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Abstract: The correct design of a Wireless Sensor Network (WSN) is a very important task because
it can highly influence its installation and operational costs. An important aspect that should
be addressed with WSN is the routing definition in multi-hop networks. This problem is faced
with different methods in the literature, and here it is managed with a recently developed swarm
intelligence algorithm called Social Network Optimization (SNO). In this paper, the routing definition
in WSN is approached with two different problem codifications and solved with SNO and Particle
Swarm Optimization. The first codification allows the optimization algorithm more degrees of
freedom, resulting in a slower and in many cases sub-optimal solution. The second codification
reduces the degrees of freedom, speeding significantly the optimization process and blocking in some
cases the convergence toward the real best network configuration.

Keywords: wireless sensor networks; routing; Swarm Intelligence; Particle Swarm Optimization;
Social Network Optimization

1. Introduction

The Internet of Things paradigm is increasing the importance of Wireless Sensor Networks
(WSN) in which a set of small simple sensors are interconnected for creating a very complex structure.
The information sensed by all the nodes of the network should be sent to the cluster head that processes
them and exploits the information [1].

The design of a WSN arises some issues in terms of deployment and operational costs. In this
framework, Evolutionary Optimization Algorithms (EAs) can be very important tools for the system
design because of their flexibility and ease of use.

The research on EAs has two main preferential directions: on the one hand, more complex
operators are introduced and analyzed in the algorithms for improving their performance [2]; on the
other hand, their field of applicability is analyzed and enlarged [3].

The most used EAs are Genetic Algorithms (GA) and Particle Swarm Optimization (PSO) [4].
PSO and Ant Colony Optimization (ACO) [5] are the most common algorithms that belong to
Swarm Intelligence.

Among EAs, Differential Evolution (DE) algorithm has been widely applied and studied [6,7].
This algorithm is not-biologically inspired; while it was originally designed for real-value problems [8],
it has been implemented also for discrete problems [9]. This algorithm has been applied to a wide range
of multimodal problems, such as neural network training [10]. Biogeography-Based Optimization
(BBO) is a more recently developed EA based on the survival mechanism of species in different
environments [11].
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The design of a WSN is a very challenging task: in fact, several problems can be faced and should
be solved for reducing the operational cost of them [12]. The first problem that can be faced in the
design of a WSN is the deployment of sensors in the sensing field: the typical objectives are the
coverage maximization. Another important problem in WSN is clustering the sensors for reducing the
number of cluster heads, for reducing the information delay, and for reducing the energy consumption.
This problem has been widely addressed with Evolutionary Algorithms [13] and Swarm Intelligence
Algorithms [14].

With recent advancements in massive parallel computing technologies, the problem of scheduling
resources and tasks in WSN is becoming more and more important. The topic of task allocation is faced
with evolutionary algorithms in [15], where the task scheduling in heterogeneous distributed systems
is evaluated comparing a multi-objective evolutionary algorithm with a hybrid GA, and, in [16], where
GA is applied for a similar purpose, performing tests on a Java scheduler with a homogeneous set of
processors. More recently, in [17], a Logic Based evolutionary algorithm compared to a binary PSO is
applied to task allocation in wireless sensor networks. In [18], Social Network Optimization (SNO) is
used for solving the task allocation problem.

Among the different techniques that can be used in WSN design and operation optimization,
Swarm Intelligence algorithms have been extensively adopted. In [19], an algorithm based on ACO is
exploited to find the optimal information path from a source node to a sink node in a multi-hop WSN.
ACO is also applied in [20] for the path design of a mobile data collection node.

Lifetime maximization is a critical issue in WSN, especially when the sensors are deployed
in a field in which maintenance is very difficult. In particular, this problem can be managed in
different ways.

In [21], the authors proposed an enhanced Hybrid Genetic Algorithm for maximizing the WSN
lifetime by means of an optimal scheduling of disjoint set of sensors.

The lifetime maximization is achieved in [22] by selecting the proper routing in the WSN by
means of Genetical Swarm Optimization. The same optimization algorithm is implemented in [23],
in which a real encoding of the chromosome is adopted.

In [24], Particle Swarm Optimization algorithm is used for a multi-objective problem in which
the network lifetime maximization achieved by a proper selection of the routing is combined with the
quality of service maximization.

From the analysis of all the presented papers, it is clear that the problem codification, i.e., how the
network configurations are codified in the optimization variables, is a key aspect for the applicability
of EAs in the IoT framework: in fact, the possible network configurations significantly increases
with the number of sensors involved. A proper selection of the codification method can reduce the
computational time required for the optimization: in particular, it can reduce the size of the search
space and the number of unfeasible solutions. On the other hand, the reduction of the search space can
be detrimental because it can eliminate the optimal solution.

In this paper, two problem codifications are analyzed: in the first one, a basic heuristic logic is
used for reducing the search space size without losing degrees of freedom. In the second codification,
a more complex heuristic is used for completely avoiding unfeasible solutions, but the degrees of
freedom are highly reduced.

The problem of routing was solved with both the codifications on 27 different networks.
Two swarm intelligence optimization algorithms were tested: SNO and PSO. The objective of this
design problem is the maximization of the network lifetime, in which the transmitting and receiving
energy requirements are considered.

The paper is structured as follows. Section 2 provides a brief description of PSO and SNO.
Section 3 contains the description of the adopted WSN model, the two problem codification techniques,
and the definition of the problem environment. In Section 4, the obtained results are presented and
discussed. Finally, in Section 5, some conclusions are drawn.
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2. Swarm Intelligence

Swarm Intelligence Algorithms are an important class of Evolutionary Optimization Algorithms.
In this paper, Particle Swarm Optimization and Social Network Optimization are used. In the following,
a brief description of both these algorithms is presented.

2.1. Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a milestone in Swarm Intelligence algorithms [25].
Its operators are derived from the concept of collective intelligence, which can be summarized in the
following three sentences [26]:

• Inertia: ‘I continue on my way’.
• Influence of the past: ‘I’ve always done in this way’.
• Influence by society: ‘If it worked for them, it would also work for me’.

Each individual of the population represents a particle, which is characterized by a position
and velocity.

At each iteration of the algorithm, the personal best position found by each particle (PB) and
the global best (GB) found by the entire swarm are computed. These points are the attractors of each
individual. In particular, the velocity is updated in the following way:

vi(t + 1) = ωvi(t) + c1(PBi − pi(t)) + c2(GB − pi(t)) (1)

where vi is the velocity of the ith particle and pi its position in the search space. PBi is the personal
best while GB is the global best. Finally, ω, c1, and c2 are three user defined parameters.

At each iteration, the position is updated in the following way:

pi(t + 1) = pi(t) + vi(t + 1) (2)

PSO performance are greatly influenced by the selection of the algorithm working parameters.
The implemented PSO version is characterized by the following parameters: the inertia weight (ω),
the personal learning coefficient (c1), the global learning coefficient (c2), and the velocity clamping
(Vrsm) [27,28]. Moreover, the algorithm performance depends on the population size (npop) that is
related to the number of iterations (niter) and the number of objective function calls (ncall) by the
following equation:

npop · niter = ncall (3)

2.2. Social Network Optimization

Social Network Optimization is a recently developed population-based, Swarm Intelligence
algorithm that takes its inspiration from the information sharing process in Online Social Network [29].

The population of the algorithm is composed by users of the social network who interact online
by publishing some posts. In fact, at each iteration, the users express their opinions by means of the
status contained in the post. In addition to this information, the post contains the name of the user
that have posted it, the time at which it is posted, and a visibility value. The process of passing from
opinions to a post status is called linguistic transposition.

The status corresponds to the candidate solution of the optimization problem, while the visibility
value is created by means of a proper mapping of the cost function associated to the specific candidate
solution, as shown in Figure 1.
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Figure 1. Composition and interaction of data structures in SNO.

The visibility values of the entire population are used to update the reputations of all the users
of the social network. This operation transfers global information among the entire population.
The reputations are used for creating one of the two interaction structures of SNO: the trust network.

The second interaction network is the friend network. These two networks are very different one
from each other: the friend network leads to more consistent interactions, its variability is lower, and its
modifications are related to out-of-the-social elements. The trust network creates weaker connections,
it varies quickly, and it is modified according to the visibility values, as shown in Figure 2.

Figure 2. Schematization of the process of reputation update and creation of trust network.

From the interaction networks, each user extracts some ideas that compose the attraction point
that is used for creating the new opinions. The implemented operator emulates the assumption of a
complex contagion, which guarantees a better trade-off between exploration of the domain and the
exploitation of the acquired knowledge:

ou(t + 1) = ou(t) + α[ou(t)− ou(t − 1)] + β[au(t)− ou(t)] (4)

All these operators make SNO a quite complex algorithm, but they give to it the possibility to
work very well in different kinds of problems and they reduce the risk of stagnation in local minima,
which is a well-known issue of PSO.

The most important algorithm parameters are α and β because they tune the effective behavior
of the population. Two different analyses have already been performed for properly selecting these
parameters: The first one is an analytical analysis of a simplified version of the complex contagion.
The second one is a numerical parametric analysis performed on different benchmarks. More details
on these analyses can be found in [30].

The parametric analysis on the parameters α and β has been performed on two standard
benchmarks for EAs: the Ackley and Schwefel functions. The termination criterion is set to 5000
objective function call and 50 independent trials have been done on 20D functions. Figure 3 shows the
results of the parametric analysis: the color is proportional to the cost value, where red is high cost and
blue low cost. The results show that the high quality solutions area is different, but it is possible to find
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a good set of parameters for both the functions. In particular, the selected set of parameters is α = 0.1
and β = 0.45.

(a) Ackley function. (b) Schwefel function.

Figure 3. Parametric analysis on α and β on two different benchmarks.

In [31], it is possible to find a comparison between SNO and other EAs, in which the performance
of SNO is assessed on standard benchmarks.

3. Wireless Sensor Network

A Wireless Sensor Network is composed of a set of sensors, deployed in a field, that can
communicate by means of a multi-hop protocol to a central node, called the cluster head.

In the following, the adopted network model is described and then the two proposed problem
codification techniques are described. Finally, the optimization environment for this problem
is analyzed.

3.1. Network Energy Model

The analyzed WSN is composed by a set of equal sensor nodes deployed randomly in the space.
Each of these nodes has a maximum communication distance that is imposed by the acceptable
signal-to-noise ratio.

The communication between the nodes and the central node, the cluster head, happens by means
of a multi-hop protocol: in this way, even nodes quite far from the cluster head can send to it the
sensed information.

Each sensor but the cluster head is fed by batteries with a total capacity of 9kJ, thus the network
lifetime is limited by the energy consumption of the most stressed sensor.

The energy consumption of each node can be computed as function of the transmitted and received
bits: in fact, it is assumed that the sensing energy is negligible with respect to the communication
energy [20]. Thus, the total energy consumption is composed by two terms:

Ei = Etrx,i + Eamp,i (5)

where Etrx,i is the total energy required for transmission and reception of information:

Etrx,i = btrx,i · etrx (6)

where etrx is the energy required to keep on the communication equipment and btrx,i is the total number
of bit transmitted and received.
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The second term of the total energy consumption is the amplification energy required for the
transmission of the information. It depends on the number of transmitted bits (bij) and on the
transmission distance (dij) between the two nodes i and j:

Eamp,i,j = Eamp · bij · dij (7)

Both the sensing energy and the energy consumed in idle time are considered negligible with
respect to the other terms.

The transmitted and received bits are functions of the network topology, i.e., of the
interconnections between sensors and can be easily calculated.

The network is composed by a set of randomly deployed sensors: as introduced above, the feasible
connections between sensors is determined by the maximum communication distance between nodes.

The feasible connections are bidirectional if they involve only sensor nodes, while are considered
monodirectional if one of the two nodes is the cluster head, as shown in Figure 4a, where the directed
connections are indicated with the arrow.

The feasible connections are more than the required ones, thus it is possible to select the effective
final network topology by identifying the active connections among the feasible ones, as shown in
Figure 4b.

(a) Feasible connections (b) Active connections

Figure 4. Example of a 20-node network. The feasible connections are shown in grey (a), while the
active connections are in green in (b). Node 1 is the cluster head.

The selection of the active connection should be performed also selecting the direction of the
communication. This is an important aspect for the problem codification, as analyzed below.

Thus, when the active connections are selected, the network can be represented by a directed
graph; by means of a graph search starting from the nodes with higher depth, it is possible to determine
the flow of information in the network, and thus the number of received and transmitted bits.

This network model was implemented in Matlab, adopting the parameters shown in Table 1.

Table 1. List of network parameters.

Parameter Symbol Value Parameter Symbol Value

ine Communication package size bpack 100 bit Communication energy ETRX 5 pJ/b
Stored energy Es 9 kJ Amplification energy Eamp 0.01 pJ/b

The objective of this optimization problem is the maximization of the network lifetime, i.e., the
number of working cycles in which all the sensors have a residual stored energy.

The design variables of this problem are the active connections in the WSN; in fact, by changing
the active connections, the number of bits received and transmitted by the sensors is modified and,



Mathematics 2020, 8, 583 7 of 21

thus, the sensor lifetime is changed. It is possible to codify these design variables in different ways in
the optimization framework, changing the search space size and the number of unfeasible solutions.
A deeper analysis of the possible codification methods is provided in the following.

To the best of the authors’ knowledge, there are some papers that have proven that the
problem of the lifetime maximization by properly selecting the routing paths in a WSN is a NP-hard
problem [32,33].

3.2. Problem Codification

The presented model of WSN can be codified in the optimization environment in different
methods that affect the number of optimization variables, their type, the possibility to find unfeasible
solutions, and the search space size.

The most basic codification of this problem can be performed using binary design variables, each
one representing if a feasible connection is also active. This formulation is very simple and generic,
but it leads to a high number of non-connected networks, i.e., networks in which at least one node
cannot communicate with the cluster head. Moreover, many solutions are surely suboptimal, such
as ones with loops or with a node that transmits its information to more than one single sensors.
This possibility, which can be important for reliability analysis of the communication, is not optimal in
this context because the transmission and receiving energy of some nodes is doubled.

In this strategy, the number of design variables is equal to the number of feasible connections in
the network, and thus generally grows more than linearly with the number of nodes.

It is possible to design more complex problem codifications by analyzing some features of optimal
solutions. First, each sensor should be able to transmit its information to another one.

In this framework, it is possible to associate to each node its adjacency list (as shown in Figure 5)
and select one target node from this list. With this codification, the problem is characterized by N − 1
integer design variables, where N is the number of nodes.

Figure 5. WSN with 11 nodes in which, for each node, its adjacency list is defined.

The drawback of this codification (called in the following adjacency-based codification) concerns
the possibility of creating non-connected networks during the optimization process or looped graphs.

To avoid these drawbacks, it is possible to consider the node depth, that is the number of hops
needed for communicating from the analyzed sensor to the cluster head. Figure 6a shows the same
graph seen before in which the node position is related with node depth. Each circle corresponds to a
different depth.
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(a) Representation of node depth. (b) Depth-based adjacency lists.

Figure 6. WSN with 11 nodes: (a) the node depth is underlined with the circles; and (b) to each node
its depth-based adjacency list is defined.

For the second codification method, depth-based adjacency lists have been created: in each
list, only the node with smaller node depth are included. Figure 6b shows the same network of
Figure 5 in which the depth-based lists are shown. In addition, in this case, the design variables are
integer numbers.

As it is possible to clearly see, the number of degrees of freedom for the algorithm is significantly
reduced; this eliminates completely the possibility to have non-connected nodes in the network, but it
eliminates some paths that can be optimal.

These two codification techniques make this problem combinatorial. However, in most real cases,
it is impossible to test all of them due to the search space size.

3.3. Performance Calculation

In this section, an example of how the system works is presented: it starts from the optimization
variables and shows all the steps required for the calculation of the cost value.

The optimizer works with real variables that are translated into integer values by means of a set
of thresholds [23]. Each variable corresponds to a node and the number obtained by the translation of
the optimization variables is the index in the adjacency list for the first codification technique or in
the depth-based list for the second. In this example, the adjacency-based codification of the network
presented in Figure 5 is used, but it can be extended easily to the other method.

Figure 7 shows the decodification of two different sets of optimization variables: in the first one
(Figure 7a), the resulting network is connected, while, in the second one (Figure 7b), it is not and, thus,
the solution is unfeasible.

If the network is feasible, the calculation of the cost is run. The first activity performed is the
estimation of the information packages through each node. This is computationally performed in the
graph represented by the active connections by means of a customized search that starts from the
deeper nodes and then goes upward. Each node creates one information package and forward the
received ones. Figure 8 shows the transmission packages for each edge.
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(a) Connected network. (b) Disconnected network.

Figure 7. Example of the decodification of the optimization variables: (a) feasible network; and (b)
disconnected network.

Figure 8. Representation of the active paths in the WSN with the number of transmitted packages for
each edge.

Once the number of packages transmitted and received is computed, the energy model shown in
Section 3.1 can be easily applied.

3.4. Optimization Environment

After having defined the WSN model and the codification technique, it is possible to design the
optimization environment, i.e., all the interactions between the different elements involved in the
solution of this problem.

The optimization environment designed for the routing problem is the one shown in Figure 9.
Two evolutionary algorithms are used, PSO and SNO. The optimization variables used in these
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algorithms are decodified to a specific network configuration with the techniques shown in the
previous section.

Figure 9. Optimization environment for the analyzed problem.

While a candidate solution of the algorithm is translated in a network configuration, two values
are computed: the number of disconnected sensors, which is used as a constraint on the optimization
problem, and the energy required by each sensor, which is the major objective of this problem.

The cost function is constructed for imposing the constraint and for helping the convergence of
the algorithm.

In particular, it is defined as follows:

c =


70 + 20 · ndisc ndisc > 0

105 ·
(

maxi Ei +
∑i Ei

λ · N

)
ndisc = 0

(8)

The first condition is related to the compliancy with the constraints. The offset value (70) is used to
avoid feasible solutions having higher costs than unfeasible ones: this creates a step in the convergence
curves that helps the identification of the time in which the algorithm has reached the feasible region
of the search space.

The second cost term is the one related to feasible solution. The scale factor 105 does not affect the
optimization process; the cost term maxi Ei is the maximum energy consumption of the sensors and it
is the real objective of the optimization problem, while the cost term ∑i Ei is the total energy consumed,
and it is added, properly weighted by λ and the number of sensors N, for improving the convergence.

4. Results and Discussion

The optimization environment defined in the previous section has been applied for the
routing optimization.

In this section, the results obtained are shown and discussed: in particular, the selected test cases
are firstly analyzed; then, the optimization results of PSO and SNO are provided; and, finally, a peculiar
case is analyzed in depth.

4.1. Test Cases

Due to the fact that the performance of the algorithms and codification methods can be highly
case-dependant, several test cases are here created for the performance analysis.

Each network is characterized by a different number of sensors and a different deployment of
them in the space, as shown in Figure 10, where a network with 50 nodes and one with 85 are compared.
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The two networks are very different: in particular, the network with 85 nodes has a higher maximum
node depth due to the upper area in which several nodes are not connected with the cluster head.

(a) 50 nodes network. (b) 85 nodes network.

Figure 10. Examples of tested networks: network with: (a) 50 nodes; and (b) 85 nodes.

For each tested network, it is possible to calculate the maximum node depth, the total number of
possible configurations with the adjacency-based codification, and the number of configurations with
the depth-based codification.

Table 2 shows the parameters of the tested networks. The characteristics of each network does
not depend just on the number of nodes: thus, the selected networks explore different possible
combinations between node depth, number of connections, and number of nodes.

Analyzing the table, it is clear that the depth-based codification reduces drastically the size of
the problem.

Table 2. Summary of all the tested networks.

Number Maximum Number Number of Adjacency-Based Number of Depth-Based

of nodes node depth of connections configurations configurations
ine 20 4 54 1.51×1013 192

25 4 102 1.08×1021 2.4×106

30 3 157 4.3×1028 1.63×107

35 4 143 4.36×1029 8.82×109

40 4 192 4.44×1035 4.12×1010

45 4 226 3.87×1042 2.93×1012

50 5 253 4.64×1047 4.46×1015

55 6 314 4.8×1054 9.63×1018

60 4 341 3×1060 7.1×1020

65 6 250 2.17×1053 1.59×1012

70 7 215 1.6×1052 9.78×1013

75 4 547 7.94×1084 8.8×1025

80 5 549 2×1087 1.16×1028

85 7 410 2.22×1079 1.29×1027

90 5 650 1.95×10101 1.33×1038

95 6 501 2.08×1092 3.58×1032

100 5 792 2.96×10116 2.61×1046

105 4 831 3.51×10122 1.92×1046

110 6 506 2.02×10102 4.79×1031

115 5 987 2.64×10137 1.52×1052

120 8 436 7.5×1098 8.62×1028

125 4 1129 3.7×10152 9.16×1063

130 5 1000 6.63×10149 4.62×1062

135 8 581 1.23×10120 4.45×1036

140 5 1423 1.68×10179 3.93×1075

145 5 1459 3.27×10184 2.83×1077

150 8 784 2.5×10147 5.38×1052
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4.2. Results

To compare the results of the two different codification techniques and the two algorithm,
the number of objective function calls was selected as termination criterion.

In fact, this parameter is the one that mainly drives the computational time in the optimization
due to the fact that the self-time of the optimization algorithm can be usually neglected. For example,
in the optimization of an 85-node network with 14,000 objective function calls, the self-time of SNO is
1.3 s for a total optimization time of 26 s, i.e., 5%. PSO is slightly faster and its self-time in the same
conditions is 0.9 s, i.e., 3.5%.

Since the problem complexity grows with the number of sensors, the allowed number of objective
function calls was also increased with the following empirical rule:

ncall = 1000 ·
(

N − 20
5

+ 1
)

(9)

where N is the number of sensors in the network.
The population size for both these algorithms was selected according to a preliminary parametric

analysis on some standard mathematical benchmarks. In particular, for PSO, the optimal population
size is 50 individuals, while for SNO it is 100.

Due to the intrinsic stochastic nature of both these algorithms, 50 independent trials were
performed for each configuration.

Figure 11 shows the results of the optimization. In particular, the average cost value obtained in
the 50 independent trials is reported for each test case with the two codification techniques.

(a) SNO. (b) PSO.

Figure 11. Average cost value of 50 independent trials as function of the number of nodes in the
network: (a) results of SNO; and (b) results of PSO.

Analyzing these results, it is possible to make some considerations. The effect of the problem
codification technique impacts on the performance of the algorithms in different ways: in fact, for PSO,
the depth-based codification is always much better than the adjacency-based one, while, for SNO, the
superiority of the depth-based codification is less important. This is due to the fact that SNO usually
performs better than PSO in handling high-dimensional problems with many local minima.

To introduce a numerical estimation of the difference between these two codification techniques,
the gap value was calculated for each case:

GAP =
cadj − cdepth

cadj
(10)
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This value represents the improvement of the depth-based codification expressed as function of
the adjacency-based value.

The average GAP value for the mean value of SNO over all the test cases is 0.58 meaning that the
depth-based mean value is, on average, half of the adjacency-based one. For PSO, the average GAP
value over the mean value is 0.98.

Figure 12 shows the best results obtained by both SNO and PSO. Analyzing this figure, two
additional considerations can be done. The minimum values obtained by PSO are much lower than the
average ones, indicating a difficulty of this algorithm in achieving the global minimum of the function.
Secondly, the difference between the two codifications is reduced, in particular for the results of SNO:
in fact, for this algorithm, in eight cases, the adjacency-based codification is better, and in only eight
other cases the depth-based is drastically better. This can also be seen from the average GAP calculated
on the minimum value, that is 0.18 for SNO. This means that the optimal solution requires some hops
that violate the depth rule used to create the second codification.

(a) SNO. (b) PSO.

Figure 12. Best cost value of 50 independent trials as function of the number of nodes in the network:
(a) results of SNO; and (b) results of PSO.

For comparing the results of the two algorithms, in particular, the best value obtained in the
50 independent trials, the results are plotted in Figure 13 underlining the comparison between the
two algorithms.

(a) Adjacency-based codification. (b) Depth-based codification.

Figure 13. Best cost value of 50 independent trials as function of the number of nodes in the network:
(a) adjacency-based codification; and (b) depth-based codification.
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Figure 13a shows that the performance of SNO with the adjacency-based codification is drastically
better with respect to the ones of PSO, especially in nine cases in which the gap between the two
algorithms overcomes 1; in only one case, PSO is better than SNO (gap -0.05). The average gap between
the two algorithms is 2.95, highly biased by three cases in which it is over 10.

On the other hand, the results of Figure 13b show that with the depth-based codification the
performance of the two algorithm becomes more similar. In fact, the average gap is 0.04 and in 18 cases
the solutions obtained by the two algorithms have the same cost value.

To highlight some differences between the optimizers in this case, in which the results seem the
same, the termination criterion has been modified in the simulations.

In single-objective optimization, the choice of the termination criterion is not as critical as in
multi-objective optimization [34], however different possibilities are analyzed in the literature.

The most common criterion is the number of objective function calls: in this case,
the computational time required by the optimization is limited a priori. A second possibility is related
to the population diversity: when it drops, the algorithm has reached a minimum. The effectiveness of
this criterion depends highly on the mutation operators of the algorithm and it is hardly applicable for
SNO. Finally, another common possibility is to fix a maximum number of iterations in which the best
solution is not improved [35]. In this last analysis, the non-improving iterations criterion was adopted.

Figure 14 shows the results when the termination criterion was set to 10 non-improving iterations.
In addition, in this case, 50 independent trials were performed for both algorithms.

The number of objective function calls required before the termination criterion was applied are
shown in Figure 14a. It clearly shows that the effective number of objective function calls is much
smaller to the time given in the standard optimization. It is interesting to see that PSO seems slightly
faster than SNO.

The time performance should also be combined with the final cost values, as shown in Figure 14b,
in which the final cost and the delta with respect to the previously found optimum are shown.
These data show that the final cost of PSO is almost always greater than the one of SNO: this means
that SNO performs more exploration than PSO. Finally, from the delta values, it is possible to notice
that this second termination criterion often is not able to provide the algorithm enough time to find the
optimum of the function.

(a) Optimization time in objective function calls. (b) Final cost and delta with respect to the standard
optimization.

Figure 14. Optimization with 10 non-improvement iterations termination criterion: optimization time
(a); and optimization cost (b).

To analyze the effect of the termination criterion, the number of non-improving iterations was
increased to 50. The optimization time (Figure 15a) is more than doubled for both the algorithms.
In addition, in these tests, in many cases, SNO requires more iterations than PSO. In Figure 15b, it is
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clear that, in almost all cases, SNO is able to achieve the optimal solutions, while the errors of PSO are
still high.

(a) Optimization time in objective function calls. (b) Final cost and delta with respect to the standard
optimization.

Figure 15. Optimization with 50 non-improvement iterations termination criterion: optimization
time (a); and optimization cost (b).

In the following, a peculiar network is deeply analyzed: its peculiarity is that the adjacency-based
codification gives better results.

4.3. Analysis of a Peculiar Case

The network with 50 nodes is here analyzed as a peculiar case, representative of all the networks
in which the adjacency-based codification gives better results with respect to the depth-based.

Here, the results of the four optimizations on this network (two codifications and two algorithms)
are analyzed. All these results were obtained performing 50 independent trials and using as termination
criterion 7000 objective function calls.

Figure 16a shows the convergence curves obtained with SNO. Each grey line is a single trial,
while the blue line is the average convergence. The figure also provides a zoom of the last 6000 calls.
The convergence curves show some jumps in the first iterations (before 1500 objective function calls),
corresponding to the achievement of feasible solutions.

(a) Convergence curves of SNO (b) Residual battery capacity for all the sensors

Figure 16. SNO optimization of the 50-nodes network with the adjacency-based codification:
(a) convergence curves; and (b) residual battery capacity.
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The performance of the best network achieved with this optimization is shown in Figure 16b,
where the evolution of the sensors’ battery capacity is represented. In this figure, the dark red color
means full charge and blue empty battery. In this figure, it is possible to notice that the network lifetime
is around 119 KCC and that six sensors are more critical than the others.

The active paths of the optimal solution are shown in Figure 17 with the green lines. In this figure,
two areas have been highlighted. The red circles underline some sub-optimal configurations of the
network: for example, in the left one, node 41 hops on 36 that hops on 33 that send all this information
to sensor 35. This is sub-optimal because all these nodes could be connected directly to node 35.

Figure 17. Routing in the optimal network. The green lines are the selected paths and the red circle
underline some sub-optimal areas of the network.

The reason this sub-optimality appears is because all the involved nodes are not critical in the
definition of the lifetime: in fact, as shown in Figure 16b, all of them achieve a minimum energy greater
than the 50% of the initial capacity.

The convergence curves of PSO, represented in Figure 18a, shows that this algorithm could not
find feasible solutions in all the independent trials. The stagnation in high-cost local minima makes
the final optimal not competitive with the one found by SNO: in fact, as expressed by Figure 18b,
the network lifetime is limited to 61 KCC. The reason of this very limited lifetime can be understood
analyzing the active paths in the optimal solutions found by PSO shown in Figure 19. From the energy
evolution it is possible to notice that the loaded nodes are the 28 and 8. In fact, they aggregates the
information of large clusters of nodes: all the nodes highlighted in red transmit their information
through node 8, while all the orange nodes hops on node 28.
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(a) Convergence curves of PSO (b) Residual battery capacity for all the sensors

Figure 18. PSO optimization of the 50-nodes network with the adjacency-based codification:
(a) convergence curves; and (b) residual battery capacity.

Figure 19. Routing in the optimal network. The green lines are the selected paths. The sensors with
red circle all hop on node 8, and the orange circles correspond to nodes that hop on node 28.

The convergence of the 50 independent trials of SNO with the depth-based codification are shown
in Figure 20a: the optimization process is very effective because all the trials converge to the same
solution before 500 objective function calls out of the 7000 allowed. The fast convergence of all the
trials to the same solution suggests that it is the global minimum for this function.
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(a) Convergence curves of SNO (b) Residual battery capacity for all the sensors

Figure 20. SNO optimization of the 50-nodes network with the depth-based codification:
(a) convergence curves; and (b) residual battery capacity.

This assumption can be confirmed analyzing the convergence curves of the 50 trials of PSO
(Figure 21a): in fact, most of the solutions converge toward the same minimum value. From these
curves, it is possible to highlight that, even if the best solution of PSO is equal to the SNO one, the first
algorithm is not able to converge in all the trials.

(a) Convergence curves of PSO (b) Residual battery capacity for all the sensors

Figure 21. PSO optimization of the 50-nodes network with the depth-based codification:
(a) convergence curves; and (b) residual battery capacity.

From the energy evolution of SNO (Figure 20b) and PSO (Figure 21b), it is possible to see that the
network lifetime (114 KCC) is lower than the best solution achieved by SNO in the adjacency-based
codification (119 KCC). In fact, in these solutions, the transmission load is concentrated mostly just in
three nodes: nodes 8, 42, and 49.

The overload of these nodes can bee seen from the optimal solution obtained with the depth-based
codification shown in Figure 22. The colored circles underline the cluster of nodes that transmits
through the highly loaded nodes. In particular, the red circles belong to the cluster of node 8, the yellow
ones to sensor 42, and the orange ones to node 49.

This solution is the global minimum with the depth-based codification because the search space
has been drastically reduced and, thus, the algorithm has no degree of freedom to reduce the load of
critical nodes.
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Figure 22. Routing in the optimal network with the depth-based codification. The sensors with red
circle all hop on node 8, the orange circles correspond to nodes that hop on node 49, and the yellow
ones hop on node 42.

5. Conclusions

In this paper, the maximization of the network lifetime of a Wireless Sensor Network is achieved
by properly selecting the routing paths. This problem is faced with two different evolutionary
optimization algorithms: the traditional PSO and the more recent SNO.

The objective of this paper is to analyze the difference between two different problem codification
methods: with the first one (the adjacency-based codification), the algorithm can choose an “exit way”
among all the adjacent nodes, while, in the second one (the depth-based codification), the selection is
restricted to sensors with lower depth in the network.

Two important findings were obtained with the test campaign conducted over more than 25 test
cases. Firstly, the reduction of the search space size due to the depth-based codification improves
drastically the optimization convergence, in terms of both the quality of the final solution and
the optimization time. This improvement is more evident in the PSO algorithm: in fact, with
the adjacency-based codification, the performance of this algorithm is very poor, while, with the
depth-based codification, it is comparable with SNO.

The drawback of the depth-based codification is due to the lower degrees of freedom that are
given to the optimizer: in fact, while this reduces the problem complexity, it is likely to eliminate some
good network configurations from the search space. This phenomenon was deeply inspected and it
was confirmed by the results of the optimization of the 50-nodes network.
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Abbreviations

The following abbreviations are used in this manuscript:

WSN Wireless Sensor Network
KCC Kilo Clock Cycles
SNO Social Network Optimization
PSO Particle Swarm Optimization

References

1. Buratti, C.; Conti, A.; Dardari, D.; Verdone, R. An overview on wireless sensor networks technology and
evolution. Sensors 2009, 9, 6869–6896. [CrossRef] [PubMed]

2. Iacca, G.; Neri, F.; Caraffini, F.; Suganthan, P.N. A differential evolution framework with ensemble of
parameters and strategies and pool of local search algorithms. In European Conference on the Applications of
Evolutionary Computation; Springer: Berlin, Germany, 2014; pp. 615–626.

3. Grimaccia, F.; Gruosso, G.; Mussetta, M.; Niccolai, A.; Zich, R.E. Design of tubular permanent magnet
generators for vehicle energy harvesting by means of social network optimization. IEEE Trans. Ind. Electron.
2017, 65, 1884–1892. [CrossRef]

4. Hassan, R.; Cohanim, B.; De Weck, O.; Venter, G. A comparison of particle swarm optimization and the
genetic algorithm. In Proceedings of the 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural
Dynamics and Materials Conference, Austin, TX, USA, 18–21 April 2005; p. 1897.

5. Baioletti, M.; Milani, A.; Poggioni, V.; Rossi, F. An ACO approach to planning. In European Conference on
Evolutionary Computation in Combinatorial Optimization; Springer: Berlin, Germany, 2009; pp. 73–84.

6. Caraffini, F.; Neri, F.; Poikolainen, I. Micro-differential evolution with extra moves along the axes.
In Proceedings of the 2013 IEEE Symposium on Differential Evolution (SDE), Singapore, Singapore, 16–19
April 2013; pp. 46–53.

7. Caraffini, F.; Kononova, A.V.; Corne, D. Infeasibility and structural bias in differential evolution. Inf. Sci.
2019, 496, 161–179. [CrossRef]

8. Piotrowski, A.P. Review of differential evolution population size. Swarm Evol. Comput. 2017, 32, 1–24.
[CrossRef]

9. Baioletti, M.; Milani, A.; Santucci, V. Automatic algebraic evolutionary algorithms. In Italian Workshop on
Artificial Life and Evolutionary Computation; Springer: Berlin, Germany, 2017; pp. 271–283.

10. Baioletti, M.; Bari, G.D.; Milani, A.; Poggioni, V. Differential Evolution for Neural Networks Optimization.
Mathematics 2020, 8, 69. [CrossRef]

11. Simon, D. Biogeography-based optimization. IEEE Trans. Evol. Comput. 2008, 12, 702–713. [CrossRef]
12. Sandeep, D.; Kumar, V. Review on clustering, coverage and connectivity in underwater wireless sensor

networks: A communication techniques perspective. IEEE Access 2017, 5, 11176–11199. [CrossRef]
13. Kuila, P.; Jana, P.K. A novel differential evolution based clustering algorithm for wireless sensor networks.

Appl. Soft Comput. 2014, 25, 414–425. [CrossRef]
14. Zahedi, Z.M.; Akbari, R.; Shokouhifar, M.; Safaei, F.; Jalali, A. Swarm intelligence based fuzzy routing

protocol for clustered wireless sensor networks. Expert Syst. Appl. 2016, 55, 313–328. [CrossRef]
15. Chen, Y.; Li, D.; Ma, P. Implementation of Multi-objective Evolutionary Algorithm for Task Scheduling in

Heterogeneous Distributed Systems. JSW 2012, 7, 1367–1374. [CrossRef]
16. Page, A.J.; Keane, T.M.; Naughton, T.J. Multi-heuristic dynamic task allocation using genetic algorithms in a

heterogeneous distributed system. J. Parallel Distrib. Comput. 2010, 70, 758–766. [CrossRef] [PubMed]
17. Ferjani, A.A.; Liouane, N.; Kacem, I. Task allocation for wireless sensor network using logic gate-based

evolutionary algorithm. In Proceedings of the 2016 International Conference on Control, Decision and
Information Technologies (CoDIT), St. Julian’s, Malta, 6–8 April 2016; pp. 654–658.

18. Niccolai, A.; Grimaccia, F.; Mussetta, M.; Zich, R. Optimal Task Allocation in Wireless Sensor Networks by
Means of Social Network Optimization. Mathematics 2019, 7, 315. [CrossRef]

19. Ho, J.H.; Shih, H.C.; Liao, B.Y.; Chu, S.C. A ladder diffusion algorithm using ant colony optimization for
wireless sensor networks. Inf. Sci. 2012, 192, 204–212. [CrossRef]

http://dx.doi.org/10.3390/s90906869
http://www.ncbi.nlm.nih.gov/pubmed/22423202
http://dx.doi.org/10.1109/TIE.2017.2756599
http://dx.doi.org/10.1016/j.ins.2019.05.019
http://dx.doi.org/10.1016/j.swevo.2016.05.003
http://dx.doi.org/10.3390/math8010069
http://dx.doi.org/10.1109/TEVC.2008.919004
http://dx.doi.org/10.1109/ACCESS.2017.2713640
http://dx.doi.org/10.1016/j.asoc.2014.08.064
http://dx.doi.org/10.1016/j.eswa.2016.02.016
http://dx.doi.org/10.4304/jsw.7.6.1367-1374
http://dx.doi.org/10.1016/j.jpdc.2010.03.011
http://www.ncbi.nlm.nih.gov/pubmed/20862190
http://dx.doi.org/10.3390/math7040315
http://dx.doi.org/10.1016/j.ins.2011.03.013


Mathematics 2020, 8, 583 21 of 21

20. Zhang, H.; Li, Z.; Shu, W.; Chou, J. Ant colony optimization algorithm based on mobile sink data collection
in industrial wireless sensor networks. EURASIP J. Wirel. Commun. Netw. 2019, 2019, 152. [CrossRef]

21. Hu, X.M.; Zhang, J.; Yu, Y.; Chung, H.S.H.; Li, Y.L.; Shi, Y.H.; Luo, X.N. Hybrid genetic algorithm using a
forward encoding scheme for lifetime maximization of wireless sensor networks. IEEE Trans. Evol. Comput.
2010, 14, 766–781. [CrossRef]

22. Caputo, D.; Grimaccia, F.; Mussetta, M.; Zich, R.E. An enhanced GSO technique for wireless sensor networks
optimization. In Proceedings of the IEEE Congress on Evolutionary Computation, Hong Kong, China, 1–6
June 2008; pp. 4074–4079.

23. Caputo, D.; Grimaccia, F.; Mussetta, M.; Zich, R.E. Genetical swarm optimization of multihop routes in
wireless sensor networks. Appl. Comput. Intell. Soft Comput. 2010, 2010, 523943. [CrossRef]

24. Omidvar, A.; Mohammadi, K. Particle swarm optimization in intelligent routing of delay-tolerant network
routing. EURASIP J. Wirel. Commun. Netw. 2014, 2014, 147. [CrossRef]

25. Poli, R.; Kennedy, J.; Blackwell, T. Particle swarm optimization. Swarm Intell. 2007, 1, 33–57. [CrossRef]
26. Simon, D. Evolutionary Optimization Algorithms; John Wiley & Sons: Hoboken, NJ, USA, 2013.
27. Engelbrecht, A. Particle swarm optimization: Velocity initialization. In Proceedings of the 2012 IEEE

Congress on Evolutionary Computation, Brisbane, QLD, Australia, 10–15 June 2012; pp. 1–8.
28. Trelea, I.C. The particle swarm optimization algorithm: Convergence analysis and parameter selection.

Inf. Process. Lett. 2003, 85, 317–325. [CrossRef]
29. Niccolai, A.; Grimaccia, F.; Mussetta, M.; Pirinoli, P.; Bui, V.H.; Zich, R.E. Social network optimization for

microwave circuits design. Prog. Electromagn. Res. 2015, 58, 51–60. [CrossRef]
30. Niccolai, A.; Grimaccia, F.; Mussetta, M.; Zich, R. Modelling of interaction in swarm intelligence focused on

particle swarm optimization and social networks optimization. Swarm Intell. 2018, pp. 551 - 582.
31. Grimaccia, F.; Mussetta, M.; Niccolai, A.; Zich, R.E. Optimal computational distribution of social network

optimization in wireless sensor networks. In Proceedings of the 2018 IEEE Congress on Evolutionary
Computation (CEC), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–7.

32. Park, J.; Sahni, S. Maximum lifetime routing in wireless sensor networks. IEEE/ACM Trans. Netw. 2004, 12,
609–619.

33. Dong, Q. Maximizing system lifetime in wireless sensor networks. In Proceedings of the IPSN 2005. Fourth
International Symposium on Information Processing in Sensor Networks, Boise, ID, USA, 15 April 2005;
pp. 13–19.

34. Wong, J.Y.; Sharma, S.; Rangaiah, G. Design of shell-and-tube heat exchangers for multiple objectives
using elitist non-dominated sorting genetic algorithm with termination criteria. Appl. Therm. Eng. 2016,
93, 888–899. [CrossRef]

35. Eiben, A.E.; Smith, J.E. Introduction to Evolutionary Computing; Springer: Berlin, Germany, 2003; Volume 53,.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1186/s13638-019-1472-7
http://dx.doi.org/10.1109/TEVC.2010.2040182
http://dx.doi.org/10.1155/2010/523943
http://dx.doi.org/10.1186/1687-1499-2014-147
http://dx.doi.org/10.1007/s11721-007-0002-0
http://dx.doi.org/10.1016/S0020-0190(02)00447-7
http://dx.doi.org/10.2528/PIERC15032505
http://dx.doi.org/10.1016/j.applthermaleng.2015.10.055
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Swarm Intelligence
	Particle Swarm Optimization
	Social Network Optimization

	Wireless Sensor Network
	Network Energy Model
	Problem Codification
	Performance Calculation
	Optimization Environment

	Results and Discussion
	Test Cases
	Results
	Analysis of a Peculiar Case

	Conclusions
	References

