leads to smaller datasets that ease both the NN training and
testing phases regardless of the specific ROM technique.

We implemented a MATLAB code for the numerical simulations of the wave equation, whereas the lid-driven cavity
problem is available as a test case in the C++ IGA library isoglib. We train the neural network using the Google Tesla
K80 NVIDIA GPU.

We compute the KPOD-NN relative approximation error in the following way:

εKPOD−NN (n, t,µ) =
||uh(t;µ)− VuNNh (t;µ)||

||uh(t;µ)||
. (26)
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Figure 4: Comparison between the eigenvalues of the kernel matrix, coming from KPOD and different values for γ
(continuous), and the eigenvalues of the Gram matrix C, coming from POD (dashed), for wave equation.

This error is evaluated on a test dataset Dtest made of Ntest elements. The final estimator that we use is the average of
all KPOD-NN relative approximation errors computed on Ntest data:

εKPOD−NN (n) =

∑
(t,µ)∈Dtest εKPOD−NN (n, t,µ)

Ntest
(27)

5.1 Wave equation

In this section, we focus on the numerical results related to the wave equation. We denote the structure of both the
training and test sets in Tables 2 and 3. Values of A0, x0 and σ in the building dataset are obtained by means of latin
hypercube sampling [31]. We observe that, given a certain tolerance ε̂ and a suitable value for γ, the reduced dimension
that we get from KPOD (nKPOD−NN = 15) is fairly lower than the one obtained from POD (nPOD−NN = 109).
Moreover, the KPOD-NN size will be smaller than the POD-NN one and the former will be less expensive to train and
to test in terms of both computational resources and total computational time.

Type of dataset Nh Nt NA0
Nx0

Nσ nKPOD−NN nPOD−NN
Training set 256 100 5 5 5 15 109

Test set 256 100 1 1 1 - -

Table 2: Building and test datasets for wave equation. These datasets have both the same mesh nodes and time steps,
whereas values of A0, x0 and σ are different. We consider γ = 10−10 to determine nKPOD−NN .

Type of dataset Parameter Values

Training set
A0 [0.5 0.641 0.721 0.821 1.0]
x0 [4.189 5.169 6.065 7.426 8.378]
σ [0.5 0.637 0.745 0.898 1.0]

Test set
A0 0.75
x0 8.0
σ 0.9

Table 3: Composition of building and test sets in terms of parameter values.
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Figure 5: NN approximation errors and NN training computational times related to KPOD-NN and POD-NN vs.
number of epochs for wave equation (nKPOD−NN = 15, nPOD−NN = 109, γ = 10−10).

Figure 6: Numerical results on the test set Dtest for wave equation. Comparison among FOM, KPOD-NN and
POD-NN solutions. Both NN have been trained for Nepochs = 100, with nKPOD−NN = 15 (γ = 10−10) and
nPOD−NN = 109.

In Figure 4 we highlight the role of γ. In particular, at least for this test case and for the range of values that we
consider, the lower the value of parameter γ is, the higher the rate of decay is. We show the capability of the KPOD
method to potentially collect the most significant modes and information in the really first eigenvalues of the kernel
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Figure 7: Pointwise absolute error on the test set Dtest for wave equation. Comparison among FOM, KPOD-NN
and POD-NN solutions. Both NN have been trained for Nepochs = 100, with nKPOD−NN = 15 (γ = 10−10) and
nPOD−NN = 109.

Figure 8: εKPOD−NN (n) and εPOD−NN (n) errors vs. n for different choices of the dataset, which contain the
numerical solutions of the wave equation for different parameters instances. Nb = 125000 corresponds to the building
set introduced in Tables 2 and 3.

matrix. Moreover, the computational time that is needed to perform KPOD is comparable with the one of POD, due to
the fact that we do not have to deal with high-dimensional data explicitly [38].

We depict in Figure 5 the behavior of both εKPOD−NN (n) and εPOD−NN (n) errors with respect toNepochs. We see
that, providing a proper number of epochs, once convergence is reached, the approximation error related to KPOD-NN
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Figure 9: NN approximation error εKPOD−NN (left) and reduced basis dimension n (right) vs. γ for wave equation.
All NN have been trained for Nepochs = 100.

Figure 10: Pointwise absolute error on the test set Dtest for wave equation. Comparison among KPOD-NN solutions
for different values of γ. All NN have been trained for Nepochs = 100. We use γ = 1 (left, nKPOD−NN = 4772),
γ = 10−5 (center, nKPOD−NN = 106) and γ = 10−10 (right, nKPOD−NN = 15).

is slightly smaller than the one of POD-NN method, even if the size of the two NN is different. We also notice that the
total time to train the KPOD-NN is approximately halved with respect the POD-NN one. By looking at the numerical
results in Figure 6 on the test set Dtest for all spatial and temporal coordinates, we see a good agreement between
the FOM solution and the KPOD-NN one. This is also confirmed in Figure 7, where we show that also the pointwise
difference in absolute value between the FOM solution and the ROM one is generally lower for the KPOD-NN method.
In Figure 8 we see the plot related to NN approximation error vs. reduced dimension n for different building sets.
We comment that, given a specific NN architecture and size, KPOD-NN has a higher representational power than
POD-NN, and the smaller the training dataset is, the higher the plateau of the approximation error is. We stress that in
this specific test case we are solving a linear PDE in 1D. For this reason, the advantages of KPOD over POD on the NN
approximation errors are quite limited.

In Figure 9 we show both the behavior of the NN approximation error εKPOD−NN and reduced basis dimension n
with respect to parameter γ. Given a fixed tolerance ε̂, we notice that both εKPOD−NN and n scales monotonically
with γ. We also depict in Figure 10 the pointwise absolute error related to KPOD-NN solutions for different choices of
γ. We highlight that high values, such as γ = 1, are not favorable and might be source of high localized errors in space
and time. Indeed in this scenario, given again a fixed tolerance ε̂, the reduced dimension n could be potentially high
and could lead to a bigger NN, which is more challenging to train. On the other hand, when lower values are considered
(e.g. γ = 10−5 or γ = 10−10), KPOD modes decay faster and steeply while the corresponding NN is smaller and
easier to train.
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Figure 11: NN approximation errors and NN training computational times related to KPOD-NN and POD-NN vs.
number of epochs for the lid driven cavity benchmark (nKPOD−NN = 12, nPOD−NN = 131).

5.2 Lid-driven cavity benchmark

Here we present the numerical results for the lid-driven cavity problem. We generate the training set by means of
FOM solutions, considering evenly spaced Reynolds numbers between 100 and 5000 with a fixed step equal to 10. The
test set is sampled for Re ∈ [105, 4995] by using again a fixed step equal to 10. In Table 4 and Figure 11 we report
some information related to the training phase of the NN when either KPOD or POD is employed on the same building
set. Given a certain number of epochs and a tolerance ε̂, the KPOD-NN approach leads to an approximation error that
is one order of magnitude less than the POD-NN one. Moreover, the computational time is again halved for KPOD-NN
and its reduced basis dimension is reduced by a factor 10. We highlight that the dimension of the reduced basis affects
directly the number of NN parameters to train, i.e. the weights of the NN. This number is significantly smaller for
KPOD-NN.

Technique NN parameters n Number of epochs NN approximation error Computational time [s]

KPOD-NN 360 12 1000 3.1 · 10−2 86.17
POD-NN 69’954 131 1000 1.7 · 10−1 168.7

Table 4: Comparison of the KPOD-NN and POD-NN methods for the lid-driven cavity problem on the same building
set, in terms of both εKPOD−NN (n)/εPOD−NN (n) (i.e. NN approximation error) and computational times to train
the NN. We use γ = 10−5 for KPOD.

Moreover, also in this case, we get a reduced value of n thanks to the better behavior of the eigenvalues of the kernel
matrix with respect to the singular values of matrix S, as can be seen in Figure 12. The computational times to train
the NN coming from the KPOD approximation is strongly reduced with respect to the one related to POD. Testing
times remain comparable and negligible. The same occurs for the computational times to perform KPOD and POD
effectively.

In Figures 13 and 14 we compare the streamlines and the values assumed by the streamfunction φ for FOM and
KPOD-NN for different Reynolds numbers Re. We see that, considering the number and positions of the contour lines,
the KPOD-NN method captures all vortexes properly. Indeed strong nonlinearities arises in the 2D lid-driven cavity
problem, where there are both a discontinuous dependance of the solution with the Reynolds number and bifurcations
in the development of vortices. For these reasons, in this second test case, we have stronger advantages in using a fully
nonlinear technique, such as KPOD-NN.

15



Figure 12: Comparison between the eigenvalues of the kernel matrix, coming from KPOD (continuous), and the
eigenvalues of the Gram matrix C, coming from POD (dashed), for the lid-driven cavity problem.

Figure 13: Streamlines computed on the test set Dtest for the lid-driven cavity benchmark. Comparison between FOM
and KPOD-NN solutions. The NN has been trained for Nepochs = 1000, with nKPOD−NN = 12 (εKPOD−NN =
3.1 · 10−2).
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Figure 14: Streamfunction φ computed on the test set Dtest for the lid-driven cavity benchmark. Comparison
between FOM and KPOD-NN solutions. The NN has been trained for Nepochs = 1000, with nKPOD−NN = 12
(εKPOD−NN = 3.1 · 10−2).

6 Conclusions

In this work, we proposed a non-intrusive reduced order model technique that combines KPOD with an adaptively
built NN, whose number of layers and number of neurons scale according to the dimension of the extracted reduced
basis. The use of nonlinear dimensionality reduction in the first part of the algorithm permits to shrink the valuable
information on the first modes. This operation strongly reduces the number of functions that must be collected to obtain
a basis up to specific tolerance, in particular if this method is compared to linear dimensionality reduction techniques,
such as POD.

We applied our methodology to parametrized parabolic and hyperbolic PDEs in both 1D and 2D settings, either in a
linear (wave equation) or nonlinear (Navier-Stokes equations) context. We saw a good agreement between the FOM
solution and the KPOD-NN solution in both cases. We also compared our method with the POD-NN one, by showing
that the reduced coefficients coming from KPOD contain potentially more information than the one extracted by means
of POD. This leads to a smaller NN approximation error on the test sets. Moreover, we remind that the NN size coming
from KPOD is again by construction necessarily smaller and easier to train than the one given by POD. Both KPOD
and POD involve the same computational resources, and the computational times spent by the two methods to compute
the reduced basis is still similar. According to our tests, by fixing a priori a certain tolerance, KPOD-NN collects a
number of modes which is at least 10 times smaller than POD-NN while leading to smaller NN approximation errors,
which are reduced by approximately a factor of 1.2 for the wave equation and by approximately a factor of 10 for the
lid-driven cavity problem, where nonlinearities arise. Moreover, the training costs for KPOD-NN are at least halved
with respect to POD-NN ones. By using even lower values of γ, all the advantages of KPOD-NN over POD-NN are
potentially even stronger.

A possible extension of this work could address 3D problems with a significantly higher number of DOFs. Another
possible topic for this non-intrusive technique could be the application to multifield fully-coupled problems, such as
the one arising in cardiac modeling: in this framework, the nonlinear PDEs related to electrophysiology, mechanics
and fluid dynamics can be reduced in an independent manner with potentially different NNs. Finally, we notice that
our KPOD-NN can also be embedded in pre-existing deep learning ROM frameworks to improve their efficiency and
accuracy.
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