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Over the past few years, GPUs have found widespread adoption in many scientific domains, offering notable 
performance and energy efficiency advantages compared to CPUs. However, optimizing GPU high-performance 
kernels poses challenges given the complexities of GPU architectures and programming models. Moreover, 
current GPU development tools provide few high-level suggestions and overlook the underlying hardware. Here 
we present Starlight, an open-source, highly flexible tool for enhancing GPU kernel analysis and optimization. 
Starlight autonomously describes Roofline Models, examines performance metrics, and correlates these insights 
with GPU architectural bottlenecks. Additionally, Starlight predicts potential performance enhancements before 
altering the source code. We demonstrate its efficacy by applying it to literature genomics and physics 
applications, attaining speedups from 1.1× to 2.5× over state-of-the-art baselines. Furthermore, Starlight supports 
the development of new GPU kernels, which we exemplify through an image processing application, showing 
speedups of 12.7× and 140× when compared against state-of-the-art FPGA- and GPU-based solutions.
1. Introduction

The rapid growth of complexity and the amount of data that mod-

ern High-Performance Computing (HPC) applications have to analyze 
daily have exceeded the capabilities of general-purpose processors, cre-

ating a gap between the demand for computational power and achiev-

able performance [1,2]. Consequently, as we reach the end of Moore’s 
Law [3,4], we need new architectural solutions to satisfy continuously 
growing performance demand. In this context, hardware accelerators, 
e.g., Graphics Processing Units (GPUs) and Field Programmable Gate 
Arrays (FPGAs), incarnate an effective solution to offload compute-

intensive tasks from the Central Processing Unit (CPU) [5–12]. In par-

ticular, Graphics Processing Units (GPUs) have proven over the years 
to be a much more efficient architecture compared to Central Pro-

cessing Unit (CPU) in the HPC context in terms both of performance 
and energy efficiency [13,14]. However, the process of developing 
highly performing GPU kernels is significantly more complex than 
CPU software development and requires domain-specific knowledge 
and expertise to leverage the architecture effectively. State-of-the-art 
tools for GPU performance analysis [15–24] lack of clarity and de-

tailed information. To exemplify, NVPROF [24] and NSIGHT [23] pro-

vide valuable information and suggestions to the end-user, but do not 
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clearly identify specific code regions where the optimizations should 
be performed. Indeed, the information these tools provide results un-

clear for users who do not have high-level expertise in GPU program-

ming.

In recent years, multiple research studies [25–30] relied on the 
Roofline Model [31] to provide an intuitive analysis of the performance 
of a given application running on CPU, GPU, or FPGA. However, these 
tools are often limited to a specific architecture and do not provide 
valuable suggestions to developers. For example, NSIGHT [32] provides 
a tool for the definition of the Roofline Model for the analyzed ker-

nel; however, its described model lacks in detail, as it considers Global 
Memory (GMEM) bandwidth and Floating-Point (FP) operations only, 
and does not correlate the derived information with the suggestions it 
provides to the user. Conversely, other literature tools offer fine-grained 
profiling, allowing for computational bottlenecks to be associated with 
the corresponding parts of code [15,16,22]. Nevertheless, these tools 
are often capable of identifying a very limited number of bottlenecks, 
and do not correlate the kernel’s attained performance with the un-

derlying hardware capabilities. For instance, if the target application 
is memory-bound and performs poorly, such tools do not suggest any 
additional optimizations to the end-user.
Available online 22 December 2023
0743-7315/© 2023 The Author(s). Published by Elsevier Inc. This is an open access a
nc-nd/4.0/).

E-mail address: alberto.zeni@polimi.it (A. Zeni).

https://doi.org/10.1016/j.jpdc.2023.104832

Received 8 August 2023; Received in revised form 10 November 2023; Accepted 17
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

 December 2023

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
mailto:alberto.zeni@polimi.it
https://doi.org/10.1016/j.jpdc.2023.104832
https://doi.org/10.1016/j.jpdc.2023.104832
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2023.104832&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


A. Zeni, E. Del Sozzo, E. D’Arnese et al.

In this complex scenario, we present Starlight, an open-source 1

tool that guides the user to develop highly optimized GPU kernels by 
combining Performance Counter (PC)-sampling and the Roofline Model 
to provide effective and accurate optimizations. We demonstrate its 
applicability on three different kernels executed on multiple systems, 
showing the flexibility of our tool when analyzing the performance of 
different GPU generations. The tool provides a performance analysis of 
the algorithm considering the underlying architecture and the GPU ker-

nel performance. In particular, Starlight starts by creating a Roofline 
Model of the target architecture. Then, it proceeds to deeply analyze 
the kernel by finding the various stalls and assigning them to their re-

spective line of source code. Next, Starlight combines the performance 
data from the Roofline Model with various details regarding the ker-

nel stalls, generating a series of accurate suggestions for the end-user 
to follow to optimize the code. Finally, the tool provides an improve-

ment estimation associated with each suggestion using the information 
on the stalls and their operations, enabling us to also highlight kernel 
hot spots. Starlight can perform this analysis on any GPU that supports 
CUDA from version 11.0. Moreover, to the best of our knowledge, it 
is the first tool in the literature to support the automatic generation of 
the Roofline Model on any CUDA-capable GPU plotting the target ker-

nel performance and GPU device capabilities for every native data type 
(half-, single-, and double-precision FP, and integer) and multiple mem-

ory hierarchies definitions (L1 cache, L2 cache, and GMEM).

To summarize, the main contributions of this work are:

• Starlight, an open-source Roofline Model-based tool for the analysis 
and optimization of GPU kernels.

• Automatic Roofline Model generation for any CUDA-capable GPU 
with support for multiple memory hierarchies and integer applica-

tions, making Starlight the first tool in the literature to support the 
benchmarking and automatic generation of the Roofline for every 
native datatype.

• Analysis of kernel stalls with information about the stall itself and 
the stall-causing source code lines without the need for any man-

ual modification/instrumentation of the source code of the GPU 
application.

• Kernel optimization suggestions associating information from the 
Roofline Model and kernel analysis decorated with in-depth kernel 
performance measurements.

• Kernel performance improvement prediction and execution’s hot 
spots detection by precomputing the benefits of the suggested op-

timizations.

The rest of the paper is organized as follows: Section 2 provides an 
overview of Starlight and the motivation behind this work; Section 3

describes the Roofline Model in-depth; Section 4 details the charac-

teristics of our tool and defines both how we generate the Roofline 
Model (Section 4.2) and how we collect and correlate performance data 
(Section 4.3) to suggest optimizations to the end-user (Section 4.4); Sec-

tion 5 reports the experimental results obtained by tool-optimized ap-

plications and the description of the implemented algorithms; Section 6

overviews the related work regarding tools for GPU-kernel optimiza-

tion and studies that expanded the Roofline Model for GPUs. Finally, 
Section 7 states the conclusions.

2. Starlight overview and motivation

Starlight automatically examines the target kernel and provides sug-

gestions about possible optimizations of the analyzed kernel, highlight-

ing under-performing code regions. First, we provide a high-level ana-

lytic model for an intuitive bounding analysis in the form of the Roofline 
Model (Section 3). Second, our optimization methodology also offers 
2
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an in-depth performance analysis of the target GPU kernel, therefore, 
overcoming most of the limitations of the Roofline Model represen-

tation (Section 6). In this way, Starlight aids the user in identifying 
which part of the algorithm needs to be improved to achieve better 
performance and reduce the user expertise required to optimize GPU 
algorithms. Furthermore, we exploit the Roofline Model performance 
analysis as an alternative and effective evaluation tool for kernel effi-

ciency to NVIDIA tools. Indeed, NVPROF and NSIGHT [24,32] propose 
Device Occupancy (DO) as the primary measure on which they base 
their performance metrics. Summarizing all the kernels’ requirements to 
DO significantly reduces the efficiency of the proposed suggestions, as 
resource occupancy is a very error-prone metric and often inaccurately 
depicts the capabilities of a device [33]. Moreover, Starlight overcomes 
the limitations of state-of-the-art implementations by being the first tool 
able to depict the performance of any native datatype while correlating 
its performance with the target GPU architecture bottlenecks into its 
Roofline Model analysis (Section 6). We do not limit our analysis to the 
Roofline Model only, but rather we guide users to hot spots, exploit-

ing SASS [34] and CUPTI [35] intermediate assembly representations 
to accurately characterize the analyzed kernel. Starlight also provides 
insights into possible performance gains, by correlating the information 
of the various kernel stalls to their respective code lines and stall na-

ture while weighting the number of stalls removed if a suggested fix is 
applied to the code (Section 4.4).

We believe that Starlight offers both a more accessible and more ef-

fective way for kernel optimizations than other state-of-the-art tools, 
given its ability to overcome the limitations of the other Roofline-based 
implementation and provide the user with easy-to-understand and pre-

cise suggestions to optimize the source code.

3. The roofline model

The Roofline Model [31] represents a valuable resource for HPC 
developers, as it offers a visually intuitive method to portray and un-

derstand the performance (usually expressed in Floating-Point Opera-

tions Per Second (FLOPs/sec)) and bottlenecks of an application. Such 
a model depends on the target architecture’s peak performance and 
Memory Bandwidth (MBW), obtainable through either the hardware 
specification or micro-benchmarks. It exploits the same analysis applied 
by Amdahl’s Law [36], e.g., the bound and bottleneck analysis, to couple 
the attained performance of an application and its achieved MBW in a 
single graph. In particular, the Roofline Model showcases the various 
application limits associated with the characteristics of the underly-

ing architecture, indicating if such an application is either memory- or 
compute-bound. In this way, users can understand performance issues 
at a glance, as developers can exploit this model to observe the differ-

ent bottlenecks of algorithms and architectures to better comprehend 
how to improve the application performance. Originally, the model was 
conceived only to describe the performance of CPUs, while in recent 
years, the Roofline Model has also been adapted to better suit other 
architectures, e.g., GPUs and FPGAs [25–30], or extended to include 
additional features, such as multiple levels in the memory hierarchy, 
ranging from the off-chip memory to on-chip caches [37,27,38,39]. 
Fig. 1 shows an example of the vanilla Roofline Model on a log-log scale 
for a FP-based application. Here, the y-axis represents the reachable 
Floating-Point Performance (FPP) in Giga Floating-Point Operations Per 
Second (GFLOPs/sec). The x-axis denotes the Operational Intensity (OI), 
which indicates the number of operations performed per byte of GMEM 
traffic, depicting the relationship between the target architecture per-

formance and the off-chip memory bandwidth. The horizontal blue line 
in Fig. 1 shows the peak FPP of the system. Thus, the actual FPP of an 
application cannot exceed that line, since it is a hardware limitation. 
The diagonal orange line exhibits the maximum FPP, in terms of MBW, 
that the memory system of the target architecture supports for a given 
OI. Given this setup, the following formula denotes the top attainable 

performance:

https://github.com/albertozeni/starlight
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Fig. 1. An example of the Roofline Model chart.

𝐺𝐹𝐿𝑂𝑃𝑠∕𝑠𝑒𝑐 =min(𝑃𝑒𝑎𝑘 𝐹𝑃𝑃 ,𝑃 𝑒𝑎𝑘𝑀𝐵𝑊 ⋅𝑂𝐼) (1)

Equation (1) considers the two previously mentioned lines: Peak FPP 
(blue) and Peak MBW (orange), which depends on the relative OI. The 
two lines intersect at the point of peak computational intensity and peak 
MBW. Such a point, called ridge point, provides the user with insights 
regarding the overall performance of the target system. Indeed, the OI 
of the ridge point divides the chart into two areas: a memory-bound 
one (on the left, highlighted in orange in Fig. 1) and a compute-bound 
one (on the right, highlighted in blue). Therefore, the OI of a given 
kernel plays a crucial role in determining its peak performance. For 
example, if the OI is lower than the ridge point’s one, the kernel is in the 
memory-bound area, which means that the MBW of the system limits 
the attainable performance. Conversely, if the kernel is in the compute-

bound area, the peak performance depends on the computing resources 
available in the system. In summary, developers aim to improve the 
OI to reach the compute-bound area, if feasible; then, they can enforce 
optimizations to increase the GFLOPs/sec until the kernel “touches the 
roof.”

4. Proposed solution

This Section provides a detailed description of Starlight. First, we 
overview its structure (Section 4.1) and define our methodology for the 
Roofline Model generation (Section 4.2). Then, we illustrate how we 
perform fine-grained performance analysis (Section 4.3) and correlate 
this information with kernel performance predictions and optimization 
suggestions (Section 4.4).

4.1. Starlight structure overview

Starlight comprises three main modules, as depicted in Fig. 2. The 
first one is the Roofline Generator (Fig. 2 A©), which profiles the applica-

tion and draws the Roofline Model, highlighting the actual performance 
of the application. Then, the Performance Analyzer (Fig. 2 B©) exploits 
NVIDIA CUPTI to correlate performance bottlenecks with the applica-

tion’s source code. Finally, the Optimization Parser (Fig. 2 C©) module 
correlates such information to produce optimization suggestions.

Starlight takes as input the binary of the target application. At first, 
the tool queries the target GPU and extracts its characteristics. From 
such information, the Roofline Generator selects the proper GPU Pro-

filer (NVPROF [24], if the compute capability of the GPU is lower than 
7.0, NCU [23] otherwise) and proceeds to build the GPU Roofline Model 
and to profile the application to map it onto the Roofline. Then, the 
Performance Analyzer collects the performance data by sampling the 
target application through CUPTI and associates performance informa-

tion and bottlenecks with the application’s source code lines. Next, the 
Optimization Parser processes the data from the two previous modules 
3

and combines them with optimization suggestions. Starlight output is 
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the Roofline Model of the target kernel and the list of optimizations. Af-

ter improving the application, the user can rerun Starlight to evaluate 
the current performance and check whether the tool suggests additional 
optimizations. Lastly, please note that Starlight currently targets single-

GPU systems.

4.2. Roofline generator

The first module of Starlight is the Roofline Generator (Fig. 2 A©), 
which produces a Roofline Model tailored to a given application and 
the underlying GPU; please note that the Roofline Model generated by 
Starlight is inspired by the Roofline variants [37,27,38,39] that inte-

grate the entire memory hierarchy to highlight the role and impact of 
each GPU memory level. To this end, it detects the target GPU and 
retrieves its characteristics (e.g., memory bus width, GPU frequency, 
and memory frequency) by querying the target GPU via the NVIDIA 
APIs and a custom kernel. In this way, Starlight builds a Roofline 
Model based on theoretical data; alternatively, the user can provide 
a JSON file containing empirical data about the GPU performance and 
memory to derive a more realistic Roofline Model. After this step, the 
tool starts the kernel analysis through the appropriate NVIDIA API’s. 
More specifically, Starlight can benchmark every GPU supporting either 
NVPROF [24] or NCU [23], and according to the target GPU architec-

ture compute capability, it automatically selects the appropriate APIs 
and the corresponding metrics to collect. Indeed, we collect specific 
performance information using NVIDIA’s proprietary APIs, and deeply 
analyze it to accurately depict the target kernel’s performance, and the 
GPU capabilities. We enrich the incomplete information provided by 
NVIDIA profilers with additional insights, exposing more useful and ac-

curate information to the users through our Roofline Model. During this 
analysis phase, the tool collects data regarding the number and type of 
instructions and operations executed, the number of memory load/store 
transactions per each memory type (e.g., off-chip, L1 and L2 caches), 
the branch efficiency, the utilization of the Streaming Multiprocessors 
(SMs), the percentage of stalled threads, the achieved occupancy of the 
GPU, and, finally, the target kernel execution time. Once the data re-

trieval is over, Starlight correlates such results with the specifications of 
the target GPU. In particular, we use the number of available SMs, com-

pute units per SM, Tensor Cores, if available, and the GPU’s achievable 
frequency to compute the performance ceiling. Similarly, we employ 
memory-related data (e.g., memory clock and memory bus width) to 
calculate the GPU’s memory bandwidth. Finally, after correlating such 
data, Starlight plots the Roofline Model for the given kernel.

Fig. 3 shows the typical outputs of the Roofline Generator module 
based on theoretical (Fig. 3a) and empirical data (Fig. 3b), respec-

tively. The chart provides the user with a visually-intuitive method 
to understand the kernel performance using a bound and bottleneck

analysis approach. In particular, we express the performance using 
different metrics depending on the type of performed operations. In-

deed, Starlight supports the profiling of both integer and FP appli-

cations, the y-axis reports either Giga Integer Operations Per Second 
(GIOPs/sec) or GFLOPs/sec, whereas the x-axis exhibits the correspond-

ing OI, here indicating the operations per byte of L1/L2/GMEM traffic. 
Within the chart, we use different colored lines to display the band-

width of these three memories and various symbols for the performance 
of the supported arithmetic precision. We highlight different areas of 
the graph in different colors to better indicate if the analyzed kernel 
is either compute- or memory-bound. Finally, we calculate the per-

formance ceiling and GPU’s memory using the data previously men-

tioned. For instance, the NVIDIA RTX A5000 can reach a frequency 
of 1.695𝐺𝐻𝑧 and has 8192 CUDA Cores available. In particular, since 
each Core can schedule two 32-bit operations per clock cycle, the the-

oretical peak performance for both integer and single FP precision is 
1.695𝐺𝐻𝑧 × 8192 × 2 = 27770.88 GIOPs/sec or GFLOPs/sec (Fig. 3a). 
Similarly, we compute the theoretical memory bandwidth available on 

the target GPU. In this instance, the A5000 has a 384-bit memory bus 
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Fig. 2. From an unoptimized application, Starlight analyzes the application using three modules. First, it profiles the application and generates the Roofline Model 
reporting its performance and, optionally, a JSON file containing the benchmarked GPU performance ( A©). Then, Starlight samples the application through CUPTI 
APIs and associates kernel stalls and performance measurements with the corresponding source code lines ( B©). Finally, the tool correlates the information from the 
two previous modules and produces optimization suggestions ( C©). The output of Starlight is the Roofline Model of the application and the optimization list. The 
user can also re-iterate Starlight analysis to further optimize and examine the code after each pass.

Fig. 3. Example Roofline plot outputs of the Roofline Generator, using theoretical (a) or empirical (b) measurements. The three differently colored lines represent 
the bandwidth of the memories available on the GPU (an RTX A5000 in this example). The two differently colored zones represent compute- and memory-bound 
areas of the model. The three different shapes represent the performance attained by the different kernel computations related to the OI of the various levels of GPU 
4

memory (each shape corresponds to a different arithmetic precision).
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width, a memory frequency of 2000𝑀𝐻𝑧, and can schedule 8 memory 
accesses per clock cycle. Thus, the memory bandwidth for the off-chip 
memory is 8 × 2000𝑀𝐻𝑧 × 384∕(1000 × 8) = 768 𝐺𝐵∕𝑠. Conversely, 
L1 and L2 caches have their frequency tied to the GPU rather than 
memory. Therefore, the L1 cache bandwidth depends on the SMs on 
the target GPU, differently from the L2 cache, which instead cannot 
always be accessed by all SMs, being its access configuration depen-

dent on the GPU’s architecture generation. In our use-case, the A5000 
has a total of 64 SMs available, each accessing 128 bytes on the L1 
cache, and the total number of SMs accessing the L2 cache reading 32 
bytes per clock cycle at maximum. Because of this the peak L1 and L2 
maximum bandwidth is 64 × 128 × 1.695𝐺𝐻𝑧 = 13885.44 𝐺𝐵∕𝑠 and 
64 × 32 × 1.695𝐺𝐻𝑧 = 3471.36 𝐺𝐵∕𝑠 respectively. It is important to 
note that, while this information is unique for every GPU, even within 
the same architectural generation, every measure is completely auto-

mated by Starlight, which adapts the various measurements at runtime 
and ensures accuracy when targeting the different GPU characteristics.

Although this automated approach guarantees portability to dif-

ferent GPUs, the resulting theoretical Roofline Model may inflate the 
achievable performance and mislead users. For this reason, Starlight al-

lows the user to supply a JSON file containing data about performance 
and memory ceilings derived from external experiments/benchmarks 
[40–43]; the result is an empirical Roofline Model that better fits the 
target GPU capabilities.

4.3. Performance analyzer

The Performance Analyzer module (Fig. 2 B©) collects various infor-

mation regarding the kernel performance and bottlenecks and correlates 
them with the application source code without manually modifying or 
instrumenting the original CUDA application. To this end, this module 
leverages NVIDIA CUPTI APIs, which enable seamless kernel instruction 
sampling. Moreover, CUPTI instruments GPU binaries to gather data 
about executed instructions and memory accesses, something which in-

struction sampling alone cannot measure. Consequently, our module 
can collect all the various stalls of the application to offer more accurate 
performance optimization suggestions to the end-user. Finally, the Per-

formance Analyzer also exploits the CUPTI Continuous Sampling APIs, 
which prevent the serialization of the various kernels within the appli-

cation, guaranteeing that our performance modeling reflects the actual 
execution accurately. During this phase, the Performance Analyzer sam-

ples the target executable at the maximum frequency reachable by 
CUPTI Sampling APIs (every 32 clock cycles) to better model the var-

ious performance bottlenecks. Of course, CUPTI does introduce some 
overhead when profiling the target application, which significantly 
varies according to the target application and the density of CUDA ac-

tivities within it. Nonetheless, the time spent by Starlight analyzing the 
target application is negligible with respect to the optimizations and fu-

ture gains that the tool suggests, increasing the execution time of the 
application during the data collection phase only by a factor of 4.85×
on average.

After retrieving the data from CUPTI APIs, the Performance Analyzer 
correlates PCs to SASS (the low-level assembly that compiles to binary 
GPU microcode [34]) and then SASS to the correspondent CUDA source 
line. At first, the Analyzer extracts CUDA binaries (CUbins) from the 
application executable. CUbins contain CUDA executable code sections, 
symbols, relocators, and debug information necessary to associate stalls 
with the correspondent lines of code at the SASS level. Then, the module 
correlates the PC sampling and SASS scheduled instructions. Once this 
phase ends, we can associate the different SASS assembly instructions 
producing stalls with their respective lines in the source code. Finally, 
the Performance Analyzer stores an intermediate raw representation of 
5

these results and passes them to the following module.
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4.4. Optimization parser

The final module of Starlight (Fig. 2 C©), namely the Optimiza-

tion Parser, is in charge of associating the various performance stalls 
and kernel performance with optimization suggestions for the end-user, 
according to the information collected in the two previous modules. 
Furthermore, it is in charge of detecting hot spots and providing in-

formation on the potential benefits of the applied optimizations. In 
particular, the module starts by taking into account measures collected 
by the Roofline Generator (Section 4.2), observing whether the target 
application is memory- or compute-bound. In the former case, Starlight 
suggests applying changes to the computation (e.g., decreasing the 
arithmetic precision) or compressing the input data. These optimiza-

tions aim to increase the Operational Intensity (OI) and, potentially, 
move the kernel to the compute-bound area. In the latter case, if the 
kernel is far from touching the compute roof, the module analyzes the 
GPU occupancy and SM efficiency, suggesting adapting the number of 
scheduled blocks and threads accordingly. Then, the module checks 
the kernel’s branch efficiency, observing the efficiency of non-predicate 
warp instructions to advise the end-user on how to schedule the kernel 
threads better to avoid divergence.

Starlight proceeds to correlate this analysis with the corresponding 
code lines highlighted by the Performance Analyzer (Section 4.3) and 
their relative stalls. In particular, the module associates each stall with a 
specific cause and, accounting for the previously computed performance 
metrics, suggests the different optimizations to apply at the appropriate 
source code line. More specifically, Table 1 provides an overview of the 
different optimization recommendations according to the performance 
bottleneck observed during the construction of the kernel’s Roofline 
Model and PC sampling.

As a final step, this module predicts the performance improvement 
(expressed in percentage and GFLOPs/sec or GIOPs/sec) that the kernel 
can obtain after resolving the various stalls, detecting code hot spots 
to facilitate the user in the research for problematic code sections. In 
particular, Starlight uses the peak performance of the target GPU, the 
kernel’s achieved OI, the total kernel runtime, and the number of stalls, 
together with their previously detected cause (Table 1), to provide the 
end-user with accurate information regarding the various gains of ev-

ery optimization. Indeed, the module parses information regarding the 
various code stalls together with the previously computed correlations, 
associating each suggestion, and corresponding code line, to an esti-

mated improvement. First, we detect the kernel’s hot spots correlating 
problematic source code lines (previously detected by the optimization 
parser module) with their corresponding operations. By doing so, we 
can precisely depict which parts of the kernel account for most of its 
execution time. We describe the runtime percentage of a hot spot code 
line as follows:

Line Runtime Percentage𝑙 =
𝑁𝑜𝑝,𝑙 +𝑁𝑠𝑡𝑎𝑙𝑙,𝑙

∑𝑀

𝑖=1(𝑁𝑜𝑝,𝑖 +𝑁𝑠𝑡𝑎𝑙𝑙,𝑖)
× 100 (2)

Equation (2) describes the proportion of the runtime for every prob-

lematic code line in the kernel. We define 𝑀 as the total number of 
code lines of our kernel, 𝑙 as the analyzed source code line, while 𝑁𝑜𝑝,𝑙

and 𝑁𝑠𝑡𝑎𝑙𝑙,𝑙 indicate the number of operations and stalls required by the 
execution of 𝑙, respectively. Then, to compute the possible attainable 
gain of each optimization, we analyze the nature of the various opera-

tions of every 𝑙 line and associate every performance bottleneck to the 
corresponding line stalls and operations. Therefore, we can weigh the 
impact of every optimization for the target 𝑙 line by characterizing each 
hot spot per bottleneck type, knowing that the same source line might 
have bottlenecks, and only some can be addressed with different opti-

mizations.

We describe the impact of an optimization against a code line 𝑙 in 

terms of speedup as:
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Table 1

List of code optimizations suggestions provided by the tool and how they affect the kernel performance and OI on the 
Roofline Model.

Performance Bottleneck Suggestion Kernel improvement and movement on the Roofline

Latency/Dependency

Code Reorder

Increase performance ↑Function Inline

Loop Unroll

Poor Memory Usage

Increase Shared Memory usage Increase performance ↑
Coalesced Memory Access

Increase OI →
Register Reuse

Poor Resource Usage
Increase/Reduce Number of Threads

Increase performance ↑
Increase Number of Blocks

Thread Synchronization/Branching

Reduce Number of Threads

Increase performance ↑
Code Reordering

Remove Sync

Split Computation

Low OI
Reduce Operation Precision

Increase OI →
Compress Analyzed Data
SpeedupAfterOptimization𝑙 =
∑𝑀

𝑖=1(𝑁𝑜𝑝,𝑖 +𝑁𝑠𝑡𝑎𝑙𝑙,𝑖)
∑𝑀

𝑖=1(𝑁𝑜𝑝,𝑖 +𝑁𝑠𝑡𝑎𝑙𝑙,𝑖) −𝑁𝑜𝑝𝑡𝑦𝑝𝑒−𝑠𝑡𝑎𝑙𝑙𝑠,𝑙
(3)

where 𝑁𝑜𝑝𝑡𝑦𝑝𝑒−𝑠𝑡𝑎𝑙𝑙𝑠,𝑙 is the number of stalls per specific operation type, 
e.g., Latency, we identified in the 𝑙 line. Finally, since the runtime per-

centage of each code line is computed with respect to the total execution 
time of the kernel, by assuming the same number of computed opera-

tions by the kernel, we estimate the new performance of the optimized 
kernel, in either GFLOPs/sec or GIOPs/sec, as:

New Performance = Speedup After Optimization × Original Performance

(4)

Experimental results (Section 5) show the effectiveness of our perfor-

mance improvement prediction methodology, highlighting its accuracy 
in depicting performance stalls, as the difference between the predicted 
performance improvements against the obtained ones is below 2.5%.

5. Experimental results

This Section describes the experimental evaluation of Starlight. In 
particular, we evaluate our tool’s analysis and optimization features on 
three different examples, each one exposing different compute patterns 
and arithmetic precision. We report the experimental settings of our 
experiments in terms of NVIDIA tools and target GPUs (Section 5.1). 
Then, we illustrate the analysis and optimization process we applied to 
the three examples.

First, we evaluated Starlight against two openly available HPC GPU 
applications. The former is an N-Body simulation application available 
in the NVIDIA examples2 [45] (Section 5.2); the latter is LOGAN3 [5], 
an HPC GPU algorithm for aligning very long genome sequences im-

plementing the 𝑋-drop heuristics [46] (Section 5.3). Here, we focused 
on optimizing the computing kernels for these two algorithms without 
changing their overall structure to prove the effectiveness of Starlight 
in identifying the bottlenecks of already-optimized applications and 
suggesting further performance improvements. Moreover, we show the 
tool’s capability in analyzing kernels employing single/double FP pre-

cision (N-Body simulation) or integer operations (LOGAN). Finally, the 
third example is an open-source solution for the computation of the 
Mutual Information (MI) in the Image Registration field [47–51] (Sec-

tion 5.4). In this case, we demonstrate how Starlight can help guide the 
implementation and optimization process of an application initially not 
designed for GPU from the ground up.

2 https://github .com /NVIDIA /cuda -samples.
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3 https://github .com /albertozeni /LOGAN .git.
Table 2

Different Machine Configurations used to test Starlight.

NVIDIA GPU GPU RAM Host CPU Host RAM

RTX 3060 Mobile 6GB GDDR6 Intel i9 11900H 64GB

RTX A5000 24GB GDDR6 AMD Ryzen 7 5800X 32GB

A100 40GB HMB2 AMD Epyc 7542 2TB

V100 16GB HBM2 Intel Xeon Platinum 8167M 768GB

P100 16GB HBM2 Intel Xeon Platinum 8167M 256GB

5.1. Experimental settings

All the applications have been implemented using C++ and NVIDIA 
CUDA 11.8. The PC sampling utilities have been described using 
NVIDIA CUDA Toolkit 11.8 APIs and Perl. We collected the performance 
results on multiple systems covering multiple generations of NVIDIA 
GPUs (Table 2) to show the tool flexibility and its cross-architecture ef-

fectiveness. Finally, we report the Roofline Model of the NVIDIA RTX 
A5000 using empirical measurements [40–43], to show the consistency 
of the results with Starlight’s generated Roofline Models.

5.2. N-body simulation analysis and optimizations

The N-Body simulation algorithm approximates the evolution of a 
system of bodies where they continuously interact under a force of at-

traction [44]. A simple example is a gravitational system where the 
bodies represent celestial entities (e.g., galaxies, stars, or planets). Gen-

erally, the N-Body simulation algorithm is a crucial part of many sci-

entific applications, such as global illumination, fluid simulation, and 
protein folding. For this reason, the literature contains various versions 
of this algorithm. Among these, the All-Pairs is the most time-consuming 
yet accurate variant. At every simulation step, the algorithm computes 
the forces of attraction of each body by considering its interaction with 
all the others, resulting in the time complexity of (𝑛2). Here, we an-

alyze the All-Pairs implementation available in the CUDA examples,4

which corresponds to the one work of Nyland et al. [45]. In particular, 
this implementation proposed a solution based on tiling, dividing the 
bodies into multiple tiles of the same dimension and updating the posi-

tion of each body within a tile in parallel. Besides, the authors employ 
loop unrolling, assign a GPU block per tile of bodies, and update their 
position using multiple threads.

During the considered N-Body simulation algorithm analysis,

Starlight highlighted multiple issues with latency and poor resource 
utilization on the GPU. Hence, we first proceeded with inlining the 
4 https://github .com /NVIDIA /cuda -samples.

https://github.com/NVIDIA/cuda-samples
https://github.com/albertozeni/LOGAN.git
https://github.com/NVIDIA/cuda-samples
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Fig. 4. Performance comparison of the Starlight -optimized N-Body single- and double-precision kernels and relative speedup on multiple GPU boards.

Fig. 5. Plot output of the Roofline generator for optimized N-Body single- and double-precision kernel on the NVIDIA RTX A5000.
functions flagged by the tool. Then, we adapted the already unrolled 
code section to use the same number of threads scheduled to compute 
the algorithm, improving the GPU resource utilization. Indeed, the orig-

inal code version unrolled the execution of the inner loop of the N-Body 
simulation by a fixed factor of 128. This choice limited the parallelism 
up to 128 computations in parallel and significantly impacted the la-

tency of the algorithm, since in the case of more than 128 scheduled 
threads, these would stall, limiting the capabilities of the GPU to over-

lap the execution warps properly. Finally, according to the target board, 
Starlight also suggested increasing the number of scheduled threads to 
compute more body interactions in parallel.

We evaluated our optimized code against the original version using 
both single and double FP precision. We considered a system of 65536
bodies for these experiments and simulate 100 time steps. Starlight’s 
predicted performance speedup against the original implementation of 
the single precision workload was 1.15× on average. Fig. 4a compares 
the performance of the original algorithm against the one optimized 
with Starlight on different boards in terms of GFLOPs/sec. On the other 
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hand, Fig. 5a shows the Roofline Model of our final single-precision 
implementation on the NVIDIA RTX A5000. In this scenario, our solu-

tion achieves up to 1.13× performance improvement compared to the 
original software, with different gains attained according to the tar-

get board. Moving to the double-precision version, Fig. 4b and Fig. 5b 
report the performance comparison and the Roofline, respectively. In 
this instance, given the additional complexity of double precision op-

erations, Starlight highlighted additional stalls, thus resolving them 
accounting for additional performance gains with respect to the single-

precision implementation and achieving improvements of up to 1.22×
concerning the baseline double precision solution. Starlight’s predicted 
improvements for the solved stalls indicated a performance increment 
of 1.24×. Moreover, we can observe that in the double precision use 
case, our optimized kernel is close to touching the Roofline, while in the 
single precision instance, the performance reached by the N-Body simu-

lation algorithm is still not touching the Roofline ceiling, even after our 
optimizations, indicating that further improvements are possible. In-

deed, Starlight still showed us all the remaining bottlenecks within the 
code, indicating dependency issues in the innermost part of the body’s 

position update computation. Solving these issues would require a sig-
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Fig. 6. Runtime comparison of the Starlight -optimized LOGAN kernel on multiple GPU boards with four X values and relative speedup (log-scale).
Fig. 7. Roofline plot output of the Roofline generator for optimized LOGAN on 
the NVIDIA RTX A5000 with 𝑋 =100.

nificant change in the code’s structure, such as reordering most of the 
kernel’s operations. Besides, although identifying these issues further 
confirms Starlight’s efficiency, the required additional optimizations are 
beyond the scope of this example, whose objective, as previously men-

tioned, is to show how already available optimized GPU applications 
can still be improved and how our tool can aid this process.

5.3. LOGAN analysis and optimizations

LOGAN [5] implements a high-performance algorithm for the pair-

wise alignment of genome sequences [52–55]. 𝑋-drop [46] is a heuris-

tic that avoids the entire quadratic cost of exact alignment algorithms 
such as Needleman-Wunsch [56] and Smith-Waterman [57] by search-

ing only for high-quality alignments. In practice, 𝑋-drop eliminates 
searches between sequences that are clearly diverging. Indeed, instead 
of exploring the whole 𝑚 × 𝑛 space (where 𝑚 and 𝑛 are the lengths of 
the sequences to align), 𝑋-drop searches only for alignments that result 
in limited edits between the two sequences. Moreover, to reduce the 
search space, the algorithm keeps a maximum running score and does 
not explore cell neighborhoods whose score decreases below a user-

specified parameter 𝑋.

Starlight analysis of the original version of LOGAN highlighted mul-

tiple performance issues. In particular, the tool identified multiple de-

pendencies and latency issues and suggested inlining the highlighted 
functions accordingly and reordering some intensive operations. Be-

sides, Starlight also recognized other stalls related to memory throttling 
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and poor branching performance. Given this context, we solved the 
issues related to data dependency and latency by rescheduling some op-

erations in the priors parts of the code, which led to a significant gain in 
performance. Then, Starlight suggested adapting the number of sched-

uled threads according to the input 𝑋. More specifically, changing 𝑋
impacts the algorithm runtime: increasing 𝑋 renders the heuristic less 
aggressive and causes the algorithm to run longer, whereas decreasing 
it makes the alignment stop sooner. For this reason, the tool advised re-

ducing the number of threads when using a small value of 𝑋, leading to 
enhancements in performance and branch efficiency since we improved 
resource usage and diminished thread stalling. On the other hand, with 
a larger 𝑋, Starlight suggested raising the number of threads to speed 
up the alignment process, as the computation of the alignment matrix 
requires much more time in this scenario.

Fig. 6 compares the results of the original and optimized versions of 
LOGAN when run on various GPUs using multiple X values. To directly 
compare our design against the original implementation of LOGAN, we 
used the same dataset of 100𝐾 long reads employed by the authors 
of LOGAN for their experiments on the original version of the code. 
Our optimizations led to an average speedup of 1.73× when compar-

ing the original LOGAN software to the Starlight -optimized one, while 
Starlight’s predicted performance for the indicated stalls showed an av-

erage of 1.75× performance improvements. In contrast, Fig. 7 shows the 
final Roofline attained with the performance improvements of Starlight. 
We can observe that the kernel performance is touching the Roofline 
when looking at the line described by the L1 cache bandwidth. Due 
to the structure of LOGAN’s heuristic algorithm and the multiple de-

pendencies present in the kernel, improving the kernel’s performance 
would require significant changes in the code structure, which, as pre-

viously stated, is beyond the scope of these examples.

5.4. Mutual information analysis and optimizations

Image Registration is the procedure of aligning a floating image 𝐹 to a 
reference one 𝑅, widely employed in multiple and different fields, rang-

ing from medicine to satellites [59]. Identifying the geometric trans-

formation for such an alignment is a compute-intensive optimization 
process that requires calculating the likeness of the two images itera-

tively through a similarity metric. MI is one of the most employed met-

rics in this context [60], as well as in domains such as genomics [61], 
relevance networks [62], Hidden Markov Models training [63], and 
features selection [64]. In particular, the MI concept comes from In-

formation Theory, and it measures the statistical dependency of two 
random variables, 𝐹 and 𝑅 (the two images in our case) [65]. MI com-

putation requires first calculating the joint and single histograms of the 
two images, then, according to Shannon’s equations [66], deriving the 
entropies from such histograms. Finally, the aggregation of entropy val-

ues produces the MI.

Our implementation builds upon the state-of-the-art open-source im-

plementation design5 [47], which offers an FPGA-accelerated kernel 
5 https://github .com /necst /iron.

https://github.com/necst/iron
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Fig. 8. Performance comparison of the Starlight -optimized Mutual Information kernel on multiple GPU boards against FPGA [47] and GPU [12,58] in terms of 
GFLOPs/sec and GIOPs/sec (log-scale). The speedup of each GPU version refers to the corresponding single-/multi-pair FPGA/GPU design on the corresponding line.
for the MI process. This implementation closely resembles the afore-

mentioned algorithm but needs relevant changes to become suitable 
for GPU. Our initial solution employed multiple threads to compute 
the histograms directly on GMEM through atomic instructions. Starlight 
suggested exploiting the shared memory to reduce memory bottlenecks. 
In this way, we entirely privatized the single histogram computation 
and partially the joint histogram one. Indeed, since the entire joint his-

togram cannot fit into shared memory, we only store a portion of the 
input images on shared memory for fast and coalesced memory access 
during its computation. Since we were only using a single block for the 
MI computation of a single couple of images, Starlight also advised in-

creasing the number of scheduled GPU blocks to boost the performance 
further. Generally, the number of MI calculations depends on both the 
convergence of the alignment process of an image couple and the num-

ber of active registration processes. Thus, once integrated within an 
Image Registration framework, our solution can support the parallel 
registration of multiple image couples.

To evaluate our design, we used a medical dataset of 227 Com-

puted Tomography (CT) images with a dimension of 512 × 512 pix-

els, and a corresponding number of Positron Emission Tomography 
(PET) ones, resized from 128 × 128 pixels to a dimension of 512 × 512
pixels, each down-scaled to 8-bit data width6 [67]. Furthermore, we 
compare our results against the state-of-the-art and open-source FPGA-

accelerated implementation of the same algorithm proposed by Confic-

coni et al. [47] running on the accelerator card Alveo U200 and against 
a GPU solution exploiting PyTorch [12,58] running on an NVIDIA 
A100. Fig. 8 shows the performance comparison of our design against 
the FPGA and GPU state-of-the-art solutions, while Fig. 9 displays the 
Roofline Model of the final design of our MI kernel. When computing 
the MI of a single image couple at a time, we can observe that our im-

plementation achieves similar performance to the FPGA design. Besides, 
our designs attain a significantly higher accuracy since the FPGA solu-

tion computes entropies using 23-bit fixed-point operations, whereas 
we maintain single-precision (32-bit) FP. The FPGA implementation 
supports up to 4 parallel kernels due to the number of available off-

chip memory banks of the Alveo U200; thus, our approach outperforms 
the FPGA version up to 12.7× in terms of GFLOPs/sec when computing 
multiple MI in parallel. The state-of-the-art GPU solution is significantly 
under-performing with respect to our implementation, showing that our 
design is 2× faster even in its worst-performing instance. Furthermore, 
the PyTorch solution has no support for the parallel computation of 
multiple image couples at the same time; thus when computing multi-

6 Patient: C3N-00704, Study: Dec 10, 2000 NM PET 18 FDG SKULL T, CT: WB 
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STND, PET: WB 3D AC.
Fig. 9. Roofline plot output of the Roofline generator for optimized Mutual 
Information kernel on the NVIDIA RTX A5000.

ple MI instances at the same time, our solution is capable of achieving 
performance improvements of over 140×. Concerning the performance 
predictions of Starlight, the first version of the code for MI compu-

tation showed an average performance of 52.74 GIOPs/sec and 8.66 
GFLOPs/sec, and Starlight estimated a performance improvement for 
our applied optimizations of 2.59× and 4.42× for integer and FP per-

formance respectively, while we attained a measured improvement of 
2.55× and 4.32×, confirming the accuracy of Starlight’s predictions. 
On the Roofline Model, we can observe that our solution is very close 
to touching the roof of the L1 cache. Starlight correctly highlighted 
that the dependency causing this bottleneck is related to the numerous 
atomic additions required to compute the MI exactly. If we removed 
this constraint our kernel would touch the roof, indicating that our im-

plementation is indeed optimal.

6. Related work

In this Section, we first overview the related work regarding the 

various extensions of the Roofline Model for GPUs and tools for GPU 
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kernel analysis and optimization. Then, we summarize how Starlight 
differs from other literature solutions through a qualitative comparison.

6.1. GPU roofline model

In recent years, several studies in the literature proposed extensions 
to the classical CPU-centric Roofline Model in terms of memory hierar-

chies/levels and target architectures. Indeed, the traditional model only 
investigates the bottlenecks related to GMEM and peak performance. 
For this reason, many researchers developed multiple extensions that 
consider different memory hierarchies to enable a deeper understand-

ing of various architectures’ performance [37,27,38,39]. For instance, 
Ilic et al. [37] and Koskela et al. [39] included multiple levels of caches 
(typically L1 and L2 caches) along with the more traditional off-chip 
memory in the Roofline Model for CPUs. Yang et al. [38] proposed ERT 
to determine the peak capabilities of the Volta generation of NVIDIA 
GPUs through micro-benchmarks automatically. Specifically, the tool 
can depict GMEM and GPU caches but does not benchmark a kernel’s 
performance against the Roofline.

On the architectural side, multiple studies adapted the Roofline 
Model to GPUs, incorporating the support for multiple memory lev-

els [25,29,30,40,41]. Besides, some of these approaches also introduced 
information regarding integer operation performance [29,30,42,43]. 
Despite the relevant and attractive features of such studies, they show-

case some limitations regarding usability, portability, and considered 
GPU characteristics. For instance, some tools do not offer automatic 
GPU detection but instead rely on a preset of performance measure-

ments to define peak performance and memory bandwidth [25,29,30]. 
Moreover, such tools require the user to instrument the target ap-

plication and extract performance metrics manually. On the other 
hand, other approaches offer useful micro-benchmarks to empirically 
evaluate (part of) the computing or memory capabilities of a given 
GPU [40–43]. However, it is then up to the user to manually plot the 
Roofline Model and map the target application onto it. NVIDIA pro-

posed an automatic definition of the Roofline Model inside the recently 
released suite for their GPUs (starting from the Volta generation), called 
NVIDIA NSIGHT [23], bringing this model to a much broader user base. 
Nonetheless, the tool has some limitations; for instance, it exclusively 
benchmarks FP computations and displays cache hierarchies only if the 
user provides data regarding the cache bandwidths.

Moving to GPUs by other vendors, Intel Advisor [68] is a tool that 
advises the user during the development of performant code for In-

tel’s CPUs and GPUs. Among the various available features, this tool 
can automatically construct a Roofline Model for GPUs (and CPUs) 
that includes multiple performance and memory roofs (e.g., for inte-

ger/FP operations and cache levels). In addition, Intel Advisor offers 
interesting utilities such as optimization suggestions and performance 
estimations when porting (part of) an application from CPU (GPU) 
to (another) GPU. Lastly, Leinhauser et al. [26] proposed a Roofline 
Model definition for AMD GPUs. Initially, the authors planned to em-

ploy the AMD ROC Profiler (rocProf) [69] to build the Roofline Model 
and map a given application onto it; however, they then switched to 
micro-benchmarks [70,71] since rocProf did not acquire enough met-

rics (e.g., memory bandwidth/transactions).

Given the different approaches in the literature, we identified the 
most prominent features we believe a tool for building a Roofline Model 
for GPUs should implement (e.g., supported data types). Table 3 reports 
a qualitative overview of the discussed tools and our own according to 
such features.

6.2. GPU analysis and optimization tools

Fully exploiting the capabilities of GPUs requires a significant un-

derstanding of the underlying architecture and expertise on the de-

veloper’s side. For this reason, researchers proposed multiple tools to 
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aid non-experienced users in analyzing and optimizing GPU kernels. 
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In particular, analysis tools profile a target application through binary 
instrumentation and hardware performance counters. In contrast, the 
optimization ones exploit analysis information to provide detailed sug-

gestions to improve the GPU kernel performance. Given these premises, 
this Section discusses the most prominent GPU analysis and optimiza-

tion tools. In particular, we concentrate on GPUs by NVIDIA since 
Starlight targets such vendor’s devices.

Starting from the first category (i.e., analysis tools), NVBit [19] is a 
framework for dynamic binary instrumentation that offers various high-

level APIs to analyze applications for NVIDIA GPUs. In particular, NVBit 
leverages dynamic recompilation at the SASS level to produce instru-

mented code compliant with the target architecture. Besides, it can also 
deal with pre-compiled binaries and libraries. However, despite these 
features, NVBit also exhibits some limitations. For instance, it does not 
support applications employing shared or constant GPU memory or ac-

celerated libraries (e.g., cuBLAS, cuTENSOR). Additionally, this tool, as 
others based on code instrumentation, may generally incur significant 
overheads to profile the target application accurately. CUDA Flux [20]

is an alternative to profiling based on hardware performance coun-

ters. Such a tool requires code instrumentation through LLVM to collect 
statistics about the control flow. Then, it calculates the resulting in-

struction count based on these statistics combined with an analysis at 
PTX level (the low-level parallel-thread execution virtual machine and 
instruction set) [34]; however, the exact characterization of all types of 
PTX instructions may result in large verbosity. Since CUDA Flux pro-

files only one thread to limit the execution overhead, this tool produces 
meaningful results for kernels with regular compute patterns. Besides, it 
does not support texture memory, concurrent kernels, and non-inlined 
functions. Finally, CUDAAdvisor [22] is a framework for fine-grain code 
instrumentation and performance analysis based on LLVM. It offers a 
feature set similar to NVIDIA SASSI [74] and overcomes limitations 
such as portability and expansibility. However, it only supports NVIDIA 
GPUs up to Maxwell architectures.

Moving to tools that combine analysis and optimization guidance, 
Zhou et al. [15,16] recently presented GPA. This performance advi-

sor analyzes instruction samples to guide performance optimization 
on NVIDIA GPUs. In particular, GPA attributes stalls to their causes, 
matches patterns of inefficiency with optimization strategies, and esti-

mates the potential speedup for each applicable optimization. Finally, 
GPA combines metrics extracted from instruction sampling and binary 
instrumentation to yield a comprehensive performance report. Despite 
these features and advantages, GPA exhibits some limitations. On the 
one hand, the binary instrumentation causes the expected overhead; 
on the other, GPA lacks support for thread divergence and warp syn-

chronization detection and optimization and does not correlate kernel 
improvements with the underlying hardware capabilities. For instance, 
if a target kernel is memory-bound, GPA cannot suggest further en-

hancements to improve its performance. Zhou et al. also presented an 
extension to HPCToolkit [18] for GPU performance modeling [17]. This 
work attributes metrics to calling contexts spanning both CPU and GPU, 
it constructs approximations of call path profiles for GPU computations, 
and it employs a wait-free data structure to coordinate monitoring and 
attribution of GPU performance metrics. In particular, HPCToolkit re-

trieves such metrics from performance counter samples and attributes 
them to source lines and loops, enabling fine-grain analysis and tuning. 
After receiving the tool’s detailed suggestions, the developer can then 
optimize the code. Generally, HPCToolkit showcases limitations simi-

lar to GPA. Hong et al. proposed SAAKE [21], a kernel emulator and 
bottleneck analyzer for GPU code optimizations based on latency and 
throughput as performance metrics. After identifying the bottlenecks 
and their causes, the user can exploit such information to optimize the 
code or rely on optimizers such as OpenTuner. Regarding the limita-

tions, the overall analysis is performed solely on emulation for a single 
architecture and kernels with regular execution patterns; thus, SAAKE’s 
characterization may partially represent the target GPU, and the inter-
nal profiling model might require modifications to support additional 
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Table 3

Comparison between tools implementing the Roofline Model for GPU.

Work
Data Types Cache Automatic Open Built Supported

Integer FP Levels Roof. Gen. Source Upon Vendor

[25] ✗ ✓ ✓ ✗ ✗ CUPTI [35] NVIDIA

[29,30] ✓ ✓ ✓ ✗ ✗ NVPROF [24] NVIDIA

[40,41] ✗ ✓ ✓ ✗ ✓ Micro-benchmarks NVIDIA

[42,43] ✓ ✓ ✗ ✗ ✓ Micro-benchmarks NVIDIA

[23] ✗ ✓ ✗ ✓ ✗ NSIGHT [23] NVIDIA

[68] ✓ ✓ ✓ ✓ ✗ Intel Advisor [68] Intel

[26] ✗ ✓ ✗ ✗ ✗ Micro-benchmarks AMD

Ours ✓ ✓ ✓ ✓ ✓ CUPTI [35] NVIDIA

Table 4

Comparison between tools for performance analysis on NVIDIA GPUs.

Work

Open Profiling Optimization

Source Yes/No Level Built Upon
HW Performance

Other Info Yes/No
Stall-Code Improvement

Correlation Correlation Estimation

[19] ✓ ✓ SASS CUDA [72] ✗ Binary Instrumentation, No 
Shared/Constant Memory

✓ ✗ ✗

[20] ✓ ✓ PTX LLVM [73] ✗ Regular Compute Patterns only, No 
Concurrent Kernels, No Inlined 
Functions

✓ ✗ ✗

[22] ✓ ✓ PTX LLVM [73] ✗ Support only for GPUs up to Maxwell ✓ ✗ ✗

[15,16] ✓ ✓ SASS CUPTI [35] ✗ Binary Instrumentation ✓ ✓ ✓

[17] ✓ ✓ SASS
CUPTI [35] and

✗ Binary Instrumentation ✓ ✓ ✗
HPCToolkit [18]

[21] ✗ ✓ PTX CUDA [72] ✗ Emulation Only, Model Tuning 
Required for every Kernel

✗ ✗ ✗

[24] ✗ ✓ SASS CUDA [72] ✗ Profiling Only ✓ ✗ ✗

[23] ✗ ✓ SASS CUDA [72] ✗ Profiling Only ✓ ✗ ✗

Ours ✓ ✓ SASS CUPTI[35] ✓ (w/ Roofline) Binary Instrumentation ✓ ✓ ✓
GPUs or applications. NVIDIA proposed multiple profilers for GPU code 
over the years, namely NVPROF [24] and NSIGHT [23]. These pro-

vide multiple suggestions to the end-user, mostly relative to device 
utilization and kernel’s stalls, but do not identify specific code regions 
where the optimizations should be applied. Besides, NSIGHT defines the 
Roofline Model for the target kernel, as we stated before.

As in Section 6.1, we collected the principal qualitative characteris-

tics of the analyzed tools and Starlight in Table 4.

6.3. Discussion

Tables 3 and 4 provide a comprehensive qualitative comparison of 
the various studies in the literature on GPU kernel analysis and opti-

mization, including our own. The investigation and comprehension of 
these prominent studies and their features represented the primary in-

spiration for Starlight, which aims to improve and address the current 
limitations of the literature on Roofline Model-based analysis and opti-

mization tools for NVIDIA GPUs.

Concerning GPU Roofline Model definition, generally, all the solu-

tions in the literature either lack flexibility or features concerning data 
types or memory hierarchy (Table 3). Only the solution proposed by 
Ding et al. [29,30] and Intel Advisor [68] can define a Model as feature-

rich as the one described in this paper. However, the former supports 
two models of GPUs only, while Starlight supports all the critical aspects 
of the Roofline Model definition. On the other hand, the latter offers 
additional valuable features other than the Roofline Model generation, 
such as CPU-to-GPU and GPU-to-GPU migration, which may become 
intriguing future components of Starlight. Focusing on GPU vendors 
other than NVIDIA and Intel, AMD, as mentioned in Section 6.1, de-

veloped rocProf, which offers performance measurements to the end 
users, although being limited when compared to other profilers such as 
NSIGHT, NCU, and Intel Advisor. However, given the recent efforts in 
11

the open-source community by AMD, we believe that these limitations 
might be solved in the near future, enabling Starlight to support AMD 
GPUs.

Table 4 shows an overview of the tools focusing on NVIDIA GPU per-

formance and bottleneck analysis, highlighting the various supported 
features of the tools and their limitations. We can observe that most 
state-of-the-art tools lack support for an accurate correlation of source 
code and hardware capabilities with the kernel’s performance. Among 
such tools, GPA [15,16] is the most feature-rich tool available in the lit-
erature. However, it does not consider the capabilities of the underlying 
hardware (e.g., resource availability), making it less effective when an-

alyzing poorly implemented stall-less kernels. Furthermore, these tools 
incur very expensive performance overheads (often requiring for more 
than 10× of the application’s run-time) and only support a few genera-

tions of NVIDIA GPUs. Instead, Starlight can provide suggestions to the 
user by defining a Roofline Model of the target kernel that considers the 
capabilities of the target GPU hardware while also performing in-depth 
performance analysis account for an average overhead of only 4.85× in 
terms of the application’s execution time.

As previously mentioned, Starlight’s current implementation still 
leaves open research paths. Currently, Starlight only supports the 
benchmarking of applications on single GPU systems. Additionally, 
given the aforementioned complexities in implementing GPU code, we 
understand that non-experienced users might still have difficulties in 
applying Starlight’s suggested optimizations. Indeed, an additional fea-

ture that one might consider implementing in Starlight is the automatic 
parsing and optimization of the original code. To perform this task, 
one would parse the optimization suggestions provided by Starlight 
and the correspondent file to which they refer and implement some 
of these suggestions without the user’s intervention. On the one hand, 
some optimizations like function inlining and loop unrolling might be 
more straightforward to implement in this manner; on the other hand, 
optimizations like code reordering and restructuring may still require 

partial user intervention.
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7. Conclusions

In this work, we presented Starlight, an open-source tool for GPU 
kernel optimization based on the Roofline Model. First, we provided 
a detailed description of the tool’s structure, highlighting the mecha-

nisms behind its various modules. We defined how Starlight exploits 
the Roofline Model to provide accurate and practical suggestions to the 
end-user for optimizing the target kernel. Then, we proved the tool’s 
effectiveness by analyzing multiple state-of-the-art algorithms and opti-

mizing them through Starlight. In particular, our final designs achieve 
performance improvements ranging from 1.10× to 2.5×. In addition, 
we showcased how Starlight can support the development of an appli-

cation from the ground up targeting a MI computation. Our solution 
reaches a final performance improvement up to a factor of 12.7× com-

pared to the literature implementation FPGA implementation and over 
140× when compared against the state-of-the-art GPU solution. Finally, 
we provided an overview of the various state-of-the-art solutions for 
GPU kernel optimization and Roofline Model generation, qualitatively 
evaluating their feature set against the one provided by Starlight.
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