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Figure 13. Visual greenery field. On the left is the key map of NIL 22, with the area shown on the 
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street. On the right, red arrows are the resulting view vectors; blue arrows are the streamlines of a 
potential green experiential connectivity field. Source: Base map from Open Street Map™; elabora-
tion by the author. 

Figure 13. Visual greenery field. On the left is the key map of NIL 22, with the area shown on the right
highlighted in blue. This area includes part of the Politecnico, the sports camp, and the main street.
On the right, red arrows are the resulting view vectors; blue arrows are the streamlines of a potential
green experiential connectivity field. Source: Base map from Open Street Map™; elaboration by
the author.
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Figure 14. Representation of the GVI heatmap. On the left is the key map of NIL 22, with the area
shown on the right highlighted in blue. This area includes part of the Politecnico, the sports camp,
and the main street. On the right, this picture highlights that green elements tend to be concentrated
along the main streets. Source: Base map from Open Street Map; elaboration by the author.

6. Discussion

The results of this study provide information on the visibility of urban greenery in
different cardinal directions and its spatial distribution within the examined area. The
first key finding is the unequal visibility of greenery, with significant variations between
the north and south directions. These findings suggest that directional bias must be
considered when assessing the visual perception of urban vegetation, as greenery is not
evenly distributed in all orientations. Although urban vegetation is generally placed on the
sides of the street, this is not always true, such as at a green roundabout or when a street
reaches a park or a square. Previous studies focused on the one-directional view along
a path or distributed 360◦ views, with panoramic approaches losing specific directional
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information, while non-panoramic studies may fail to capture the broader context of
urban greenery [31]. In particular, the vectorial analysis of green intensity across the four
cardinal directions highlights the variation in green visibility depending on the viewer’s
orientation. This consideration suggests that using GVI as a unique value in the analysis
can introduce bias in the evaluation of the urban green experience. This study overcomes
these limitations by including all cardinal directions, synthesizing global information, and
preserving directional data, thus capturing a comprehensive yet directionally detailed
analysis of urban green. Geostatistical analyses, particularly Moran’s I, revealed that
greenery exhibits a spatial clustering tendency, with specific areas showing concentrated
peaks. This positive autocorrelation is aligned with the observed heterogeneity in the
visual distribution, which confirms that the greenery is not evenly spread. Furthermore,
variograms in different azimuth directions reveal that the spatial continuity of greenery can
vary significantly, ranging from 404 m to 1076 m depending on the direction, indicating a
directional dependence on how greenery is distributed throughout the area.

The most intense vectors occur on tree-lined avenues along roads such as Edoardo
Bassini Street, where the effect is amplified by the grass partially covering the tram tracks.
This highlights an ambiguity: despite the abundance of greenery, the usability of these
green spaces is limited by physical barriers such as tram tracks and roads, which detract
from their immersive quality. An exception is Pacini Street, near the Piola metro station,
where the section is such that it can offer facilities for sociality. This observation goes
beyond the scope of several studies [26,33,34,36,38–42], which measured GVI in different
cities but did not address the anisotropic distribution of greenery or its potential barriers to
usability. The angular drift from the street axis does not occur facing green roundabouts
such as Piola Square, where the presence of greenery is directly observable from radial
roads. Analysis of the directional differences in the visibility of greenery further supports
the notion of an uneven visual field of greenery. The results of the Friedman test and
subsequent post hoc analysis show that specific direction pairs, particularly those involving
south-facing views, exhibit the most significant variability. This suggests that individuals’
experience of urban greenery is highly dependent on their orientation within the city. The
representation of visible green as a vector field shows areas where the opposition of close
visual directions generates a sort of turbulence. In contrast, aligned field bands show
areas where the vectors’ directions are coherent between opposing zones. Changes in
the vectors’ alignment can suggest incongruency between parts of the neighborhood that
are not always mutually connected by crossings and that do not allow for a continuous
green immersion experience; a particular case where visual connection corresponds to a
possibility of movement through the greenery is constituted by the area of the Politecnico
di Milano’s rectorate, where it is possible to pass from one perimeter tree-lined avenue to
another by walking through the internal campus gardens.

It is worth noting that the sum of vectors following image segmentation implies the
existence of two possibilities of zero values: (a) a system at rest, with a lack of green in all
directions; (b) a balanced system, with the identical presence of green in all directions. The
second possibility is unlikely because the pictures represent an urban environment seen
from a street; however, these boundary conditions are considered acceptable, as the research
aimed to identify the preferential orientation toward specific directions; thus, obtaining the
zeroed vector in the possible presence of 360◦ of green represents indifference toward any
specific direction. Moreover, the vectorial representation is to be considered complementary
to the areal one. However, it is important to acknowledge that this vectorial approach,
while informative, does not fully capture the complexity of how humans perceive or access
greenery in real-world environments. Human perception is influenced by multiple sensory
and contextual factors that go beyond the directional quantification of green visibility, and
this limitation should be recognized. It is also important to emphasize that this type of
analysis is not intended to replace the GVI but to complement it by providing additional
information on directional preferences. Relying on an omnidirectional GVI, especially
over large areas, risks losing important details about the local distribution of greenery.
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A 360◦ average GVI may not accurately reflect the urban layout at specific observation
points. For example, different scenarios, such as a single tree in a built environment
versus multiple small plants on facades, can produce similar GVI values despite differing
visually. Although the areal GVI derives from directional information, the differences in
the directional distribution of greenery are crucial to understanding the perceptual reality
of urban spaces, indicating that GVI alone may not capture all the relevant information.

Therefore, the vectorial representation of urban green visual elements provides infor-
mation on (i) the prevailing visual direction at a point that maximizes the view of green,
(ii) the intensity of green in that direction compared with the surrounding elements, and
(iii) the directional coherence between neighboring places. In response to the first research
question, the proposed vector-based method quantified the intensity and spatial distribu-
tion. This approach allows for a clearer understanding of directional visibility, showing
significant differences among the cardinal directions. This directional specificity is essential
to represent urban green spaces with more precision, which the traditional GVI, as an
omnidirectional measure, fails to capture. Regarding the second research question, vector
representation provided information on the directional coherence across the area, high-
lighting zones of alignment and turbulence across the urban landscape. The alignment of
vectors’ directions between adjacent areas reflects the congruence of green visibility, which
is not easily observable by omnidirectional GVI alone. This allows for a more nuanced
interpretation of how greenery is experienced in different parts of the urban fabric.

This type of analysis is tied to panoramic photography conducted along the road axis
and, therefore, does not allow for an exact evaluation of perception from different positions,
such as that of a pedestrian on the sidewalk. The images were all captured during daylight
hours, so assessing how perception varies under special lighting conditions such as dawn
or dusk is impossible. Additionally, it was not possible to set different dates to retrieve
shots in different seasons. The height of the viewpoint is higher than the average height of
a standing person or a driver on the wheel, since it was taken from above the roof of a car;
this may distort the human viewpoint. The fineness of viewpoints’ discretization along the
path can vary the representation, providing more detailed information and, therefore, more
localized phenomena. Future work on urban perception would benefit from considering
the effects of continuous exposure to greenery compared with punctuated or fragmented
ones by adopting such a method to select paths with different qualities and features.
Furthermore, future research could focus on integrating different models to quantify urban
greenery by combining satellite images with street-level greenery information, such as the
GVI and NDVI. This approach should also incorporate the directional aspects highlighted
in this study to create a three-dimensional view of the urban environment. Furthermore,
recent developments in deep learning processes present an opportunity to handle large-
scale geospatial datasets, enabling more refined predictions and analyses, mainly when
dealing with detailed urban data.
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Appendix A. Scoping Review

The following appendix details the structured approach used for the literature review.
First, the query structures employed for the Scopus, Web of Science, and Dimensions
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databases are presented. The PRISMA method was used to identify relevant publications.
Finally, the identified dataset was validated based on the principle of saturation, ensuring
comprehensive coverage of the topic. The search queries were designed to identify peer-
reviewed publications related to the Green View Index (GVI) from 2013 to 2023. The Scopus
query is focused on the “green view index” and was limited to journal articles and reviews
published in English. The Web of Science search followed a similar structure, refining
the results by relevance. For dimensions, the term “streetview” was added to narrow the
broad scope of the initial results. The SPIDER framework inspired the conceptual query
framework [61,62]: S, sample; PI, phenomenon of interest; D, study design; E, evaluation;
R, research type. The “publication type” replaced the “research type” section, and the
evaluation was subsequently carried out following the PRISMA protocol; the queries were
not limited in terms of the design of the study (Figure A1).
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Figure A1. Query organization framework. The three blocks are related to the literature sample, the
phenomenon of interest, and the type of publications to be included in the search.

Scopus query: TITLE-ABS-KEY (green AND view AND index) AND PUBYEAR > 2012
AND PUBYEAR < 2024 AND (LIMIT-TO (SRCTYPE, “j”)) AND (LIMIT-TO (LANGUAGE,
“English”)) AND (LIMIT-TO (PUBSTAGE, “final”)) AND (LIMIT-TO (DOCTYPE, “ar”) OR
LIMIT-TO (DOCTYPE, “re”)).

Web of Science (WOS) query: https://www.webofscience.com/wos/woscc/summary/
9e9f03ab-6caa-4646-8a7e-99b127ef7add-af2a77e2/relevance/1 (accessed on 28 October 2023).

Dimensions query: “green view index streetview” in full data; publication year was
2023 or 2022 or 2021 or 2020 or 2019 or 2018 or 2017 or 2016 or 2015 or 2014 or 2013;
publication type was article or chapter.

Due to the extensive nature of the results for dimensions, it was necessary to in-
troduce the keyword ‘streetview’ to obtain a more focused outcome compared with the
search queries.

The results of these three databases were merged into a single dataset from which
duplicates were removed (Table A1). The saturation principle was followed to validate the
dataset, adopting Google Scholar™ as a comparison set. Details of the procedure are pro-
vided on the following pages, and the schema is shown in Figure A2. The three publications’
dataframes obtained were concatenated, obtaining 1810 items; 47 items have been removed
due to missing DOI information; out of the remaining 1763, 447 duplicates were removed.
After this filtering, the resulting dataframe contained 1316 items. The process of including
datasets to obtain a comprehensive framework could virtually continue without limit; for

https://www.webofscience.com/wos/woscc/summary/9e9f03ab-6caa-4646-8a7e-99b127ef7add-af2a77e2/relevance/1
https://www.webofscience.com/wos/woscc/summary/9e9f03ab-6caa-4646-8a7e-99b127ef7add-af2a77e2/relevance/1
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this reason, it was necessary to establish a threshold of validity for the items collected.
The validation of the items was achieved using the saturation principle applied through a
comparison of Google ScholarTM (GS) with the final dataset of publications derived from
the previous phases. The saturation check used a dataset not initially included to verify
the percentage of duplicates that would appear in the original set by merging a new set
of items. The comparison was processed under two different conditions: (i) the complete
GS dataframe; (ii) the GS dataframe filtered by citations per year (CpY), considering the
same threshold that was applied to the original dataframe (CpY = 10). The percentage must
be >75% for the complete dataframe and >60% for the filtered dataframe to be valid. The
following are the levels overlapping for comparing the DOI in the two datasets:

• Overlapping percentage of whole GS = 83.33% (saturation confirmed);
• Overlapping percentage of filtered GS = 66.66% (saturation confirmed).

This means that including other sources would produce a nearly identical item list to
the one initially chosen to represent the state-of-the-art in this field.

Google Scholar™ Query: The search on Google Scholar™ was conducted using Harz-
ing’s Publish or Perish tool v. 8.9.4538.8589 2023.07.07.1629 [63] by setting the following pa-
rameters:

• Title: green view index;
• Keywords: green view index;
• Years: from 2013 to 2023;
• Maximum results: 200;
• No patents.

Citations per year filtering was used to obtain the most influential publications, and a
threshold of 10 citations per year was applied to be included in the screening phase. The
resulting subset contained 159 items (1157 were removed).

Title screening: In this phase, the relevant terms were street view, street greenery, Green
View Index, view factors, street-level images, and eye-level greenness. Other excluded
publications were on satellite images, remote sensing, and crop health assessment. Title
screening resulted in 35 items (124 were removed).

Abstract screening: In this phase, publications on transport not explicitly citing the GVI
and publications not implying street-eye level images were excluded. Abstract screening
resulted in 32 items (3 were removed).

Full text screening: In this phase, a publication was excluded because it was not related
to the research questions.

To better describe the framework of the current research, one publication that was
not initially included in the original dataframe was added; Table A2 reports on these
publications with their motivations. The ultimate set of publications included 32 items.
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Table A1. List of publications included after full test evaluation.

Title Authors Year Description

Assessing street-level urban
greenery using Google Street
View and a modified green

view index [26]

Li, Xiaojiang; Zhang,
Chuanrong; Li, Weidong;

Ricard, Robert; Meng,
Qingyan; Zhang, Weixing

2015
Automated calculation of the GVI and its
rationalization compared with the previous work
in 2009

View-based greenery: A
three-dimensional assessment

of city buildings’ green
visibility using Floor Green

View Index [33]

Yu, SY; Yu, BL; Song, W; Wu,
B; Zhou, JH; Huang, Y; Wu, JP;

Zhao, F; Mao, WQ
2016 Three-dimensional evaluation of greenery

How green are the streets? An
analysis for central areas of
Chinese cities using Tencent

Street View [34]

Long, Ying; Liu, Liu 2017

Using conventional methods is generally
time-consuming and expensive. To address this
issue, the authors developed an automatic method
using a street-view service while also borrowing and
modifying ideas from existing studies

Green streets—Quantifying
and mapping urban trees with

street-level images and
computer vision [38]

Seiferling, Ian; Naik, Nikhil;
Ratti, Carlo; Proulx, Raphäel 2017 Quantifying the amount and distribution of trees

in cities

Quantifying street tree
regulating ecosystem services
using Google Street View [39]

Richards, Daniel R.; Edwards,
Peter J. 2017

The study analyses hemispherical photographs
extracted from Google Street View to quantify the
proportion of green canopy coverage at 50 m
intervals across more than 80% of Singapore’s road
network and estimates the proportion of annual
radiation that would be blocked from reaching
ground level by the canopy. The study aimed to map
the provision of street trees’ ecosystem services and
prioritize areas for new planting by identifying
streets or street sections with low shading

How green are the streets
within the sixth ring road of

Beijing? An analysis based on
Tencent Street View pictures

and the Green View Index [35]

Dong, RC; Zhang, YL;
Zhao, JZ 2018

This article aimed to quantify the street greenery in
the sixth ring road in Beijing, analyze the relations
between road parameters and the GVI, and compare
the visible greenery of different types of roads

Impacts of street-visible
greenery on housing prices:

Evidence from a hedonic price
model and a massive street

view image dataset in
Beijing [40]

Zhang, YL; Dong, RC 2018

The authors selected 25 variables that were classified
into three categories (location, housing, and
neighborhood characteristics) and introduced an
index called the horizontal green view index (HGVI)
into a hedonic pricing model to measure the value of
visual perceptions of street greenery in neighboring
residential developments

Mapping sky, tree, and
building view factors of street

canyons in a high-density
urban environment [36]

Gong, Fang-Ying; Zeng,
Zhao-Cheng; Zhang, Fan; Li,

Xiaojiang; Ng, Edward;
Norford, Leslie K.

2018

This study aimed to develop an approach to
estimate and map the SVF, TVF, and BVF of street
canyons in complex urban living environments,
such as high-density urban areas in Hong Kong

The effect of street-level
greenery on walking behavior:

Evidence from Hong
Kong [44]

Lu, Yi; Sarkar, Chinmoy;
Xiao, Yang 2018

This study highlighted the impact of eye-level street
greenery on the decision to walk and the total
walking time for a large urban population of
Hong Kong

Using deep learning to
examine street view green and

blue spaces and their
associations with geriatric

depression in Beijing,
China [28]

Helbich, M; Yao, Y; Liu, Y;
Zhang, JB; Liu, PH; Wang, RY 2019

This study was among the first to examine the link
between mental disorders (that is, depressive
symptoms) and exposure to natural environments at
the street level among elderly people in China
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Table A1. Cont.

Title Authors Year Description

Associations between
overhead-view and eye-level
urban greenness and cycling

behaviors [43]

Lu, Y; Yang, YY; Sun, GB;
Gou, ZH 2019

The article’s main objective was to examine the
association between urban greenness and the odds
of cycling for Hong Kong participants, using two
ways of measuring urban greenness: overhead-view
greenness and eye-level street greenness. The article
also aimed to investigate the impacts of the
activity-influencing built environment and
individual-level covariates on cycling behavior. The
findings of the study could help planners and
designers build a cycling-friendly city by improving
citizens’ daily exposure to urban greenness

Using Google Street View to
investigate the association

between street greenery and
physical activity [45]

Lu, Yi 2019

This discusses the association between street
greenery and physical activity in a study conducted
in Hong Kong. The study used free Google Street
View images to assess the quantity and quality of
street greenery, and associated them with the
recreational physical activity in green outdoor
environments of 1390 participants in 24 housing
estates in Hong Kong. Multilevel regression models
revealed that the quality and quantity of street
greenery were positively linked to recreational
physical activity

Evaluating street view
exposure measures of visible

green space for health
research [27]

Larkin, A; Hystad, P 2019

This examined how exposure to green space or
natural environments can affect physical and mental
health outcomes. The study concluded that urban
green spaces are associated with multiple physical
and mental health benefits, but they are often
difficult to measure accurately. The authors used
Google Street View (GSV) technology to collect
images from Portland, Oregon, and map out the
amount of green space in each image, calling it the
Green View Index (GVI). They also compared their
GVI findings with traditional measures of green
space exposure such as the satellite-based
normalized difference vegetation index (NDVI), %
tree cover, % green space, % street tree buffering,
distance to parks, and several neighborhood
socioeconomic variables

Perceptions of built
environment and health

outcomes for older Chinese in
Beijing: A big data approach
with street view images and
deep learning technique [8]

Wang, Ruoyu; Liu, Ye; Lu, Yi;
Zhang, Jinbao; Liu, Penghua;
Yao, Yao; Grekousis, George

2019

The article discussed the association between the
attributes of the built environment and health
outcomes for older adults, focusing on perceptions
of the built environment. The study used street view
images and deep learning techniques to assess
perceptions of the built environment for a large-scale
study area. The results suggest that perceptions of
safety, depression, beauty, wealth, boredom, and
liveliness are all associated with the physical and/or
mental health outcomes of older adults
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Table A1. Cont.

Title Authors Year Description

Measuring daily accessed
street greenery: A

human-scale approach for
informing better urban
planning practices [5]

Ye, Yu; Richards, Daniel; Lu,
Yi; Song, Xiaoping; Zhuang,
Yu; Zeng, Wei; Zhong, Teng

2019

This was a research article on a measurement
approach for quantifying urban residents’ daily
exposure to eye-level street greenery by integrating
high-resolution measurements of both greenery and
accessibility. The proposed approach used Google
Street View (GSV) images and street networks
collected from Open Street Map (OSM) and
combined them with machine learning algorithms to
accurately measure visible greenery. The integration
of greenery and accessibility helps to measure
greenery from a human-centered perspective, and it
provides a tool for urban planners to prioritize
planning interventions

A review of urban physical
environment sensing using
street view images in public

health studies [49]

Kang, Yuhao; Zhang, Fan;
Gao, Song; Lin, Hui; Liu, Yu 2020

This article reviewed urban physical environment
sensing using street view images in public health
studies. The article systematically reviewed the use
of street view images to detect urban environments
in public health studies, describing the
characteristics of street view images and
summarizing the challenges of quantifying urban
environments in terms of data and methodology.
The manuscript included a discussion of future
research directions that would benefit public health
research and practices in urban
environment research

Examining the spatial
distribution and temporal
change of the green view

index in New York City using
Google Street View images

and deep learning [41]

Li, XJ 2021
This study mapped the spatial distribution of and
temporal changes in street tree canopies using
ground-based images in New York City

The distribution of greenspace
quantity and quality and their

association with
neighbourhood

socioeconomic conditions in
Guangzhou, China: A new

approach using deep learning
method and street view

images [42]

Wang, RY; Feng, ZQ; Pearce, J;
Yao, Y; Li, XJ; Liu, Y 2021

This study developed a new machine learning
method to assess the quality of green space based on
street view images collected from Guangzhou,
China. It also examined whether disparities in
greenspace exposure are linked to the
neighborhood’s socioeconomic status (SES)

Street view images in urban
analytics and GIS: A

review [31]
Biljecki, Filip; Ito, Koichi 2021

This provided a comprehensive systematic review of
the state of the art of how street-level images are
currently used in studies about the built
environment. The article outlined how street-level
images are now an entrenched component of urban
analytics and GIScience; most of the research relies
on data from Google Street View, which are used
across many domains with numerous applications

Using Google Street View
images to capture micro built
environment characteristics in
drug places, compared with

street robbery [7]

Zhou, Hanlin; Liu, Lin; Lan,
Minxuan; Zhu, Weili; Song,
Guangwen; Jing, Fengrui;
Zhong, Yanran; Su, Zihan;

Gu, Xin

2021

The authors calculated safety scores, extracted
physical elements, and built logistic regression models
to examine the impact of the micro-built
environment’s variables on drug activities. The results
suggested that less place management and higher
accessibility increase the risk of drug activities. The
study also suggested that these street-view variables
may generally apply to other types of crime research
in the micro-built environment
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Table A1. Cont.

Title Authors Year Description

Can’t see the wood for the
trees? An assessment of street

view- and satellite-derived
greenness measures in

relation to mental health [51]

Helbich, Marco; Poppe,
Ronald; Oberski, Daniel; van

Emmichoven, Maarten
Zeylmans; Schram, Raoul

2021

The article examined the association between urban
greenness and mental health using different
greenness metrics, including remotely sensed and
street view measurements. The results indicated that
different methods of measuring greenness may
capture different aspects of greenery in urban
environments. However, these differences in the
exposure metrics did not translate into significant
associations with mental health outcomes

Modelling and mapping
eye-level greenness visibility
exposure using multisource

data at high spatial
resolutions [32]

Labib, SM; Huck, JJ; Lindley, S 2021

This article introduced a methodology for modeling
and mapping eye-level greenness visibility and
exposure at high spatial resolutions. The
methodology used multisource spatial data and
applied viewshed analysis with a distance decay
model. The aim was to capture eye-level greenness
visibility and exposure at observers’ locations on the
ground. The article compared top-down greenness
exposure metrics with eye-level greenness
exposure metrics

Assessing bikeability with
street view images and

computer vision [29]
Ito, Koichi; Biljecki, Filip 2021

This discussed the use of street view images (SVI)
and computer vision (CV) to evaluate bikeability,
which was defined as the extent to which cycling is
facilitated in urban areas. An exhaustive index of
bikeability composed of 34 indicators was
developed and applied in Singapore and Tokyo to
evaluate the usefulness of these technologies. The
results suggested that SVI and CV are adequate for
evaluating bikeability, present a contribution to
transportation and analytics, and are scalable
enough to widely assess the appeal of cycling

Analyzing the effects of Green
View Index of neighborhood
streets on walking time using
Google Street View and deep

learning [47]

Ki, D; Lee, S 2021

This discussed the effects of greenery on walking
time and the importance of examining the
relationship between urban greenery and walking
behavior from multiple angles. It utilized Google
Street View (GSV) and deep learning to calculate the
Green View Index (GVI) by semantic segmentation,
referring to greenness from the visual perspective of
pedestrians. The GVI was found to be more closely
associated with walking time than traditional
greenery variables from an overhead perspective,
such as park areas and the normalized difference
vegetation index (NDVI)

Relative importance of
quantitative and qualitative

aspects of urban green spaces
in promoting health [50]

Zhang, LQ; Tan, PY;
Richards, D 2021

This research examined the relative importance of
quantitative and qualitative aspects of urban green
spaces (UGS) in the promotion of health. The study
examined relationships between multiple UGS
provision indicators and mental and general health
outcomes in Singapore

Urban neighbourhood
environment assessment

based on street view image
processing: A review of

research trends [52]

He, Nan; Li, Guanghao 2021

The selected articles were classified into 5 broad
categories and 15 subcategories of research
directions, with research methods including reviews,
experimental-based research, simulations,
experiments + simulations, and surveys/audits. The
review elaborated on the themes and content trends
in the use of street views in the study of urban
neighborhood environments
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Table A1. Cont.

Title Authors Year Description

Quantifying the shape of
urban street trees and

evaluating its influence on
their aesthetic functions based

on mobile lidar data [37]

Hu, T.; Wei, D.; Su, Y.; Wang,
X.; Zhang, J.; Sun, X.; Liu, Y.;

Guo, Q.
2022

The proposed method for assessing the esthetic
functions of street trees quantified the shape of
greenness, inspired by the skyline’s esthetics. The
authors used LIDAR data and panoramic images to
extract the canopy line, identifying peaks and gaps,
and six indexes to describe the fluctuations and
continuities of street canopy lines. They analyzed
the abundance and spatial distribution of these
indexes alongside esthetic survey responses, finding
significant correlations with human perception.
Compared with indexes of the amount of greenness,
these shape indexes have a stronger influence on the
esthetic beauty of street trees, differing from
previous studies focused solely on
ecological services

Investigating pedestrian-level
greenery in urban forms in a
high-density city for urban

planning [22]

Hua, J.; Cai, M.; Shi, Y.;
Ren, C.; Xie, J.; Chung, L.C.H.;

Lu, Y.; Chen, L.; Yu, Z.;
Webster, C.

2022

The authors developed the Green View Factor (GVF)
to measure pedestrian-level street greenery in Hong
Kong using Google Street View (GSV) images. The
study revealed significant variability in greenery
across different urban forms, with older,
high-density areas showing less greenery, often
correlating with lower incomes. The GVF was
strongly correlated with satellite-derived vegetation
metrics (NDVI), though this varied by urban form.
The findings suggested that the combination of
multiple methods of assessing greenery is essential
for a comprehensive understanding of the
distribution of greenery in urban settings and can
guide equitable urban planning strategies for
high-density cities

Exploring the associations
between neighborhood
greenness and level of

physical activity of older
adults in Shanghai [46]

Xiao, Y.; Miao, S.; Zhang, Y.;
Xie, B.; Wu, W. 2022

Green space was shown to be effective in
encouraging people to undertake physical activity,
while for older people, health conditions and
socioeconomic characteristics were stronger
influences on the amount of physical
activity performed

Analyzing the effects of
nature exposure on perceived

satisfaction with running
routes: An activity path-based

measure approach

Huang, D.; Jiang, B.; Yuan, L. 2022

This discussed the positive association between
running satisfaction and nature exposure, including
eye-level greenness, top-down greenness, and blue
space density. The study utilized an activity
path-based measure approach using Public
Participation GIS (PPGIS) to investigate
these associations

Do emotional perceptions of
visible greeneries rely on the
largeness of green space? A

verification in Nanchang,
China [48]

Huang, S.; Zhu, J.; Zhai, K.;
Wang, Y.; Wei, H.; Xu, Z.;

Gu, X.
2022

This discussed a study that investigated the effect of
the size of green spaces on the emotional perceptions
of visitors in Nanchang City, China. The study used
machine learning and sentiment analysis to analyze
panoramic photos and visitors’ facial expressions in
green spaces. The results suggested that increasing
the Panoramic Green View Index (PGVI) in green
spaces can lead to more positive emotions in visitors
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Table A2. Publications included in the final set of literature.

Reference Motivation

Yang, J., Zhao, L., Mcbride, J., & Gong, P. (2009). Can you see green? Assessing
the visibility of urban forests in cities. Landscape and Urban Planning, 91(2),
97–104. https://doi.org/10.1016/j.landurbplan.2008.12.004 [24]

This article is the origin of the GVI research.

Appendix B. Materials and Tools

The analyses were conducted using various systems, including drafting custom codes
and scripts developed by the author. All GIS processing was performed using shapefiles
provided by the geoportal of the Milan Municipality, employing QGIS 3.30.3-’s Hertogen-
bosch software. Image processing was performed using Python in the Google ColabTM

environment; specifically, the Google Streetview 1.2.9 and GluonCV 0.10.5 libraries were
used. For the validation of the results of segmentation, the opencv-python 4.8.1.78 li-
brary was adopted. The semantic dataset used for the image segmentation model was the
ADE20K dataset [56] developed by MIT. The Magpylib 4.4.0 library [64] and the Matplotlib
3.8.1 streamplot function were used to represent the vector field. Mapping representation
was accomplished using the folium 0.14 library with Open Street Map base layers. Regard-
ing statistical calculations, the Moran’s I calculation was performed using the esda 2.5.1
library, and the Shapiro–Wilk tests were conducted using the Scipy 1.11.3 library.
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