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Abstract: Microelectromechanical systems (MEMSs) are attracting increasing interest from the scien-
tific community for the large variety of possible applications and for the continuous request from
the market to improve performances, while keeping small dimensions and reduced costs. To be
able to simulate a priori and in real time the dynamic response of resonant devices is then crucial
to guide the mechanical design and to support the MEMSs industry. In this work, we propose a
simplified modeling procedure able to reproduce the nonlinear dynamics of MEMS resonant devices
of arbitrary geometry. We validate it through the fabrication and testing of a cantilever beam resonator
functioning in the nonlinear regime and we employ it to design a ring resonator working in the
linear regime. Despite the uncertainties of a fabrication process available in the university facility, we
demonstrate the predictability of the model and the effectiveness of the proposed design procedure.
The satisfactory agreement between numerical predictions and experimental data proves indeed the
proposed a priori design tool based on reduced-order numerical models and opens the way to its
practical applications in the MEMS industry.

Keywords: resonant MEMS; numerical modeling; design

1. Introduction

Microelectromechanical systems (MEMSs) have been one of the most revolutionary
technologies in recent years. The “Internet of Things” and, in general, the “Internet of
Everything” are indeed paradigms of an increasingly connected world in which information
is automatically transmitted by smart products like, e.g., phones, tablets, watches, glasses
and cars. MEMS technology quickly led to an unprecedented miniaturization of sensors
and actuators which are now playing an enabling role towards, e.g., artificial intelligence
systems, robotics, autonomous mobility, remote patient monitoring and virtual reality,
which indicates that their development in the next decades will be even faster with growing
performance and applications.

Among different MEMS devices available so far in the literature and in the market, we
will here focus on MEMS resonant devices. MEMS resonant devices are characterized by the
presence of mechanical components that are kept at resonance through different actuation
schemes. According to the employed actuation scheme, it is possible to distinguish between
capacitive, piezoelectric and magnetic resonant devices. In this work, we will focus on
capacitive MEMS resonant devices.

Capacitive MEMS resonant devices are widely employed for sensing, e.g., resonant
accelerometers [1–4], gyroscopes [5,6] and as actuators, e.g., micromirrors [7,8] and micros-
peakers [9,10]. Recently, MEMS resonators [11] entered the market [12] of quartz oscillators
as a possible solution to the increasing request of size reduction and integrability with the
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electronics and the other MEMS devices. Several examples of MEMS resonators fabricated
either in single-crystal silicon [13] or polysilicon [14,15] are available in the literature.

To satisfy the ever-increasing request of better performance of MEMS resonant devices,
a simple powerful and versatile design tool able to guide the electromechanical system
optimization a priori, i.e., without resorting to parameters calibration on experimental data,
is highly desired. Recent works addressed the numerical modeling of MEMS resonant
devices [16–19], exhibiting complex and highly nonlinear dynamic responses due to, e.g.,
the interaction between membrane and bending regimes in slender beams or plates [20], to
temperature variations [21], to internal contacts between surfaces at low distance [22] or to
the electromechanical coupling induced by electrostatic actuation [23].

In this work, we propose a simple design tool able to predict, a priori and in real
time, the nonlinear dynamic response of MEMS resonant devices of arbitrary geometry
mainly making use of the commercial software COMSOL Multiphysics® v.6.1. Thanks to
its versatility and user-friendly nature, it represents a promising numerical tool for MEMS
designers. To validate the proposed simulation, we fabricate and test a cantilever beam
MEMS resonator exhibiting a nonlinear dynamic behavior. To further prove the potentiality
of the numerical tool here developed, we employ it to design a MEMS ring resonator
optimized to work in the linear regime.

MEMS fabrication has been constantly evolving in recent decades, progressing from
early bulk micromachining and surface micromachining [24,25] to more advanced tech-
niques using anisotropic etching such as deep reactive ion etching [26]. Advanced MEMS
processes are now moving towards 3D architectures, utilizing multiple silicon layers to real-
ize more complex MEMS designs [27–29]. Leading companies’ processes now include one
polysilicon layer for routing electric signals and two silicon layers for constructing MEMS
structures. Finally, a capping wafer is used to seal the device and control the pressure
within the cavity.

Since the goal of this work is to provide a guideline for the design and modeling of
MEMS resonant devices, we decided to use a relatively simple fabrication flow based on
silicon-on-insulator substrates with a metal layer deposited on top. We shaped the metal
layer and the silicon to obtain different MEMSs, as described in the relevant section. The
advantage of this process is the small number of fabrication steps involved, making it
feasible within a university facility yet transferable to more advanced MEMS processes.

This paper is organized as follows: in Section 2, the numerical model here proposed
for the electromechanical design of MEMS devices is described in details. In Section 3, it
is employed to reproduce the nonlinear dynamic response of a MEMS cantilever beam
resonator, while in Section 4 it is used to design a ring resonator able to exhibit a linear
dynamic response in the full admissible range of displacements. Conclusions and future
perspectives are finally reported in Section 5.

2. Numerical Modeling

In this section, the guideline for a fast and accurate modeling of the damping sources
present in MEMS resonant devices will be provided. Moreover, a numerical reduced-order
technique able to efficiently predict the linear and nonlinear dynamics of MEMS resonant
devices without resorting to long and computationally costly finite element simulations
will be presented.

2.1. Quality Factor

Dissipation in a micromachined vibrating structure is measured through the so-called
quality factor Q which is defined as follows:

Q =
2πW
∆W

(1)

where ∆W and W are the energy lost per cycle and the maximum value of energy stored
in the device, respectively. Total dissipation can be determined as the sum of the dif-



Micromachines 2024, 15, 1461 3 of 20

ferent contributions, i.e., thermoelasticity, anchor losses and fluid damping, assuming
perfect decoupling.

Thermoelasticity is an important solid dissipation mechanism for small-scale mechani-
cal devices [30]. It is caused by the complex interaction of acoustic modes with thermally
excited modes in the crystalline lattice. In Figure 1a, a schematic view of such interaction
is reported for a clamped-clamped beam oscillating according to its first flexural mode.
MEMS with significant bending deformations operating at low pressure are indeed typ-
ically dominated by thermoelastic losses. The analytical model proposed by Zener [31]
makes it possible to estimate thermoelastic damping in simple beams undergoing flexural
oscillations. The thermoelastic damping estimation for complex devices can be instead
achieved by solving, according to a fully coupled approach [32] or following the staggered
strategy [33], the fully coupled thermoelastic problem:

ρ
∂2u
∂t2 = divσ, σ = d(ϵ − α(T − T0)I), (2)

ρch
∂T
∂t

= div(kgradT)− αT0
E

1 − 2ν

∂trϵ

∂t
(3)

where u is the displacement field, σ is the stress tensor, d is the elastic tensor, ϵ is the
strain tensor, ν is the Poisson’s ratio, ch is the specific heat, k is the thermal conductivity
and T is the temperature field. In this work, the fully coupled thermoealastic problem in
Equations (2) and (3) will be solved in COMSOL Multiphysics® v.6.1. This choice, despite
being less computationally efficient with respect to other methods based on the solution of
the staggered thermoealastic problem [33], benefits from the user-friendly interface of a
commercial software.

(a) (b)

(c) (d)

Figure 1. Schematic view of (a) thermoelastic damping, (b) anchor losses and (c) fluid damping.
(d) One-degree-of-freedom schematization of the resonant device.

The second source of dissipation usually present in resonant MEMS devices is repre-
sented by anchor losses, which are due to the scattering of elastic waves into the substrate.
Semi-analytical approaches for anchor losses dissipation estimation are available in the liter-
ature [30,34–36]. However, as observed for thermoelastic damping, anchor losses estimation
through semi-analytical approaches is also only possible for very few simple geometries,
while a complete and general numerical strategy is required if complex MEMS geometries
are considered. Dissipative boundary conditions, and in particular the perfectly matched
layer (PML) approach, are then attracting increasing attention in the literature [37,38]. The
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latter consists in a domain that is added to the model in proximity of anchors to mimic
an open and non-reflecting infinite domain. From the implementation point of view, it
corresponds to a coordinate transformation that continues the wave equation into complex
coordinates, replacing propagating waves with exponentially decaying ones. In Figure 1b,
the numerical settings employed for the simulation of anchor losses of a piezoelectric
resonator are reported together with the predicted results.

Implementing a fully 3D PML analysis for the anchor losses estimation requires
the solution of a large-scale generalized complex symmetric eigenvalue problem. If the
mechanical structure vibrates in one of these modes, the quality factor is indeed given
by the ratio between the real and imaginary parts of the eigenvalue, as detailed in [30]
and experimentally validated in [38–40] for cantilever beams oscillating according to
their flexural modes. In this work, anchor losses will be computed through COMSOL
Multiphysics® v.6.1, thus exploiting the user-friendly interface of a commercial code.

The last dissipation source usually present in MEMS resonant devices is represented
by fluid damping, which is caused by the interaction of the moving mechanical components
with the gases inside the package. In Figure 1c, a schematic view of the interaction between
a parallel-plate capacitor and the surrounding fluid is reported for the sake of clarity.
Depending on the pressure inside the package, it is possible to distinguish between different
kinds of fluid damping. A large class of inertial sensors, e.g., accelerometers, works at
pressures in the range of 0.5–1.0 bar. As a consequence, fluid inside the package can be
treated as a continuum and standard Navier–Stokes models can be applied [41] to estimate
fluid damping. If lower pressures p are instead exploited, the rarefied gas dynamics must
be taken into account [42]. To identify the specific regime, the Knudsen number Kn = λ/l,
where λ is the molecule mean free path and l is a typical dimension of the flux, must be
evaluated. If 0.1 < Kn < 10, the flow develops in the so-called transition regime and kinetic
theories, e.g., the Boltzmann equation [30,43], must be solved to estimate fluid damping. If
Kn > 10, the flow enters the free-molecule flow regime and collisions between molecules
can be neglected. A deterministic numerical model has recently been proposed in [44,45]
and experimentally demonstrated in [46].

In this work, since resonant MEMS devices under evaluation work in near-vacuum
condition, we focus on the free-molecular flow regime. To numerically simulate such damp-
ing source, we rely on the simplified, fast and operative simulation tool recently proposed
for the prediction of gas damping occurring in MEMS devices working in near-vacuum con-
ditions [47]. The tool, freely available online [47], is based on lookup tables pre-computed
for the elementary blocks of typical resonant MEMSs, e.g., perforated masses, comb-finger,
parallel plates, free-surfaces and sliding-surfaces, using the Boundary Integral Equation
formulation. The fluid damping can be then estimated for every single elementary block
and, under a perfect decoupling assumption, the total fluid damping can be numerically
recovered. This represents a simplifying hypothesis that allows us to significantly reduce
computational time without losing in terms of accuracy with respect to the monolithical ap-
proach presented in [44,45]. Note that such method is valid only under specific hypotheses
on the natural frequency and on the geometry of the resonant devices, as detailed in [47].

Once the three main damping sources are numerically estimated as described above,
the total quality factor can be computed as follows:

QTOT =

(
1

Q f luid
+

1
QTED

+
1

QAL

)−1

. (4)

2.2. Dynamic Modeling

MEMS resonant devices dynamics can be modeled through appropriate reduced-order
models by assuming the equivalence between the mechanical structure and a one-degree-
of-freedom (1-dof) like the one schematized in Figure 1d. The most general nonlinear 1-dof
model describing the dynamics of a MEMS resonant device reads as follows:
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mq̈(t) + ξ q̇(t) + (km,1 − ke,1)q(t) + (km,2 − ke,2)q2(t) + (km,3 − ke,3)q3(t) = F(t) (5)

where

- m is the modal mass of the system;
- ξ is the damping coefficient (Q = mω

ξ );
- t is the time variable;
- q(t), q̇(t), and q̈(t) are the time-dependent amplitudes of the modal coordinate and of

its time derivatives;
- km,1, km,2 and km,3 are the first-order, second-order and third-order mechanical stiffness

coefficients;
- ke,1, ke,2 and ke,3 are the first-order, second-order and third-order electrostatic stiffness

components;
- F(t) is the amplitude of the time-dependent electrostatic force applied to the system.

The model in Equation (5) can be obtained assuming a modal projection of the dis-
placement field u(t, x), with x spatial coordinate, including only the resonantly excited
mode ϕ(x). This assumption gives the relationship between physical u and modal q co-
ordinates, i.e., u(t, x) = q(t)ϕ(x). From now on, we assume a modal shape function
normalized to unit, i.e., such that max(ϕ(x)) = 1. This assumption simplifies the relation-
ship with the displacement field since its maximum value at a given time ti is given by
ū = max(u, ti) = q(ti). Once the eigenfunction ϕ(x) of the mode of interest is computed
in COMSOL Multiphysics® v.6.1 through a linear modal analysis, the modal mass m is
computed as follows:

m =
∫

Ω
ρϕ(x)2dx, (6)

where ρ is the material density and Ω is the volume of the MEMS resonant structure.
Electrostatic stiffness components and forcing term reported in Equation (5) can

be estimated through integral equation-based models [23]. However, in case of simple
actuation/detection schemes, e.g., parallel-plates or comb-fingers, and the hypothesis of
moderate displacement of the mechanical structure, it is possible to apply an analytical
formula as described in [30]. Despite such approach being less accurate than the one
proposed in [23], it makes it possible to significantly reduce computational costs and be
then employed in the real-time optimization process. Note that an accurate estimation of the
electrostatic stiffness components through the method proposed in [23] can be performed a
posteriori once the optimal geometry is identified.

In particular, the electrostatic force exerted between the deformed structure and a fixed
parallel-plate capacitor can be approximated with a Taylor series expansion around the
undeformed condition. These nonlinear contributions can be later projected into the modal
subspace. Considering that the structures are modelled through an in-plane mode only,
the projection can be written as a line integral along the mid-line of the moving structure
facing the electrode. The resulting expression reads as follows:∫ L

0
ϕ(x)F(t) dx =

ε0V2(t)
2

∫ L

0

(
wϕ(x)

g2 +
2wϕ(x)2q(t)

g3 +
3wϕ(x)3q2(t)

g4 +
4wϕ(x)4q3(t)

g5

)
dx

(7)

where ε0 is the dielectric constant in vacuum, w is the out-of-plane thickness of the silicon
layer, V(t) is the time-dependent voltage difference between the two plates and g is the
gap between parallel-plates at equilibrium.

Each term of Equation (7) can be computed analytically if the structure shows a simple
geometry or numerically in case of complex mechanical structures.

Depending on the actuation/detection scheme employed in the experiments, it is
possible to identify the nonlinear electrostatic stiffness components and the forcing term. In
this work, as detailed in Appendix C, the moving mechanical structure is grounded, while
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a time-varying Vaccos(ωt) signal is applied on the drive electrode, while a constant bias
VDC is applied on the sense electrode, with ω external pulsation.

The forcing term F(t) can be expressed truncating the expansion to the zero-order
term, as follows:

F(t) =
ε0w
2g2

(∫ Ld

0
ϕ(x) dx

)
V2

accos(ωt)2 (8)

where Ld is the driving electrode length. Note that we only account for the Vac-related
contributions, thus neglecting the static force given by the VDC applied on the readout
electrodes. This simplification is because the electrostatic expansion is performed around
the undeformed configuration, using the eigenbases of the structure in the rest position.
When a static load is applied, the induced stresses slightly change eigenmodes and eigen-
frequencies. To avoid a dependence of the eigenspace with respect to the applied potential,
i.e., full-electromechanically coupled problem, we here ignore this contribution. The effects
of this assumption will be discussed in the Result Section.

On the other side, nonlinear electrostatic stiffness components depend only on V2
DC

and read as follows:

ke,1 =
ε0w
g3

(∫ Ls

0
ϕ(x)2 dx

)
V2

DC (9)

ke,2 =
3ε0w
2g4

(∫ Ls

0
ϕ(x)3 dx

)
V2

DC (10)

ke,3 =
2ε0w

g5

(∫ Ls

0
ϕ(x)4 dx

)
V2

DC, (11)

where Ls is the readout electrode length.
Note that the proposed model for electrostatic actuation force and stiffness terms is

valid for capacitive actuation/detection schemes. Different models must be considered in
case of piezoelectric resonators which show a layered structure. Relevant examples can be
found in [48,49].

Nonlinear mechanical stiffness components can be computed with different approaches.
Among the nonlinear reduced-order models proposed in the literature, we mention the
quadratic manifold built from modal derivatives [50,51], the nonlinear normal mode [52,53]
and the direct parametrization method for invariant manifold (DPIM) [54,55] recently
extended to electromechanical systems [56], the deep-learning based approaches [57,58]
and the proper orthogonal decomposition [59].

Here, we will consider the implicit static condensation method. The implicit static
condensation method [20,60], recently tailored for MEMS applications [17,23], relies on
the evaluation of the nonlinear elastic force by statically forcing the structure with body
forces proportional, through a coefficient β, to the eigenfunction ϕ(x). Such method is
very accurate under the hypothesis of moderate transformations; moreover, it can be easily
implemented in a commercial software, thus benefiting from its user-friendly interface.

A series of numerical static nonlinear analyses are run in COMSOL Multiphysics®

v.6.1 spanning the β space and computing the corresponding modal coordinate q, which
in our case, coincides with the maximum displacement ū of the MEMS resonant structure.
The ū(β) relation is numerically computed and then numerically inverted through fitting
procedures, thus obtaining

β(ū) = km,1ū + km,2ū2 + km,3ū3, (12)

from which it is possible to identify the nonlinear mechanical stiffness components to be
inserted in Equation (5) recalling that ū = q.

The described 1-DOF model can be used to predict the dynamics of resonant MEMS
devices because their behavior is usually dominated by one activated eigenmode and all
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the other modes have well-separated frequencies. Moreover, nonlinear couplings between
different modes are often avoided in operation.

Once nonlinear elastic and electrostatic stiffness components are determined, the
amplitude of the resonant device oscillation ū can be determined from Equation (5) through
the multiple scale method [61]:

(
F̄
k1

)2

=

(
2
(

1 − ω

ω0

)
ū +

(
3k3

4k1
− 5

6

(
k2

k1

)2
)

ū3

)2

+

(
ξ

mω0
ū
)2

(13)

where ω0 is the natural frequency of the device defined as
√

k1/m, k1 = km,1 − ke,1, k2 =
km,2 − ke,2, k3 = km,3 − ke,3 and ω is the frequency of the electrostatic force having amplitude
F̄. An alternative numerical approach able to compute the nonlinear solution of Equation (5)
is, for example, the continuation technique available in the MATLAB R2022a MATCONT
package [62].

The goal of this work being to compare numerical results achieved in this section with
experimental data, frequency response curves of the two resonators will be shown in terms
of capacitance variation read on the readout electrode. To move from the frequency response
here computed in terms of maximum displacement to the one shown in Sections 3.3 and 4.3,
the following relation is employed:

∆C(t) =
ε0w
g2

∫ Ls

0

(
ϕ(x)q(t) +

ϕ(x)2q2(t)
g

+
ϕ(x)3q3(t)

g2

)
dx (14)

Note that temperature is considered constant and equal to T = 25◦ in this work. If
temperature effects want to be considered in the modeling, it is necessary to follow the
procedure proposed in [21,33] to update materials properties and consequently obtain a
different dynamic response for every temperature value in the range of interest.

3. Cantilever Beam Resonator

In the present section, a MEMS cantilever beam resonator showing a nonlinear dy-
namic behavior is employed to validate the described numerical model.

3.1. Mechanical Design

In Figure 2a, the general scheme of the resonator is shown where the elongated beam
of in-plane dimension 500.75 µm × 4.5 µm is clamped to the substrate on one side and free
to oscillate on the other side.

(a) (b)
Figure 2. (a) Cantilever beam resonator geometry with dimensions. Parallel-plates electrodes
employed for the capacitive actuation/readout are labeled M, E1 and E2. (b) Eigenfrequency and
modal shape of the cantilever beam resonator computed in COMSOL Multiphysics® v.6.1. The
normalized displacement field is shown in colors.
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Two fixed electrodes are located at the two sides of the resonator at a nominal gap of
3.75 µm to guarantee electrostatic actuation and capacitive readout. Three electric contacts
are also provided, namely M, E1 and E2, to apply different voltages to the moving structure
and the two fixed electrodes, respectively, during the experimental campaign.

To improve robustness of the device during fabrication, a stopper (see close-up view
in Figure 2a), short-circuited with the beam resonator, is placed on the free-end of the
resonator at a distance of 3.75 µm and a reinforcement (see close-up view in Figure 2a) is
added in the most exposed part of the resonator, i.e., close to the clamp.

The cantilever beam resonator is sized to resonate at 24,244 Hz according to its
first flexural mode reported in Figure 2b. Numerical simulations were run in COMSOL
Multiphysics® v.6.1. Note that a nominal over-etch of 1 µm is taken into account.

3.2. Numerical Modeling

The three sources of damping are simulated employing the methods explained in
Section 2.1. The results are summarized in Appendix A.

The beam resonator, tested at low pressure but not in vacuum condition as clearly
described in Section 3.3, shows a quality factor dominated by fluid damping Q f luid as
summarized in Table 1.

Table 1. Numerically estimated quality factors of the beam resonator. QTED and QAL were obtained
via COMSOL Multiphysics® v.6.1, while QFluid was obtained using the tool proposed in [47].

Beam Resonator

QTED 1.82 × 106

QAL 3.24 × 109

Q f luid 64,197
QTOT 62,013

In Table A1, the coefficients present in Equation (5) are summarized.
As expected from the literature [16], geometric nonlinearities in the beam resonator

result in an hardening behavior (km,3 > 0). Electrostatic nonlinearities are instead softening
in nature. Depending on the actuation/detection voltage, the overall dynamic response
of the beam resonator will show a hardening or a softening behavior. Note that the beam
resonator behavior is dominated by the lowest frequency in-plane eigenmode and all the
other modes have well-separated frequencies; moreover, we do not observe any nonlinear
coupling in the experiments. The one-degree-of-freedom approximation of Equation (5) is
then enough to reproduce the dynamic behavior of the MEMS cantilever beam resonator.

3.3. Experimental Tests

The MEMS cantilever beam is fabricated as described in Appendix B and tested
according to the set-up described in Appendix C.

The first experimental campaign performed in air is employed to identify the average
over-etch suffered by the fabricated structure. A VDC of 5 V is applied on electrode E1,
while a Vac of 5 V is applied on electrode E2. In Figure 3a, the frequency response curve
obtained with this setup is reported: an experimental eigenfrequency of 24.11 kHz and a
quality factor of 4.3 are identified through a proper fitting (orange curve). The resonance
frequency numerically computed as a function of the over-etch (blue line) is reported in
Figure 3b, together with the experimental results (orange horizontal line): the identified
over-etch is 1 µm, which is in agreement with the one assumed in the design phase.

To validate the 1-dof nonlinear model described in Section 2.2, experimental frequency
responses are obtained in near-vacuum conditions by employing a custom-build vacuum
chamber. Note that the nominal base pressure is lower than 10−3 mbar, but it can take some
time to reach the target value, thus leading to slightly different fluid damping even if the
same actuation condition is considered.
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In Figure 4, experimental curves are compared with numerical predictions for different
actuation/readout voltages reported in the legend of the graph.

(a) (b)
Figure 3. (a) Experimental frequency response curve of the cantilever beam resonator measured
in air. Identified eigenfrequency and quality factor are reported in the inset. (b) Eigenfrequency
numerical estimation as a function of the over-etch in comparison with the experimental value
(orange dotted line).

(a) (b)

(c)
Figure 4. Comparison between experimental frequency response curves (continuous line) and
numerical predictions (dashed line) for different actuation voltages Vac. The readout DC voltage is
instead kept fixed and equal to (a) VDC = 0.5 V, (b) VDC = 1 V and (c) VDC = 2.5 V.

The cantilever beam resonator, when excited at high voltages, enters the nonlinear
regime showing a softening response, i.e., the frequency response curve bends to the left.
Such behavior is due to the presence of relevant electrostatic stiffness contributions, which
compensate for the mechanical hardening effect until overcoming it.

The proposed numerical model correctly catches the overall softening behavior, and
small discrepancies in the order of 2.45 × 10−3% in terms of natural frequency and 20% in
terms of maximum amplitude, in the worst case scenario, evident from Figure 4, derive
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from the approximations conducted in the model. In particular, we employ a uniform over-
etch for the full mechanical structure. This is a strong assumption considering fabrication
imperfections that can arise in such process. Moreover, in the model, we do not consider any
pre-deflection of the cantilever beam resonator induced by fabrication pre-stresses and/or
by the DC voltage applied on the readout electrode. Such effects, which are reasonably
present in the fabricated device, can be included in the model in order to achieve a better
agreement, as achieved in [48].

To further validate the simulation, we perform a comparison between the experimental
quality factor obtained in low-pressure conditions and the simulation reported in Section 3.2.
In Figure 5, the quality factors identified through the half-power bandwidth technique on
the experimental linear dynamic responses measured for VDC = 0.4 V, 0.5 V, 1 V, 2.5 V, 2.5 V
and Vac = 0.007 V, 0.9 V, 0.05 V, 0.06 V, 0.1 V, respectively, are reported in dots together with
the numerical prediction dotted orange line. A satisfactory agreement between simulation
and experiment is achieved: the identified error is indeed within the 5% which is fully
compatible with the uncertainties on the pressure value inside the chamber, material
thermal parameters and over-etch distribution that strongly influence fluid damping,
thermoelastic dissipation and anchor losses, respectively.

Figure 5. Experimental quality factors versus numerical prediction. The Q percentage variation is
computed as V% =

Qexp−Qsim
Qsim

, where Qexp is the experimental value, and Qsim is the simulation value.

4. Ring Resonator

Aware of the very promising results achieved on the cantilever beam resonator, we
here employ the modeling strategy proposed in Section 2.2, to design a ring resonator with
a linear frequency response in the full admissible displacement range, i.e., around one-third
of the gap.

4.1. Mechanical Design

The mechanical structure of the ring resonator is schematically shown in Figure 6a,
where the main geometric variables are also reported for the sake of clarity.

The idea is to run a parametric optimization by considering the nonlinearity coeffi-
cient NL% as qn objective function to minimize. The nonlinear coefficient is here defined
as follows:

NL% =
max(uL)− max(uNL)

max(uL)
× 100 (15)

where uL and uNL are the ring resonator displacements computed for different actuation
voltages by neglecting and considering nonlinearities, respectively. The admissible range
of actuation voltages is defined such as pull-in is not reached. The gap between the ring
resonator and the electrodes being defined by the process, we here consider Vac amplitudes
which correspond to displacement amplitudes equal to one-third of the gap.
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(a) (b)

(c)
Figure 6. (a) Ring geometry with dimensions. Parallel-plates electrodes employed for the capacitive
actuation/readout are labeled M, E1 and E2. Eigenfrequency and modal shapefunction of the
(b) 0° − mode and the 45° − mode of the ring resonator computed in COMSOL Multiphysics® v.6.1.
The normalized displacement field is shown in colors. (c) Geometric dimensions of the optimized
ring resonator.

Geometric parameters, shown in Figure 6a, are spanned in the admissible range dic-
tated by the fabrication process, described in Appendix B, and the uL and uNL relative to
the two-theta modes shown in Figure 6b are computed for every set of parameters. The
1-DOF model of Equation (5) is used to estimate the nonlinear displacement field uNL of
each mode, separately. Despite the fact that the ring resonator dynamic behavior may lead
to some interactions with the (almost) degenerated in-plane modes, in the present imple-
mentation, the frequencies of the modes are too far apart to lead to nonlinear couplings.
The geometry is indeed kept symmetric even if the single-crystal silicon is not isotropic.
Furthermore, as confirmed in the experiment section, we do not observe any saturation
phenomena, i.e., one of the effects of degenerated mode coupling [57,58,63]; thus, a 1-DOF
modeling is sufficient for the scope of this paper. Independently on the values assumed
by the geometric parameters, both geometric and electrostatic nonlinearities are softening
in nature. An overall softening dynamic response is then expected when the nonlinear
regime is entered. From the optimization procedure, it has been observed that, increasing
the spring thickness (s in Figure 6a), the nonlinear coefficient slightly increases. However,
the biggest influence on the nonlinear coefficient is provided by the ring thickness (h in
Figure 6a): bigger h results in higher nonlinearities.

Aware of the outcome of the parametric optimization process, structural parameters
of the optimized ring resonator are finally identified such as to have spurious modes as
distant as possible from the two in-plane elliptical modes, while still preserving a good
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linear behavior. The ring thickness h indeed also determines the relative position of the
two-theta modes of interest with respect to the lower in-plane spurious modes and higher
out-of-plane modes. In particular, increasing h, the frequency difference with lower and
higher spurious modes increases and decreases, respectively. Moreover, increasing the
spring thickness s, 0° − mode and 45° − mode become closer in frequency to lower in-plane
spurious modes. Spring thickness is therefore set equal to the minimum value allowed by
the process. The influence of the number of the rounded springs is also investigated since
it also governs the position in frequency of the different modes.

The optimized ring resonator shown in Figure 6c consists of a circular ring of diameter
1060 µm linked to a central anchor through eight semi-elliptical springs of in-plane thickness
4.4 µm. Eight equally-sized electrodes are positioned outside the circular ring at a distance
of 2.8 µm to allow for the electrostatic actuation and capacitive readout. Note that a nominal
over-etch of 1.4 µm is here already taken into account. Such value is identified from a
visual inspection of the SEM of the outer ring of the fabricated ring resonator (Appendix B).
However, different over-etches are expected in different parts of the structure due to the
fabrication process.

The optimized ring resonator oscillates according to the two in-plane elliptical modes
shown in Figure 6b, namely 0° − mode and 45° − mode, at frequencies 70,358 Hz and
74,574 Hz, respectively. The closest spurious modes consist in an out-of-plane movement
of the springs (at 59,700 Hz) and of the external ring (at 84,100 Hz). Degenerate in-plane
spurious modes are also present: they consist in pure in-plane translations of the ring and
resonate at 14,700 Hz. Resonant frequencies are here estimated through modal analysis run
in COMSOL Multiphysics® v.6.1.

As for the cantilever beam resonator, also in this case, three electric contacts are
provided, namely M, E1 and E2, to guarantee different testing conditions.

4.2. Numerical Modeling

Quality factors of the two-theta modes of the optimized ring resonator are estimated
employing the methods explained in Section 2.1. In particular, QTEDs of 20,247 and 17,284
are obtained for the 0° − mode and 45° − mode, respectively. The different thermoelastic
quality factors estimated for the two nominally identical modes of the ring resonator are
due to the orthotropic nature of the single-crystal silicon employed for fabrication (see
Appendix B). Anchor losses (QAL) were also estimated through the PML technique in
COMSOL Multiphysics® v.6.1, but since the results are orders of magnitudes higher than
QTED, they are here neglected for the sake of simplicity. Fluid damping is also neglected,
the ring resonator being tested in high-vacuum conditions.

Coefficients of the one-degree-of-freedom model obtained as explained in Section 2.2
are summarized in Appendix A

In Figure 7, the frequency responses of the optimized ring resonator numerically
simulated for Vac spanning in the admissible range (up to 3 V) are reported. They indeed
correspond to a maximum displacement of 0.9 µm, as shown in the right axis of Figure 7.
The softening behavior is below 10−5% for maximum admissible displacements equal to
0.9 µm, thus demonstrating the effectiveness of the proposed a priori design optimization.

4.3. Experimental Tests

The ring resonator is characterized in a vacuum probe station (ARS PS-L Flow Cryostat,
Advanced Research Systems 7476 Industrial Park Way, Macungie, PA 18062 (USA)) at a
pressure below 10−4 mbar. A VDC of 5 V is applied on electrode E1, while Vac of 1.5 V is
applied to the E2 electrode.

Three nominally identical ring resonators are characterized in the linear regime, i.e.,
R1, R2, R3. Results in terms of natural frequency and quality factor are summarized in
Table 2. Experimentally measured frequencies are comparable to the ones obtained from
simulations: the small differences are related to over-etch variations with respect to the
nominal one considered during the design.
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Figure 7. Frequency responses of the optimized ring resonator numerically simulated for Vac spanning
from 1.5 V to 3 V. VDC is kept equal to 5 V.

Table 2. Resonance frequency f0 and quality factor Q obtained from experimental data.

R1 R2 R3

f0 (0° − mode) 70,745 − 70,745
Q (0° − mode) 17,300 − 17,450
f0 (45° − mode) 74,991 75,010 74,854
Q (45° − mode) 15,398 14,878 15,531

The experimental quality factor, obtained through fitting of experimental results, is
slightly lower than the predicted one. This can be justified by the fact that QTED, which
is the main dissipation source for the ring resonator under study, strongly depends on
material thermal properties. In the model here proposed, linear expansion coefficient
α = 2.53 × 10−6 1/K, heat capacity at constant pressure Cp = 702.93 1/(Kg K) and thermal
conductivity k = 148 W/(m K) for single-crystal silicon are obtained from [33] and can
differ from the actual ones. In Figure 8, quality factors QTED computed through COMSOL
Multiphysics® v.6.1 for the 0° − mode by sweeping values of α and k in a reasonable range
(blue plane) are reported for the sake of clarity in comparison with the experimental one
(red plane). It is then evident that a small variation in such material parameters can justify
the discrepancy between experiments and numerical predictions. The effect of Cp variation
on QTED is negligible. The same considerations are also valid for QTED discrepancies in
45° − mode.

Figure 8. QTED simulated in COMSOL Multiphysics® v.6.1 by sweeping linear coefficient of thermal
expansion α and thermal conductivity k (blue surface). The average value of experimental QTED is
also reported for comparison (red plane).
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A comparison between experimental and numerical frequency responses is finally
shown in Figure 9 and a satisfactory agreement is found. Differences both in terms of reso-
nance frequencies and in capacitance variations can be related to over-etch non-uniformities
and to the assumptions made in the one-degree-of-freedom model.

Figure 9. Comparison between the average value of experimental frequency response curves (con-
tinuous line) and numerical prediction (dashed line) for 45° − mode. R1, R2 and R3 are tested at
VDC = 5 V and Vac = 1.5 V: shaded area represents the variance in experimental data.

5. Conclusions

A fast and efficient simulation tool able to predict a priori and in real time the dynamic
response of MEMS capacitive devices has been proposed and validated on an MEMS can-
tilever beam resonator. A ring resonator able to operate in the linear regime is then designed
through the proposed simulation tool. The two MEMS resonators were also fabricated
and experimentally tested. A satisfactory agreement between numerical predictions and
experimental data is found, thus proving the effectiveness of the proposed simulation tool.

The numerical tool here proposed represents a great step further towards the automa-
tization of the MEMS design process. It indeed balances the versatility, user-friendly nature,
predictability and real-time computation ability with acceptable engineering assumptions.
The main challenge in the creation of such a design tool is indeed to be able to keep com-
putational costs low while preserving the accuracy and the a priori characteristic of more
complex and less user-friendly approaches.

Future work will be addressed to improve the agreement between experiments and
numerical predictions while keeping computational costs low. As an example, a non-
uniform over-etch and pre-stresses induced by both the fabrication process and the DC
voltage will be accounted for in the model. To do so, an extensive experimental campaign
will also be carried out to improve and characterize the fabrication process.
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Appendix A. One-Degree-of-Freedom Model Coefficients

Table A1. Mechanical nonlinear stiffness components computed through the implicit static condensa-
tion technique. Electrostatic nonlinear stiffness terms as function of the applied voltages.

Beam Ring 0°−Mode Ring 45°−Mode

m [ng] 13.068 375.26 366.57
km,1 [N/m] 0.3242 73.38 81.38
km,2 [N/m2] −3 × 10−12 1.69 × 104 −3.67 × 103

km,3 [N/m3] 1 × 107 −7.33 × 1010 −9.66 × 1010

ke,1 [µN/µm] 7.56 × 10−4 V2
DC 6.51 × 10−4 V2

DC 9.33 × 10−4 V2
DC

ke,2 [µN/µm2] 7.48 × 10−5 V2
DC 3.09 × 10−4 V2

DC 5.28 × 10−4 V2
DC

ke,3 [µN/µm3] 8.34 × 10−6 V2
DC 1.24 × 10−4 V2

DC 2.69 × 10−4 V2
DC

F [µN] 3.04 × 10−4 V2
ac 5.10 × 10−4 V2

ac 6.11 × 10−4 V2
ac

Appendix B. Fabrication

The fabrication of the devices is performed at PoliFAB, the cleanroom of Politecnico di
Milano, starting from an existing substrate. The starting substrate is a silicon on insulator
having 10 µm or 5 µm of n-type doped silicon, for the beam-resonator and the ring-resonator,
respectively, on top of 1 µm of silicon oxide. The silicon is grown epitaxially starting from a
seed layer of mono-crystal silicon having (100) orientation. The ⟨100⟩-single-crystal silicon
material parameters presented in [64] were employed here. Density ρ is assumed equal to
2330 Kg/m3, while the stiffness matrix C reads as follows:

C =



c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44

 (A1)

where c11 = 165.7 GPa, c12 = 63.9 GPa and c44 = 79.6 GPa.
On top of the silicon, a layer of gold is deposited together with a barrier layer to avoid

inter-diffusion of the gold into silicon and to promote adhesion. The main process steps to
obtain the MEMS from this substrate are reported in Figure A1. Steps (a) to (d) show the
patterning of the metal layer. A photoresist mask is deposited by means of spincoating be-
fore exposing the desired pattern using a maskless aligner (model MLA100 from Heidelber
Instruments Mikrotechnik GmbH, Mittelgewannweg 27, 69123 Heidelberg, Germany).

The sample is then dipped into a developer to remove the photoresist mask that
was exposed during lithography. The photoresist mask is used to protect and define the
contacts during the metal etching. Chemical etching is used to remove the gold layer and its
adhesion layer from the silicon substrate (d). After patterning the metal contacts, a second
litographic step is performed in order to define the MEMS structures. Following litography,
Si-etching is performed with Dry Reactive Ion Etching with the Plasmalab 100 tool from
Oxford Instruments Plasma Technology, 56.8 mi, Severn Beach, Bristol, UK Govier Way,
Western Approach Distribution Park, Severn Beach, Bristol BS35 4GG, adopting a BOSCH-
like process. Finally, dry release process (h) is used to remove the wafer’s sacrificial layer.
This step is performed using vapor HF in the tool VPE100 from Idonus sàrl, Rouges-Terres
61 2068 Hauterive, Neuchâtel, Switzerland.

In Figure A2a,b a scanning electron microscope (SEM) image of the two devices in
this work are reported. The light gray areas are silicon, while the white ones are gold. The
darker zones are instead the ones where the material was etched.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure A1. (a) Spin coating and soft baking of the photoresist; (b) Maskless photolithography for the
gold layer; (c) Photoresist development; (d) Gold layer etching; (e) Spin coating and soft baking of
the photoresist, and silicon layer maskless photolithography; (f) Photoresist development; (g) DRIE
for silicon layer; (h) Release process via HF.

(a) (b)
Figure A2. SEM image of the (a) cantilever beam and (b) ring resonators.

Appendix C. Experimental Set-Up

The electrostatic actuation and capacitive readout are performed by following the
scheme reported in Figure A3. The actuation signal is a purely AC signal (Vac(t)) applied
to the fixed electrodes named E1 in Figures 2 and 6a. The force (F) acting on the device
is then proportional to the square of the AC voltage; therefore, the actuation frequency is
twice the frequency of the AC signal:

F(t) =
∂C0

∂x
(Vaccos(ωt))2 =

∂C0

∂x
V2

ac
(1 + cos(2ωt))

2
. (A2)

The capacitive readout is performed using a lock-in amplifier (LIA—Zurich instrument
model HF2LI from Zurich Instruments AG, Technoparkstrasse 1 8005 Zurich, Switzerland)
together with the dedicated transimpedance amplifier. The moving mass (M) is indeed
connected to the virtual ground of the transimpedance amplifier (TIA), while the second
fixed electrode (E2) is polarized using a DC voltage (VDC). The output current follows a
sinusoidal function at the MEMS resonance frequency, with a maximum amplitude equal to

IMEMS =
∂C0

∂t
VDC. (A3)

The current is read by the TIA and converted into a voltage before reaching the input
of the LIA. As shown in Figure A3 and mentioned before, the frequency of the current
produced by the MEMS is twice the frequency of the excitation voltage (ω). For this reason,
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the LIA demodulates the signal using the second harmonic of the output signal, thus
extracting the amplitude and phase of the MEMS displacement. This technique is effective
in eliminating feed-through signals as the electric signal and the MEMS signal are at two
different frequencies. Despite such advantage, the signal of the device is still partially
covered by parasitic capacitance which couples the second harmonic of the reference signal;
therefore, the signal is post-processed in Matlab to eliminate the residual parasitic back-
ground. Numerical fitting of the post-processed experimental signal is finally performed to
identify the natural frequency and the quality factor Q of the devices under test.

(a) (b)

(c) (d)

Figure A3. Experimental set-up employed for the electromechanical characterization of the cantilever
beam and the ring resonator. (a) Schematic view of the set-up. Lock-in and transimpedence amplifier
are connected to the vacuum chamber where the MEMS is placed. (b) Schematic view of the
connections. AC and DC voltage are applied to the electrodes of the MEMS structure, while the TIA
virtual ground is connected to the mass M. (c) Image of the vacuum chamber used for testing the
cantilevers. Devices are bonded on a PCB carrier as shown in the inset. (d) Image of the vacuum
probe-station used for testing gyroscopes.
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