
Journal of Parallel and Distributed Computing 187 (2024) 104832

Contents lists available at ScienceDirect

Journal of Parallel and Distributed Computing

journal homepage: www.elsevier.com/locate/jpdc

Starlight: A kernel optimizer for GPU processing

Alberto Zeni a,∗, Emanuele Del Sozzo a,b, Eleonora D’Arnese a, Davide Conficconi a,
Marco D. Santambrogio a

a Politecnico di Milano, Milan, Italy
b RIKEN Center for Computational Science, Kobe, Japan

A R T I C L E I N F O A B S T R A C T

Keywords:

Performance analysis

Performance optimization

High performance computing

GPU

Roofline model

Over the past few years, GPUs have found widespread adoption in many scientific domains, offering notable
performance and energy efficiency advantages compared to CPUs. However, optimizing GPU high-performance
kernels poses challenges given the complexities of GPU architectures and programming models. Moreover,
current GPU development tools provide few high-level suggestions and overlook the underlying hardware. Here
we present Starlight, an open-source, highly flexible tool for enhancing GPU kernel analysis and optimization.
Starlight autonomously describes Roofline Models, examines performance metrics, and correlates these insights
with GPU architectural bottlenecks. Additionally, Starlight predicts potential performance enhancements before
altering the source code. We demonstrate its efficacy by applying it to literature genomics and physics
applications, attaining speedups from 1.1× to 2.5× over state-of-the-art baselines. Furthermore, Starlight supports
the development of new GPU kernels, which we exemplify through an image processing application, showing
speedups of 12.7× and 140× when compared against state-of-the-art FPGA- and GPU-based solutions.
1. Introduction

The rapid growth of complexity and the amount of data that mod-

ern High-Performance Computing (HPC) applications have to analyze
daily have exceeded the capabilities of general-purpose processors, cre-

ating a gap between the demand for computational power and achiev-

able performance [1,2]. Consequently, as we reach the end of Moore’s
Law [3,4], we need new architectural solutions to satisfy continuously
growing performance demand. In this context, hardware accelerators,
e.g., Graphics Processing Units (GPUs) and Field Programmable Gate
Arrays (FPGAs), incarnate an effective solution to offload compute-

intensive tasks from the Central Processing Unit (CPU) [5–12]. In par-

ticular, Graphics Processing Units (GPUs) have proven over the years
to be a much more efficient architecture compared to Central Pro-

cessing Unit (CPU) in the HPC context in terms both of performance
and energy efficiency [13,14]. However, the process of developing
highly performing GPU kernels is significantly more complex than
CPU software development and requires domain-specific knowledge
and expertise to leverage the architecture effectively. State-of-the-art
tools for GPU performance analysis [15–24] lack of clarity and de-

tailed information. To exemplify, NVPROF [24] and NSIGHT [23] pro-

vide valuable information and suggestions to the end-user, but do not

* Corresponding author.

clearly identify specific code regions where the optimizations should
be performed. Indeed, the information these tools provide results un-

clear for users who do not have high-level expertise in GPU program-

ming.

In recent years, multiple research studies [25–30] relied on the
Roofline Model [31] to provide an intuitive analysis of the performance
of a given application running on CPU, GPU, or FPGA. However, these
tools are often limited to a specific architecture and do not provide
valuable suggestions to developers. For example, NSIGHT [32] provides
a tool for the definition of the Roofline Model for the analyzed ker-

nel; however, its described model lacks in detail, as it considers Global
Memory (GMEM) bandwidth and Floating-Point (FP) operations only,
and does not correlate the derived information with the suggestions it
provides to the user. Conversely, other literature tools offer fine-grained
profiling, allowing for computational bottlenecks to be associated with
the corresponding parts of code [15,16,22]. Nevertheless, these tools
are often capable of identifying a very limited number of bottlenecks,
and do not correlate the kernel’s attained performance with the un-

derlying hardware capabilities. For instance, if the target application
is memory-bound and performs poorly, such tools do not suggest any
additional optimizations to the end-user.
Available online 22 December 2023
0743-7315/© 2023 The Author(s). Published by Elsevier Inc. This is an open access a
nc-nd/4.0/).

E-mail address: alberto.zeni@polimi.it (A. Zeni).

https://doi.org/10.1016/j.jpdc.2023.104832

Received 8 August 2023; Received in revised form 10 November 2023; Accepted 17
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

 December 2023

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
mailto:alberto.zeni@polimi.it
https://doi.org/10.1016/j.jpdc.2023.104832
https://doi.org/10.1016/j.jpdc.2023.104832
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2023.104832&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

A. Zeni, E. Del Sozzo, E. D’Arnese et al.

In this complex scenario, we present Starlight, an open-source 1

tool that guides the user to develop highly optimized GPU kernels by
combining Performance Counter (PC)-sampling and the Roofline Model
to provide effective and accurate optimizations. We demonstrate its
applicability on three different kernels executed on multiple systems,
showing the flexibility of our tool when analyzing the performance of
different GPU generations. The tool provides a performance analysis of
the algorithm considering the underlying architecture and the GPU ker-

nel performance. In particular, Starlight starts by creating a Roofline
Model of the target architecture. Then, it proceeds to deeply analyze
the kernel by finding the various stalls and assigning them to their re-

spective line of source code. Next, Starlight combines the performance
data from the Roofline Model with various details regarding the ker-

nel stalls, generating a series of accurate suggestions for the end-user
to follow to optimize the code. Finally, the tool provides an improve-

ment estimation associated with each suggestion using the information
on the stalls and their operations, enabling us to also highlight kernel
hot spots. Starlight can perform this analysis on any GPU that supports
CUDA from version 11.0. Moreover, to the best of our knowledge, it
is the first tool in the literature to support the automatic generation of
the Roofline Model on any CUDA-capable GPU plotting the target ker-

nel performance and GPU device capabilities for every native data type
(half-, single-, and double-precision FP, and integer) and multiple mem-

ory hierarchies definitions (L1 cache, L2 cache, and GMEM).

To summarize, the main contributions of this work are:

• Starlight, an open-source Roofline Model-based tool for the analysis
and optimization of GPU kernels.

• Automatic Roofline Model generation for any CUDA-capable GPU
with support for multiple memory hierarchies and integer applica-

tions, making Starlight the first tool in the literature to support the
benchmarking and automatic generation of the Roofline for every
native datatype.

• Analysis of kernel stalls with information about the stall itself and
the stall-causing source code lines without the need for any man-

ual modification/instrumentation of the source code of the GPU
application.

• Kernel optimization suggestions associating information from the
Roofline Model and kernel analysis decorated with in-depth kernel
performance measurements.

• Kernel performance improvement prediction and execution’s hot
spots detection by precomputing the benefits of the suggested op-

timizations.

The rest of the paper is organized as follows: Section 2 provides an
overview of Starlight and the motivation behind this work; Section 3

describes the Roofline Model in-depth; Section 4 details the charac-

teristics of our tool and defines both how we generate the Roofline
Model (Section 4.2) and how we collect and correlate performance data
(Section 4.3) to suggest optimizations to the end-user (Section 4.4); Sec-

tion 5 reports the experimental results obtained by tool-optimized ap-

plications and the description of the implemented algorithms; Section 6

overviews the related work regarding tools for GPU-kernel optimiza-

tion and studies that expanded the Roofline Model for GPUs. Finally,
Section 7 states the conclusions.

2. Starlight overview and motivation

Starlight automatically examines the target kernel and provides sug-

gestions about possible optimizations of the analyzed kernel, highlight-

ing under-performing code regions. First, we provide a high-level ana-

lytic model for an intuitive bounding analysis in the form of the Roofline
Model (Section 3). Second, our optimization methodology also offers
2

1 https://github .com /albertozeni /starlight
Journal of Parallel and Distributed Computing 187 (2024) 104832

an in-depth performance analysis of the target GPU kernel, therefore,
overcoming most of the limitations of the Roofline Model represen-

tation (Section 6). In this way, Starlight aids the user in identifying
which part of the algorithm needs to be improved to achieve better
performance and reduce the user expertise required to optimize GPU
algorithms. Furthermore, we exploit the Roofline Model performance
analysis as an alternative and effective evaluation tool for kernel effi-

ciency to NVIDIA tools. Indeed, NVPROF and NSIGHT [24,32] propose
Device Occupancy (DO) as the primary measure on which they base
their performance metrics. Summarizing all the kernels’ requirements to
DO significantly reduces the efficiency of the proposed suggestions, as
resource occupancy is a very error-prone metric and often inaccurately
depicts the capabilities of a device [33]. Moreover, Starlight overcomes
the limitations of state-of-the-art implementations by being the first tool
able to depict the performance of any native datatype while correlating
its performance with the target GPU architecture bottlenecks into its
Roofline Model analysis (Section 6). We do not limit our analysis to the
Roofline Model only, but rather we guide users to hot spots, exploit-

ing SASS [34] and CUPTI [35] intermediate assembly representations
to accurately characterize the analyzed kernel. Starlight also provides
insights into possible performance gains, by correlating the information
of the various kernel stalls to their respective code lines and stall na-

ture while weighting the number of stalls removed if a suggested fix is
applied to the code (Section 4.4).

We believe that Starlight offers both a more accessible and more ef-

fective way for kernel optimizations than other state-of-the-art tools,
given its ability to overcome the limitations of the other Roofline-based
implementation and provide the user with easy-to-understand and pre-

cise suggestions to optimize the source code.

3. The roofline model

The Roofline Model [31] represents a valuable resource for HPC
developers, as it offers a visually intuitive method to portray and un-

derstand the performance (usually expressed in Floating-Point Opera-

tions Per Second (FLOPs/sec)) and bottlenecks of an application. Such
a model depends on the target architecture’s peak performance and
Memory Bandwidth (MBW), obtainable through either the hardware
specification or micro-benchmarks. It exploits the same analysis applied
by Amdahl’s Law [36], e.g., the bound and bottleneck analysis, to couple
the attained performance of an application and its achieved MBW in a
single graph. In particular, the Roofline Model showcases the various
application limits associated with the characteristics of the underly-

ing architecture, indicating if such an application is either memory- or
compute-bound. In this way, users can understand performance issues
at a glance, as developers can exploit this model to observe the differ-

ent bottlenecks of algorithms and architectures to better comprehend
how to improve the application performance. Originally, the model was
conceived only to describe the performance of CPUs, while in recent
years, the Roofline Model has also been adapted to better suit other
architectures, e.g., GPUs and FPGAs [25–30], or extended to include
additional features, such as multiple levels in the memory hierarchy,
ranging from the off-chip memory to on-chip caches [37,27,38,39].
Fig. 1 shows an example of the vanilla Roofline Model on a log-log scale
for a FP-based application. Here, the y-axis represents the reachable
Floating-Point Performance (FPP) in Giga Floating-Point Operations Per
Second (GFLOPs/sec). The x-axis denotes the Operational Intensity (OI),
which indicates the number of operations performed per byte of GMEM
traffic, depicting the relationship between the target architecture per-

formance and the off-chip memory bandwidth. The horizontal blue line
in Fig. 1 shows the peak FPP of the system. Thus, the actual FPP of an
application cannot exceed that line, since it is a hardware limitation.
The diagonal orange line exhibits the maximum FPP, in terms of MBW,
that the memory system of the target architecture supports for a given
OI. Given this setup, the following formula denotes the top attainable

performance:

https://github.com/albertozeni/starlight

A. Zeni, E. Del Sozzo, E. D’Arnese et al.

Fig. 1. An example of the Roofline Model chart.

𝐺𝐹𝐿𝑂𝑃𝑠∕𝑠𝑒𝑐 =min(𝑃𝑒𝑎𝑘 𝐹𝑃𝑃 ,𝑃 𝑒𝑎𝑘𝑀𝐵𝑊 ⋅𝑂𝐼) (1)

Equation (1) considers the two previously mentioned lines: Peak FPP
(blue) and Peak MBW (orange), which depends on the relative OI. The
two lines intersect at the point of peak computational intensity and peak
MBW. Such a point, called ridge point, provides the user with insights
regarding the overall performance of the target system. Indeed, the OI
of the ridge point divides the chart into two areas: a memory-bound
one (on the left, highlighted in orange in Fig. 1) and a compute-bound
one (on the right, highlighted in blue). Therefore, the OI of a given
kernel plays a crucial role in determining its peak performance. For
example, if the OI is lower than the ridge point’s one, the kernel is in the
memory-bound area, which means that the MBW of the system limits
the attainable performance. Conversely, if the kernel is in the compute-

bound area, the peak performance depends on the computing resources
available in the system. In summary, developers aim to improve the
OI to reach the compute-bound area, if feasible; then, they can enforce
optimizations to increase the GFLOPs/sec until the kernel “touches the
roof.”

4. Proposed solution

This Section provides a detailed description of Starlight. First, we
overview its structure (Section 4.1) and define our methodology for the
Roofline Model generation (Section 4.2). Then, we illustrate how we
perform fine-grained performance analysis (Section 4.3) and correlate
this information with kernel performance predictions and optimization
suggestions (Section 4.4).

4.1. Starlight structure overview

Starlight comprises three main modules, as depicted in Fig. 2. The
first one is the Roofline Generator (Fig. 2 A©), which profiles the applica-

tion and draws the Roofline Model, highlighting the actual performance
of the application. Then, the Performance Analyzer (Fig. 2 B©) exploits
NVIDIA CUPTI to correlate performance bottlenecks with the applica-

tion’s source code. Finally, the Optimization Parser (Fig. 2 C©) module
correlates such information to produce optimization suggestions.

Starlight takes as input the binary of the target application. At first,
the tool queries the target GPU and extracts its characteristics. From
such information, the Roofline Generator selects the proper GPU Pro-

filer (NVPROF [24], if the compute capability of the GPU is lower than
7.0, NCU [23] otherwise) and proceeds to build the GPU Roofline Model
and to profile the application to map it onto the Roofline. Then, the
Performance Analyzer collects the performance data by sampling the
target application through CUPTI and associates performance informa-

tion and bottlenecks with the application’s source code lines. Next, the
Optimization Parser processes the data from the two previous modules
3

and combines them with optimization suggestions. Starlight output is
Journal of Parallel and Distributed Computing 187 (2024) 104832

the Roofline Model of the target kernel and the list of optimizations. Af-

ter improving the application, the user can rerun Starlight to evaluate
the current performance and check whether the tool suggests additional
optimizations. Lastly, please note that Starlight currently targets single-

GPU systems.

4.2. Roofline generator

The first module of Starlight is the Roofline Generator (Fig. 2 A©),
which produces a Roofline Model tailored to a given application and
the underlying GPU; please note that the Roofline Model generated by
Starlight is inspired by the Roofline variants [37,27,38,39] that inte-

grate the entire memory hierarchy to highlight the role and impact of
each GPU memory level. To this end, it detects the target GPU and
retrieves its characteristics (e.g., memory bus width, GPU frequency,
and memory frequency) by querying the target GPU via the NVIDIA
APIs and a custom kernel. In this way, Starlight builds a Roofline
Model based on theoretical data; alternatively, the user can provide
a JSON file containing empirical data about the GPU performance and
memory to derive a more realistic Roofline Model. After this step, the
tool starts the kernel analysis through the appropriate NVIDIA API’s.
More specifically, Starlight can benchmark every GPU supporting either
NVPROF [24] or NCU [23], and according to the target GPU architec-

ture compute capability, it automatically selects the appropriate APIs
and the corresponding metrics to collect. Indeed, we collect specific
performance information using NVIDIA’s proprietary APIs, and deeply
analyze it to accurately depict the target kernel’s performance, and the
GPU capabilities. We enrich the incomplete information provided by
NVIDIA profilers with additional insights, exposing more useful and ac-

curate information to the users through our Roofline Model. During this
analysis phase, the tool collects data regarding the number and type of
instructions and operations executed, the number of memory load/store
transactions per each memory type (e.g., off-chip, L1 and L2 caches),
the branch efficiency, the utilization of the Streaming Multiprocessors
(SMs), the percentage of stalled threads, the achieved occupancy of the
GPU, and, finally, the target kernel execution time. Once the data re-

trieval is over, Starlight correlates such results with the specifications of
the target GPU. In particular, we use the number of available SMs, com-

pute units per SM, Tensor Cores, if available, and the GPU’s achievable
frequency to compute the performance ceiling. Similarly, we employ
memory-related data (e.g., memory clock and memory bus width) to
calculate the GPU’s memory bandwidth. Finally, after correlating such
data, Starlight plots the Roofline Model for the given kernel.

Fig. 3 shows the typical outputs of the Roofline Generator module
based on theoretical (Fig. 3a) and empirical data (Fig. 3b), respec-

tively. The chart provides the user with a visually-intuitive method
to understand the kernel performance using a bound and bottleneck

analysis approach. In particular, we express the performance using
different metrics depending on the type of performed operations. In-

deed, Starlight supports the profiling of both integer and FP appli-

cations, the y-axis reports either Giga Integer Operations Per Second
(GIOPs/sec) or GFLOPs/sec, whereas the x-axis exhibits the correspond-

ing OI, here indicating the operations per byte of L1/L2/GMEM traffic.
Within the chart, we use different colored lines to display the band-

width of these three memories and various symbols for the performance
of the supported arithmetic precision. We highlight different areas of
the graph in different colors to better indicate if the analyzed kernel
is either compute- or memory-bound. Finally, we calculate the per-

formance ceiling and GPU’s memory using the data previously men-

tioned. For instance, the NVIDIA RTX A5000 can reach a frequency
of 1.695𝐺𝐻𝑧 and has 8192 CUDA Cores available. In particular, since
each Core can schedule two 32-bit operations per clock cycle, the the-

oretical peak performance for both integer and single FP precision is
1.695𝐺𝐻𝑧 × 8192 × 2 = 27770.88 GIOPs/sec or GFLOPs/sec (Fig. 3a).
Similarly, we compute the theoretical memory bandwidth available on

the target GPU. In this instance, the A5000 has a 384-bit memory bus

Journal of Parallel and Distributed Computing 187 (2024) 104832A. Zeni, E. Del Sozzo, E. D’Arnese et al.

Fig. 2. From an unoptimized application, Starlight analyzes the application using three modules. First, it profiles the application and generates the Roofline Model
reporting its performance and, optionally, a JSON file containing the benchmarked GPU performance (A©). Then, Starlight samples the application through CUPTI
APIs and associates kernel stalls and performance measurements with the corresponding source code lines (B©). Finally, the tool correlates the information from the
two previous modules and produces optimization suggestions (C©). The output of Starlight is the Roofline Model of the application and the optimization list. The
user can also re-iterate Starlight analysis to further optimize and examine the code after each pass.

Fig. 3. Example Roofline plot outputs of the Roofline Generator, using theoretical (a) or empirical (b) measurements. The three differently colored lines represent
the bandwidth of the memories available on the GPU (an RTX A5000 in this example). The two differently colored zones represent compute- and memory-bound
areas of the model. The three different shapes represent the performance attained by the different kernel computations related to the OI of the various levels of GPU
4

memory (each shape corresponds to a different arithmetic precision).

A. Zeni, E. Del Sozzo, E. D’Arnese et al.

width, a memory frequency of 2000𝑀𝐻𝑧, and can schedule 8 memory
accesses per clock cycle. Thus, the memory bandwidth for the off-chip
memory is 8 × 2000𝑀𝐻𝑧 × 384∕(1000 × 8) = 768 𝐺𝐵∕𝑠. Conversely,
L1 and L2 caches have their frequency tied to the GPU rather than
memory. Therefore, the L1 cache bandwidth depends on the SMs on
the target GPU, differently from the L2 cache, which instead cannot
always be accessed by all SMs, being its access configuration depen-

dent on the GPU’s architecture generation. In our use-case, the A5000
has a total of 64 SMs available, each accessing 128 bytes on the L1
cache, and the total number of SMs accessing the L2 cache reading 32
bytes per clock cycle at maximum. Because of this the peak L1 and L2
maximum bandwidth is 64 × 128 × 1.695𝐺𝐻𝑧 = 13885.44 𝐺𝐵∕𝑠 and
64 × 32 × 1.695𝐺𝐻𝑧 = 3471.36 𝐺𝐵∕𝑠 respectively. It is important to
note that, while this information is unique for every GPU, even within
the same architectural generation, every measure is completely auto-

mated by Starlight, which adapts the various measurements at runtime
and ensures accuracy when targeting the different GPU characteristics.

Although this automated approach guarantees portability to dif-

ferent GPUs, the resulting theoretical Roofline Model may inflate the
achievable performance and mislead users. For this reason, Starlight al-

lows the user to supply a JSON file containing data about performance
and memory ceilings derived from external experiments/benchmarks
[40–43]; the result is an empirical Roofline Model that better fits the
target GPU capabilities.

4.3. Performance analyzer

The Performance Analyzer module (Fig. 2 B©) collects various infor-

mation regarding the kernel performance and bottlenecks and correlates
them with the application source code without manually modifying or
instrumenting the original CUDA application. To this end, this module
leverages NVIDIA CUPTI APIs, which enable seamless kernel instruction
sampling. Moreover, CUPTI instruments GPU binaries to gather data
about executed instructions and memory accesses, something which in-

struction sampling alone cannot measure. Consequently, our module
can collect all the various stalls of the application to offer more accurate
performance optimization suggestions to the end-user. Finally, the Per-

formance Analyzer also exploits the CUPTI Continuous Sampling APIs,
which prevent the serialization of the various kernels within the appli-

cation, guaranteeing that our performance modeling reflects the actual
execution accurately. During this phase, the Performance Analyzer sam-

ples the target executable at the maximum frequency reachable by
CUPTI Sampling APIs (every 32 clock cycles) to better model the var-

ious performance bottlenecks. Of course, CUPTI does introduce some
overhead when profiling the target application, which significantly
varies according to the target application and the density of CUDA ac-

tivities within it. Nonetheless, the time spent by Starlight analyzing the
target application is negligible with respect to the optimizations and fu-

ture gains that the tool suggests, increasing the execution time of the
application during the data collection phase only by a factor of 4.85×
on average.

After retrieving the data from CUPTI APIs, the Performance Analyzer
correlates PCs to SASS (the low-level assembly that compiles to binary
GPU microcode [34]) and then SASS to the correspondent CUDA source
line. At first, the Analyzer extracts CUDA binaries (CUbins) from the
application executable. CUbins contain CUDA executable code sections,
symbols, relocators, and debug information necessary to associate stalls
with the correspondent lines of code at the SASS level. Then, the module
correlates the PC sampling and SASS scheduled instructions. Once this
phase ends, we can associate the different SASS assembly instructions
producing stalls with their respective lines in the source code. Finally,
the Performance Analyzer stores an intermediate raw representation of
5

these results and passes them to the following module.
Journal of Parallel and Distributed Computing 187 (2024) 104832

4.4. Optimization parser

The final module of Starlight (Fig. 2 C©), namely the Optimiza-

tion Parser, is in charge of associating the various performance stalls
and kernel performance with optimization suggestions for the end-user,
according to the information collected in the two previous modules.
Furthermore, it is in charge of detecting hot spots and providing in-

formation on the potential benefits of the applied optimizations. In
particular, the module starts by taking into account measures collected
by the Roofline Generator (Section 4.2), observing whether the target
application is memory- or compute-bound. In the former case, Starlight
suggests applying changes to the computation (e.g., decreasing the
arithmetic precision) or compressing the input data. These optimiza-

tions aim to increase the Operational Intensity (OI) and, potentially,
move the kernel to the compute-bound area. In the latter case, if the
kernel is far from touching the compute roof, the module analyzes the
GPU occupancy and SM efficiency, suggesting adapting the number of
scheduled blocks and threads accordingly. Then, the module checks
the kernel’s branch efficiency, observing the efficiency of non-predicate
warp instructions to advise the end-user on how to schedule the kernel
threads better to avoid divergence.

Starlight proceeds to correlate this analysis with the corresponding
code lines highlighted by the Performance Analyzer (Section 4.3) and
their relative stalls. In particular, the module associates each stall with a
specific cause and, accounting for the previously computed performance
metrics, suggests the different optimizations to apply at the appropriate
source code line. More specifically, Table 1 provides an overview of the
different optimization recommendations according to the performance
bottleneck observed during the construction of the kernel’s Roofline
Model and PC sampling.

As a final step, this module predicts the performance improvement
(expressed in percentage and GFLOPs/sec or GIOPs/sec) that the kernel
can obtain after resolving the various stalls, detecting code hot spots
to facilitate the user in the research for problematic code sections. In
particular, Starlight uses the peak performance of the target GPU, the
kernel’s achieved OI, the total kernel runtime, and the number of stalls,
together with their previously detected cause (Table 1), to provide the
end-user with accurate information regarding the various gains of ev-

ery optimization. Indeed, the module parses information regarding the
various code stalls together with the previously computed correlations,
associating each suggestion, and corresponding code line, to an esti-

mated improvement. First, we detect the kernel’s hot spots correlating
problematic source code lines (previously detected by the optimization
parser module) with their corresponding operations. By doing so, we
can precisely depict which parts of the kernel account for most of its
execution time. We describe the runtime percentage of a hot spot code
line as follows:

Line Runtime Percentage𝑙 =
𝑁𝑜𝑝,𝑙 +𝑁𝑠𝑡𝑎𝑙𝑙,𝑙

∑𝑀

𝑖=1(𝑁𝑜𝑝,𝑖 +𝑁𝑠𝑡𝑎𝑙𝑙,𝑖)
× 100 (2)

Equation (2) describes the proportion of the runtime for every prob-

lematic code line in the kernel. We define 𝑀 as the total number of
code lines of our kernel, 𝑙 as the analyzed source code line, while 𝑁𝑜𝑝,𝑙

and 𝑁𝑠𝑡𝑎𝑙𝑙,𝑙 indicate the number of operations and stalls required by the
execution of 𝑙, respectively. Then, to compute the possible attainable
gain of each optimization, we analyze the nature of the various opera-

tions of every 𝑙 line and associate every performance bottleneck to the
corresponding line stalls and operations. Therefore, we can weigh the
impact of every optimization for the target 𝑙 line by characterizing each
hot spot per bottleneck type, knowing that the same source line might
have bottlenecks, and only some can be addressed with different opti-

mizations.

We describe the impact of an optimization against a code line 𝑙 in

terms of speedup as:

Journal of Parallel and Distributed Computing 187 (2024) 104832A. Zeni, E. Del Sozzo, E. D’Arnese et al.

Table 1

List of code optimizations suggestions provided by the tool and how they affect the kernel performance and OI on the
Roofline Model.

Performance Bottleneck Suggestion Kernel improvement and movement on the Roofline

Latency/Dependency

Code Reorder

Increase performance ↑Function Inline

Loop Unroll

Poor Memory Usage

Increase Shared Memory usage Increase performance ↑
Coalesced Memory Access

Increase OI →
Register Reuse

Poor Resource Usage
Increase/Reduce Number of Threads

Increase performance ↑
Increase Number of Blocks

Thread Synchronization/Branching

Reduce Number of Threads

Increase performance ↑
Code Reordering

Remove Sync

Split Computation

Low OI
Reduce Operation Precision

Increase OI →
Compress Analyzed Data
SpeedupAfterOptimization𝑙 =
∑𝑀

𝑖=1(𝑁𝑜𝑝,𝑖 +𝑁𝑠𝑡𝑎𝑙𝑙,𝑖)
∑𝑀

𝑖=1(𝑁𝑜𝑝,𝑖 +𝑁𝑠𝑡𝑎𝑙𝑙,𝑖) −𝑁𝑜𝑝𝑡𝑦𝑝𝑒−𝑠𝑡𝑎𝑙𝑙𝑠,𝑙
(3)

where 𝑁𝑜𝑝𝑡𝑦𝑝𝑒−𝑠𝑡𝑎𝑙𝑙𝑠,𝑙 is the number of stalls per specific operation type,
e.g., Latency, we identified in the 𝑙 line. Finally, since the runtime per-

centage of each code line is computed with respect to the total execution
time of the kernel, by assuming the same number of computed opera-

tions by the kernel, we estimate the new performance of the optimized
kernel, in either GFLOPs/sec or GIOPs/sec, as:

New Performance = Speedup After Optimization × Original Performance

(4)

Experimental results (Section 5) show the effectiveness of our perfor-

mance improvement prediction methodology, highlighting its accuracy
in depicting performance stalls, as the difference between the predicted
performance improvements against the obtained ones is below 2.5%.

5. Experimental results

This Section describes the experimental evaluation of Starlight. In
particular, we evaluate our tool’s analysis and optimization features on
three different examples, each one exposing different compute patterns
and arithmetic precision. We report the experimental settings of our
experiments in terms of NVIDIA tools and target GPUs (Section 5.1).
Then, we illustrate the analysis and optimization process we applied to
the three examples.

First, we evaluated Starlight against two openly available HPC GPU
applications. The former is an N-Body simulation application available
in the NVIDIA examples2 [45] (Section 5.2); the latter is LOGAN3 [5],
an HPC GPU algorithm for aligning very long genome sequences im-

plementing the 𝑋-drop heuristics [46] (Section 5.3). Here, we focused
on optimizing the computing kernels for these two algorithms without
changing their overall structure to prove the effectiveness of Starlight
in identifying the bottlenecks of already-optimized applications and
suggesting further performance improvements. Moreover, we show the
tool’s capability in analyzing kernels employing single/double FP pre-

cision (N-Body simulation) or integer operations (LOGAN). Finally, the
third example is an open-source solution for the computation of the
Mutual Information (MI) in the Image Registration field [47–51] (Sec-

tion 5.4). In this case, we demonstrate how Starlight can help guide the
implementation and optimization process of an application initially not
designed for GPU from the ground up.

2 https://github .com /NVIDIA /cuda -samples.
6

3 https://github .com /albertozeni /LOGAN .git.
Table 2

Different Machine Configurations used to test Starlight.

NVIDIA GPU GPU RAM Host CPU Host RAM

RTX 3060 Mobile 6GB GDDR6 Intel i9 11900H 64GB

RTX A5000 24GB GDDR6 AMD Ryzen 7 5800X 32GB

A100 40GB HMB2 AMD Epyc 7542 2TB

V100 16GB HBM2 Intel Xeon Platinum 8167M 768GB

P100 16GB HBM2 Intel Xeon Platinum 8167M 256GB

5.1. Experimental settings

All the applications have been implemented using C++ and NVIDIA
CUDA 11.8. The PC sampling utilities have been described using
NVIDIA CUDA Toolkit 11.8 APIs and Perl. We collected the performance
results on multiple systems covering multiple generations of NVIDIA
GPUs (Table 2) to show the tool flexibility and its cross-architecture ef-

fectiveness. Finally, we report the Roofline Model of the NVIDIA RTX
A5000 using empirical measurements [40–43], to show the consistency
of the results with Starlight’s generated Roofline Models.

5.2. N-body simulation analysis and optimizations

The N-Body simulation algorithm approximates the evolution of a
system of bodies where they continuously interact under a force of at-

traction [44]. A simple example is a gravitational system where the
bodies represent celestial entities (e.g., galaxies, stars, or planets). Gen-

erally, the N-Body simulation algorithm is a crucial part of many sci-

entific applications, such as global illumination, fluid simulation, and
protein folding. For this reason, the literature contains various versions
of this algorithm. Among these, the All-Pairs is the most time-consuming
yet accurate variant. At every simulation step, the algorithm computes
the forces of attraction of each body by considering its interaction with
all the others, resulting in the time complexity of (𝑛2). Here, we an-

alyze the All-Pairs implementation available in the CUDA examples,4

which corresponds to the one work of Nyland et al. [45]. In particular,
this implementation proposed a solution based on tiling, dividing the
bodies into multiple tiles of the same dimension and updating the posi-

tion of each body within a tile in parallel. Besides, the authors employ
loop unrolling, assign a GPU block per tile of bodies, and update their
position using multiple threads.

During the considered N-Body simulation algorithm analysis,

Starlight highlighted multiple issues with latency and poor resource
utilization on the GPU. Hence, we first proceeded with inlining the
4 https://github .com /NVIDIA /cuda -samples.

https://github.com/NVIDIA/cuda-samples
https://github.com/albertozeni/LOGAN.git
https://github.com/NVIDIA/cuda-samples

Journal of Parallel and Distributed Computing 187 (2024) 104832A. Zeni, E. Del Sozzo, E. D’Arnese et al.

Fig. 4. Performance comparison of the Starlight -optimized N-Body single- and double-precision kernels and relative speedup on multiple GPU boards.

Fig. 5. Plot output of the Roofline generator for optimized N-Body single- and double-precision kernel on the NVIDIA RTX A5000.
functions flagged by the tool. Then, we adapted the already unrolled
code section to use the same number of threads scheduled to compute
the algorithm, improving the GPU resource utilization. Indeed, the orig-

inal code version unrolled the execution of the inner loop of the N-Body
simulation by a fixed factor of 128. This choice limited the parallelism
up to 128 computations in parallel and significantly impacted the la-

tency of the algorithm, since in the case of more than 128 scheduled
threads, these would stall, limiting the capabilities of the GPU to over-

lap the execution warps properly. Finally, according to the target board,
Starlight also suggested increasing the number of scheduled threads to
compute more body interactions in parallel.

We evaluated our optimized code against the original version using
both single and double FP precision. We considered a system of 65536
bodies for these experiments and simulate 100 time steps. Starlight’s
predicted performance speedup against the original implementation of
the single precision workload was 1.15× on average. Fig. 4a compares
the performance of the original algorithm against the one optimized
with Starlight on different boards in terms of GFLOPs/sec. On the other
7

hand, Fig. 5a shows the Roofline Model of our final single-precision
implementation on the NVIDIA RTX A5000. In this scenario, our solu-

tion achieves up to 1.13× performance improvement compared to the
original software, with different gains attained according to the tar-

get board. Moving to the double-precision version, Fig. 4b and Fig. 5b
report the performance comparison and the Roofline, respectively. In
this instance, given the additional complexity of double precision op-

erations, Starlight highlighted additional stalls, thus resolving them
accounting for additional performance gains with respect to the single-

precision implementation and achieving improvements of up to 1.22×
concerning the baseline double precision solution. Starlight’s predicted
improvements for the solved stalls indicated a performance increment
of 1.24×. Moreover, we can observe that in the double precision use
case, our optimized kernel is close to touching the Roofline, while in the
single precision instance, the performance reached by the N-Body simu-

lation algorithm is still not touching the Roofline ceiling, even after our
optimizations, indicating that further improvements are possible. In-

deed, Starlight still showed us all the remaining bottlenecks within the
code, indicating dependency issues in the innermost part of the body’s

position update computation. Solving these issues would require a sig-

Journal of Parallel and Distributed Computing 187 (2024) 104832A. Zeni, E. Del Sozzo, E. D’Arnese et al.

Fig. 6. Runtime comparison of the Starlight -optimized LOGAN kernel on multiple GPU boards with four X values and relative speedup (log-scale).
Fig. 7. Roofline plot output of the Roofline generator for optimized LOGAN on
the NVIDIA RTX A5000 with 𝑋 =100.

nificant change in the code’s structure, such as reordering most of the
kernel’s operations. Besides, although identifying these issues further
confirms Starlight’s efficiency, the required additional optimizations are
beyond the scope of this example, whose objective, as previously men-

tioned, is to show how already available optimized GPU applications
can still be improved and how our tool can aid this process.

5.3. LOGAN analysis and optimizations

LOGAN [5] implements a high-performance algorithm for the pair-

wise alignment of genome sequences [52–55]. 𝑋-drop [46] is a heuris-

tic that avoids the entire quadratic cost of exact alignment algorithms
such as Needleman-Wunsch [56] and Smith-Waterman [57] by search-

ing only for high-quality alignments. In practice, 𝑋-drop eliminates
searches between sequences that are clearly diverging. Indeed, instead
of exploring the whole 𝑚 × 𝑛 space (where 𝑚 and 𝑛 are the lengths of
the sequences to align), 𝑋-drop searches only for alignments that result
in limited edits between the two sequences. Moreover, to reduce the
search space, the algorithm keeps a maximum running score and does
not explore cell neighborhoods whose score decreases below a user-

specified parameter 𝑋.

Starlight analysis of the original version of LOGAN highlighted mul-

tiple performance issues. In particular, the tool identified multiple de-

pendencies and latency issues and suggested inlining the highlighted
functions accordingly and reordering some intensive operations. Be-

sides, Starlight also recognized other stalls related to memory throttling
8

and poor branching performance. Given this context, we solved the
issues related to data dependency and latency by rescheduling some op-

erations in the priors parts of the code, which led to a significant gain in
performance. Then, Starlight suggested adapting the number of sched-

uled threads according to the input 𝑋. More specifically, changing 𝑋
impacts the algorithm runtime: increasing 𝑋 renders the heuristic less
aggressive and causes the algorithm to run longer, whereas decreasing
it makes the alignment stop sooner. For this reason, the tool advised re-

ducing the number of threads when using a small value of 𝑋, leading to
enhancements in performance and branch efficiency since we improved
resource usage and diminished thread stalling. On the other hand, with
a larger 𝑋, Starlight suggested raising the number of threads to speed
up the alignment process, as the computation of the alignment matrix
requires much more time in this scenario.

Fig. 6 compares the results of the original and optimized versions of
LOGAN when run on various GPUs using multiple X values. To directly
compare our design against the original implementation of LOGAN, we
used the same dataset of 100𝐾 long reads employed by the authors
of LOGAN for their experiments on the original version of the code.
Our optimizations led to an average speedup of 1.73× when compar-

ing the original LOGAN software to the Starlight -optimized one, while
Starlight’s predicted performance for the indicated stalls showed an av-

erage of 1.75× performance improvements. In contrast, Fig. 7 shows the
final Roofline attained with the performance improvements of Starlight.
We can observe that the kernel performance is touching the Roofline
when looking at the line described by the L1 cache bandwidth. Due
to the structure of LOGAN’s heuristic algorithm and the multiple de-

pendencies present in the kernel, improving the kernel’s performance
would require significant changes in the code structure, which, as pre-

viously stated, is beyond the scope of these examples.

5.4. Mutual information analysis and optimizations

Image Registration is the procedure of aligning a floating image 𝐹 to a
reference one 𝑅, widely employed in multiple and different fields, rang-

ing from medicine to satellites [59]. Identifying the geometric trans-

formation for such an alignment is a compute-intensive optimization
process that requires calculating the likeness of the two images itera-

tively through a similarity metric. MI is one of the most employed met-

rics in this context [60], as well as in domains such as genomics [61],
relevance networks [62], Hidden Markov Models training [63], and
features selection [64]. In particular, the MI concept comes from In-

formation Theory, and it measures the statistical dependency of two
random variables, 𝐹 and 𝑅 (the two images in our case) [65]. MI com-

putation requires first calculating the joint and single histograms of the
two images, then, according to Shannon’s equations [66], deriving the
entropies from such histograms. Finally, the aggregation of entropy val-

ues produces the MI.

Our implementation builds upon the state-of-the-art open-source im-

plementation design5 [47], which offers an FPGA-accelerated kernel
5 https://github .com /necst /iron.

https://github.com/necst/iron

Journal of Parallel and Distributed Computing 187 (2024) 104832A. Zeni, E. Del Sozzo, E. D’Arnese et al.

Fig. 8. Performance comparison of the Starlight -optimized Mutual Information kernel on multiple GPU boards against FPGA [47] and GPU [12,58] in terms of
GFLOPs/sec and GIOPs/sec (log-scale). The speedup of each GPU version refers to the corresponding single-/multi-pair FPGA/GPU design on the corresponding line.
for the MI process. This implementation closely resembles the afore-

mentioned algorithm but needs relevant changes to become suitable
for GPU. Our initial solution employed multiple threads to compute
the histograms directly on GMEM through atomic instructions. Starlight
suggested exploiting the shared memory to reduce memory bottlenecks.
In this way, we entirely privatized the single histogram computation
and partially the joint histogram one. Indeed, since the entire joint his-

togram cannot fit into shared memory, we only store a portion of the
input images on shared memory for fast and coalesced memory access
during its computation. Since we were only using a single block for the
MI computation of a single couple of images, Starlight also advised in-

creasing the number of scheduled GPU blocks to boost the performance
further. Generally, the number of MI calculations depends on both the
convergence of the alignment process of an image couple and the num-

ber of active registration processes. Thus, once integrated within an
Image Registration framework, our solution can support the parallel
registration of multiple image couples.

To evaluate our design, we used a medical dataset of 227 Com-

puted Tomography (CT) images with a dimension of 512 × 512 pix-

els, and a corresponding number of Positron Emission Tomography
(PET) ones, resized from 128 × 128 pixels to a dimension of 512 × 512
pixels, each down-scaled to 8-bit data width6 [67]. Furthermore, we
compare our results against the state-of-the-art and open-source FPGA-

accelerated implementation of the same algorithm proposed by Confic-

coni et al. [47] running on the accelerator card Alveo U200 and against
a GPU solution exploiting PyTorch [12,58] running on an NVIDIA
A100. Fig. 8 shows the performance comparison of our design against
the FPGA and GPU state-of-the-art solutions, while Fig. 9 displays the
Roofline Model of the final design of our MI kernel. When computing
the MI of a single image couple at a time, we can observe that our im-

plementation achieves similar performance to the FPGA design. Besides,
our designs attain a significantly higher accuracy since the FPGA solu-

tion computes entropies using 23-bit fixed-point operations, whereas
we maintain single-precision (32-bit) FP. The FPGA implementation
supports up to 4 parallel kernels due to the number of available off-

chip memory banks of the Alveo U200; thus, our approach outperforms
the FPGA version up to 12.7× in terms of GFLOPs/sec when computing
multiple MI in parallel. The state-of-the-art GPU solution is significantly
under-performing with respect to our implementation, showing that our
design is 2× faster even in its worst-performing instance. Furthermore,
the PyTorch solution has no support for the parallel computation of
multiple image couples at the same time; thus when computing multi-

6 Patient: C3N-00704, Study: Dec 10, 2000 NM PET 18 FDG SKULL T, CT: WB
9

STND, PET: WB 3D AC.
Fig. 9. Roofline plot output of the Roofline generator for optimized Mutual
Information kernel on the NVIDIA RTX A5000.

ple MI instances at the same time, our solution is capable of achieving
performance improvements of over 140×. Concerning the performance
predictions of Starlight, the first version of the code for MI compu-

tation showed an average performance of 52.74 GIOPs/sec and 8.66
GFLOPs/sec, and Starlight estimated a performance improvement for
our applied optimizations of 2.59× and 4.42× for integer and FP per-

formance respectively, while we attained a measured improvement of
2.55× and 4.32×, confirming the accuracy of Starlight’s predictions.
On the Roofline Model, we can observe that our solution is very close
to touching the roof of the L1 cache. Starlight correctly highlighted
that the dependency causing this bottleneck is related to the numerous
atomic additions required to compute the MI exactly. If we removed
this constraint our kernel would touch the roof, indicating that our im-

plementation is indeed optimal.

6. Related work

In this Section, we first overview the related work regarding the

various extensions of the Roofline Model for GPUs and tools for GPU

A. Zeni, E. Del Sozzo, E. D’Arnese et al.

kernel analysis and optimization. Then, we summarize how Starlight
differs from other literature solutions through a qualitative comparison.

6.1. GPU roofline model

In recent years, several studies in the literature proposed extensions
to the classical CPU-centric Roofline Model in terms of memory hierar-

chies/levels and target architectures. Indeed, the traditional model only
investigates the bottlenecks related to GMEM and peak performance.
For this reason, many researchers developed multiple extensions that
consider different memory hierarchies to enable a deeper understand-

ing of various architectures’ performance [37,27,38,39]. For instance,
Ilic et al. [37] and Koskela et al. [39] included multiple levels of caches
(typically L1 and L2 caches) along with the more traditional off-chip
memory in the Roofline Model for CPUs. Yang et al. [38] proposed ERT
to determine the peak capabilities of the Volta generation of NVIDIA
GPUs through micro-benchmarks automatically. Specifically, the tool
can depict GMEM and GPU caches but does not benchmark a kernel’s
performance against the Roofline.

On the architectural side, multiple studies adapted the Roofline
Model to GPUs, incorporating the support for multiple memory lev-

els [25,29,30,40,41]. Besides, some of these approaches also introduced
information regarding integer operation performance [29,30,42,43].
Despite the relevant and attractive features of such studies, they show-

case some limitations regarding usability, portability, and considered
GPU characteristics. For instance, some tools do not offer automatic
GPU detection but instead rely on a preset of performance measure-

ments to define peak performance and memory bandwidth [25,29,30].
Moreover, such tools require the user to instrument the target ap-

plication and extract performance metrics manually. On the other
hand, other approaches offer useful micro-benchmarks to empirically
evaluate (part of) the computing or memory capabilities of a given
GPU [40–43]. However, it is then up to the user to manually plot the
Roofline Model and map the target application onto it. NVIDIA pro-

posed an automatic definition of the Roofline Model inside the recently
released suite for their GPUs (starting from the Volta generation), called
NVIDIA NSIGHT [23], bringing this model to a much broader user base.
Nonetheless, the tool has some limitations; for instance, it exclusively
benchmarks FP computations and displays cache hierarchies only if the
user provides data regarding the cache bandwidths.

Moving to GPUs by other vendors, Intel Advisor [68] is a tool that
advises the user during the development of performant code for In-

tel’s CPUs and GPUs. Among the various available features, this tool
can automatically construct a Roofline Model for GPUs (and CPUs)
that includes multiple performance and memory roofs (e.g., for inte-

ger/FP operations and cache levels). In addition, Intel Advisor offers
interesting utilities such as optimization suggestions and performance
estimations when porting (part of) an application from CPU (GPU)
to (another) GPU. Lastly, Leinhauser et al. [26] proposed a Roofline
Model definition for AMD GPUs. Initially, the authors planned to em-

ploy the AMD ROC Profiler (rocProf) [69] to build the Roofline Model
and map a given application onto it; however, they then switched to
micro-benchmarks [70,71] since rocProf did not acquire enough met-

rics (e.g., memory bandwidth/transactions).

Given the different approaches in the literature, we identified the
most prominent features we believe a tool for building a Roofline Model
for GPUs should implement (e.g., supported data types). Table 3 reports
a qualitative overview of the discussed tools and our own according to
such features.

6.2. GPU analysis and optimization tools

Fully exploiting the capabilities of GPUs requires a significant un-

derstanding of the underlying architecture and expertise on the de-

veloper’s side. For this reason, researchers proposed multiple tools to
10

aid non-experienced users in analyzing and optimizing GPU kernels.
Journal of Parallel and Distributed Computing 187 (2024) 104832

In particular, analysis tools profile a target application through binary
instrumentation and hardware performance counters. In contrast, the
optimization ones exploit analysis information to provide detailed sug-

gestions to improve the GPU kernel performance. Given these premises,
this Section discusses the most prominent GPU analysis and optimiza-

tion tools. In particular, we concentrate on GPUs by NVIDIA since
Starlight targets such vendor’s devices.

Starting from the first category (i.e., analysis tools), NVBit [19] is a
framework for dynamic binary instrumentation that offers various high-

level APIs to analyze applications for NVIDIA GPUs. In particular, NVBit
leverages dynamic recompilation at the SASS level to produce instru-

mented code compliant with the target architecture. Besides, it can also
deal with pre-compiled binaries and libraries. However, despite these
features, NVBit also exhibits some limitations. For instance, it does not
support applications employing shared or constant GPU memory or ac-

celerated libraries (e.g., cuBLAS, cuTENSOR). Additionally, this tool, as
others based on code instrumentation, may generally incur significant
overheads to profile the target application accurately. CUDA Flux [20]

is an alternative to profiling based on hardware performance coun-

ters. Such a tool requires code instrumentation through LLVM to collect
statistics about the control flow. Then, it calculates the resulting in-

struction count based on these statistics combined with an analysis at
PTX level (the low-level parallel-thread execution virtual machine and
instruction set) [34]; however, the exact characterization of all types of
PTX instructions may result in large verbosity. Since CUDA Flux pro-

files only one thread to limit the execution overhead, this tool produces
meaningful results for kernels with regular compute patterns. Besides, it
does not support texture memory, concurrent kernels, and non-inlined
functions. Finally, CUDAAdvisor [22] is a framework for fine-grain code
instrumentation and performance analysis based on LLVM. It offers a
feature set similar to NVIDIA SASSI [74] and overcomes limitations
such as portability and expansibility. However, it only supports NVIDIA
GPUs up to Maxwell architectures.

Moving to tools that combine analysis and optimization guidance,
Zhou et al. [15,16] recently presented GPA. This performance advi-

sor analyzes instruction samples to guide performance optimization
on NVIDIA GPUs. In particular, GPA attributes stalls to their causes,
matches patterns of inefficiency with optimization strategies, and esti-

mates the potential speedup for each applicable optimization. Finally,
GPA combines metrics extracted from instruction sampling and binary
instrumentation to yield a comprehensive performance report. Despite
these features and advantages, GPA exhibits some limitations. On the
one hand, the binary instrumentation causes the expected overhead;
on the other, GPA lacks support for thread divergence and warp syn-

chronization detection and optimization and does not correlate kernel
improvements with the underlying hardware capabilities. For instance,
if a target kernel is memory-bound, GPA cannot suggest further en-

hancements to improve its performance. Zhou et al. also presented an
extension to HPCToolkit [18] for GPU performance modeling [17]. This
work attributes metrics to calling contexts spanning both CPU and GPU,
it constructs approximations of call path profiles for GPU computations,
and it employs a wait-free data structure to coordinate monitoring and
attribution of GPU performance metrics. In particular, HPCToolkit re-

trieves such metrics from performance counter samples and attributes
them to source lines and loops, enabling fine-grain analysis and tuning.
After receiving the tool’s detailed suggestions, the developer can then
optimize the code. Generally, HPCToolkit showcases limitations simi-

lar to GPA. Hong et al. proposed SAAKE [21], a kernel emulator and
bottleneck analyzer for GPU code optimizations based on latency and
throughput as performance metrics. After identifying the bottlenecks
and their causes, the user can exploit such information to optimize the
code or rely on optimizers such as OpenTuner. Regarding the limita-

tions, the overall analysis is performed solely on emulation for a single
architecture and kernels with regular execution patterns; thus, SAAKE’s
characterization may partially represent the target GPU, and the inter-
nal profiling model might require modifications to support additional

Journal of Parallel and Distributed Computing 187 (2024) 104832A. Zeni, E. Del Sozzo, E. D’Arnese et al.

Table 3

Comparison between tools implementing the Roofline Model for GPU.

Work
Data Types Cache Automatic Open Built Supported

Integer FP Levels Roof. Gen. Source Upon Vendor

[25] ✗ ✓ ✓ ✗ ✗ CUPTI [35] NVIDIA

[29,30] ✓ ✓ ✓ ✗ ✗ NVPROF [24] NVIDIA

[40,41] ✗ ✓ ✓ ✗ ✓ Micro-benchmarks NVIDIA

[42,43] ✓ ✓ ✗ ✗ ✓ Micro-benchmarks NVIDIA

[23] ✗ ✓ ✗ ✓ ✗ NSIGHT [23] NVIDIA

[68] ✓ ✓ ✓ ✓ ✗ Intel Advisor [68] Intel

[26] ✗ ✓ ✗ ✗ ✗ Micro-benchmarks AMD

Ours ✓ ✓ ✓ ✓ ✓ CUPTI [35] NVIDIA

Table 4

Comparison between tools for performance analysis on NVIDIA GPUs.

Work

Open Profiling Optimization

Source Yes/No Level Built Upon
HW Performance

Other Info Yes/No
Stall-Code Improvement

Correlation Correlation Estimation

[19] ✓ ✓ SASS CUDA [72] ✗ Binary Instrumentation, No
Shared/Constant Memory

✓ ✗ ✗

[20] ✓ ✓ PTX LLVM [73] ✗ Regular Compute Patterns only, No
Concurrent Kernels, No Inlined
Functions

✓ ✗ ✗

[22] ✓ ✓ PTX LLVM [73] ✗ Support only for GPUs up to Maxwell ✓ ✗ ✗

[15,16] ✓ ✓ SASS CUPTI [35] ✗ Binary Instrumentation ✓ ✓ ✓

[17] ✓ ✓ SASS
CUPTI [35] and

✗ Binary Instrumentation ✓ ✓ ✗
HPCToolkit [18]

[21] ✗ ✓ PTX CUDA [72] ✗ Emulation Only, Model Tuning
Required for every Kernel

✗ ✗ ✗

[24] ✗ ✓ SASS CUDA [72] ✗ Profiling Only ✓ ✗ ✗

[23] ✗ ✓ SASS CUDA [72] ✗ Profiling Only ✓ ✗ ✗

Ours ✓ ✓ SASS CUPTI[35] ✓ (w/ Roofline) Binary Instrumentation ✓ ✓ ✓
GPUs or applications. NVIDIA proposed multiple profilers for GPU code
over the years, namely NVPROF [24] and NSIGHT [23]. These pro-

vide multiple suggestions to the end-user, mostly relative to device
utilization and kernel’s stalls, but do not identify specific code regions
where the optimizations should be applied. Besides, NSIGHT defines the
Roofline Model for the target kernel, as we stated before.

As in Section 6.1, we collected the principal qualitative characteris-

tics of the analyzed tools and Starlight in Table 4.

6.3. Discussion

Tables 3 and 4 provide a comprehensive qualitative comparison of
the various studies in the literature on GPU kernel analysis and opti-

mization, including our own. The investigation and comprehension of
these prominent studies and their features represented the primary in-

spiration for Starlight, which aims to improve and address the current
limitations of the literature on Roofline Model-based analysis and opti-

mization tools for NVIDIA GPUs.

Concerning GPU Roofline Model definition, generally, all the solu-

tions in the literature either lack flexibility or features concerning data
types or memory hierarchy (Table 3). Only the solution proposed by
Ding et al. [29,30] and Intel Advisor [68] can define a Model as feature-

rich as the one described in this paper. However, the former supports
two models of GPUs only, while Starlight supports all the critical aspects
of the Roofline Model definition. On the other hand, the latter offers
additional valuable features other than the Roofline Model generation,
such as CPU-to-GPU and GPU-to-GPU migration, which may become
intriguing future components of Starlight. Focusing on GPU vendors
other than NVIDIA and Intel, AMD, as mentioned in Section 6.1, de-

veloped rocProf, which offers performance measurements to the end
users, although being limited when compared to other profilers such as
NSIGHT, NCU, and Intel Advisor. However, given the recent efforts in
11

the open-source community by AMD, we believe that these limitations
might be solved in the near future, enabling Starlight to support AMD
GPUs.

Table 4 shows an overview of the tools focusing on NVIDIA GPU per-

formance and bottleneck analysis, highlighting the various supported
features of the tools and their limitations. We can observe that most
state-of-the-art tools lack support for an accurate correlation of source
code and hardware capabilities with the kernel’s performance. Among
such tools, GPA [15,16] is the most feature-rich tool available in the lit-
erature. However, it does not consider the capabilities of the underlying
hardware (e.g., resource availability), making it less effective when an-

alyzing poorly implemented stall-less kernels. Furthermore, these tools
incur very expensive performance overheads (often requiring for more
than 10× of the application’s run-time) and only support a few genera-

tions of NVIDIA GPUs. Instead, Starlight can provide suggestions to the
user by defining a Roofline Model of the target kernel that considers the
capabilities of the target GPU hardware while also performing in-depth
performance analysis account for an average overhead of only 4.85× in
terms of the application’s execution time.

As previously mentioned, Starlight’s current implementation still
leaves open research paths. Currently, Starlight only supports the
benchmarking of applications on single GPU systems. Additionally,
given the aforementioned complexities in implementing GPU code, we
understand that non-experienced users might still have difficulties in
applying Starlight’s suggested optimizations. Indeed, an additional fea-

ture that one might consider implementing in Starlight is the automatic
parsing and optimization of the original code. To perform this task,
one would parse the optimization suggestions provided by Starlight
and the correspondent file to which they refer and implement some
of these suggestions without the user’s intervention. On the one hand,
some optimizations like function inlining and loop unrolling might be
more straightforward to implement in this manner; on the other hand,
optimizations like code reordering and restructuring may still require

partial user intervention.

A. Zeni, E. Del Sozzo, E. D’Arnese et al.

7. Conclusions

In this work, we presented Starlight, an open-source tool for GPU
kernel optimization based on the Roofline Model. First, we provided
a detailed description of the tool’s structure, highlighting the mecha-

nisms behind its various modules. We defined how Starlight exploits
the Roofline Model to provide accurate and practical suggestions to the
end-user for optimizing the target kernel. Then, we proved the tool’s
effectiveness by analyzing multiple state-of-the-art algorithms and opti-

mizing them through Starlight. In particular, our final designs achieve
performance improvements ranging from 1.10× to 2.5×. In addition,
we showcased how Starlight can support the development of an appli-

cation from the ground up targeting a MI computation. Our solution
reaches a final performance improvement up to a factor of 12.7× com-

pared to the literature implementation FPGA implementation and over
140× when compared against the state-of-the-art GPU solution. Finally,
we provided an overview of the various state-of-the-art solutions for
GPU kernel optimization and Roofline Model generation, qualitatively
evaluating their feature set against the one provided by Starlight.

Declaration of competing interest

The authors declare the following financial interests/personal rela-

tionships which may be considered as potential competing interests:

Alberto Zeni reports a relationship with Xilinx Inc., Advanced Micro
Devices Inc., NVIDIA Corporation, Massachusetts Institute of Technol-

ogy and with Dana-Farber Cancer Institute.

Emanuele Del Sozzo reports a relationship with RIKEN Center for
Computational Science, University of Toronto, IBM and with Mas-

sachusetts Institute of Technology.

Eleonora D’Arnese reports a relationship with ETH Zurich and Uni-

versity of Illinois Chicago.

Davide Conficconi reports a relationship with Xilinx Inc. that in-

cludes, Advanced Micro Devices Inc., NVIDIA Corporation, IBM and
with Huawei Technologies.

Marco Domenico Santambrogio reports a relationship with NVIDIA
Corporation, Oracle Corporation, Xilinx Inc., Advanced Micro Devices
Inc. and with Huawei Technologies Co Ltd.

Acknowledgments

Data used in this publication were generated by the National Cancer
Institute Clinical Proteomic Tumor Analysis Consortium (CPTAC). The
Authors would like to thank the NVIDIA University Program for the
hardware donations and Oracle Research Program for the Oracle Cloud
Credits.

References

[1] J.M. Shalf, R. Leland, Computing beyond Moore’s law, Computer 48 (2015) (SAND-

2015-8039J).

[2] T. Sterling, Hpc in phase change: towards a new execution model, in: International
Conference on High Performance Computing for Computational Science, Springer,
2010, p. 31.

[3] A.A. Chien, V. Karamcheti, Moore’s law: the first ending and a new beginning, Com-

puter 46 (12) (2013) 48–53.

[4] T.N. Theis, H.-S.P. Wong, The end of Moore’s law: a new beginning for information
technology, Comput. Sci. Eng. 19 (2) (2017) 41.

[5] A. Zeni, G. Guidi, M. Ellis, N. Ding, M.D. Santambrogio, S. Hofmeyr, A. Buluç, L.
Oliker, K. Yelick Logan, High-performance gpu-based x-drop long-read alignment,
in: 2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS),
IEEE, 2020, pp. 462–471.

[6] A. Zeni, G.W. Di Donato, L. Di Tucci, M. Rabozzi, M.D. Santambrogio, The impor-

tance of being x-drop: high performance genome alignment on reconfigurable hard-

ware, in: 2021 IEEE 29th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), IEEE, 2021, pp. 133–141.

[7] A. Zeni, K. O’Brien, M. Blott, M.D. Santambrogio, Optimized implementation of the
hpcg benchmark on reconfigurable hardware, in: European Conference on Parallel
12

Processing, Springer, 2021, pp. 616–630.
Journal of Parallel and Distributed Computing 187 (2024) 104832

[8] X. Shi, Z. Zheng, Y. Zhou, H. Jin, L. He, B. Liu, Q.-S. Hua, Graph processing on gpus:
a survey, ACM Comput. Surv. 50 (6) (2018) 1–35.

[9] E.D. Sozzo, D. Conficconi, A. Zeni, M. Salaris, D. Sciuto, M.D. Santambrogio, Pushing
the level of abstraction of digital system design: a survey on how to program fpgas,
ACM Comput. Surv. 55 (5) (dec 2022), https://doi .org /10 .1145 /3532989.

[10] D. Conficconi, E. Del Sozzo, F. Carloni, A. Comodi, A. Scolari, M.D. Santambrogio,
An energy-efficient domain-specific architecture for regular expressions, IEEE Trans.
Emerg. Top. Comput. (2022).

[11] A. Caulfield, P. Costa, M. Ghobadi, Beyond smartnics: towards a fully programmable
cloud, in: 2018 IEEE 19th International Conference on High Performance Switching
and Routing (HPSR), IEEE, 2018, pp. 1–6.

[12] E. D’Arnese, E. Del Sozzo, D. Conficconi, M.D. Santambrogio, Exploiting heteroge-

neous architectures for rigid image registration, in: 2021 IEEE Biomedical Circuits
and Systems Conference (BioCAS), IEEE, 2021, pp. 1–5.

[13] S.A. Manavski, G. Valle, Cuda compatible gpu cards as efficient hardware accelera-

tors for Smith-Waterman sequence alignment, BMC Bioinform. 9 (2) (2008) S10.

[14] M. Taher, Accelerating scientific applications using gpu’s, in: 2009 4th International
Design and Test Workshop (IDT), IEEE, 2009, pp. 1–6.

[15] K. Zhou, X. Meng, R. Sai, D. Grubisic, J. Mellor-Crummey, An automated tool for
analysis and tuning of gpu-accelerated code in hpc applications, IEEE Trans. Parallel
Distrib. Syst. 33 (4) (2021) 854–865.

[16] K. Zhou, X. Meng, R. Sai, J. Mellor-Crummey, Gpa: a gpu performance advisor based
on instruction sampling, in: 2021 IEEE/ACM International Symposium on Code Gen-

eration and Optimization (CGO), IEEE, 2021, pp. 115–125.

[17] K. Zhou, M.W. Krentel, J. Mellor-Crummey, Tools for top-down performance anal-

ysis of gpu-accelerated applications, in: Proceedings of the 34th ACM International
Conference on Supercomputing, 2020, pp. 1–12.

[18] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-Crummey, N.R.
Tallent, Hpctoolkit: tools for performance analysis of optimized parallel programs,
Concurr. Comput., Pract. Exp. 22 (6) (2010) 685–701.

[19] O. Villa, M. Stephenson, D. Nellans, S.W. Keckler, Nvbit: a dynamic binary in-

strumentation framework for nvidia gpus, in: Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, 2019, pp. 372–383.

[20] L. Braun, H. Fröning, Cuda flux: a lightweight instruction profiler for cuda applica-

tions, in: 2019 IEEE/ACM Performance Modeling, Benchmarking and Simulation of
High Performance Computer Systems (PMBS), IEEE, 2019, pp. 73–81.

[21] C. Hong, A. Sukumaran-Rajam, J. Kim, P.S. Rawat, S. Krishnamoorthy, L.-N.
Pouchet, F. Rastello, P. Sadayappan, Gpu code optimization using abstract kernel
emulation and sensitivity analysis, in: Proceedings of the 39th ACM SIGPLAN Con-

ference on Programming Language Design and Implementation, 2018, pp. 736–751.

[22] D. Shen, S.L. Song, A. Li, X. Liu, Cudaadvisor: Llvm-based runtime profiling for mod-

ern gpus, in: Proceedings of the 2018 International Symposium on Code Generation
and Optimization, 2018, pp. 214–227.

[23] N. Corporation, Nvidia® nsight Compute, NVIDIA Corporation, 2020, https://

developer .nvidia .com /nsight -compute.

[24] N. Corporation, Nvprof: Nvidia® gpu profiler, NVIDIA corporation, https://docs .
nvidia .com /cuda /profiler -users -guide /index .html, 2012.

[25] A. Lopes, F. Pratas, L. Sousa, A. Ilic, Exploring gpu performance, power and energy-

efficiency bounds with cache-aware roofline modeling, in: 2017 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS), IEEE, 2017,
pp. 259–268.

[26] M. Leinhauser, R. Widera, S. Bastrakov, A. Debus, M. Bussmann, S. Chandrasekaran,
Metrics and design of an instruction roofline model for amd gpus, ACM Trans. Parall.
Comput. 9 (1) (2022) 1–14.

[27] Y.J. Lo, S. Williams, B. Van Straalen, T.J. Ligocki, M.J. Cordery, N.J. Wright, M.W.
Hall, L. Oliker, Roofline model toolkit: a practical tool for architectural and program
analysis, in: International Workshop on Performance Modeling, Benchmarking and
Simulation of High Performance Computer Systems, Springer, 2014, pp. 129–148.

[28] M. Siracusa, E. Delsozzo, M. Rabozzi, L. Di Tucci, S. Williams, D. Sciuto, M.D. San-

tambrogio, A comprehensive methodology to optimize fpga designs via the roofline
model, IEEE Trans. Comput. (2021).

[29] N. Ding, S. Williams, An Instruction Roofline Model for Gpus, IEEE, 2019.

[30] N. Ding, M. Awan, S. Williams, Instruction roofline: an insightful visual performance
model for gpus, Concurr. Comput., Pract. Exp. (2021) e6591.

[31] S. Williams, A. Waterman, D. Patterson, Roofline: an insightful visual performance
model for multicore architectures, Commun. ACM 52 (4) (2009) 65–76.

[32] N. Corporation, Nvidia® nsight Systems, NVIDIA Corporation, 2020, https://

developer .nvidia .com /nsight -systems.

[33] V. Volkov, Understanding Latency Hiding on GPUs, University of California, Berke-

ley, 2016.

[34] N. Corporation, Parallel thread execution isa, NVIDIA Corporation (2006), https://

docs .nvidia .com /cuda /parallel -thread -execution /index .html.

[35] N. Corporation, Cupti: cuda profiling tools interface, NVIDIA Corporation (2006),
https://docs .nvidia .com /cuda /cupti /index .html.

[36] G.M. Amdahl, Validity of the single processor approach to achieving large scale com-

puting capabilities, in: Proceedings of the April 18-20, 1967, pp. 483–485, Spring
joint computer conference, 1967.

[37] A. Ilic, F. Pratas, L. Sousa, Cache-aware roofline model: upgrading the loft, IEEE
Comput. Archit. Lett. 13 (1) (2013) 21–24.

[38] L.B.N. Laboratory, Empirical roofline tool, https://crd .lbl .gov /divisions /amcr /

computer -science -amcr /par /research /roofline /software /ert/, 2020.

http://refhub.elsevier.com/S0743-7315(23)00202-2/bibF4864B0A1809548B77C77FA3475900DCs1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibF4864B0A1809548B77C77FA3475900DCs1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibBE6766879CF7CE4915C50176DE51DF74s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibBE6766879CF7CE4915C50176DE51DF74s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibBE6766879CF7CE4915C50176DE51DF74s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibE6C898D23F5CE8A3F18D2AD7DC3477F5s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibE6C898D23F5CE8A3F18D2AD7DC3477F5s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibC868980B6638756CBAE201AF2993B807s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibC868980B6638756CBAE201AF2993B807s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib5C435D8E67125836A163359AA7BCA27Fs1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib5C435D8E67125836A163359AA7BCA27Fs1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib5C435D8E67125836A163359AA7BCA27Fs1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib5C435D8E67125836A163359AA7BCA27Fs1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibEC48996B64CBB8AC6B290C9E5856C6EAs1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibEC48996B64CBB8AC6B290C9E5856C6EAs1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibEC48996B64CBB8AC6B290C9E5856C6EAs1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibEC48996B64CBB8AC6B290C9E5856C6EAs1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib6B971F4F28C6D76AC9FB17CA839B2A59s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib6B971F4F28C6D76AC9FB17CA839B2A59s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib6B971F4F28C6D76AC9FB17CA839B2A59s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibACB5A46D7F7CE79C5E9C508391DA0BC5s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibACB5A46D7F7CE79C5E9C508391DA0BC5s1
https://doi.org/10.1145/3532989
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibC81E77ACAB87BE2DEC87C70D5A664EA6s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibC81E77ACAB87BE2DEC87C70D5A664EA6s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibC81E77ACAB87BE2DEC87C70D5A664EA6s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib865C8CFB3570EDDF163674B337AF119Ds1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib865C8CFB3570EDDF163674B337AF119Ds1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib865C8CFB3570EDDF163674B337AF119Ds1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib943A448A16E0119D73F7543EB5EB7A6As1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib943A448A16E0119D73F7543EB5EB7A6As1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib943A448A16E0119D73F7543EB5EB7A6As1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib1B750DD203E132899A1F78298F465610s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib1B750DD203E132899A1F78298F465610s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib1007CFA2A2C0355C5B364F46C9CDE4D2s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib1007CFA2A2C0355C5B364F46C9CDE4D2s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib92FFBE6AAF68D50CDC8233F9C246896Ds1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib92FFBE6AAF68D50CDC8233F9C246896Ds1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib92FFBE6AAF68D50CDC8233F9C246896Ds1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibF95D4BB025C58C83C6BFEE265166C71Bs1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibF95D4BB025C58C83C6BFEE265166C71Bs1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibF95D4BB025C58C83C6BFEE265166C71Bs1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib7CCA22220251A3F4E4D0D05A76B42287s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib7CCA22220251A3F4E4D0D05A76B42287s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib7CCA22220251A3F4E4D0D05A76B42287s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibB189E895DBFB5A3E424502E468982242s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibB189E895DBFB5A3E424502E468982242s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibB189E895DBFB5A3E424502E468982242s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib5B98D5DE76869C97AE96F18E802CE421s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib5B98D5DE76869C97AE96F18E802CE421s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib5B98D5DE76869C97AE96F18E802CE421s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibD5668E6F5741151AAAF1ED5EA4A288E2s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibD5668E6F5741151AAAF1ED5EA4A288E2s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibD5668E6F5741151AAAF1ED5EA4A288E2s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib26A9B4F3EE126BA576C0849EA341F905s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib26A9B4F3EE126BA576C0849EA341F905s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib26A9B4F3EE126BA576C0849EA341F905s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib26A9B4F3EE126BA576C0849EA341F905s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibAF3A7B98E4DA207379F515D42F019258s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibAF3A7B98E4DA207379F515D42F019258s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibAF3A7B98E4DA207379F515D42F019258s1
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-compute
https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://docs.nvidia.com/cuda/profiler-users-guide/index.html
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibB875F688A9D8E363A04D46B949809EC9s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibB875F688A9D8E363A04D46B949809EC9s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibB875F688A9D8E363A04D46B949809EC9s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibB875F688A9D8E363A04D46B949809EC9s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib54525FD95E3187B5CE0099887C01FF50s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib54525FD95E3187B5CE0099887C01FF50s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib54525FD95E3187B5CE0099887C01FF50s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib6D2AAE2B2CE3A05763BD1B4AF19EC2C8s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib6D2AAE2B2CE3A05763BD1B4AF19EC2C8s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib6D2AAE2B2CE3A05763BD1B4AF19EC2C8s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib6D2AAE2B2CE3A05763BD1B4AF19EC2C8s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib07B95CC1464504B8E4EE9A18B07700A8s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib07B95CC1464504B8E4EE9A18B07700A8s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib07B95CC1464504B8E4EE9A18B07700A8s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibA01C690C1A6B762168C7DE6668E13410s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib267FEE021B4C125EA491E01D1545EFFBs1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib267FEE021B4C125EA491E01D1545EFFBs1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib35AF074E795AE23FE9800E2C3C472DEEs1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib35AF074E795AE23FE9800E2C3C472DEEs1
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-systems
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibA6C83EB08BBC6CBFFCFB62DEAD8F7CAEs1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibA6C83EB08BBC6CBFFCFB62DEAD8F7CAEs1
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://docs.nvidia.com/cuda/cupti/index.html
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibEE91450DF739161AF1E227E5E19288A8s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibEE91450DF739161AF1E227E5E19288A8s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibEE91450DF739161AF1E227E5E19288A8s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibB4F3184C3B0480D0BDEFE101E85A4C7Ds1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibB4F3184C3B0480D0BDEFE101E85A4C7Ds1
https://crd.lbl.gov/divisions/amcr/computer-science-amcr/par/research/roofline/software/ert/
https://crd.lbl.gov/divisions/amcr/computer-science-amcr/par/research/roofline/software/ert/

Journal of Parallel and Distributed Computing 187 (2024) 104832A. Zeni, E. Del Sozzo, E. D’Arnese et al.

[39] T. Koskela, Z. Matveev, C. Yang, A. Adedoyin, R. Belenov, P. Thierry, Z. Zhao, R.
Gayatri, H. Shan, L. Oliker, J. Deslippe, R. Green, S. Williams, A novel multi-level
integrated roofline model approach for performance characterization, in: R. Yokota,
M. Weiland, D. Keyes, C. Trinitis (Eds.), High Performance Computing, Springer
International Publishing, Cham, 2018, pp. 226–245.

[40] D. Ernst, M. Holzer, G. Hager, M. Knorr, G. Wellein, Analytical performance esti-

mation during code generation on modern gpus, J. Parallel Distrib. Comput. 173
(2023) 152–167.

[41] D. Ernst, G. Hager, J. Thies, G. Wellein, Performance engineering for real and com-

plex tall & skinny matrix multiplication kernels on gpus, Int. J. High Perform.
Comput. Appl. 35 (1) (2021) 5–19.

[42] E. Konstantinidis, Y. Cotronis, A quantitative roofline model for gpu kernel per-

formance estimation using micro-benchmarks and hardware metric profiling, J.
Parallel Distrib. Comput. 107 (2017) 37–56.

[43] E. Konstantinidis, Y. Cotronis, A practical performance model for compute and
memory bound gpu kernels, in: 2015 23rd Euromicro International Conference on
Parallel, Distributed, and Network-Based Processing, IEEE, 2015, pp. 651–658.

[44] E. Del Sozzo, M. Rabozzi, L. Di Tucci, D. Sciuto, M. Santambrogio, A scalable FPGA
design for cloud n-body simulation, in: 2018 IEEE 29th International Conference on
Application-specific Systems, Architectures and Processors (ASAP), 2018, pp. 1–8.

[45] L. Nylons, M. Harris, J. Prins, Fast n-body simulation with cuda, GPU gems 3, 2007,
pp. 62–66.

[46] Z. Zhang, S. Schwartz, L. Wagner, W. Miller, A greedy algorithm for aligning DNA
sequences, J. Comput. Biol. 7 (1–2) (2000) 203–214.

[47] D. Conficconi, E. D’Arnese, E. Del Sozzo, D. Sciuto, M.D. Santambrogio, A frame-

work for customizable fpga-based image registration accelerators, in: The 2021
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 2021,
pp. 251–261.

[48] G. Sorrentino, M. Venere, E. D’Arnese, D. Conficconi, I. Poles, M. Santambrogio,
ATHENA: A GPU-based framework for biomedical 3D rigid image registration, in:
IEEE Biomedical Circuits and Systems Conference (BioCAS), 2023, pp. 1–5.

[49] E. D’Arnese, D. Conficconi, E. Del Sozzo, L. Fusco, D. Sciuto, M. Santambrogio Faber,
A hardware/software toolchain for image registration, IEEE Trans. Parallel Distrib.
Syst. 34 (2022) 291–303.

[50] E. D’Arnese, D. Conficconi, M. Santambrogio, D. Sciuto, Reconfigurable architec-

tures: The shift from general systems to domain specific solutions, in: Emerging
Computing: From Devices to Systems: Looking Beyond Moore and Von Neumann,
2022, pp. 435–456.

[51] G. Sorrentino, M. Venere, D. Conficconi, E. D’Arnese, M. Santambrogio, Hephaestus:
Codesigning and automating 3D image registration on reconfigurable architectures,
ACM Trans. Embed. Comput. Syst. 22 (2023) 1–24.

[52] A. Zeni, G. Di Donato, A. Della Valle, F. Carloni, M. Santambrogio, On the genome
sequence alignment FPGA acceleration via KSW2z, in: 2023 IEEE International Sym-

posium on Circuits and Systems (ISCAS), 2023, pp. 1–5.

[53] G. Gerometta, A. Zeni, M. Santambrogio, TSUNAMI: A GPU implementation of the
WFA algorithm, in: 2023 32nd International Conference on Parallel Architectures
and Compilation Techniques (PACT), 2023, pp. 150–161.

[54] B. Branchini, G. Gerometta, L. Cicolini, A. Zeni, E. Del Sozzo, M. Santambrogio,
Surfing the wavefront of genome alignment, in: 2022 IEEE International Symposium
on Circuits and Systems (ISCAS), 2022, pp. 1754–1758.

[55] A. Zeni, F. Peverelli, E. Cabri, L. Di Tucci, L. Cerina, M. Santambrogio, circFA: A
FPGA-based circular RNA aligner, in: 2019 IEEE EMBS International Conference on
Biomedical & Health Informatics (BHI), 2019, pp. 1–4.

[56] S.B. Needleman, C.D. Wunsch, A general method applicable to the search for sim-

ilarities in the amino acid sequence of two proteins, J. Mol. Biol. 48 (3) (1970)
443–453.

[57] T.F. Smith, M.S. Waterman, et al., Identification of common molecular subse-

quences, J. Mol. Biol. 147 (1) (1981) 195–197.

[58] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
L. Antiga, A. Lerer, Automatic differentiation in pytorch, in: NIPS 2017 Workshop
on Autodiff, 2017, pp. 1–4, https://openreview .net /forum ?id =BJJsrmfCZ.

[59] I. Stratakos, D. Gourounas, V. Tsoutsouras, T. Economopoulos, G. Matsopoulos,
D. Soudris, Hardware acceleration of image registration algorithm on fpga-based
systems on chip, in: Proceedings of the International Conference on Omni-Layer In-

telligent Systems, 2019, pp. 92–97.

[60] F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, P. Suetens, Multimodality im-

age registration by maximization of mutual information, IEEE Trans. Med. Imaging
16 (2) (1997) 187–198.

[61] F. Lichtenstein, F. Antoneli, M.R. Briones Mia, Mutual information analyzer, a
graphic user interface program that calculates entropy, vertical and horizontal mu-

tual information of molecular sequence sets, BMC Bioinform. 16 (1) (2015) 1–19.

[62] A.J. Butte, I.S. Kohane, Mutual information relevance networks: functional genomic
clustering using pairwise entropy measurements, in: Biocomputing 2000, World Sci-

entific, 1999, pp. 418–429.

[63] L. Bahl, P. Brown, P. De Souza, R. Mercer, Maximum Mutual Information Estima-

tion of Hidden Markov Model Parameters for Speech Recognition, ICASSP’86. IEEE
International Conference on Acoustics, Speech, and Signal Processing, vol. 11, IEEE,
1986, pp. 49–52.

[64] P.A. Estévez, M. Tesmer, C.A. Perez, J.M. Zurada, Normalized mutual information

[65] T.M. Cover, Elements of Information Theory, John Wiley & Sons, 1999.

[66] C.E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J. 27 (3)
(1948) 379–423.

[67] K. Clark, B. Vendt, K. Smith, J. Freymann, J. Kirby, P. Koppel, S. Moore, S.
Phillips, D. Maffitt, M. Pringle, et al., The cancer imaging archive (tcia): maintain-

ing and operating a public information repository, J. Digit. Imag. 26 (6) (2013)
1045–1057.

[68] Intel, Intel Advisor, https://www .intel .com /content /www /us /en /developer /tools /
oneapi /advisor .html, 2021.

[69] A.M.D. (AMD) Roc-profiler ROCm-Developer-Tools, https://github .com /ROCm -
Developer -Tools /rocprofiler, 2020.

[70] T. Deakin, J. Price, M. Martineau, S. McIntosh-Smith, Gpu-stream v2. 0: bench-

marking the achievable memory bandwidth of many-core processors across diverse
parallel programming models, in: High Performance Computing: ISC High Perfor-

mance 2016 International Workshops, ExaComm, e-MuCoCoS, HPC-IODC, IXPUG,
IWOPH, Pˆ 3MA, VHPC, WOPSSS, Frankfurt, Germany, June 19–23, Springer, 2016,
p. 2016, pp. 489–507, Revised Selected Papers 31.

[71] E. Konstantinidis, Y. Cotronis, A quantitative performance evaluation of fast on-chip
memories of gpus, in: 2016 24th Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing (PDP), IEEE, 2016, pp. 448–455.

[72] N. Corporation, Nvidia® cuda, NVIDIA corporation, http://developer .nvidia .com /
object /cuda .html, 2006.

[73] C. Lattner, V. Adve Llvm, A compilation framework for lifelong program analysis &
transformation, in: International Symposium on Code Generation and Optimization,
in: CGO 2004, IEEE, 2004, 2004, pp. 75–86.

[74] NVlabs, SASSI instrumentation tool for NVIDIA GPUs, https://github .com /NVlabs /
SASSI, 2015.

Alberto Zeni is a Ph.D. Candidate in Information Technol-

ogy at Politecnico di Milano. He received his B.Sc. and M.Sc. in
Computer Engineering from Politecnico di Milano in 2017 and
2019 respectively. His research interesets revolves around het-

erogeneous architectures, especially GPUs and FPGAs, genomics,
computer architectures and High Performance Computing.

Emanuele Del Sozzo got his Ph.D. in Information Technol-

ogy from Politecnico di Milano in 2019. He received his B.Sc.
and M.Sc. in Computer Engineering from Politecnico di Milano
in 2012 and 2015 respectively. He also receives in 2015 M.Sc.
degree in Computer Science from the University of Illinois at
Chicago (UIC), and Alta Scuola Politecnica Diploma. His research
focuses on reconfigurable architectures, code generation and op-

timization. He is currently a PostDoc at RIKEN Center for Com-

putational Science.

Eleonora D’Arnese got her Ph.D. Information Technology
from Politecnico di Milano in 2023. She received her B.Sc. and
M.Sc. in Biomedical Engineering from Politecnico di Milano in
2016 and 2018 respectively. She also received in 2018 M.Sc. de-

gree in Bioengineering from the University of Illinois at Chicago,
Chicago, IL, USA. Her research focuses on pipeline generation for
medical image processing and machine learning. She is currently
a PostDoc at Politecnico di Milano.

Davide Conficconi got his Ph.D. Information Technology
from Politecnico di Milano in 2022. He received his B.Sc. and
M.Sc. in Computer Engineering from Politecnico di Milano in
2015 and 2018 respectively. His research interests revolves
around reconfigurable architectures, especially FPGAs, design
methodologies, computer architectures, design automation tech-

niques, and abstraction layers. He is currently a PostDoc at Po-

litecnico di Milano.

Marco Domenico Santambrogio received the Laurea (M.Sc.
equivalent) degree in computer engineering from the Politecnico
di Milano, Milan, Italy, in 2004, the M.Sc. degree in computer
science from The University of Illinois at Chicago, Chicago, IL,
USA, in 2005, and the Ph.D. degree in computer engineering
from the Politecnico di Milano, in 2008. He was a Post-Doctoral
Fellow with the Computer Science and Artificial Intelligence Lab-

oratory, Massachusetts Institute of Technology, Cambridge, MA,
USA. He has been with the NECST Laboratory, Politecnico di
Milano, where he founded the Dynamic Reconfigurability in Em-

bedded System Design project in 2004 and the CHANGE (self-adaptive computing system)
project in 2010. He is an Assistant Professor with the Politecnico di Milano. His current
research interests include reconfigurable computing, self-aware and autonomic systems,
hardware/software co-design, embedded systems, and high-performance processors and
systems.
13

feature selection, IEEE Trans. Neural Netw. 20 (2) (2009) 189–201.

http://refhub.elsevier.com/S0743-7315(23)00202-2/bibB99A6E7AD94F7DCEBD3DA315BED51F9Es1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibB99A6E7AD94F7DCEBD3DA315BED51F9Es1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibB99A6E7AD94F7DCEBD3DA315BED51F9Es1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibB99A6E7AD94F7DCEBD3DA315BED51F9Es1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibB99A6E7AD94F7DCEBD3DA315BED51F9Es1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibEF125FF0EA40B4E41B301A1E0A639937s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibEF125FF0EA40B4E41B301A1E0A639937s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibEF125FF0EA40B4E41B301A1E0A639937s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib5D401249B118C31A417A386BF70BEB9Fs1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib5D401249B118C31A417A386BF70BEB9Fs1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib5D401249B118C31A417A386BF70BEB9Fs1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib4BE3A6469A6CD64CCEDE1976B39B870Cs1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib4BE3A6469A6CD64CCEDE1976B39B870Cs1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib4BE3A6469A6CD64CCEDE1976B39B870Cs1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib4E354ECBBF4F5215D36A9B32DD6BCC5Fs1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib4E354ECBBF4F5215D36A9B32DD6BCC5Fs1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib4E354ECBBF4F5215D36A9B32DD6BCC5Fs1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibAC6D46C5F9F4D1D74D7BB6A861A7671Bs1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibAC6D46C5F9F4D1D74D7BB6A861A7671Bs1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibAC6D46C5F9F4D1D74D7BB6A861A7671Bs1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib129CADF84695EF3326C2055EC1FA3961s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib129CADF84695EF3326C2055EC1FA3961s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib8F8405AF885B348587F4613CF9355B20s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib8F8405AF885B348587F4613CF9355B20s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibD4D8F23BCFE9A02B8F3D3F2A037F35B2s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibD4D8F23BCFE9A02B8F3D3F2A037F35B2s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibD4D8F23BCFE9A02B8F3D3F2A037F35B2s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibD4D8F23BCFE9A02B8F3D3F2A037F35B2s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib5ED783CA16BBE644F8D36CE8F8A05711s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib5ED783CA16BBE644F8D36CE8F8A05711s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib5ED783CA16BBE644F8D36CE8F8A05711s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib5599448DB775BA59AC38D79A8943E847s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib5599448DB775BA59AC38D79A8943E847s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib5599448DB775BA59AC38D79A8943E847s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib2D22931EDFC0C9C24313A7D082E09345s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib2D22931EDFC0C9C24313A7D082E09345s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib2D22931EDFC0C9C24313A7D082E09345s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib2D22931EDFC0C9C24313A7D082E09345s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib128E33F149BD04CA01D99E4767E28F5As1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib128E33F149BD04CA01D99E4767E28F5As1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib128E33F149BD04CA01D99E4767E28F5As1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibC838BA52FE4AD281F6748E923353C53Cs1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibC838BA52FE4AD281F6748E923353C53Cs1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibC838BA52FE4AD281F6748E923353C53Cs1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib79347D38E1FF42C2F6DD1F2D595EDDB9s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib79347D38E1FF42C2F6DD1F2D595EDDB9s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib79347D38E1FF42C2F6DD1F2D595EDDB9s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibC9A5CD3A2A3242D264AB01373195F43Ds1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibC9A5CD3A2A3242D264AB01373195F43Ds1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibC9A5CD3A2A3242D264AB01373195F43Ds1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibA2034C4B95283D59375C964D3CD376EFs1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibA2034C4B95283D59375C964D3CD376EFs1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibA2034C4B95283D59375C964D3CD376EFs1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib4BB1E1943E2AB3DE2B4D933C312D2E0Es1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib4BB1E1943E2AB3DE2B4D933C312D2E0Es1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib4BB1E1943E2AB3DE2B4D933C312D2E0Es1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibBBBA645E555F187DB89F2337AC347CA8s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibBBBA645E555F187DB89F2337AC347CA8s1
https://openreview.net/forum?id=BJJsrmfCZ
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib905F7EDB8991ACE13E5F5A61F10C00EEs1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib905F7EDB8991ACE13E5F5A61F10C00EEs1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib905F7EDB8991ACE13E5F5A61F10C00EEs1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib905F7EDB8991ACE13E5F5A61F10C00EEs1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibD8D19DAF573EE35B06B87716C75ADBDBs1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibD8D19DAF573EE35B06B87716C75ADBDBs1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibD8D19DAF573EE35B06B87716C75ADBDBs1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib637C7F1C593D05198660961532B5BCE5s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib637C7F1C593D05198660961532B5BCE5s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib637C7F1C593D05198660961532B5BCE5s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibB21031A7FFC62A380BF01A1B47A244EFs1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibB21031A7FFC62A380BF01A1B47A244EFs1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibB21031A7FFC62A380BF01A1B47A244EFs1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib2DE781F7F0F842C1274279BBC8945E49s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib2DE781F7F0F842C1274279BBC8945E49s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib2DE781F7F0F842C1274279BBC8945E49s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib2DE781F7F0F842C1274279BBC8945E49s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib031FADB17F3256E62C3818D6966A982Ds1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib031FADB17F3256E62C3818D6966A982Ds1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibC94AF16FE6EC54F68F791F47003BF478s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib2602CCD6A83DE091D6548435F15A4AD0s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib2602CCD6A83DE091D6548435F15A4AD0s1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibC51088FBB4469A459C69BE25B674276As1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibC51088FBB4469A459C69BE25B674276As1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibC51088FBB4469A459C69BE25B674276As1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bibC51088FBB4469A459C69BE25B674276As1
https://www.intel.com/content/www/us/en/developer/tools/oneapi/advisor.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/advisor.html
https://github.com/ROCm-Developer-Tools/rocprofiler
https://github.com/ROCm-Developer-Tools/rocprofiler
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib992A876EC80E8DFEE4D159D20723BA0Fs1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib992A876EC80E8DFEE4D159D20723BA0Fs1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib992A876EC80E8DFEE4D159D20723BA0Fs1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib992A876EC80E8DFEE4D159D20723BA0Fs1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib992A876EC80E8DFEE4D159D20723BA0Fs1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib992A876EC80E8DFEE4D159D20723BA0Fs1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib900CD5553110B2F1D05DA6A898470F3As1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib900CD5553110B2F1D05DA6A898470F3As1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib900CD5553110B2F1D05DA6A898470F3As1
http://developer.nvidia.com/object/cuda.html
http://developer.nvidia.com/object/cuda.html
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib08D108520C9D15F170EE0DA67B74A5FDs1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib08D108520C9D15F170EE0DA67B74A5FDs1
http://refhub.elsevier.com/S0743-7315(23)00202-2/bib08D108520C9D15F170EE0DA67B74A5FDs1
https://github.com/NVlabs/SASSI
https://github.com/NVlabs/SASSI

	Starlight: A kernel optimizer for GPU processing
	1 Introduction
	2 Starlight overview and motivation
	3 The roofline model
	4 Proposed solution
	4.1 Starlight structure overview
	4.2 Roofline generator
	4.3 Performance analyzer
	4.4 Optimization parser

	5 Experimental results
	5.1 Experimental settings
	5.2 N-body simulation analysis and optimizations
	5.3 LOGAN analysis and optimizations
	5.4 Mutual information analysis and optimizations

	6 Related work
	6.1 GPU roofline model
	6.2 GPU analysis and optimization tools
	6.3 Discussion

	7 Conclusions
	Declaration of competing interest
	Acknowledgments
	References

