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ABSTRACT: Seabed-anchored Submerged Floating Tunnels (SFTs) are structures made of 
watertight tubular segments, assembled, and kept floating under the water table by a spread 
system of anchoring elements connected to the seabed. Due to their inherent flexibility, SFTs 
are prone to the effect of dynamic loads such as seismic and hydrodynamic loads. These pecu-
liar features have since long lead to the assessment of the SFTs’ dynamic response by resorting 
to the simplified model of a beam on an elastic foundation. This amounts to totally neglect 
the mass of the anchoring elements and, therefore, their local vibration modes. In this work, 
the mooring system is modeled as a discrete series of taut-strings possessing axial extensibility, 
while the tunnel is considered as a continuous Euler-Bernoulli beam. Within this modeling 
choices, a dynamic substructuring technique is presented and used to obtain both the natural 
circular frequencies and the mode shapes of the coupled system.

1 INTRODUCTION

Submerged Floating Tunnels (SFTs) are an interesting alternative to long-span bridges and 
immersed tunnels for crossing deep waterways. Their origin can be traced back to the first 
patents granted in Norway in 1923-1947 (see (Jacobsen 2010)). Even though a first realization 
is still missing, preliminary design proposals have been developed for sea straits, fjords and 
lakes (see, e.g. (Ahrens 1997), (Bruschi et al. 1990)). A distinctive feature of the dynamic 
behavior of SFTs is the presence of both global vibration modes, that involve significant dis-
placements of the tunnel and quasi-static displacements of the anchoring elements, and local 
modes, that mainly involve transverse vibrations of the anchors. Dominant global and local 
modes of the structure are typically associated to well-separated values of the natural frequen-
cies. However, computationally efficient Finite Element (FE) models able to simultaneously 
capture the main features of both global and local vibration modes with the same degree of 
accuracy, are inherently hard to set up. To overcome this difficulty, a dynamic substructuring 
technique for SFTs is here presented. A separate modeling of the two main substructures (i.e. 
the tunnel and the mooring system) is employed, involving (1) a Reduced Order Model 
(ROM) of the anchoring elements, which accounts for a generic form of support motion, and 
(2) a continuous model of the tunnel, which relies on the well-known Euler-Bernoulli beam 
theory. Within this context, undamped free vibrations of the coupled system are studied, evi-
dencing the influence of a variable mooring stiffness profile on the mode shapes of the SFT, 
and shedding light on the effect of the mooring system’s mass on the global response of the 
structure. As an illustrative example, the aforementioned approach is applied to the SFT pro-
posal for the Messina’s strait crossing, in Italy. On this behalf, the classification of the SFT 
motion regimes is investigated with regards to the spectral description of hydrodynamic loads, 
that are assumed to be representative of both service life conditions of the structure and 
extreme events. The paper is organized as follows: the modeling of the two substructures is 
presented in Section 2, then the global equations of motion of the SFT are derived in Section 3. 
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An application example regarding the proposal for the Messina’s strait SFT is presented in 
Section 4, while the conclusions of the work are drawn in Section 5.

2 SUBSTRUCTURES MODELING

2.1  Preliminaries

Let us refer to Figure 1a, and consider a tether inclined with an angle θ with respect to the 
horizontal plane, having initial chord length L0, external diameter Do, mass per unit of length 
γs, axial stiffness EA0 and subject to a static tension T0 > 0 (i.e. a pretension). It is also con-
venient for the following developments to introduce the non-dimensional load parameter as η0 
= T0/Ty, where Ty = fy A0 is the yielding tensile force and fy is the yielding stress of the mater-
ial. The non-dimensional load parameter is directly proportional to the Buoyancy-to-Weight 
Ratio (BWR) of the tunnel. Moreover, in the case of the vibrations of submerged anchoring 
elements, the structural linear mass should be modified to account for the mass of the fluid 
which is moved due to the presence of the anchoring element itself (i.e. the so-called added 
mass), resulting in “virtual” mass per unit of length given by:

where γw denotes the linear mass of the water moved by a “section” of the tether (i.e. γw = ρw 
πDo

2/4) and CA denotes the added-mass coefficient, which depends on the cable cross-section. 
In the case of a circular cross-section, the unit value is usually adopted (i.e. CA =1) (see, e.g. 
(Chakrabarti 1987)).

2.2  Reduced-order model of the anchoring elements

the anchoring elements of the mooring system are described according to a slightly modified 
version of the classical taut-string model. Indeed, sag effects and geometrical nonlinearities 
are neglected, while axial extensibility is accounted for in the present work. It is worth noticing 
that the well-known elasto-geometric Irvine’s parameter (often denoted as λ2), which is intro-
duced when dealing with the small-sag cable theory, is strictly equal to zero for the present 
modeling choice, being the initial static configuration coincident with the reference 
(undeformed) configuration, i.e. the chord of the tether. Let us denote with ua and wa the 
interface-degrees of freedom associated to the top support motion of the anchoring element, 
according to a classical dynamic substructuring framework, and collect them in a vector rk = 
[uk

a, wk
a]T, where the superscript k denotes the generic k-th anchoring element. The work- 

conjugated quantities to the support displacements are the interface forces Fua and Fwa, which 
can be casted in the following vector: Rk = [Fua 

k, Fwa 
k]T. In this work, the bottom support is 

kept fixed to the seabed; however, generalization of the proposed approach to account for 
soil-structure interaction phenomena is straightforward.

Figure 1.  Schematic representation of a generic anchoring element (a), schematic representation of the 
SFT modeled as an Euler-Bernoulli beam on a Winkler’s bed (b).
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By following the approach proposed by (Warnitchai et al. 1995), the total motion of the 
anchoring element is decomposed in a quasi-static component (superscript q) and a modal 
component (superscript m). The longitudinal and transverse displacement respectively reads:

At this stage, the quasi-static component of the motion can be related to the support dis-
placements by means of suitable shape functions, whereas the modal part can be expressed as 
a function of time-varying modal coordinates. Moreover, the axial modal motion can be neg-
lected, being the frequencies of such motion much higher than the ones associated to the flex-
ural motion, i.e.: um x; tÖ Ü ⌧ wm x; tÖ Ü. One then has:

The shape functions of the quasi-static component of the motion (i.e. ψw;s and ψu;s) are 
linear functions of the interface degrees of freedom rs, i.e. the entries of the vector rk (being 
Nr the total number of interface degrees of freedom. In this case Nr = 2), while the modal 
shape functions are selected as the fixed-base eigenmodes of the taut-string (see e.g. (Irvine 
1981)):

According to a classical lagrangian approach, the kinetic and potential energy of the generic 
anchoring element can be respectively expressed as:

where, by denoting with an apex the total derivative operator, the axial strain reads:

Substitution of Equations (4), (5) and (9) into Equations (7) and (8) straightforwardly leads 
to the identification of the entries of both mass and stiffness matrices. The undamped equa-
tion of motion (in partitioned form) of the k-th anchoring element simply reads:

where zk is vector containing the modal coordinates of the k-th anchoring element, i.e.: zk 

=[z1,. . .,zm,. . .,zM]T and Fk
z = [F1,. . .,Fm,. . .,FM]T is the vector of modal generalized loads, 

whose components can be obtained through a direct projection on the modal basis of the 
external forces (e.g. hydrodynamic loads) acting on the k-th element.
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2.3  Tunnel modeling strategy

The tunnel is modeled as a Euler-Bernoulli beam. Let us denote with LT and DT, respectively, 
the total length of the tunnel and its external diameter, with EIT its flexural stiffness, and with 
γT its mass per unit of length, which is comprehensive of the added mass of the water moved 
by the tunnel itself (i.e. γT = γsT +ρwπDT

2/4). Then, the vertical (i.e. in-plane, wT) and horizon-
tal (i.e. out-of-plane, vT) displacements can be expanded in the modal basis of the decoupled 
tunnel (free-interface modes):

where qn and pn denote, respectively, the in-plane and out-of-plane generalized displacements, 
Nin and Nout denote, respectively, the in-plane and out-of-plane number of retained basis func-
tions, and:

being xT 2 0;LTâ ä an abscissa spanning the longitudinal dimension of the tunnel (see 
Figure 1(b)). Entries of both mass and stiffness matrices of the bare tunnel can be easily 
computed by resorting to classical expressions (see e.g. (Foti et al. 2023)). The undamped 
equation of motion of the tunnel reads:

where qT = [p, q]T is the vector which collects the out-of-plane and in-plane generalized dis-
placements of the tunnel, FT is the vector of modal generalized dynamic loads which is 
obtained by direct projection of the external forces (e.g. hydrodynamic loads), on the modal 
basis of the tunnel, NA is the total number of anchoring elements, Fk = [Hk,Vk]T is the vector 
containing the horizontal (Hk) and vertical (Vk) forces acting on the tunnel (exchanged by the 
k-th anchoring element) and Fk

A is the matrix whose entries are defined as follows:

being xA;k the abscissa of the k-th anchoring element in the reference system of the tunnel.

3 EQUATIONS OF MOTION OF THE SFT

In order to couple the equations of motion of the anchoring elements (see section 2.2) and 
those of the tunnel (see section 2.3), some further advancements are necessary. The interface 
forces exchanged between the anchoring elements and the tunnel can be expressed in 
a vectorial form as:

where Tk is the transformation matrix, which permits to pass from the local reference frame of 
the k-th anchoring element, to the global reference frame of the tunnel, which simply reads:
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It is noteworthy that in many SFT design proposals, the angle of inclination θk = θ is constant 
for each anchoring element, resulting in a constant transformation matrix Tk = T as well.

By resorting to the description of the displacement field of the tunnel, one can express the vector 
of interface displacements of the k-th anchoring element according to the following relationship:

At this stage, Equation (18) is substituted into the system of Equations (10), and the vector 
of interface forces acting on the k-th anchor Rk is expressed from the first row. Direct substi-
tution of Rk into Equation (16) allows to obtain the vector of interface forces acting on the 
tunnel, i.e. Fk, which can be finally inserted into Equation (14). The undamped equations of 
motion of the SFT are then obtained by direct assembling the contributions stemming from 
all the (NA) anchoring elements. The system of equations finally reads:

where the matrices FA, T, Mrr, Krr, Mzz, Kzz and Mrz and the vectors FT and Fz have been 
assembled by blocks, according to standard procedures (see e.g. (Clough and Penzien 2003)) 
and z is the vector obtained by queueing the vectors of modal coordinates zk of each anchor-
ing element. Circular frequencies and mode shapes of the SFT are then found from the follow-
ing undamped eigenproblem:

where the global mass (MG) and stiffness (KG) matrices have been implicitly defined in Equation (19).

4 APPLICATION EXAMPLE

The present section considers an application example regarding the SFT which was proposed for 
the crossing of the Messina’s strait, in Italy (see e.g. (Bruschi et al. 1990), (Perotti et al. 2018)). 
The considered SFT is designed to connect Sicily to the mainland, crossing a strait characterized 
by a maximum seabed depth of 325 m (see Figure 2). The total length of the SFT is LT = 
4680 m and the tunnel axis is placed 40 m below the water table. The cross section of the tunnel is 
defined by the following parameters: DT = 15.95 m, EI = 4.383⋅1010 kNm2 and γT = 368.41 ton/ 
m. The mooring system is made of inclined hollow core circular cross-section tethers, located 
along 65 mooring stations, with uniform spacing equal to 72 m. For the sake of simplicity, in the 
present work, the mooring system is considered composed of one hollow circular cross-section 
only (Type B), leading to a mooring stiffness variability which is only induced by the variation of 
the seabed depth along the tunnel’s abscissa. The cross-section type B is defined by the following 
parameters: Do = 1.950 m, s = 0.065 m, A0 = 0.3849 m2, γv = 6005 kg/m, where s denotes the 
thickness of the hollow circular profile. The angle of inclination and the non-dimensional loading 
parameter of the anchoring elements are set respectively to θ= 45° and η0 = 5%.

In the present work, only in-plane motion of the tunnel is considered, and 100 terms are 
retained in the series expansion of Equation (11) (i.e. Nin =100 and Nout = 0). The mooring 
system is modeled by considering 65 “equivalent” anchoring elements, i.e. characterized by 
values of both axial stiffness and virtual mass which are representative of the real configuration 
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Sη ω C0ω!me!Bω!n
21ð Þ ¼ ð Þ

in which the empirical coefficients C0, B, m and n define the spectrum. In the most widely used
forms, m = 5 and n = 4. Several empirical expressions for the C0 and B coefficients have been
proposed in the literature. In the following, reference is made to the so-called Bretschneider
Spectrum, for which C0 and B coefficients become:

C0 ¼ 0:0081g2

B 3:11=H2
s 22¼ ð Þ

where g is the gravity acceleration and Hs is the significant wave height. The latter is an
important statistical parameter defined as the arithmetic average of the highest one-third of
the waves in a wave record (Wilson 1984). Two significant wave heights are considered for the
following developments, namely Hs = 5 m and Hs = 16 m, which are tentatively assumed to
represent the “operational” wave conditions and extreme hydrodynamic events, respectively.

Figure 2. Side view and cross-section of the proposal for the Messina’s strait SFT, in Italy.

(which is composed of 4 inclined tethers per mooring section, see again Figure 2). Each “equiva-
lent” tether is then modeled by retaining the first in-plane mode only (i.e.M=1).
Hydrodynamic loads acting on the structure have been modeled starting from the spectral

representation of the wave elevation for a certain return period. A general analytical form of
the surface wave energy spectrum is (see e.g. (Wilson 1984)):

Figure 3. Natural circular frequencies of the tunnel (a) and of the anchoring elements (b) compared to
the band of circular frequencies associated to the highest wave elevation spectral ordinates, for two sig-
nificant wave heights (Hs = 5 m and Hs = 16 m).

Figure 3a depicts the tunnel circular frequencies obtained from the solution of the eigenvalue
problem (see Equation (21)) compared to the ones corresponding to the highest spectral ordinates
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of the wave elevation spectrum Sη. As a first important comment, it is evident that the response of 
the tunnel to hydrodynamic excitation can be regarded as quasi-static, being the first natural fre-
quency of the tunnel much higher than the frequency interval associated to the highest spectral 
ordinates of the wave spectra. Additionally, it is noted that accounting for the anchoring elements’ 
mass, leads to a variation of about 5.5% in the tunnel’s circular frequencies, compared to the mass-
less tethers modeling choice. Moreover, around mode 65, an abrupt change in the frequency can 
be observed. This phenomenon is due to the matching of the wavelength of such mode and the 
spacing of the anchoring elements, resulting in an activation of the quasi-static motion of the 
whole mooring system, with a consequent increased global stiffness of the structure.

Figure 3b shows the plot of the anchoring elements circular frequencies, ordered in an ascend-
ent way. The anchoring elements located in the “plateau region” of the seabed (see Figure 2) are 
characterized by the lowest circular frequencies, being their chord length the longest of the 
whole mooring system. These anchors might encounter high level of vibrations induced by the 
motion of the tunnel both for the case of simple resonance, occurring for “extreme” hydro-
dynamic events, and for the case of parametric resonance, which may arise if “ordinary” waves 
associated to the service life of the structure are considered. In fact, the frequencies correspond-
ing to the highest spectral ordinates in the wave elevation spectrum (for Hs = 5 m) are close to 
two times the first natural frequency of these tethers. Proceeding towards the right direction of 
the abscissa axis, one may find two sets of circular frequencies, respectively denoted as SR1 and 
SR2. These sets of tethers might be susceptible of simple resonance phenomenon induced 
respectively by the hydrodynamic motion of the tunnel, whenever “extreme” waves and “ordin-
ary” waves are considered. Finally, the last two circular frequencies correspond to the stiffest 
anchoring elements, having shortest chord length, which are located very close to the right and 
left shore, respectively. However, no significant dynamic amplification phenomena are expected 
in this case, since the natural circular frequencies of these tethers are sufficiently far from the 
first one of the tunnel. Additionally, it is worth noticing that the first mode of the tunnel is 
always expected to have a node very close to the position of these two tethers (see Figure 4b).

Figure 4a and 4b shows the first three global modes of the SFT for a constant and variable 
seabed depth profile, respectively. As already evidenced in (Foti et al. 2023), the variable 
seabed profile (which consequently induces a spatially variable mooring stiffness profile) is 
responsible for the mode localization phenomena, around the region of highest flexibility of 
the mooring system. As long as the mooring stiffness is constant, localization phenomena do 
not occur and the mode shapes of the SFT preserve a global character (see Figure 4a). On the 
contrary, if the mooring stiffness is variable, the mode shapes localize in the range of lowest 

Figure 4.  First three mode shapes of the tunnel for a constant (a) and variable (b) seabed depth profile. 
The non-dimensional abscissa of the tunnel is denoted as ξ = xT/LT.
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stiffness, which is not located symmetrically with respect to the midspan but coincides with 
the “plateau” region (see Figure 4b – cf. Figure 2).

Moreover, it is noted that the influence of the anchoring elements’ mass on the mode 
shapes is practically negligible for both seabed profiles. This evidence, together with results 
obtained in Figure 3, permits to conclude that it is feasible to assess the global dynamic 
response of the SFT by resorting to the simplified model of Euler-Bernoulli beam on 
a Winkler’s bed (possessing a non-homogenous stiffness of the springs), and therefore, neglect-
ing the mass of the tethers (see also (Foti et al. 2022) and Figure 1b).

5 CONCLUSIONS

In this paper, a dynamic substrucuring technique for Submerged Floating Tunnels (SFTs) was 
presented. The mooring system was modeled as a discrete series of anchoring elements individually 
described by a taut-string possessing axial extensibility, while the tunnel was modeled as a Euler- 
Bernoulli beam. The degrees of freedom at the interface between the tunnel and the anchors were 
evidenced, by expressing their value through the displacements of the tunnel. The inertially- 
coupled system was assembled and undamped free vibrations of the global structure were studied. 
The results showed the influence of both the variable mooring stiffness and the anchoring elem-
ents’ mass on the global modes of the SFT. The classification of the motion regimes for the pro-
posal of the Messina’s strait SFT highlighted that the response of the tunnel to hydrodynamic 
loading conditions can be regarded as quasi-static. For this reason, it is feasible to address the 
global response of the system by relying on the simplified assumption of mass-less elastic tendon 
for the anchoring elements, which amounts to consider the tunnel as a Euler-Bernoulli beam rest-
ing on a non-homogenous Winkler-type soil. As per the anchoring elements, classification of the 
motion regimes has revealed the possibility of different resonance phenomena (both simple and 
parametric) under hydrodynamic loading conditions. Further research is currently ongoing to 
assess the role of geometrical nonlinearities of the anchoring elements on the global response on 
the SFT, and to include system coupling due to hydrodynamic loading of the tunnel itself, which 
may cause parametric excitation (and possibly, parametric resonance) of some tethers.
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