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Abstract

Background: Short-term forecasts of infectious disease contribute to situational awareness and capacity

planning. Based on best practice in other fields and recent insights in infectious disease epidemiology, one

can maximise forecasts’ predictive performance by combining independent models into an ensemble. Here we

report the performance of ensemble predictions of COVID-19 cases and deaths across Europe from March 2021

to March 2022. Methods: We created the European COVID-19 Forecast Hub, an online open-access platform
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where modellers upload weekly forecasts for 32 countries with results publicly visualised and evaluated. We

created a weekly ensemble forecast from the equally-weighted average across individual models’ predictive

quantiles. We measured forecast accuracy using a baseline and relative Weighted Interval Score (rWIS).

We retrospectively explored ensemble methods, including weighting by past performance. Results: We

collected weekly forecasts from 48 models, of which we evaluated 29 models alongside the ensemble model.

The ensemble had a consistently strong performance across countries over time, performing better on rWIS

than 91% of forecasts for deaths (N=763 predictions from 20 models), and 83% forecasts for cases (N=886

predictions from 23 models). Performance remained stable over a 4-week horizon for death forecasts but

declined with longer horizons for cases. Among ensemble methods, the most influential choice came from using

a median average instead of the mean, regardless of weighting component models. Conclusions: Our results

support combining independent models into an ensemble forecast to improve epidemiological predictions,

and suggest that median averages yield better performance than methods based on means. We highlight

that forecast consumers should place more weight on incident death forecasts than case forecasts at horizons

greater than two weeks. Funding: European Commission, Ministerio de Ciencia, Innovación y Universidades,

FEDER; Agència de Qualitat i Avaluació Sanitàries de Catalunya; Netzwerk Universitätsmedizin; Health

Protection Research Unit; Wellcome Trust; European Centre for Disease Prevention and Control; Ministry of

Science and Higher Education of Poland; Federal Ministry of Education and Research; Los Alamos National

Laboratory; German Free State of Saxony; NCBiR; FISR 2020 Covid-19 I Fase; Spanish Ministry of Health

/ REACT-UE (FEDER); National Institutes of General Medical Sciences; Ministerio de Sanidad/ISCIII;

PERISCOPE European H2020; PERISCOPE European H2021; InPresa; National Institutes of Health, NSF,

US Centers for Disease Control and Prevention, Google, University of Virginia, Defense Threat Reduction

Agency

Background

Epidemiological forecasts make quantitative statements about a disease outcome in the near future. Forecasting

targets can include measures of prevalent or incident disease and its severity, for some population over a

specified time horizon. Researchers, policy makers, and the general public have used such forecasts to

understand and respond to the global outbreaks of COVID-19 [1]–[3]. At the same time, forecasters use a

variety of methods and models for creating and publishing forecasts, varying in both defining the forecast

outcome and in reporting the probability distribution of outcomes [4], [5].

Within Europe, comparing forecasts across both models and countries can support a range of national
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policy needs simultaneously. European public health professionals operate across national, regional, and

continental scales, with strong existing policy networks in addition to rich patterns of cross-border migration

influencing epidemic dynamics. A majority of European countries also cooperate in setting policy with

inter-governmental European bodies such as the European Centre for Disease Prevention and Control (ECDC).

In this case, a consistent approach to forecasting across the continent as a whole can support accurately

informing cross-European monitoring, analysis, and guidance [3]. At a regional level, multi-country forecasts

can support a better understanding of the impact of regional migration networks. Meanwhile, where there is

limited capacity for infectious disease forecasting at a national level, forecasters generating multi-country

results can provide an otherwise-unavailable opportunity for forecasts to inform national situational awareness.

Some independent forecasting models have sought to address this by producing multi-country results [6]–[9].

Variation in forecast methods and presentation makes it difficult to compare predictive performance between

forecast models, and from there to derive objective arguments for using one forecast over another. This

confounds the selection of a single representative forecast and reduces the reliability of the evidence base

for decisions based on forecasts. A “forecast hub” is a centralised effort to improve the transparency and

usefulness of forecasts, by standardising and collating the work of many independent teams producing

forecasts [10]. A hub sets a commonly agreed-upon structure for forecast targets, such as type of disease event,

spatio-temporal units, or the set of quantiles of the probability distribution to include from probabilistic

forecasts. For instance, a hub may collect predictions of the total number of cases reported in a given country

for each day in the next two weeks. Forecasters can adopt this format and contribute forecasts for centralised

storage in the public domain.

This shared infrastructure allows forecasts produced from diverse teams and methods to be visualised and

quantitatively compared on a like-for-like basis, which can strengthen public and policy use of disease forecasts.

The underlying approach to creating a forecast hub was pioneered in climate modelling and adapted for

collaborative epidemiological forecasts of dengue [11] and influenza in the USA [10], [12]. This infrastructure

was adapted for forecasts of short-term COVID-19 cases and deaths in the US [13], [14], prompting similar

efforts in some European countries [15]–[17].

Standardising forecasts allows for combining multiple forecasts into a single ensemble with the potential

for an improved predictive performance. Evidence from previous efforts in multi-model infectious disease

forecasting suggests that forecasts from an ensemble of models can be consistently high performing compared

to any one of the component models [11], [12], [18]. Elsewhere, weather forecasting has a long-standing use

of building ensembles of models using diverse methods with standardised data and formatting in order to

improve performance [19], [20].
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The European COVID-19 Forecast Hub [21] is a project to collate short term forecasts of COVID-19 across

32 countries in the European region. The Hub is funded and supported by the ECDC, with the primary

aim to provide reliable information about the near-term epidemiology of the COVID-19 pandemic to the

research and policy communities and the general public [3]. Second, the Hub aims to create infrastructure for

storing and analysing epidemiological forecasts made in real time by diverse research teams and methods

across Europe. Third, the Hub aims to maintain a community of infectious disease modellers underpinned by

open science principles.

We started formally collating and combining contributions to the European Forecast Hub in March 2021.

Here, we investigate the predictive performance of an ensemble of all forecasts contributed to the Hub in real

time each week, as well as the performance of variations of ensemble methods created retrospectively.

Methods

We developed infrastructure to host and analyse prospective forecasts of COVID-19 cases and deaths. The

infrastructure is compatible with equivalent research software from the US [22], [23] and German and Polish

COVID-19 [24] Forecast Hubs, and easy to replicate for new forecasting collaborations. All data and code for

this analysis are publicly available on Github [25].

Forecast targets and models

We sought forecasts for the incidence of COVID-19 as the total reported number of cases and deaths per

week. We considered forecasts for 32 countries in Europe, including all countries of the European Union,

European Free Trade Area, and the United Kingdom. We compared forecasts against observed data reported

for each country by Johns Hopkins University (JHU, [26]). JHU data sources included a mix of national

and aggregated subnational data. We aggregated incidence over the Morbidity and Mortality Weekly Report

(MMWR) epidemiological week definition of Sunday through Saturday.

Teams could express their uncertainty around any single forecast target by submitting predictions for up to 23

quantiles (from 0.01 to 0.99) of the predictive probability distribution. Teams could also submit a single point

forecast. At the first submission we asked teams to add a pre-specified set of metadata briefly describing

the forecasting team and methods (provided online and in supplementary information). No restrictions were

placed on who could submit forecasts. To increase participation we actively contacted known forecasting

teams across Europe and the US and advertised among the ECDC network. Teams submitted a broad
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spectrum of model types, ranging from mechanistic to empirical models, agent-based and statistical models,

and ensembles of multiple quantitative or qualitative models (described at [27]). We maintain a full project

specification with a detailed submissions protocol [28].

We collected forecasts submitted weekly in real time over the 52 week period from 08 March 2021 to 07

March 2022. Teams submitted at latest two days after the complete dataset for the latest forecasting week

became available each Sunday. We implemented an automated validation programme to check that each

new forecast conformed to standardised formatting. Forecast validation ensured a monotonic increase of

predictions with each increasing quantile, integer-valued non-negative counts of predicted cases, as well as

consistent date and location definitions.

Each week we used all available valid forecasts to create a weekly real-time ensemble model (referred to as

“the ensemble” from here on), for each of the 256 possible forecast targets: incident cases and deaths in 32

locations over the following one through four weeks. The ensemble method was an unweighted average of all

models’ forecast values, at each predictive quantile for a given location, target, and horizon. From 08 March

2021, we used the arithmetic mean. However we noticed that including highly anomalous forecasts in a mean

ensemble produced extremely wide uncertainty. To mitigate this, from 26th July 2021 onwards the ensemble

instead used a median of all predictive quantiles.

We created an open and publicly accessible interface to the forecasts and ensemble, including an online

visualisation tool allowing viewers to see past data and interact with one or multiple forecasts for each country

and target for up to four weeks’ horizon [29]. All forecasts, metadata, and evaluations are freely available and

held on Github [21] (archived in real-time at [30]), and Zoltar, a platform for hosting epidemiological forecasts

[31], [32]. In the codebase for this study [25] we provide a simple method and instructions for downloading

and preparing these data for analysis using R. We encourage other researchers to freely use and adapt this to

support their own analyses.

Forecast evaluation

In this study we focused only on the comparative performance of forecasting models relative to each other.

Performance in absolute terms is available on the Hub website [29]. For each model, we assessed calibration

and overall predictive performance. We evaluated all previous forecasts against actual observed values for

each model, stratified by the forecast horizon, location, and target. We calculated scores using the scoringutils

R package [33]. We removed any forecast surrounding (both the week of, and the first week after) a strongly

anomalous data point. We defined anomalous as where any subsequent data release revised that data point
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by over 5%.

To investigate calibration we assessed coverage as the correspondence between the forecast probability of an

event and the observed frequency of that event. This usage follows previous work in epidemic forecasting

[34], and is related to the concept of reliability for binary forecasts. We established the accuracy of each

model’s prediction boundaries as the coverage of the predictive intervals. We calculated coverage at a given

interval level k, where k ∈ [0, 1], as the proportion p of observations that fell within the corresponding central

predictive intervals across locations and forecast dates. A perfectly calibrated model would have p = k at all

11 levels (corresponding to 22 quantiles excluding the median). An underconfident model at level k would

have p > k, i.e. more observations fall within a given interval than expected. In contrast, an overconfident

model at level k would have p < k, i.e. fewer observations fall within a given interval than expected. We here

focus on coverage at the k = 0.5 and k = 0.95 levels.

We also assessed the overall predictive performance of weekly forecasts using the Weighted Interval Score~(WIS)

across all available quantiles. The WIS represents a parsimonious approach to scoring forecasts based on

uncertainty represented as forecast values across a set of quantiles [34], and is a strictly proper scoring rule,

that is, it is optimal for predictions that come from the data-generating model. As a consequence, the WIS

encourages forecasters to report predictions representing their true belief about the future [35]. Each forecast

for a given location and date is scored based on an observed count of weekly incidence, the median of the

predictive distribution and the predictive upper and lower quantiles corresponding to the central predictive

interval level.

Not all models provided forecasts for all locations and dates, and we needed to compare predictive performance

in the face of various levels of missingness across each forecast target. Therefore we calculated a relative

WIS. This is a measure of forecast performance which takes into account that different teams may not cover

the same set of forecast targets (i.e., weeks and locations). The relative WIS is computed using a pairwise

comparison tournament where for each pair of models a mean score ratio is computed based on the set of

shared targets. The relative WIS of a model with respect to another model is then the ratio of their respective

geometric mean of the mean score ratios, such that smaller values indicate better performance.

We scaled the relative WIS of each model with the relative WIS of a baseline model, for each forecast target,

location, date, and horizon. The baseline model assumes case or death counts stay the same as the latest

data point over all future horizons, with expanding uncertainty, described previously in [36]. In this study we

report the relative WIS of each model with respect to the baseline model.
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Retrospective ensemble methods We retrospectively explored alternative methods for combining

forecasts for each target at each week. A natural way to combine probability distributions available in the

quantile format [37] used here is

F −1(α) =
n∑

i=1
wiF

−1
i (α),

Where F1 . . . Fn are the cumulative distribution functions of the individual probability distributions (in our

case, the predictive distributions of each forecast model i contributed to the hub), wi are a set of weights in

[0, 1]; and α are the quantile levels, such that following notation introduced in [37],

F −1(α) = inf{t : Fi(t) ≥ α}.

Different ensemble choices then mainly translate to the choice of weights wi. An arithmetic mean ensemble

uses weights at wi = 1/n, where all weights are equal and sum up to 1.

Alternatively, we can choose a set of weights to apply to forecasts before they are combined. Numerous

options exist for choosing these weights with the aim to maximise predictive performance, including choosing

weights to reflect each forecast’s past performance (thereby moving from an untrained to a trained ensemble).

A straightforward choice is so-called inverse score weighting. In this case, the weights are calculated as

wi = 1
Si

,

where Si reflects the forecasting skill calculated as the relative WIS of forecaster i, calculated over all available

model data, and normalised so that weights sum to 1. This method of weighting was found in the US to

outperform unweighted scores during some time periods [38] but this was not confirmed in a similar study in

Germany and Poland [15].

When constructing ensembles from quantile means, a single outlier can have an oversized effect on the

ensemble forecast. Previous research has found that a median ensemble, replacing the arithmetic mean of

each quantile with a median of the same values, yields competitive performance while maintaining robustness

to outlying forecasts [39]. Building on this, we also created weighted median ensembles using the weights

described above and a Harrel-Davis quantile estimator with a beta function to approximate the weighted

percentiles [40]. We then compared the performance of unweighted and inverse relative WIS weighted mean

and median ensembles, comparing the ratio of interval scores between each ensemble model relative to the
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baseline model.

Results
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Figure 1: Total number of forecasts included in evaluation, by target location, week ahead horizon, and
variable

For 32 European countries, we collected, visualised, and made available online weekly COVID-19 forecasts

and observed data [30]. Over the whole study period, we collected forecasts from 48 unique models. Modellers

created forecasts choosing from a set of 32 possible locations, four time horizons, and two variables, and

modellers variously joined and left the Hub over time. This meant the number of models contributing to

the Hub varied over time and by forecasting target. Using all models and the ensemble, we created 2139

forecasting scores, where each score summarises a unique combination of forecasting model, variable, country,

and week ahead horizon (Figure 1).

Of the total 48 models, we received the most forecasts for Germany, with 29 unique models submitting one-
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week case forecasts, while only 12 models ever submitted four-week case or death forecasts for Liechtenstein.

Modelling teams also differed in how they expressed uncertainty. Only 3 models provided point forecasts with

no estimate of uncertainty around their predictions, while 41 models provided the full set of 23 probabilistic

quantiles across the predictive distribution for each target.

In this evaluation we included 29 models in comparison to the ensemble forecast (Figure 1). We have included

metadata provided by modellers in the supplement and online [30]. In this evaluation, at most 15 models

contributed forecasts for cases in Germany at the 1 week horizon, with an accumulated 592 forecast scores

for that single target over the study period. In contrast, deaths in Finland at the 2 week horizon saw the

smallest number of forecasts, with only 6 independent models contributing 24 forecast scores at any time

over the 52 week period. Of the 29 models included in this evaluation, 5 models provided less than the full

set of 23 quantiles, and were excluded when creating the ensemble. No ensemble forecast was composed of

less than 3 independent models.
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Figure 2: Ensemble forecasts of weekly incident cases in Germany over periods of increasing SARS-CoV-2
variants Delta (B.1.617.2, left) and Omicron (B.1.1.529, right). Black indicates observed data. Coloured
ribbons represent each weekly forecast of 1-4 weeks ahead (showing median, 50%, and 90% probability).
For each variant, forecasts are shown over an x-axis bounded by the earliest dates at which 5% and 99% of
sequenced cases were identified as the respective variant of concern, while vertical dotted lines indicate the
approximate date that the variant reached dominance (>50% sequenced cases).

We visually compared the absolute performance of forecasts in predicting numbers of incident cases and deaths.

We observed that forecasts predicted well in times of stable epidemic behaviour, while struggling to accurately

predict at longer horizons around inflection points, for example during rapid changes in population-level

behaviour or surveillance. Forecast models varied widely in their ability to predict and account for the
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introduction of new variants, giving the ensemble forecast over these periods a high level of uncertainty. An

example of weekly forecasts from the ensemble model is shown in Figure 2.

In relative terms, the ensemble of all models performed well compared to both its component models and

the baseline. By relative WIS scaled against a baseline of 1 (where a score <1 indicates outperforming the

baseline), the median score of forecasts from the Hub ensemble model was 0.71, within an interquartile range

of 0.61 at 25% probability to 0.88 at 75% probability. Meanwhile the median score of forecasts across all

participating models (excluding the Hub ensemble) was 1.04 (IQR 0.82-1.36).

Across all horizons and locations, the ensemble performed better on scaled relative WIS than 83% of forecast

scores when forecasting cases (with a total N=886 from 23 unique models), and 91% of scores for forecasts

of incident deaths (N=763 scores from 20 models). We also saw high performance from the ensemble

when evaluating against all models including those who did not submit the full set of probabilistic quantile

predictions (80% for cases with N=1006 scores from 28 models, and 88% for deaths, N=877 scores from 24

models).

The performance of individual and ensemble forecasts varied by length of the forecast horizon (Figure 3).

At each horizon, the typical performance of the ensemble outperformed both the baseline model and the

aggregated scores of all its component models, although we saw wide variation between individual models in

performance across horizons. Both individual models and the ensemble saw a trend of worsening performance

at longer horizons when forecasting cases with the median scaled relative WIS of the ensemble across locations

worsened from 0.62 for one-week ahead forecasts to 0.9 when forecasting four weeks ahead. Performance for

forecasts of deaths was more stable over one through four weeks, with median ensemble performance moving

from 0.69 to 0.76 across the four week horizons.

We observed similar trends in performance across horizon when considering how well the ensemble was

calibrated with respect to the observed data. At one week ahead the case ensemble was well calibrated (ca.

50% and 95% nominal coverage at the 50% and 95% levels respectively). This did not hold at longer forecast

horizons as the case forecasts became increasingly over-confident. Meanwhile, the ensemble of death forecasts

was well calibrated at the 95% level across all horizons, and the calibration of death forecasts at the 50%

level improved with lengthening horizons compared to being underconfident at shorter horizons.

The ensemble also performed consistently well in comparison to individual models when forecasting across

countries (Figure 4). In total, across 32 countries forecasting for one through four weeks, when forecasting

cases the ensemble outperformed 75% of component models in 22 countries, and outperformed all available

models in 3 countries. When forecasting deaths, the ensemble outperformed 75% and 100% of models in 30
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Figure 3: Performance of short-term forecasts aggregated across all individually submitted models and the
Hub ensemble, by horizon, forecasting cases (left) and deaths (right). Performance measured by relative
weighted interval score scaled against a baseline (dotted line, 1), and coverage of uncertainty at the 50%
and 95% levels. Boxplot, with width proportional to number of observations, show interquartile ranges with
outlying scores as faded points. The target range for each set of scores is shaded in yellow.
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Figure 4: Performance of short-term forecasts across models and median ensemble (asterisk), by country,
forecasting cases (top) and deaths (bottom) for two-week ahead forecasts, according to the relative weighted
interval score. Boxplots show interquartile ranges, with outliers as faded points, and the ensemble model
performance is marked by an asterisk. y-axis is cut-off to an upper bound of 4 for readability.
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Table 1: Predictive performance of main ensembles, as measured by the mean ratio of interval scores against
the baseline ensemble.

Horizon Weighted mean Weighted median Unweighted mean Unweighted median
Cases

1 week 0.63 0.64 0.61 0.64
2 weeks 0.72 0.71 0.69 0.69
3 weeks 0.82 0.76 0.82 0.72
4 weeks 1.07 0.86 1.12 0.78

Deaths
1 week 0.65 0.61 1.81 0.61
2 weeks 0.58 0.54 1.29 0.54
3 weeks 0.64 0.57 1.17 0.53
4 weeks 0.82 0.67 0.84 0.62

and 8 countries respectively. Considering only the the two-week horizon shown in Figure 4, the ensemble of

case forecasts outperformed 75% models in 25 countries and all models in only 12 countries. At the two-week

horizon for forecasts of deaths, the ensemble outperformed 75% and 100% of its component models in 30 and

26 countries respectively.

We considered alternative methods for creating ensembles from the participating forecasts, using either

a mean or median to combine either weighted or unweighted forecasts. We evaluated each alternative

ensemble model against the baseline model, taking the mean score ratio across all targets (Table 1). Across

locations we observed that the median outperformed the mean across all one through four week horizons and

both cases and death targets, for all but cases at the 1 week horizon. This held regardless of whether the

component forecasts were weighted or unweighted by their individual past performance. Between methods of

combination, weighting made little difference to the performance of the median ensemble, but appeared to

improve performance of a mean ensemble in forecasting deaths.

Discussion

We collated 12 months of forecasts of COVID-19 cases and deaths across 32 countries in Europe, collecting

from multiple independent teams and using a principled approach to standardising both forecast targets

and the predictive distribution of forecasts. We combined these into an ensemble forecast and compared the

relative performance of forecasts between models, finding that the ensemble forecasts outperformed most

individual models across all countries and horizons over time.

Across all models we observed that forecasting changes in trend in real time was particularly challenging.
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Our study period included multiple fundamental changes in viral-, individual-, and population-level factors

driving the transmission of COVID-19 across Europe. In early 2021, the introduction of vaccination started

to change population-level associations between infections, cases, and deaths [41], while the Delta variant

emerged and became dominant [42]. Similarly from late 2021 we saw the interaction of individually waning

immunity during the emergence and global spread of the Omicron variant [43]. Neither the extent nor timing

of these factors were uniform across European countries covered by the Forecast Hub [44]. This meant that

the performance of any single forecasting model depended partly on the ability, speed, and precision with

which it could adapt to new conditions for each forecast target.

We observed a contrast between a more stable performance of forecasting deaths further into the future

compared to forecasts of cases. Previous work has found rapidly declining performance for case forecasts

with increasing horizon [36], [45], while death forecasts can perform well with up to six weeks lead time [46].

We can link this to the specific epidemic dynamics in this study.

First, COVID-19 has a typical serial interval of less than a week [47]. This implies that case forecasts of more

than two weeks only remain valid if rates of both transmission and detection remain stable over the entire

forecast horizon. In contrast, we saw rapid changes in epidemic dynamics across many countries in Europe

over our study period, impacting the longer term case forecasts.

Second, we can interpret the higher reliability of death forecasts as due to the different lengths and distributions

of time lags from infection to case and death reporting [48]. For example, a spike in infections may be

matched by a consistently sharp increase in case reporting, but a longer-tailed distribution of the subsequent

increase in death reports. This creates a lower magnitude of fluctuation in the time-series of deaths compared

to that of cases. Similarly, surveillance data for death reporting is substantially more consistent, with fewer

errors and retrospective corrections, than case reporting [49].

Third, we also note that the performance of trend-based forecasts may have benefited from the slower changes

to trends in incident deaths caused by gradually increasing vaccination rates. These features allow forecasters

to incorporate the effect of changes in transmission more easily when forecasting deaths, compared to cases.

We found the ensemble in this study continued to outperform both other models and the baseline at up

to four weeks ahead. Our results support previous findings that ensemble forecasts are the best or nearly

the best performing models with respect to absolute predictive performance and appropriate coverage of

uncertainty [16], [18], [36]. While the ensemble was consistently high performing, it was not strictly dominant

across all forecast targets, reflecting findings from previous comparable studies of COVID-19 forecasts [15],

[50]. Our finding suggests the usefulness of an ensemble as a robust summary when forecasting across
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many spatio-temporal targets, without replacing the importance of communicating the full range of model

predictions.

When exploring variations in ensemble methods, we found that the choice of median over means yielded

the most consistent improvement in predictive performance, regardless of the method of weighting. Other

work has supported the importance of the median in providing a stable forecast that better accounts for

outlier forecasts than the mean [50], although this finding may be dependent on the quality of the individual

forecast submissions. In contrast, weighing models by past performance did not result in any consistent

improvement in performance. This is in line with existing mixed evidence for any optimal ensemble method

for combining short term probabilistic infectious disease forecasts. Many methods of combination have

performed competitively in analyses of forecasts for COVID-19 in the US, including the simple mean and

weighted approaches outperforming unweighted or median methods [38]. This contrasts with later analyses

finding weighted methods to give similar performance to a median average [14], [50]. We can partly explain

this inconsistency if performance of each method depends on the outcome being predicted (cases, deaths), its

count (incident, cumulative) and absolute level, the changing disease dynamics, and the varying quality and

quantity of forecasting teams over time.

We note several limitations in our approach to assessing the relative performance of an ensemble among

forecast models. While we have described differences in model scores, we have not used any formal statistical

test for comparing forecast scores, such as the Diebold-Mariano test [51], recognising that it is unclear how

this is best achieved across many models. Our results are the outcome of evaluating forecasts against a

specific performance metric and baseline, where multiple options for evaluation exist and the choice reflects

the aim of the evaluation process. Further, our choice of baseline model affects the given performance scores

in absolute terms, and more generally the choice of appropriate baseline for epidemic forecast models is not

obvious when assessing infectious disease forecasts. The model used here is supported by previous work [36],

yet previous evaluation in a similar context has suggested that choice of baseline affects relative performance

in general [52], and future research should be done on the best choices of baseline models in the context of

infectious disease epidemics.

Our assessment of forecast performance may further have been inaccurate due to limitations in the observed

data against which we evaluated forecasts. We sourced data from a globally aggregated database to maintain

compatibility across 32 countries [26]. However, this made it difficult to identify the origin of lags and

inconsistencies between national data streams, and to what extent these could bias forecasts for different

targets. In particular we saw some real time data revised retrospectively, introducing bias in either direction

where the data used to create forecasts was not the same as that used to evaluate it. We attempted to mitigate
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this by using an automated process for determining data revisions, and excluding forecasts made at a time

of missing, unreliable, or heavily revised data. We also recognise that evaluating forecasts against updated

data is a valid alternative approach used elsewhere [36]. More generally it is unclear if the expectation of

observation revisions should be a feature built into forecasts. Further research is needed to understand the

perspective of end-users of forecasts in order to assess this.

The focus of this study was describing and summarising an ensemble of many models. We note that we have

little insight into the individual methods and wide variety of assumptions that modellers used. While we

asked modellers to provide a short description of their methods, we did not create a rigorous framework for

this, and we did not document whether modellers changed the methods for a particular submitted model over

time. Both the content of and variation in modelling methods and assumptions are likely to be critical to

explaining performance, rather than describing or summarising it. Exploring modellers’ methods and relating

this to forecast performance will be an important area of future work.

In an emergency setting, access to visualised forecasts and underlying data is useful for researchers, policy-

makers, and the public [2]. Previous European multi-country efforts to forecast COVID-19 have included

only single models adapted to country-specific parameters [6], [7], [9].

The European Forecasting Hub acted as a unique tool for creating an open-access, cross-country modelling

network, and connecting this to public health policy across Europe. By opening participation to many

modelling teams and with international high participation, we were able to create robust ensemble forecasts

across Europe. This also allows comparison across forecasts built with different interpretations of current

data, on a like for like scale in real time. The European Hub has supported policy outputs at an international,

regional, and national level, including Hub forecasts cited weekly in ECDC Communicable Disease Threats

Reports ([53]).

For forecast producers, an easily accessible comparison between results from different methods can highlight

individual strengths and weaknesses and help prioritise new areas of work. Collating time-stamped predictions

ensures that we can test true out-of-sample performance of models and avoid retrospective claims of

performance. Testing the limits of forecasting ability with these comparisons forms an important part of

communicating any model-based prediction to decision makers. For example, the weekly ECDC Communicable

Disease Threats reports include the specific results of this work by qualitatively highlighting the greater

uncertainty around case forecasts compared to death forecasts.

This study raises many further questions which could inform epidemic forecast modellers and users. The

dataset created by the European Forecast Hub is an openly accessible, standardised, and extensively
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documented catalogue of real time forecasting work from a range of teams and models across Europe [29],

and we recommend its use for further research on forecast performance. In the code developed for this study

we provide a worked example of downloading and using both the forecasts and their evaluation scores [25].

Future work could explore the impact on forecast models of changing epidemiology at a broad spatial scale by

combining analyses of trends and turning points in cases and deaths with forecast performance, or extending

to include data on vaccination, variant, or policy changes over time. There is also much scope for future

research into methods for combining forecasts to improve performance of an ensemble. This includes altering

the inclusion criteria of forecast models based on different thresholds of past performance, excluding or

including only forecasts that predict the lowest and highest values (trimming) [38], or using alternative

weighting methods such as quantile regression averaging [16]. Exploring these questions would add to our

understanding of real time performance, supporting and improving future forecasting efforts.

We see additional scope to adapt the Hub format to the changing COVID-19 situation across Europe. We have

extended the Forecast Hub infrastructure to include short term forecasts for hospitalisations with COVID-19,

which is a challenging task due to limited data across the locations covered by the hub. As the policy focus

shifts from immediate response to anticipating changes brought by vaccinations or the geographic spread of

new variants [44], we are also separately investigating models for longer term scenarios in addition to the

short term forecasts in a similar framework to existing scenario modelling work in the US [54].

In conclusion, we have shown that during a rapidly evolving epidemic spreading through multiple populations,

an ensemble forecast performed highly consistently across a large matrix of forecast targets, typically

outperforming the majority of its separate component models and a naive baseline model. In addition, we

have linked issues with the predictability of short-term case forecasts to underlying COVID-19 epidemiology,

and shown that ensemble methods based on past model performance were unable to reliably improve forecast

performance. Our work constitutes a step towards both unifying COVID-19 forecasts and improving our

understanding of them.

Supplementary information

Supplementary file 1. EPIFORGE reporting guidelines Completed checklist following reporting

guidelines on epidemic forecasting research, after: Pollet et. al., 2021. Recommended reporting items for

epidemic forecasting and prediction research: The EPIFORGE 2020 guidelines. PLoS Med. 19;18(10):e1003793.

doi: 10.1371/journal.pmed.1003793
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Supplementary file 2. Participating team metadata Team metadata for teams participating in the

European Forecast Hub and evaluated in this study.
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