
  

Abstract – The paper develops the model of a V-shape IPM 
motor for automotive applications. The approach, design 
oriented, considers saturation and cross-coupling, by suited 
saturation factors. A torque sizing equation is obtained, 
independent on the winding data, and the main constructional 
data are gained, considering the corner operating point. Then 
the detailed motor design is completed, and the calculation of 
the torque-speed curve is extended also in the flux-weakening 
zone. FEM analysis validates the model. 
 

Index Terms—IPM motors, cross saturation, saturation 
functions, magnetic circuits, sizing equations, analytical design, 
flux weakening, inductance calculation, variable speed drive.  

I.   INTRODUCTION 

HE IPM motor is widely popular in automotive 
applications, thanks to a few positive features:  high 

torque density and efficiency, wide flux weakening region 
extension, simple stator structure and compact rotor layout. 
However, its model is not simple, for several reasons: critical 
rotor bridges sizing; highly saturated operating conditions, 
with significant cross-coupling; cogging and torque ripple. 

During the last years, significant efforts have been devoted 
to improving the IPM motor model.  

Most of the papers are aimed to develop accurate models 
for the motor operation analysis: in [1], some equivalent 
magnetic circuits are settled, valid for no-load operation; [2] 
compares some rotor topologies, by considering phasor 
diagrams; [3]-[8] analyze air-gap flux density distributions, 
develop equivalent magnetic circuits, and identify d-q flux-
current links and inductance curves, by FEM analysis. 

Other papers are focused on control aspects: d-q flux-
current curve linearization [9], rotor layout analysis and FEM 
parameter identification for sensorless control [10]. 

Some papers are oriented to the motor design, sometimes 
with analytical approach [11]-[13]; in other cases, 
optimization methods are developed, based on FEM [14]. 

Moreover, a few commercial software tools (Speed®, 
Ansys MotorCad®, Ansys Rmxprt®) developed the motor 
design: however, usually input data are motor dimensions, 
while no sizing equations are offered, to start the procedure. 

This paper develops an IPM motor sizing procedure, 
implemented in MathCad®, based on a torque sizing 
equation: it includes saturation and cross-coupling effects by 
suited pu saturation factors. Section II defines the motor 
layout, and some basic quantities. Section III develops the q-
axis saturation model. Section IV defines the rotor bridges 
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and gains the PM flux cross-coupling saturation function.  
Section V develops the sizing torque function and finds the 
optimal phase advance. Section VI obtains winding and core 
data. Section VII calculates reaction factors and electrical 
parameters. Section VIII presents performance calculations 
in the full operating range, and compares results with FEM. 

II.   IPM MOTOR LAYOUT AND BASIC DATA  

Fig. 1 shows the IPM motor layout, with the main 
dimensions, and Table I reports some motor basic data.  

Some comments are suitable: 
 the choice of stator diameter D and air-gap width g leads to 

calculate other design quantities directly and accurately; 
 a 2-layer winding, with q = 5/2, limits cogging and torque 

ripple; with coil pitch yc = 6, the winding factor is kw= 0.91; 
 the last row of Table I reports iterative quantities, defined 

later and updated during the design process: here the final 
values are given, reached in one or two iterations. 

III.   q-AXIS SATURATION MODEL 

The Hfe(Bfe) lamination magnetization curve, provided by 
the manufacturer, is suitably extended to high Bfe values, in 
such a way that the end incremental permeability tends to 0.  

  

Fig. 1.  IPM motor layout, with the main dimensions. 

TABLE I 
MAIN SPECIFICATIONS, USED MATERIALS, BASIC DATA 

Corner point: torque Tc [Nm]; speed Nc [RPM]  200; 2900 
Max. speed NM [RPM]; DC link V: Vdc [V]  13500; 650 
Materials: stator and rotor laminations; PM  M235-35A; N48UZ-SGR 
PM param.: Br20°C [T]; rec [pu]; kBr [%/°C]  1.37; 1.05; 0.1 
Winding ref. temper.; PM ref. temper. [°C]  180; 140 
Stator bore D; air-gap g; slot open. bas  [mm]  160; 1; 2 
Phases; poles No: p; slots/(polephase) No: q  3; 8; 5/2 

Parameters: bt.s ; hte.g ; anis.o ; cd ; EV  0.704; 52.4; 4.11; 0.201; 0.65 
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Fig. 2.  Extended curve of pu permeability of M235-35A lamination. 

The corresponding pu apparent permeability curve fe.pu(Bfe), 
from (1), is shown in fig. 2: depending on the equations to be 
managed, Hfe(Bfe) or fe.pu(Bfe) will be used. 

   fe.pu fe fe fe feB B H B     0
    (1) 

In the next sections, the following function will be used: 

    G Gy x root f x, y , y  :     (2) 

yG is a guess value of y, that satisfies the condition: f(x, y)=0. 
A first case of (2) is (3), that gives the peak flux density Bt 

in the q-axis aligned tooth as a function of the air-gap peak 
flux density BgI, due to the q-axis reaction current I only: 
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(3) follows from the equality between the pole air-gap flux 
and the sum of the flux in the teeth in one pole and in the 
slots in one pole, in parallel with the teeth; bt.s = bt/s is the 
tooth width over tooth pitch ratio, kst = 0.97= stacking factor. 

Assuming that the magnetic voltage drop (MVD) in the 
teeth Ut is the main ferromagnetic voltage drop contribution, 
the saturation ratio function, due to q-axis reaction, equals: 
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hte.g = hte/g is the tooth heigth over air-gap width ratio; kC = 
1.071 is the Carter’s factor, function of s= (D)/(3pq), bas, g.  
(4) leads to obtain the peak stator MMF MI (acting along q 
axis), able to give the peak flux density BgI in the air-gap, by 
(5), and its inverse function, (6) (with  used instead of gI): 

     I gI gI C sat gIM B B g k B    0
     (5) 

    q I gIG q gIGB M root M B M ,B      ,  (6) 

where Mq is the q axis reaction MMF. 
Finally, the saturation factor sM can be defined as follows: 

     sM q q q CM B M M g k         0    (7) 

Fig. 3 shows the saturation factor curve: it should be 
observed that the shape of sM for small Mq values is similar 
to the initial behavior of the curve fe.pu(Bfe) in fig. 2. 

IV.   ROTOR BRIDGES SIZING AND CHECK  
AND PM FLUX SATURATION FACTOR  

Fig. 4 shows the field map of the IPM motor under no-
load conditions, for the following design parameters (fig. 1): 

hm = 6mm;   = 78 deg;  wob = 0.5mm; wib = 2.5mm;  
whr = 0.55s = 4.6mm; hry = 1.5whr = 6.9mm;  m = 0.754 pu. 

 
Fig. 3.  Saturation factor as a function of the peak q-axis MMF Mq. 

 

Fig. 4.  Field map of the IPM motor, under no-load operating conditions. 

Assuming these data, the other rotor sizes are defined by the 
following equations (where  = D/p is the pole pitch): 

pole shoe extension:  ps m r m rb D D              (8) 

outer bridge length:    2 2ob r hr psh w b     = 3mm   (9) 

side PM angle:   12ob r ob r macos h D w D h         (10) 

inner bridge length:    ib mh h sin   = 5.9mm     (11) 

half rib radial length:   hr mh h sin   = 5.2mm     (12) 

length d12 (fig. 1):         12 2r ob md D w sin p        (13) 

length d23:          1

23 12 2ibd d w tan


             (14) 

length d24:       1

24 122r ob md D w d tan p


          (15) 

pole shoe radial depth:  23 24ps obd d d w   = 8.5mm     (16) 

int. rotor :   2ir r ps ib ryD D d h h     = 115.4mm    (17) 

PM segment width:    12 2m ibb d w sin   = 22.1mm (18) 

As concerns the width of the bridges, wib = 5 wob occurs: 
in fact, wob is sized at the minimum value (respecting the 
practical rule wob > wlam = 0.35mm), while the centrifugal 
force fmax at the maximum speed, due to the mass m1p  of pole 
shoe and PM segments, is sustained by the inner bridge: 

specific max centrifugal force:   max p av maxf m R  2
1     (19) 

ideal stress of the inner bridge:   ib.i max ib stf w k        (20) 

actual stress (Kt=1.66: concentration factor): ib t ib.iK   (21) 

(bridge stress)/(lam. yield strength): 0 783ib y .lam .   .  (22) 

The analysis of the cross coupling effect of the q-axis 
reaction MMF on the air-gap flux delivered by the PM can 
be based on the equivalent magnetic network of fig. 5. 
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Fig. 5.  Per-pole magnetic network for the analysis of the cross coupling 
effect of the q-axis reaction MMF on the air-gap flux delivered by the PM. 

The network, for unity length in axial direction, consists of a 
concentrated parameter rotor sub-network (bottom part), and 
of a distributed parameter sub-network (top part), modeling 
the distributed toothed portion and MMF. The pole shoe, that 
connects the two sub-networks, has a  scalar magnetic 
potential equal to Ups, unknown. The equations are: 

q-axis MMF distribution     q e q q em ,M M sin        (23) 

PM residual specific flux:   2PM r mB b          (24) 

PM specific permeance:  1
0 2PM rec.pu m mb h           (25) 

inner bridge MVD:     ib ib ib ib fe.pu ibU B h B B   0 (26) 

outer bridge MVD:     ob ob ob ob fe.pu obU B h B B   0  (27) 

outer br. flux density:    ob ob bG bGB U root U B U ,B     (28) 

inner br. flux density:    ib ib bG bGB U root U B U ,B    (29) 

leakage flux:       2ps ib ps st ib ob ps st obU B U k w B U k w    (30) 

air-gap specific flux, as delivered by the rotor: 

   gr ps PM PM ps psU U U          (31) 

air-gap MVD distribution (with Ups unknown): 

      g e q ps gL ps q e fe t gL hte.gu ,M ,U ,b U M sin H B b g        (32) 

air-gap flux density distribution bgU (with Ups unknown): 

   g e q ps gUG
gU e q ps gUG gUG

C
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b ,M ,U root b ,b
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air-gap specific flux, as received by the stator: 
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pole shoe potential, as a function of the reaction MMF Mq: 

     ps q gr ps G gs ps G q ps GU M root U U ,M ,U     
      (35) 

flux density distribution in the air-gap, as a function of Mq: 

   g e q gU e q ps qb ,M b ,M ,U M   
      .   (36) 

In fig. 6, (35) and (36) are shown; it can be observed that: 
 the pole shoe potential highly changes with Mq increase; 

    

Fig. 6.  Left: pole shoe potential as a function of Mq; right: air-gap flux 
density distribution (Mq parameter); Mq values: 0, 0.5, 1, 1.5, 2, 2.5, 3 kA. 

 the flux density distribution bg is distorted if Mq rises; 
 moreover, due to local teeth saturation, the bg increase on 

the left is lower than the bg decrease on the right. 
By integrating bg(e, Mq) within the pole shoe extension (|e| 
< m/2) gives the specific air-gap flux, due to PM: 

    g q gr ps qM U M          (37) 

It is useful to introduce the PM flux saturation factor: 

     0M q g q gM M       ,    (38) 

whose dependence on Mq is shown in fig. 7. 
In (38) g(0) = go is the specific air gap flux within the pole 
shoe extension, due to PMs, with zero Mq, corresponding to 
the flat flux density yellow distribution in fig. 6 right: 

go = g(0) = 38.801 mWb/m .   (39) 

Another diagram of interest is the leakage ratio ℓ/m 
between the leakage flux in the bridges and the PM flux, 
shown in fig. 8: it gives information about the magnetic 
effect of the bridges sizing. As can be seen, in no-load 
conditions the leakage ratio equals 16.6%, that is acceptable; 
however it increases significantly at the increase of Mq. 
The no-load flux density Bgo of the bg(e,0) distribution is: 

 go go mB      = 0.819 T    (iterative result) ,  (40) 

while its fundamental component equals: 
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              =0.965 T (41) 

The no-load specific fundamental flux is given by: 

 1 12g o g oB      = 38.616 mWb/m .   (42) 

 
Fig. 7.  PM flux saturation factor as a function of Mq. 

 

 
Fig. 8.  Leakage ratio (reference to the magnetic network of fig. 5). 
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Finally, it is assumed that the fundamental air-gap flux due to 
the PM, as a function of Mq, can be calculated as follows: 

   1 1g q g o M qM M       .    (43) 

V.   TORQUE FUNCTION 

As well known, the phasor diagram of fig. 9 leads to 
obtain the expression (44) of the electromagnetic torque: 

 13
2 PM q q d d q

p
T I L L I I            .   (44) 

Considering that the winding data are unknown at this 
stage, all the quantities should be given in terms of loadings: 
air-gap flux density Bg1 and linear current density .  
So, the reaction MMF M, the saturation functions sM, M, 
and the PM flux linkage PM1 should be rewritten as follows: 

3 2 2w c
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      2M w, k cos                 (47) 
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 .   (48) 

with Uc = phase series connected conductors. The Lq  Ld 

difference equals the reaction inductance difference: 

q d q dL L L L           (49) 

In case of isotropic rotor and unsaturated motor, the reaction 
inductance is given by (50), with is specific permeance: 

 2
.is c isL U p          (50) 

   2 2
0 3is w Ck g k         = 15.543 H/m .  (51) 

The unsaturated reaction inductances are expressed as: 

do d .isL c L     ,    qo q .isL c L    ,  (52) 

with cq, cd reaction factors: their ratio is the anisotropy ratio: 

an.o qo do q dL L c c    .     (53) 

In the following, the d-axis reaction inductance Ld will be 
considered as unsaturated: 

d doL L    .       (54) 

The reason for this model approximation, acceptable for a 
practical design approach, is the high d-axis equivalent air-
gap (gd.eq = gkC + hm/rec), that linearizes the d - Id curve. 

In contrast, the q-axis reaction inductance is saturated, 
because of the small equivalent air-gap (gq.eq = gkC): 

 q qo sL L ,      .      (55) 

 
Fig. 9.  Phasor diagram of the IPM motor. 

Thus, the inductance difference LqLd can be written as: 

  1q d do an.o sL L L ,           .   (56) 

By considering (44) (in which Id < 0), (48) and (56), it is 
useful to introduce the following pu torque function fT(, ): 
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. (57) 

fT(, ) consists of an alignment term, fT.al, and of an 
anisotropy term, fT.an: fig. 10 shows fT(, ) as a function of , 
with parameter . As can be observed, for any  value, a 
value of  exists for which fT(, ) shows a maximum. Thus, 
(58) allows to obtain the optimum phase advance opt as a 
function of the linear current density , as shown in fig. 11: 

    opt T optG optG optGroot df , d ,       .    (58) 

From (44), the optimal specific torque (for unity length in 
axial direction) can be written as: 
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   ,   (59) 

and its trend is shown in fig. 12. 
A few comments: 
 Tℓ always increases for increasing  values, even if beyond 

75 kA/m the Tℓ() slope slightly decreases, corresponding 
to the trend of maximum values in fig. 10; 

 

Fig. 10.  Torque function (57), for  values: =0, 25, 50, 75, 100, 125 kA/m. 

  
Fig. 11.  Optimal phase advance, as a function of the linear current density. 

 
Fig. 12.  Optimal specific torque, as a function of the linear current density. 
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 the choice of  mainly depends on thermal considerations 
(steady-state or short-term thermal conditions). 

c = 90 kA/m will be adopted for the corner point (a water-
glycol cooling system is supposed); it implies: 

opt.c = opt(c) = 48.15 deg,      (60)  

and the following values occur: 

  0 909c c opt .c, .            (61) 

  0 667sc s c opt.c, .           (62) 

 c cT T   = 2.461 kNm/m .    (63) 

Thus, the needed lamination stack length ℓ equals: 

c cT T  = 81.3 mm .       (64)  

VI.   WINDING DATA AND STATOR CORE DIMENSIONS 

In the following, the detailed stator design is defined: 

fundam. pole flux:  1 1g c c g o     = 2.853 mWb       (65) 

conductor EMF:       12cc c g cE f    = 1.225 Vrms  (66) 

EMF over Voltage ratio (iterative result):     EV = 0.650  (67) 

max. inverter phase voltage     0 95 2 2invM dcV . V      (68) 

conductors in series:      127 30c.th EV invM w ccU V k E .     (69) 

parallel paths:       a = p/2 = 4           (70) 

conductors in slot (theor.)  3 25 46th c.th su U a N .     (71) 

actual conductors in slot:     2 0 5 26thu round . u       (72) 

actual conductors in series:     3 130c sU N u a       (73) 

phase EMF:   144 9c cc wE E U k .    Vrms        (74) 

phase current:     3c cI p U      = 116 Arms      (75) 

path current:     c.path cI I a            (76) 

theoretical current density:  Scth = 8 A/mm2         (77) 

conductor cross section:   3 625u c.path cthA I S .  mm2   (78) 

max wire diameter:   wmax as clearanced b d          (79) 

strands in hand:     24 8w u wmaxn ceil A d          (80) 

wire diameter:      4wcu u wd A n   = 0.75 mm      (81) 

copper cross section in slot:   24cu.slot w wcuA u n d        (82) 

copper filling factor in slot:     0 4cu .           (83) 

slot cross section:   slot cu.slot cuA A           (84) 

tooth width:    1ts g o ts s stb B B k   = 5.89 mm     (85) 

bt.s ratio: 0 704ts sbt . s b .       (iterative result)       (86) 

minor slot width:    1 2 as s ts sb D h N b N           (87) 

auxiliary slot parameter:      sk tan tan N           (88) 

slot height:     2 2
1 1 12 2 4 2sloth b b k A b k         (89) 

total tooth equivalent height:  1 2teq as hrh h b h h       (90) 

ratio hte.g (iterative result):       52 44teqh g .             (91) 

major slot width:    2 1 2b b h k      = 7.44 mm     (92) 

stator yoke width:     1 2sy g o ys sth B k    = 20.0 mm    (93) 

ext. stator :    2es as ts syD D h h h     = 294.5 mm . (94) 

Eq. (90) shows that the equivalent tooth height is higher than 
the stator tooth height: in fact, it includes the rotor rib height, 
saturated by Mq roughly in the same way of the stator teeth. 

VII.   ELECTRICAL PARAMETERS 

The peak reaction flux densities with isotropic rotor are: 

 0d .is d CB M k g       ,  0q.is q CB M k g     . (95) 

In the following, the reaction coefficients cd, cq are 
obtained: they are defined assuming unsaturated conditions 
(apart from the bridges, that are considered as consisting of 
air, because completely saturated by the PM leakage fluxes). 

A.   d-axis reaction  

The air-gap MVD due to d-axis reaction equals: 

   gd e d e ps du M cos U      ,  where    (96)  

   3 2d w c dM k U p I         and   (97) 

Upsd is the d-axis reaction pole shoe potential (unknown). 
The distribution of d-axis reaction flux density in the air-gap 
is expressed as follows: 

 

   

 

0 0 2

0
2 2 2 2

2

gd e C e m

ob
d e m e e.rib m

r

d .is e e.rib e

u k g   ,   

hp
b  , 

D

B cos  ,  





        


          

       

   (98) 

The radial permeance of the rotor internal V-shape holes is: 

  0 2ps.ir m m ib mb h cos w h            ,  (99) 

and the North flux from inner rotor part to the pole shoe is: 

ps.ir ps.ir ps dU       .     (100) 

The flux delivered by the pole shoe to the air-gap is given by: 
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 .   (101) 

The air-gap permeance in front of the pole shoe equals: 

   0g m Ck g         .     (102) 

By imposing the following condition: 

ps.ir ps.g     ,        (103)  

the pole shoe scalar magnetic potential is obtained: 
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from which, using (96)-(98), bd(e) is completely defined. 
Its fundamental component can be calculated as: 

     2

1 0
4d d e e eB b cos d


         ,    (105) 

and the d-axis reaction coefficient equals: 

1 0 201d d d .isc B B .    (iterative result).   (106) 



  

B.   q-axis reaction  

The air-gap q-axis reaction flux density distribution is: 
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 .   (107) 

Its fundamental component can be calculated as: 

     2

1 0
4q q e e eB b sin d


             (108) 

and the q-axis reaction coefficient equals: 

1 0 825q q q.isc B B .     .     (109) 

Thus, the unsaturated anisotropy ratio is given by: 
4 11anis.o q dc c .    (iterative result).   (110) 

C.   Resistive and inductive parameters 

The end-winding length can be estimated as: 

     2 3 2ew as ts cD h h p q y            (111) 

and the AC phase resistance can be expressed as: 

        a cu.Tref c ew w wR f k f U a n A        , (112) 

where ka( f ) is the classical additional loss coefficient; at 
corner and maximum speed it is: ka(fc) =1.004; ka(fM) =1.094. 

The inductive parameters are estimated as follows: 
slot leakage specific permeance: 

    0 1 13sl s as as ash b b b b h b           (113) 

harmonic fields leak. coeff.    21 5 10h h cq, y .       (114) 
harm. fields leakage specific permeance:  h h is      (115) 

teeth tips leak. sp. perm.:  0 0 8t m asg b . g        (116) 

end-winding leakage sp. permeance:  60 3 10ew .        (117) 
tot. leak. spec. perm.: sl h t ew ewq q         (118) 
phase leakage inductance:   2

cL U p        (119) 

synchr. L: d dL L L   ;      q q q qL M L M L       (120) 

VIII.   OPERATION ANALYSIS, FEM VALIDATION 

In the following, the IPM motor operating quantities, both 
in MTPA and in Flux Weakening (FW) range are evaluated, 
considering winding data and quantities at the terminals: 

no-load flux linkage:   1 1 2 2o w c g ok U            (121) 

PM flux sat. factor:       3I cI , U I p ,          (122) 
electromagnetic torque: 
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(123) 

opt.  angle:       M MG MG MGI root dT I , d ,        (124) 

torque in MTPA range:       MTPA MT I T I , I           (125) 

corner p. I:    116 0c MTPA cG c cGI root T I T ,I .   Arms (126) 

corner point opt. phase adv.:   48 15Mc M cI .    deg (127) 

Vd component:  
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      (128) 

Vq component:  
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  (129) 

phase voltage:       2 2
d qV I , , f V I , , f V I , , f       (130) 

FW  ang:     
cFW .I c FWG c FWGf root V I , , f V ,      (131) 
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 (132) 

Fig.13 shows the transient FEM simulation of the 
electromagnetic torque, corresponding to the operating 
condition of the corner point; the following remarks arise: 
 the average torque is very close to the corner point torque 

(Tavg/Tc = 0.9996); this shows the sizing method goodness; 
 the peak-peak torque ripple equals 3.48%, that confirms the 

good initial choice of q = 5/2 slots/(polephase). 
 Fig. 14 shows the phase advance as a function of speed, 

calculated analytically by (132). 
For 0 < N < NM, with I = Ic, and by (123), (130), (132), the 

torque and voltage analytical curves follow, shown in fig. 15, 
together with the corresponding FEM calculated values (for 
N = 1, 2, 2.9, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 13.5 kRPM). 

 
Fig. 13.  Torque waveform in the base point, from FEM transient simulation. 

 
Fig. 14.  Phase advance as a function of speed, calculated by (132). 

 
Fig. 15.  Torque and voltage, calculated analytically by (123) () and (130) 
(---) and by FEM (points  and▲), using phase advance (132). 
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As can be observed, while the agreement in MPTA range (N 
< Nc = 2.9 kRPM) is good, a significant discrepancy occurs 
in FW range; the reasons for this behavior are: 
 in MTPA range, the imposed condition is T = Tc, by (126); 

in FW range the condition is V = Vc, by (131), that suffers 
of a lower parameter accuracy in V estimation, by (130); 

 the sensitivity of torque and speed on the angle , low in 
the MTPA range, increases significantly with the increase 
of speed above Nc = 2900 RPM, as shown in fig. 16. 

Fig. 17 shows again the  curve calculated analytically (ANA), 
together with a  curve calculated by FEM (FEM): each point 
of the FEM curve has been chosen in such a way to obtain the 
same torque calculated analytically (by (123), with I = Ic and 
 from (132)): by inserting the FEM values in (130), more 
congruent V values follow, as can be seen in fig. 18. 

IX.   CONCLUSION 

A model of the IPM motor has been developed, oriented 
to design, considering saturation and cross-coupling effects. 

 
Fig. 16.  Sensitivity of pu torque and pu voltage as a function of  change 
(up to 0.02 pu, with respect to  from (132)); N = 0, 3, 6, 9, 12, 15 kRPM. 

 
Fig. 17.  Phase advance as a function of speed: ANA(N) = calculated 
analytically by (132); FEM(N) = calculated by FEM (in such a way to obtain, 
for each point, a torque equal to that calculated analytically). 

 
Fig. 18.  Torque and voltage, calculated analytically by (132) and 
numerically by FEM, using phase advance FEM of fig. 17. 

A sizing equation has been obtained, not dependent on 
winding data and useful to guide the sizing procedure: this 
approach not only is quicker compared with FEM, but it 
gives an insight into the motor electromagnetic behavior. 

Comparison with FEM calculations have shown very 
good agreement in the corner point and in MTPA range, 
while some inaccuracies arise in FW range, mainly due to 
imperfect estimation of the phase advance. 
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