
Physics-informed Neural Networks for
parameter estimation in cardiac

mechanics ?

Stefano Pagani ∗ Francesco Regazzoni ∗ Matteo Salvador ∗

Daniel Fraulin ∗ Filippo Zacchei ∗ Alfio Quarteroni ∗,∗∗

∗ MOX - Department of Mathematics, Politecnico di Milano,
P.zza Leonardo da Vinci 32, 20133 Milano, Italy.
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1. INTRODUCTION

Medical imaging represents a relevant tool for diagnosing
heart diseases. Different techniques are available, such as
echocardiography, magnetic resonance imaging, computed
tomography scans, and nuclear medicine. These are as-
sociated with an increasing space-time resolution, which
may capture crucial details for the clinical decision-making
process. However, the more detailed ones might have con-
traindications for some patients. For this reason, numerous
research efforts are directed toward developing new math-
ematical methods to process those images (especially the
most accessible ones) and extract meaningful indications.
Deep Learning methods have been very successful in this
area (Hernandez et al., 2020) by providing tools for the
automatic segmentation of geometry and structural de-
fects (resulting, e.g., from myocardial infarction) and for
the computation of clinical biomarkers (such as cardiac
motion and strains). Nevertheless, Deep Learning methods
generally require large datasets for the training phase,
which are not always available.

The knowledge of the physical laws governing the my-
ocardial motion may balance this lack of data, enabling
the training of the so-called physics-informed neural net-
works (PINNs) introduced in Raissi et al. (2019). PINNs
consist of interconnected neurons, whose parameters are
trained by minimizing the mismatch between the output
and the available noisy data, together with additional
terms encoding the partial differential equation (PDE)
and the boundary conditions characterizing the physical
phenomenon.

Compared to standard model personalization strategies
(Chabiniok et al., 2016) based on iterative schemes re-
quiring the numerical approximation of the forward and
the adjoint problems at each iteration, PINNs enable the
simultaneous numerical estimation of both the displace-
ment and the parameters of interest. This is achieved by
automatic differentiation, which provides a flexible and
computationally inexpensive tool to evaluate the PDE
residual and the boundary conditions in their strong form.
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Fig. 1. Undeformed geometry of a parallelepiped with a
fixed base.

In this framework, promising proofs of concept have been
already presented in Zhang et al. (2020) and Nguyen-
Thanh et al. (2020).

In this work, we study the feasibility of using PINNs in
estimating parameters of interest for a 3D mechanical
problem starting from scattered measurements of the
displacement. We also focus on the effects of the density
of data and the associated level of noise on the accuracy
of the estimation.

2. MATHEMATICAL MODELS AND METHODS

We consider a quasi-static non-linear elastic problem to
model the deformation of a parallelepiped with a fixed
base (see Fig. 1) and different boundary conditions. We
analyze traction, compression, and shear scenarios.

The mechanical problem for the undeformed configuration
reads as follows:{

−∇ ·PPP(d) = 0 in (0, L)× (0,W )× (0,W ),

+ B.C.,
(1)

where d = d(x) is the displacement, L and W define the
dimensions of the parallelepiped, and PPP is the first Piola-
Kirchhoff stress tensor. Additional boundary conditions
are considered for the three different scenarios (traction,
compression, and shear). After introducing a hyperelastic
energy W = W(FFF), the first Piola-Kirchhoff stress tensor
PPP can be computed as:

PPP =
∂W
∂FFF

.
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Among the several constitutive laws available for cardiac
mechanics (Quarteroni et al., 2019), we use the following
quasi-incompressible Neo-Hookean hyperelastic energy:

W =
µ

2
(J−2/3tr(CCC)− 3) +

λ

4

(
(J − 1)2 + log2(J )

)
where J = det(FFF) is the determinant of the deforma-
tion tensor, CCC = FFFTFFF is the right Cauchy-Green ten-
sor and, finally, µ and λ are the mechanical parameters
(shear and bulk modulus, respectively). We construct in
silico datasets by solving Eq. (1) with the Finite Element
Method, by employing the Dolfin Python library (Logg
et al., 2012). We sample the displacement in different
locations of the computational domain, and we possibly
add Gaussian noise to the pointwise values:

dobs
i = d(xi;µex) + εi εi,j ∼ N (0, σ2),

where µex is the exact value of the parameter to be es-
timated. Indeed, we adopt PINNs to find the unknown
parameter µ ⊂ P ⊂ R by solving a statistical learn-
ing problem in which the numerical solution of Eq. (1)
is approximated by means of a fully-connected Neural
Network NN , formed by a set of neurons distributed
over different layers. Moreover, NN is characterized by
a set of parameters W, namely weights and biases, which
are tuned during the optimization process by solving the
following PDE-constrained optimal control problem:{

min
µ,W

(Jfit(W) + Jphys(µ,W))

s.t. d(x) = NN (x; W).

We minimize the loss function composed of the weighted
sum of different components leveraging data and physics.
Specifically, the mismatch between the output of the NN
and the available Nobs noisy observations is measured
through the following component of the loss function:

Jfit(W) =
ωfit

Nobs

Nobs∑
i=1

‖NN (xi; W)− dobs
i ‖2.

Here, ωfit > 0 is an additional hyperparameter that
weights the contribution of the available data with respect
to the information coming from the physical model. The
latter is encoded in Jphys, which is made by several
terms containing the residuals of the PDE and boundary
conditions, expressed in the strong form:

Jphys(µ,W) = ωphysRphys(d;µ,W)

+

Nbc∑
i=1

ωibcB
i
phys(d;µ,W),

with scalar hyperparameters ωphys and ωibc, i ∈ 1, . . . , Nbc,
that leverage the contributions of the mathematical model.
In particular, Jphys contains a regularization term Rphys

formed by the norm of the PDE residual:

Rphys(d;µ,W) =
1

Nc

Nc∑
i=1

‖ − ∇ ·PPP(NN (xci ; W))‖2,

which is averaged over the set of collocation points {xci },
i = 1, . . . , Nc.

The training ofNN parameters, along with the estimation
of the unknown parameter µ, is attained by combining
the first-order ADAM optimizer (Kingma and Ba, 2014)
with the second-order BFGS optimizer. Specifically, we
develop a multistage training strategy that allows robustly

performing data fitting and parameter estimation over a
wide range of initial guesses for the NN parameters W.

3. DISCUSSION

We studied the ability of PINNs to estimate the solution
of Eq. (1) and the unknown parameter µ for different
benchmark test cases based on a 3D non-linear elastic
problem. We investigated the performances of PINNs in
different setups, showing the dependence of the accuracy in
parameter estimation with respect to the level of noise and
density of measures. Hyperparameters may be suitably
tuned by properly weighting the different components
of the loss function to handle large noise and low data
regimes.

PINNs have proven to be a powerful and flexible tool for
solving the parameter estimation problem in this context.
This will potentially lead to the clinical exploitation of
PINNs. Nevertheless, finding an automatic optimal tuning
of the various hyperparameters in the algorithm remains
an open challenge.

REFERENCES

Chabiniok, R., Wang, V.Y., Hadjicharalambous, M., As-
ner, L., Lee, J., Sermesant, M., Kuhl, E., Young, A.A.,
Moireau, P., Nash, M.P., Chapelle, D., and Nordsletten,
D.A. (2016). Multiphysics and multiscale modelling,
data-model fusion and integration of organ physiology
in the clinic: ventricular cardiac mechanics. Interface
Focus, 6(2), 20150083.

Hernandez, K.A.L., Rienmüller, T., Baumgartner, D., and
Baumgartner, C. (2020). Deep learning in spatiotem-
poral cardiac imaging: A review of methodologies and
clinical usability. Computers in Biology and Medicine,
104200.

Kingma, D.P. and Ba, J. (2014). Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Logg, A., Mardal, K.A., and Wells, G. (2012). Automated
solution of differential equations by the finite element
method: The FEniCS book, volume 84. Springer Science
& Business Media.

Nguyen-Thanh, V.M., Zhuang, X., and Rabczuk, T.
(2020). A deep energy method for finite deformation hy-
perelasticity. European Journal of Mechanics-A/Solids,
80, 103874.

Quarteroni, A., Dede’, L., Manzoni, A., and Vergara, C.
(2019). Mathematical Modelling of the Human Cardio-
vascular System: Data, Numerical Approximation, Clin-
ical Applications. Cambridge Monographs on Applied
and Computational Mathematics. Cambridge Univer-
sity Press.

Raissi, M., Perdikaris, P., and Karniadakis, G.E. (2019).
Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems in-
volving nonlinear partial differential equations. Journal
of Computational Physics, 378, 686–707.

Zhang, E., Yin, M., and Karniadakis, G.E. (2020).
Physics-informed neural networks for nonhomogeneous
material identification in elasticity imaging. arXiv
preprint arXiv:2009.04525.

MATHMOD 2022 Discussion Contribution Volume, 10th Vienna Conference on Mathematical Modelling, Vienna, Austria, July 27-29, 2022

62




