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Abstract
Optimal control theory can be a useful tool to identify the best strategies for the
management of infectious diseases. In most of the applications to disease control with
ordinary differential equations, the objective functional to be optimized is formulated
in monetary terms as the sum of intervention costs and the cost associated with the
burden of disease. We present alternate formulations that express epidemiological
outcomes via healthmetrics and reframe the problem to include features such as budget
constraints and epidemiological targets. These alternate formulations are illustrated
with a compartmental cholera model. The alternate formulations permit us to better
explore the sensitivity of the optimal control solutions to changes in available budget or
the desired epidemiological target.We also discuss some limitations of comprehensive
cost assessment in epidemiology.
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1 Introduction

Due to systematic pervasive nonlinearities and heterogeneities underlying infectious
disease transmission at the population level, epidemiological modeling is a key tool
for exploring the potential impact of candidate intervention strategies (Bubar et al.
2021). Questions surrounding the best timing, target populations, and treatment effort
to limit the transmission of communicable diseases—whether through drug treatment,
vaccines, or non-pharmaceutical interventions—have been central in epidemiological
modeling since the publication of the first malaria models by Ross and MacDonald
more than a century ago (Smith et al. 2012). Optimal control techniques can be used
to address such questions (Sharomi and Malik 2017).

Identification of optimal control strategies for managing diseases has long been
pursued informally. In the absence of health interventions or natural immunity, an
infectious disease follows its epidemic curve and may cause substantial morbidity and
mortality (Bjørnstad et al. 2020), but by investing resources in control and treatment,
it is possible to reduce the burden of disease (Keeling and Rohani 2008), even as the
decision space in selecting certain strategies is large with uncertain impacts. Larger
control and efforts can lower disease burdenwhile increasing costs of control, yet these
relationships are often nonlinear, with decreasing returns on investment—i.e., health
benefits per dollar invested—at high control effort (Ozawa et al. 2021). Accordingly,
extreme control efforts may be infeasible (possibly due to vaccine hesitancy Sallam
et al. 2022) or prohibitively expensive (Ozawa et al. 2021). In addition, extreme con-
trol effort can be associated with undesirable outcomes, such as intervention fatigue
(Rypdal et al. 2020). Intermediate levels of control may help manage costs of disease
control when accounting for both the intervention costs (which depend nonlinearly on
the control effort) and the cost associated with the burden of disease, but establishing
the specific effort levels across strategies remain challenging.

Optimal control (OC) theory has proved to be a particularly powerful mathematical
tool to identify the best strategies for the control of infectious diseases. In contrast to
some optimization approaches that assume control variables to be constant in time, the
admissible control variables in OC (e.g., vaccination rate, drug treatment) can vary in
time, allowing dynamic minimization of both the cost of disease burden and the costs
of intervention.

In the last two decades, the number of published papers on OC applications to the
control of infectious diseases of public health or veterinary importance has increased
exponentially. In the majority of these papers, disease burden is typically represented
by the integral of I (t), the number of infectious individuals at time t , and the objective
functional to be optimized is generally formulated in monetary terms as the sum of
intervention costs plus the cost associated with the burden of disease, assuming that
both can be estimated monetarily with a reasonable degree of precision (Asano et al.
2008; Neilan et al. 2010; Agusto et al. 2020; Jung et al. 2009; Lee et al. 2020b).
This formulation has been very useful to formalize the trade-off between the goal
to minimize disease burden and, at the same time, the intervention costs. Yet, as
discussed below, accounting for disease burden and loss of human lives in monetary
terms is fraught with uncertainties and generally considered not ethically and socially
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acceptable from a public health perspective (Baltussen 2006; Brock and Wikler 2006;
Jiang et al. 2020; Morrow and Byrant 1995; Rutstein et al. 2017).

Minimization of the cost of disease burden represented by the integral of I (t)
combined with minimizing the cost of control action has been common, but there
are notable exceptions. Examples of alternative formulations of the optimal control
problem that do not require monetization of health outcomes are available in the
literature. Some solve the OC problem under budget constraints and optimize disease
burden.Others change the representationof the goal in termsof other disease outcomes.
For instance, Hansen and Day optimized the total number of cases in an SIR model
with control of vaccination, subject to resource constraints (Hansen and Day 2011).
Also Bolzoni and collaborators used OC theory to minimize the time to drive the
current prevalence level to a desired threshold under resource limitation (Bolzoni
et al. 2017, 2019). Using vaccination as a control in a SIRV model, Laguzet and
Turinici minimized infections under the public health budget constraints (Laguzet
and Turinici 2015). Campo-Duarte et al. (2018) used optimal control techniques for
a trade-off between achieving a fixed desired level of mosquitoes not infected with
Wolbachia in minimum time and minimizing the cost of control interventions. Yet,
until recently, these examples have been rare and most of the OC published papers
keep formulating OC problems with the traditional approach, i.e., minimization of the
combined monetary costs of control measures and disease burden, without discussing
the practical challenges of estimating the monetary cost of health outcomes.

Recently COVID-19 modeling research has pursued approaches aligned with those
proposed herein. With a goal of minimizing the costs of implementing transmission
rate control (social distancing measures), Miclo et al. (2022) included an upper on
the number of infecteds in an SI model; this upper bound was interpreted as intensive
care unit constraint (with infinite time horizon). Also using an SI system, Bliman
and Duprez (2021) used social distancing controls on finite time intervals (using one
dimensional optimization) to minimize the final epidemic size. Using optimization
of finite duration time intervals for reduction of the transmission rates, Morris et al.
(2021) minimized epidemic peak size and demonstrated optimal and nearly optimal
solutions for an SIR model. Angulo et al. (2021) studied a control problem to steer
an SI model trajectory to a target set with a low I level in minimum time (using
transmission reduction control). In summary, some of these papers kept the control
level low (to minimize the economic and social costs of limiting economic activity)
while achieving the epidemiological constraints (upper bound on number of infecteds)
(Bliman and Duprez 2021; Morris et al. 2021). Another included choices of intervals
to implement the control at its maximum level while imposing an upper bound on the
number of infecteds (Miclo et al. 2022).Matrajt et al. (2020) used discrete optimization
to find optimal vaccination levels (taking on discrete values) for different age groups in
a deterministic COVID-19 system. These examples show that, when epidemiological
modeling is guided by a pressing public health problem and is used to inform the
decision-making process, it is crucial to formulate the OC problem to closely reflect
the specific goals and constraints.

In this paper, after briefly reviewing the practical and ethical challenges of assess-
ing the monetary value of disease burden and of human life, we propose a simple but
general framework to reformulate optimization problems to leverage the strengths of
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optimal control theory and, at the same time, to explicitly account for real-world fea-
tures such as budget constraints and epidemiological goals that public health authorities
struggle with in their daily work. We demonstrate the new framework and discuss the
pros and cons of alternative formulations of OC problems using a simple but general
cholera model.

1.1 The Challenges of Estimating theMonetary Value for Health Outcomes

In industrialized countries with developed public health, welfare and demographic
reporting systems, both the private and public sectors (i.e., health insurance and health
departments/agencies) routinely assess the economic impact associated with diseases,
accounting for the cost of over-the-counter and prescribed drugs, medical visits, hospi-
tal admissions, special treatments, loss of productivity, etc. This systematicmonitoring
and reporting effort provides a reasonable foundation to comprehensively estimate the
monetary costs of disease outbreak and a range of public health interventions, which
can be used to explore alternative control scenarios within an OC theory framework.
However, this approach is not exempt from limitations. First, monetization of human
health is ethically debatable, especially in the case of fatal diseases and when diseases
disproportionately affect a specific segment of the population, such as underrepre-
sented minorities, essential workers, or the homeless population (Scovronick et al.
2020).

Second, monetization of human health and/or loss of productivity becomes partic-
ularly problematic in low-income countries, plagued by a wide range of Neglected
Tropical Diseases (including several infectious diseases, such as schistosomiasis,
Chagas disease, dengue fever, guinea worm disease, echinococcosis, human African
sleeping sickness, and leishmaniasis) and other diseases of poverty (such as malaria,
tuberculosis, cholera andHIV) affecting altogethermore than 2.5 billion peopleworld-
wide (Ntuli 2020). For these countries, where a non-marginal fraction of the population
is often engaged in a rural, cashless economy, using the same monetary currency to
contrast the costs of public health interventions with the burden of disease—which
may include also reduced capacity to perform physically engaging activities in subsis-
tence agriculture, or the long-term impact of chronic infections—is highly challenging
and debatable. Some studies have explicitly recognized these challenges and analyzed
OC problems as a function of loosely defined “relative costs of disease burden” with
respect to the cost of intervention (see for instance, Bolzoni et al. 2014). Yet, the prob-
lem of integrating economic and public health metrics and indicators measured on
vastly different units in a single monetary scale remains unsolved. Cost-effectiveness
analysis partially circumvents these ethical shortcoming and practical challenges, as it
abstains from measuring the monetary value of health outcomes but does not leverage
the power of OC theory to identify time-varying control strategies superior to time
constant strategies.While assessing themonetary value of human health is fraughtwith
uncertainties, even the estimation of intervention costs and its translation into model
parameters present formidable theoretical and practical challenges that are rarely rec-
ognized and accounted for in the published literature on OC applications to infectious
disease management.
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1.2 Reframing Optimal Control Problems

Public health authorities do not operate in a vacuum, but need to plan health inter-
ventions under budget constraints and/or to achieve specific health outcomes, such as
to avoid overwhelming the health system by limiting the number of people requiring
hospitalization or use of the intensive care units (Miller et al. 2020). Accordingly, OC
problems can be reformulated to fully embrace this more practical approach to the
control of communicable diseases. Specifically, we argue that OC problems can be
restated in one of the two following broad and more meaningful ways, namely:

– Alternative 1: minimize disease burden (the goal), measured in the most suitable,
non-monetary units for the specific disease system under study for a given budget
(the constraint) (Murray et al. 2012);

– Alternative 2: minimize the monetary cost of interventions (the goal) to achieve a
specific epidemiological outcome, set as a requirement of the control strategies to
be admissible (the constraint).

The first alternative recognizes that budget constraints are a significant factor in
choosing control strategies in low-income countries. In the second alternative, the
emphasis is on achieving a desired epidemiological target in a cost effective way. In
the 2021 United Nations Political Declaration on HIV and AIDS, for example, there
is a goal of reducing annual new HIV infections to under 370,000 and annual AIDS-
related deaths to under 250,000 by 2025 (Assembly 2021). Optimal control policies
that do not exceed regional hospital capacity and the number of available ICU beds at
the peak of a COVID-19 outbreak are examples of the second alternative formulation
(Miller et al. 2020; Miclo et al. 2022). Other examples include minimization of the
time to a desired reduction in disease prevalence or incidence (Angulo et al. 2021;
Bolzoni et al. 2017, 2019).

Here below, we present the application of these two alternative frameworks for the
formulation of OC problems by using the control of a cholera outbreak as a reference
example. Specifically, we use a classic mechanistic, compartmental model for cholera,
based on set of ordinary differential equations, that was kept deliberately simple for
demonstration purposes to show that it is not only straightforward to reframe optimal
control problems in these two alternative ways, but also more informative. In fact, we
show that under the new frame (i) analyses can be easily performed to assess how
the outcome changes with respect to, say, increasing budget (Alternative 1) or more
ambitious epidemiological goals (Alternative 2) and (ii) the results of these analyses
can be presented in terms of marginal utilities, for example, additional lives saved per
extra dollar invested with respect to baseline.

The rest of the paper is structured as follows. After describing the cholera model
with vaccination rate as the control variable, we first define the classic problem as
the minimization of the sum of the cumulative cost of disease, estimated in monetary
terms, and of the cost of intervention over a given time period, assuming the conversion
factor from number of infected cases to dollars is known. This classical approach is
referred to in this paper as the “combined” OC problem.

Then, we reformulate the OC problem in the two alternative ways described above.
We show that, if the conversion coefficient to assess the monetary value of disease
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cost can be estimated with reasonable precision, the outcome of the alternative OC
formulations can be mapped back to the combined OC problem with no loss of
information.

Lastly, we show that the two alternative formulations permit us to better explore
the sensitivity of the OC solutions to changes in available budget or the desired epi-
demiological target. We conclude the paper by discussing our results and presenting
some limitations of comprehensive cost assessment in epidemiology.

2 Cholera Model

We illustrate our points using a basicmodel of cholera over a short time period. Cholera
is awaterborne diarrhoeal illness caused by infection of the intestinewith the bacterium
Vibrio cholerae with both direct and indirect modes of infection and transmission,
primarily through contaminated food and water supplies. The disease causes rapid
dehydration and electrolyte imbalances. There are an estimated 3–5 million cholera
cases and 100,000–120,000 deaths due to cholera every year (Ali et al. 2015; Legros
2018). The recent outbreak in Haiti caused over 10,000 deaths and over 820,000
cases (Zarocostas 2017; Lee et al. 2020a). The disease has a short incubation period,
between two hours and five days, affecting all ages. It is known that cholera persists
in an aquatic reservoir and can exist in non-culturable, but viable, state for months to
over a year (Melbourne 2011). There are two types of safe and effective oral cholera
vaccines, Dukoral and Shanchol (Sèvére et al. 2016).

Tien and Earn (2010) extended the classic Susceptible (S), Infected (I ) and Recov-
ered (R) SIR model by Codeco (2001) to include a concentration of vibrios (W ) in the
water compartment. This allows for both direct (fecal-oral) and indirect (from water-
borne pathogen) transmissions pathways for cholera at per capita rates βI and βW

[day−1individuals−1], respectively. For comparisons of several models applied to out-
breaks in Haiti and with vaccination scenarios, see the work of Lee et al. (2020a). Our
basic SIRW model with four state variables is described by the following differential
equations:

S′ = μN − βISI − βWSW − μS − v(t)S

I ′ = βW SW + βI S I − γ I − μI − δ I

R′ = γ I − μR + v(t)S

W ′ = ξ(I − W )

where N = S + I + R represents the human population, μ is the natural mortality
and birth rates of humans [day−1], γ is the recovery rate from infected to recovered
and resistant class [day−1], and δ is the death rate due to the disease [day−1]. Note
that the compartment W has been scaled to be in the same units as the I compartment
(individuals). Therefore, ξ is a parameter representing both the per capita shedding
rate of viable infectious propagules in the water by an infected individual I and the
decay rate of the pathogen in the environment [day−1]; see more details in Tien and
Earn (2010) and Kelly et al. (2016). The sum of the terms βI I and βWW are the force
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Table 1 Parameter descriptions with units

Parameters Description Units

μ Natural birth/death rate day−1

βI Direct transmission rate (P–P) day−1individuals−1

βW Indirect transmission rate (W–P) day−1individuals−1

γ Transition rate from I to R day−1

ξ Contamination/pathogen decay rate in water day−1

δ Disease-induced death rate day−1

of infection, representing the rate at which susceptible individuals become infected
either via contaminated fecal-oral transmission or the ingestion of contaminated water.
The parameters and their units are described in Table 1.

As in Kelly et al. (2016), we assumed that susceptible individuals S are vaccinated
and become resistant R at a rate v(t), with v(t) combining efficacy and rate of vaccine
distribution [day−1]. The time varying rate v(t) of vaccination is then our control
variable. The basic reproduction number for this model in the absence of the control
v(t) is

R0 = (βI + βW )S∗

γ + δ + μ
,

where S∗ is the total susceptible population in the absence of disease.

3 Optimal Control Formulations

We begin with a discussion of formulations of objective functionals. The combined
objective functional is the sum of the cumulative costs associated with the disease
Jb(v) and the cost of intervention Jc(v), which are both functions of control effort
v(t), which, in turn, is a function of time, namely:

min
v∈V (Jb(v) + Jc(v)) (1)

with disease dynamics described by the above SIRWmodel. The control effort v(t) is
assumed to be continuous over time and is subject to constraints 0 ≤ v(t) ≤ vmax, with
vmax being the maximum vaccination rate that can be deployed during the simulation
time 0 ≤ t ≤ T .

The total cost of intervention is a nonlinear function of v(t),

Jc(v) =
∫ T

0
[Bv2(t) + Cv(t)S(t)] dt,
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where B and C are positive constants accounting for the cost of vaccination. We take
a simple cost functional to reflect the possibility of nonlinearity in costs; other formats
could used depending on the knowledge surrounding costs. Later in our examples, we
will illustrate the case where the nonlinearity plays a role and a case where B is small
enough that the optimal control is approximately bang-bang, meaning the optimal
control only takes values at its lower and upper bounds. We note that if B = 0, then
this problem is linear in the controls. In some applications, this could result in possible
singular controls as part of the solution, which can occur when the derivative of the
Hamiltonian with respect to the control vanishes on a non-empty subinterval of time,
requiring further analysis. See the work by Ledzewicz and Schaettler for a simple SIR
model exhibiting singular controls, and see their book for some further background
on optimal control problems that are linear in the control (Ledzewicz and Schättler
2011; Schättler and Ledzewicz 2012).

For certain diseases, the infected nature of some individuals,who are able to transmit
the pathogen, may not be observed. They could be asymptomatic, and it is possible
that those persons might be vaccinated. In such cases, the cost of vaccinations in the
objective functional would include a term in the integrand, like Cv(t)(S(t) + A(t)),
with A for the asymptomatic class.

The cost associatedwith the disease depends upon the specific disease system under
study and the available information. It can be represented as

Jb(v) =
∫ T

0
Ab I (t) dt,

where Ab is a positive scaling coefficient accounting for the aggregatedmeanmonetary
value c1 of each day of illness (including drug treatment and loss of productivity) and,
in case of fatal disease, also for the value c2 of human lives lost, namely:

Ab = c1 + c2δ,

where δ I is the rate of individuals dying because of the disease. In many examples
with Ab = c1, the first term of the objective functional integrates the number of
current infected individuals, and we illustrate this frequently used ‘burden’ case in the
Appendix.

As an alternative method of computation, the monetary cost of disease only, not
accounting for deaths, might be also estimated as a flat rate associated to each infected
case and, as such, derived from total disease incidence, i.e., the total number of infected
cases during the simulation time, namely:

Jn(v) =
∫ T

0
An[βI S(t)I (t) + βW S(t)W (t)] dt,

with the β terms giving the rate of new cases.
The precise form of optimal control is affected by the relative values of the coeffi-

cients Ab, An, B,C, c1 and c2. Integrating the sum of the rates of the new infections
gives us the total number of new cases. The optimal control can be found using
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the Pontryagin’s Maximum Principle (Pontryagin et al. 1962) as described later in
“Appendix A”. We would also note that one can solve for the value function and the
resulting optimal control using Hamilton–Jacobi–Bellman partial differential equa-
tion approach (with viscosity solution) as in (Laguzet and Turinici 2015; Bardi and
Capuzzo-Dolcetta 1997; Piunovskiy and Clancy 2008).

One could include terms in the objective functional at the final time, like I (T ),
which would affect the optimal control levels at the final time. There may situations
where an infinite time horizon makes sense for particular applications; optimal control
problems on infinite horizons are frequently used in economic models (Miclo et al.
2022; Naveed et al. 2019; Kamien and Schwartz 1991).

3.1 Combined Formulations

Combined Objective Functional with Disease Burden and Cost
The objective functional for minimizing both disease burden and cost is defined as

min
v∈V

∫ T

0
[Ab I (t) + Bv2(t) + Cv(t)S(t)] dt, (2)

where the control set is

V = {v ∈ L2(0, T ) | 0 ≤ v(t) ≤ vmax a.e.}.

Combined Objective Functional with New Infections and Cost
The objective functional for minimizing both the total number of new infections

and intervention cost is defined as

min
v∈V

∫ T

0
[An(βI S(t)I (t) + βW S(t)W (t)) + Bv2(t) + Cv(t)S(t)] dt . (3)

3.2 Alternate Formulation 1: Minimize New Infections under Fixed Budget

Given a fixed budget G for the cost of the control interventions, we define the
admissible control set (with constraint)

F1 =
{
v ∈ V |

∫ T

0
(Bv2(t) + Cv(t)S(t)) dt ≤ G

}
,

where S(t) is the susceptible compartment of the population corresponding to the
control v(t). The objective functional to minimize the new infections is defined as

min
v∈F1

Jn(v) = min
v∈F1

∫ T

0
An[βI S(t)I (t) + βW S(t)W (t)] dt, (4)

subject to the above SIRW model.
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To illustrate the process of obtaining the adjoint functions and the optimal control
characterization, we use Pontryagin’s Maximum Principle (Pontryagin et al. 1962).
To handle the budget constraint, we introduce a fifth state variable, x5, that satisfies

x ′
5 = Bv2 + CvS

with the boundary conditions x5(0) = 0 and x5(T ) = G. Then, the Hamiltonian using
this principle for our optimization is

H = AnβI S I + AnβW SW + λ1[μN − βI S I − βW SW − μS − vS]
+ λ2[βWWS + βI S I − γ I − μI − δ I ]
+ λ3[γ I − μR + v(t)S]
+ λ4[ξ(I − W )]
+ λ5[Bv2 + CvS]

with the following adjoint differential equations and boundary conditions

λ′
1 = −[AnβI I + AnβWW − λ1βI I − λ1βWW − λ1v + λ2βWW

+ λ2βI I + λ3v + λ5Cv]
λ′
2 = −[AnβI S + λ1μ − λ1βI S + λ2βI S − λ2γ − λ2μ − λ2δ + λ3γ + λ4ξ ]

λ′
3 = −[λ1μ − λ3μ]

λ′
4 = −[AnβW S − λ1βW S + λ2βW S − λ4ξ ]

λ′
5 = 0

λ1(T ) = 0, λ2(T ) = 0, λ3(T ) = 0, λ4(T ) = 0.

The adjoint system is formed by λ′
i = − ∂H

∂xi
, where xi represents the i th state variable.

Note λ5 takes no boundary condition since x5 takes two boundary conditions.
We can then characterize the optimal control on the interior of the control set using

the optimality condition

∂H

∂v
= 2Bλ5v + Cλ5S − λ1S + λ3S = 0 at v∗

at the corresponding optimal states, adjoints, and control bounds to yield

v∗(t) = min

(
vmax,max

(
0,

(λ1(t) − λ3(t) − Cλ5(t))S∗(t)
2λ5(t)B

))
.
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3.3 Alternate Formulation 2: Minimize Intervention Costs with Fixed New
Infections

Assuming the desired outcome is the cost of number of new infection cases being
bounded above by P , we define the admissible control set

F2 =
{
v ∈ V |

∫ T

0
An[βI S(t)I (t) + βW S(t)W (t)] dt ≤ P

}
.

The objective functional, defined tominimize the costs of implementing the control,
is

min
v∈F2

Jc(v) = min
v∈F2

∫ T

0
[Bv2(t) + Cv(t)S(t)] dt, (5)

subject to the above SIRW model. To handle the constraint on the new cases, we
introduce a new state variable, x5 with

x ′
5 = An[βI S(t)I (t) + βW S(t)W (t)], x5(0) = 0, x5(T ) = P

similar to the previous formulation.
Note that An is included in (4) and (5) to show the connection between the com-

bined and alternate formulations and allow us to demonstrate how the results of the
combined case can be recovered from the alternate cases. However, to achieve the goal
of reformulating optimal control problems to avoid the monetization of human health,
this constant can be redefined so that the objective functional represents minimizing
only the total number of new infections and not the monetary cost associated with
these infections. In the numerical illustrations below, we will set An = 1, since the
relative sizes of the coefficients determine the optimal control.

4 Results

Note that in the results below, we choose a variety of parameters to illustrate various
points.

4.1 OC Solutions are Superior to the Best Alternative with Constant Control

Modulating control variables in time may provide a more efficient and cost-effective
intervention strategy than the best alternative with a constant control. This point is
illustrated by using our example cholera model and a combined objective functional
(3) to minimize the cost of interventions plus the cost of the cumulative number of new
cases using parameters as given in Table 2. Our numerical results in this paper use the
forward-backward sweep algorithm (Lenhart and Workman 2007). Other algorithms
and software programs such as GPOPS and PASA have been developed to handle
particular types of optimal control problems (Hager and Zhang 2016; Patterson and
Rao 2014).
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Table 2 Results of combined objective functional with time horizon of 60 days corresponding to Fig. 1,
using An = 1, B = 8000, C = 0.0464, vmax = 0.04, βI = 2.64e − 7, βW = 1.21e − 6, γ = 0.05,
μ = 0.0001, ξ = 7.56e − 3, δ = 0.0005, S(0) = 99,000, I (0) = 1000, R(0) = 0, and W (0) = 3000

No Control Comb. OC v ≡ 0.032

Disease cost Jn(v) 30,219 9337 10,829

Intervention costs Jc(v) 0 4090 4079

Total cost Jn(v) + Jc(v) 30,219 13,427 14,908

Max number of infected 10,219 3712 4072

Total number of deaths 208 85 96

Number of vaccinations 0 76,514 77,325

The R0 for these simulations is 2.9

Fig. 1 Optimal control and states for the combined objective functional (3) with new infections compared
to a constant control with the same cost and the no control case, with parameters as in Table 2

We first illustrate the advantage of time varying control as compared to a constant
control. Note that quadratic coefficient B in our objective functional is large enough
that our optimal control is not bang-bang; it takes values from its upper bound to lower
bounds, connecting in between. The results shown in Fig. 1and Table 2 show that the
combined cost of intervention and new cases, Jn(v)+ Jc(v), is much larger in the case
of no control than the cases of optimal or constant control. We choose the constant
control to have approximately the same intervention costs as the optimal control. The
controlled cases perform equivalently in terms of intervention costs, though with the
optimal control case giving better health outcomes. In the optimal control case, the
control is time varying, staying at the maximum for approximately 40 days and then
decreasing linearly to zero over the next 20 days.A constant vaccination rate v ≡ 0.032
leads to approximately the same intervention cost (black line in the plot) but with a
higher number of cases. Decreasing the number of deaths by 10% by using our optimal
time-varying control seems valuable. Also note that the maximum number of infected
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Fig. 2 Optimal control and corresponding states for the combined objective functional for different An
values corresponding to the results in Table 3

individuals occurs at about 30 days at a level of about 3800, but in the uncontrolled
case, the number of infected individuals is about 10,000 near the final time and still
rising. There is no constant value of vaccination rate for which the combined costs
is lower than in the case of the optimal control solution, since all constant controls
are admissible controls but the optimal control is not constant with this choice of
parameters.

4.2 Simulations of Alternative Formulations

The optimal control policy is sensitive to how we estimate the monetary cost of the
disease, which is notably fraught with uncertainty. For instance, following Castonguay
et al. (2020), we can reasonably assume that each sick day entails a productivity loss
equal to the daily per-capita Gross Domestic Product (GDP). However, in Africa, the
per-capita GDP spans over a 15 fold difference between the richest countries (Gabon,
Botsawa, EquatorialGuinea,Mauritius andSeychelles, all above $15,000 per year) and
the poorest ones (Burundi, Somalia, Central African Republic, all below $1000/year)
(The World Bank 2021). Keeping this in mind, to illustrate the implications of such a
wide variation in the per-capita, daily productivity loss, we simulated cholera epidemic
dynamics and derived the OC policy with the combined formulation (3) under two
alternative assumptions, namely that the unit cost An of each new case is assumed to be
equal to either 1 or 10 in suitable monetary units to measure the average productivity
loss while sick. For the results shown in Fig. 2 and Table 3 , we use the same βI ,
βW , μ, ξ , and δ parameters, initial conditions, and time horizon as in Table 2 and
set γ = 0.25, B = 100, C = 0.1625, vmax = 0.03. Due to the change in γ , the
R0 for these simulations is 0.59. Note that due to the parameters chosen, especially a
smaller B, the optimal controls in these simulations are approximately bang-bang (the
optimal control only takes values at its upper and lower bounds). Also the vaccination
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Table 3 Epidemiological values corresponding to Fig. 2 where the percent differences are measured from
An = 10 case

An = 10 An = 1 % difference

Cumulative cases 9011 13,580 +51%

Disease cost Jn(v) 90,105 13,580 −85%

Intervention costs Jc(v) 12,011 4581 −62%

Total cost Jn(v) + Jc(v) 102,116 18,161 −82%

Total number of deaths 20 28 +40%

Number of vaccinations 73,654 26,634 −64%

Time spent at vmax 55 16 −71%

campaign starts near the time of the peak of infected population, and thus the optimal
controls do not affect that peak but do affect the number of deaths and vaccinations,
depending on the size of An .

Simulationswith our choleramodel show that,when the unit cost of disease is under-
valued by an order of magnitude (when An = 1), the optimal strategy entails 64% less
vaccinations, a 71% reduction in the number of days in which vaccines are deployed at
the maximum rate, 40% more lives lost, and 51% more cases (Fig. 2/Table 3). Refor-
mulating the OC problem to minimize disease incidence under budget constraints
or, in alternative, to minimize intervention costs with a cap on cumulative incidence,
allows us to overcome the challenges in estimating the monetary value of the disease,
as well as the ethical perils and the uncertainties in the combined formulation.

Do the alternative formulations systematically lead to different control policies than
the OC policy derived by solving the combined formulation? Our analysis shows that,
in the special (and unrealistic) case of perfect information—i.e., when the monetary
cost of the disease can be derivedwith sufficient precision—budget or epidemiological
constraints can be set so that the OC policy resulting from the alternative formulations
is the same as the one computed with the combined formulation (3). Specifically, we
solved the OC problem for the first alternative formulation (i.e., minimize new infec-
tions under a budget constraint (4)) by setting the budget constraint to the intervention
costs resulting from solving the combined OC problem (3). As shown in Table 4and
Fig. 3, the OC policy and health outcomes (such as the maximum number of infected
individuals, the number of deaths, and the number of vaccinations) are the same for
the combined and the alternative formulations since the intervention cost budget is
the same for both. We see the same for the second alternative formulation (i.e., min-
imize intervention costs to achieve a desired epidemiological outcome (5)) when the
epidemiological outcome is constrained to the value derived by solving the combined
OC problem (see Table 5and Fig. 4).

The simulations shown in Fig. 3 (corresponding to Tables 4 and 6 ) and Fig. 4
(corresponding to Tables 5 and 7) were performed using the same βI , βW , μ, ξ , and
δ parameters, initial conditions, and time horizon as in Table 2 and setting γ = 0.25,
An = 1, B = 100, C = 0.0813, vmax = 0.03.
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Table 4 Results of the objective functional with new infections under a budget constraint (4) compared to
the case of no control and the combined objective functional with new infections (3), corresponding to the
results in Fig. 3

No control Comb. OC Alt. OC

Intervention costs Jc(v) 0 4746 4746∗
Disease cost Jn(v) 19,080 9814 –

Total costs Jn(v) + Jc(v) 19,080 14, 559† –

Cumulative cases 19,080 9814 9814†

Max number of infected 1459 1282 1282

Number of deaths 38 21 21

Number of vaccinations 0 57,501 57,501

$ values are hypothetical and the $ symbol is used to clearly tease apart monetary values from health
outcomes. The ∗ symbol for the alternative OC formulation indicates that the OC problem was solved by
setting the intervention cost as a constraint. The † symbol indicates what value was minimized in the OC
problem

Fig. 3 Optimal control and corresponding states for the combined objective functional with new infections
(3) and the objective functional with new infections under a budget constraint (4), corresponding to the
results in Tables 4 and 6

Then what advantage do the alternative formulations provide? As commented
above, in the majority of cases, the per-capita cost of disease is not known and cannot
be estimated with any degree of confidence, especially in the case of fatal or debili-
tating chronic diseases. Therefore, it is more meaningful and less debatable from the
perspective of health equity to frame the optimization problem by explicitly acknowl-
edging the fundamental reality any decision maker has to face. That is, to operate in
conditions of limited budget, and/or, to have ethical, political, practical or humanitar-
ian reasons to achieve a desired public health outcome. The alternative formulations
allow us to incorporate these considerations much more straightforwardly than the
combined formulation does. For instance, in the last two columns of Table 6 we report
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Table 5 Results of the objective functional with intervention costs and an epidemiological constraint
(5) compared to the no control case and the combined objective functional with new infections (3),
corresponding to the results in Fig. 4

No Control Comb. OC Alt. OC

Intervention costs Jc(v) 0 4746 4746†

Disease cost Jn(v) 19,080 9814 –

Total costs Jn(v) + Jc(v) 19,080 14, 559† –

Cumulative cases 19,080 9814 9814∗
Max number of infected 1459 1282 1282

Number of deaths 38 21 21

Number of vaccinations 0 57,501 57,501

The ∗ symbol for the alternative OC formulation indicates that the OC problem was solved by setting the
cumulative cases as a constraint. The † symbol indicates what value was minimized in the OC problem

Fig. 4 Optimal control and corresponding states for the combined objective functional with new infections
(3) and the objective functional minimizing cost under an epidemiological constraint (5), corresponding to
the results in Tables 5 and 7

Table 6 Results of the combined objective functional with new infections (3) and the objective functional
with new infections and a fixed budget (4) corresponding to the results in Fig. 3

Alt. OC Lower budget Higher budget

Intervention costs Jc(v) 4746∗ 2373∗ (−50%) 5934∗ (+25%)

Cumulative cases 9814† 13, 416† (+37%) 9028† (−8%)

Max number of infected 1282 1282 (0%) 1282 (0%)

Number of deaths 21 27 (+29%) 20 (−5%)

Number of vaccinations 57,501 30,624 (−47%) 72,653 (+26%)

The ∗ symbol for the alternative OC formulation indicates that the OC problem was solved by setting the
intervention cost as a constraint. The † symbol indicates what value was minimized in the OC problem
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Table 7 Results of the combined objective functional (3) and the objective functional with intervention
costs and an epidemiological goal (5), corresponding to the results in Fig. 4

Alt. OC Lower New Inf Higher New Inf

Intervention costs Jc(v) 4746† 5921† (+25%) 2983† (−37%)

Cumulative cases 9814∗ 9030∗ (−8%) 12, 275∗ (+25%)

Max number of infected 1282 1282 (0%) 1282 (0%)

Number of deaths 21 20 (−5%) 25 (+20%)

Number of vaccinations 57,501 72,507 (+26%) 37,846 (34%)

The ∗ symbol for the alternative OC formulation indicates that the OC problem was solved by setting the
cumulative cases as a constraint. The † symbol indicates what value was minimized in the OC problem

the breakdown for costs and epidemiological outcomes associated with a 50% budget
decrease or a 25% increase, respectively, compared to the intervention cost found in
the combined OC solution. The last two columns of Table 7 report the breakdown of
the same information when the epidemiological target is 8% lower or 25% higher than
the baseline number of new infections (as derived from the combined OC solution).

Note that, in the simulation results shown in Tables 6 and 7, the maximum number
of new infections does not change between the different budget and epidemiological
constraints. This is because the peak of infections in those simulations occurs early in
the simulation and the optimal controls in all of the cases shown are at the maximum
control value from the beginning of the simulation until after the peak of infection.
Therefore, in these cases, themaximumnumber of infected is not reducedby increasing
budget or setting a more ambitious epidemiological goal. To reduce the maximum
number of infected individuals in these simulations, an increase in the maximum
vaccination rate is required. An example of a simulation with a different maximum
number of infected individuals can be seen in Fig. 1, where a constant control is
applied at a lower maximum vaccination rate than the combined optimal control case.
Therefore the constant control case displays an increasedmaximumnumber of infected
individuals.

A sensitivity analysis can be conducted using alternative formulation 1 (minimizing
new infections under a budget constraint (4)) by systematically exploring changes in
health outcomes of interest over a wide range of budget constraints (see Fig. 5). Our
analysis shows that the relationship between budget and health outcomes are, for
this model, approximately linear until one reaches the budget that uses the maximum
vaccination rate over the entire simulation time. The analysis reveals that above this
level, what is limiting is not vaccination budget but, rather, vaccination capacity (for
instance, the number of vaccination centers). Therefore, above this limit, further health
benefits could be achieved by a structural improvement of the vaccination system.

For alternative formulation 2 (minimizing intervention cost to achieve a desired
epidemiological outcome (5)), the sensitivity analysis shows that the total interven-
tion cost linearly increases/decreases, respectively, with more ambitious public health
targets (percentage reduction in new cases with respect to the no control case—Fig. 6
). The maximum value of new daily infections drops linearly with more ambitious
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Fig. 5 Left: Total number of new infections as a function of the budget constraint forAlternative Formulation
1 (4). Right: Maximum number of infected individuals I over the time interval as a function of the budget
constraint forAlternateFormulation1 (4). Thebudget constraint is set as a percentageof the total intervention
cost from the baseline case (the combined OC formulation (3)). These simulations were performed with
An = 1, B = 600, and C = 1 and using βI = 2.64e − 7, βW = 1.21e − 6, γ = 0.25, μ = 0.0001,
ξ = 7.56e − 3, δ = 0.0005, S(0) = 99,000, I (0) = 1000, R(0) = 0, W (0) = 3000, and vmax = 0.08

Fig. 6 Left: Intervention cost as a function of the epidemiological constraint for Alternative Formulation
2 (5). Right: Maximum number of infected individuals I over the time interval as a function of the epi-
demiological constraint for Alternate Formulation 2 (5). The epidemiological constraint is set as a percent
reduction in the number of new infections from the baseline case (the case with no control). These simu-
lations were performed with An = 1, B = 600, and C = 1 and using βI = 2.64e − 7, βW = 1.21e − 6,
γ = 0.25,μ = 0.0001, ξ = 7.56e−3, δ = 0.0005, S(0) = 99,000, I (0) = 1000, R(0) = 0,W (0) = 3000,
and vmax = 0.08
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epidemiological outcome but levels off, in this case, when the required reduction in
the cumulative number of cases exceed ca. 30% of that at baseline (no intervention).

Simulations related to the optimal control formulations minimizing disease burden
instead of new infections (2) can be found in “Appendix B”.

5 Discussion and Conclusions

Using a cholera model as a prototypical example of environmentally related infectious
disease, we have illustrated the benefit of using time-varying controls to achieve the
goals and incorporate the constraints of disease management. We have proposed valu-
able alternatives to the frequently-used objective functional (the minimization of the
sum of the total number of new cases (or total disease burden) and the cost of manage-
ment actions) and showed the advantages of these alternatives in terms of outcomes
(in costs, new cases and/or burden levels). Depending on the situation, one should
consider minimizing the number of new cases given a fixed intervention budget (4) or
minimizing the intervention costs given a fixed epidemiological constraints (such as
keeping the total number of new cases under a fixed level (5)). These formulations can
be valuable to apply tomodels of other diseases, such as schistosomiasis (Sokolowet al.
2015), West Nile virus (Abdelrazec et al. 2016), and Zika virus (Valega-Mackenzie
and Ríos-Soto 2018; Miyaoka et al. 2019). We also note that other types of budget
constraints, like time-varying upper bounds on costs or subsidies, may be interesting
to consider; the budget for each year could be different and could have the option of
rolling over each year (Drohan et al. 2021; Rowthorn et al. 2009). If the values of
specific epidemiological variables such as the fraction of the population with acquired
or vaccine-induced immunity near the end of reference time horizon are important,
it is possible to reformulate the objective functional to explicitly account for those
variables (with terms at the final time in the objective functional).

We analyzed changes in health outcomes of interest over a range of budget con-
straints. For the specific model and the parameterization in this paper, this relationship
between budget and health outcomes was found to be approximately linear until one
reaches the budget level that allows the maximum vaccination rate to be used over the
entire simulation time. The upper bound on the vaccination rate may be linked to the
capacity of the health-care infrastructure (that is, the amount of vaccinations that can
be completed per unit time given the current delivery system with a fixed number of
workers). Similar results were obtained for changes in intervention costs over a range
of fixed health outcomes. Overall, our research outlines the power of reformulating
combined optimal control problems and using health outcomes measured in metrics
with which public health decision makers are more familiar.

In some of our results, the differences in vaccination effort and epidemiological
outcome merely reflect differences in the economic strengths of nations, and have
little to do with the much less tangible value of the quality of life lost due to infection.
This problem can be partially addressed by conducting a sensitivity analysis of how
the OC solution changes as a function of the unit cost of disease, if such costs are
known (see one such analysis in Bolzoni et al. 2014).
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While the proposed reformulation of the optimization functional addresses some
problems of the combined formulation and allows us to avoid the practical and ethical
challenges ofmonetizing human health, it does not solve other problems inherent in the
evaluation of health outcome and equity issues. For instance, Weintraub and Cohen
(2009) have clearly outlined several of these limitations for the cost-effectiveness
analysis that apply also to optimal control problems in general and, specifically, to the
newly proposed formulations. Though monetizing the value of human health comes
with uncertainties, estimating intervention costs and translating those costs into model
parameters also present challenges. In addition, for practical and computational rea-
sons, mechanistic models tend to simplify the complexity of real-world social systems,
and optimal control theory cannot overcome the limitations deriving from oversimpli-
fied models that lack relevant details (such as spatial structure or social interaction) or
are not properly parameterized because of a lack of the necessary data.

Without dismissing the power of OC applications, we are aware that, during an
actual epidemic outbreak and in practical terms, simplified protocols with constant
intervention rates might work equally well, if not better, than protocols that require
continuous adjustment of the intervention effort. This may be especially true when
it is difficult to monitor the health state of the population, testing capacity is low, or
there are delays in reporting infected cases in remote, rural areas and/or in countries
with limited health care and reporting systems. An optimal control can frequently be
adjusted (every few months or so) to give a close approximate control that is more
feasible to implement (Morris et al. 2021; Demir and Lenhart 2020).

OC applications to the control of communicable diseases often remains so technical
that no actual use of them becomes realized as a guideline for action. While some
barriers due to the inherent complexity of OC theory cannot be overcome, there is an
untapped potential that should be leveraged to inform the decision making process on
pressing public health problems. In spite of the limitations listed above, we believe that
the scientific community proficient in optimal control theory could easily formulate
optimization problems for the control of communicable diseases with our proposed
approach. It would reflectmore closely the framework inwhich public health decisions
are usually taken in the full spirit of contemporary user-inspired research, as argued
in National Research Council (2008) and Stoles (1997).
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Appendix A: Hamiltonians, Adjoints, and Optimal Control Characteri-
zations

Appendix A.1: Combined Objective Functional with Disease Burden and Cost

The objective functional combining disease burden and intervention cost is formulated
as

min
v∈V

∫ T

0
[Ab I (t) + Bv2(t) + Cv(t)S(t)] dt,

where the control set is

V = {v ∈ L2(0, T ) | 0 ≤ v(t) ≤ vmax a.e.}.

The Hamiltonian is then

H = Ab I + Bv2 + CvS + λ1[μN − βI S I − βW SW − μS − vS]
+ λ2[βWWS + βI S I − γ I − μI − δ I ]
+ λ3[γ I − μR + v(t)S]
+ λ4[ξ(I − W )]

with the following adjoints and boundary conditions:

λ′
1 = −[Cv − λ1βI I − λ1βWW − λ1v + λ2βWW + λ2βI I + λ3v]

λ′
2 = −[Ab + λ1μ − λ1βI S + λ2βI S − λ2γ − λ2μ − λ2δ + λ3γ + λ4ξ ]

λ′
3 = −[λ1μ − λ3μ]

λ′
4 = −[−λ1βW S + λ2βW S − λ4ξ ]

λ1(T ) = 0, λ2(T ) = 0, λ3(T ) = 0, λ4(T ) = 0.

We can then characterize the optimal control, using this optimality condition, on
the interior of the control set.

∂H

∂v
= 2Bv + CS − λ1S + λ3S = 0 at v∗.
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Note ∂2H
∂v2

= 2B > 0, since B > 0. Therefore, using the control bounds gives

v∗ = min

(
vmax,max

(
0,

(λ1 − λ3 − C)S

2B

))
.

Appendix A.2: Combined Objective Functional with New Infections and Cost

Theobjective functional combiningnew infections and intervention costs is formulated
as

min
v∈V

∫ T

0
[An(βI S(t)I (t) + βW S(t)W (t)) + Bv2(t) + Cv(t)S(t)], dt

where the control set V is the same as above.
The Hamiltonian is then

H = An(βI S I + βW SW ) + Bv2 + CvS + λ1[μN − βI S I − βW SW − μS − vS]
+ λ2[βWWS + βI S I − γ I − μI − δ I ]
+ λ3[γ I − μR + v(t)S]
+ λ4[ξ(I − W )]

with the following adjoints and boundary conditions:

λ′
1 = −[AnβI I + AnβWW + Cv − λ1βI I − λ1βWW − λ1v

+ λ2βWW + λ2βI I + λ3v]
λ′
2 = −[AnβI S + λ1μ − λ1βI S + λ2βI S − λ2γ − λ2μ − λ2δ + λ3γ + λ4ξ ]

λ′
3 = −[λ1μ − λ3μ]

λ′
4 = −[AnβW S − λ1βW S + λ2βW S − λ4ξ ]

λ1(T ) = 0, λ2(T ) = 0, λ3(T ) = 0, λ4(T ) = 0.

We can then characterize the optimal control, using this optimality condition, on
the interior of the control set.

∂H

∂v
= 2Bv + CS − λ1S + λ3S = 0 at v∗.

Note ∂2H
∂v2

= 2B > 0, since B > 0. Therefore, we find that

v∗ = min

(
vmax,max

(
0,

(λ1 − λ3 − C)S

2B

))
.
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Appendix A.3: Minimize Disease Burden under Fixed Budget

Given a fixed budget G, the cost of the control interventions, we define the control
sets:

V = {v ∈ L2(0, T ) | 0 ≤ v(t) ≤ vmax a.e.}

and

F1 =
{
v ∈ V |

∫ T

0
(Bv2(t) + Cv(t)S(t)) dt ≤ G

}
,

where S is the susceptible compartment of the population corresponding to the control
v. The alternate objective functional to minimize the disease burden is defined as

min
v∈F1

∫ T

0
Ab I (t) dt .

To show the process of obtaining the adjoint functions and the optimal control char-
acterization,we use Pontryagin’sMaximumPrinciple. To handle the budget constraint,
we introduce a fifth state variable, x5, that satisfies

x ′
5 = Bv2 + CvS

with the boundary conditions x5(0) = 0 and x5(T ) = G.
The Hamiltonian is

H = Ab I + λ1[μN − βI S I − βW SW − μS − vS]
+ λ2[βWWS + βI S I − γ I − μI − δ I ]
+ λ3[γ I − μR + vS]
+ λ4[ξ(I − W )]
+ λ5[Bv2 + CvS]

with the following adjoint differential equations and boundary conditions

λ′
1 = −[−λ1βI I − λ1βWW − λ1v + λ2βWW + λ2βI I + λ3v + λ5Cv]

λ′
2 = −[Ab + λ1μ − λ1βI S + λ2βI S − λ2γ − λ2μ − λ2δ + λ3γ + λ4ξ ]

λ′
3 = −[λ1μ − λ3μ]

λ′
4 = −[−λ1βW S + λ2βW S − λ4ξ ]

λ′
5 = 0

λ1(T ) = 0, λ2(T ) = 0, λ3(T ) = 0, λ4(T ) = 0.

Note λ5 takes no boundary condition since x5 takes two boundary conditions.
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We can then characterize the optimal control, using this optimality condition, on
the interior of the control set,

∂H

∂v
= 2Bλ5v + Cλ5S − λ1S + λ3S = 0 at v∗,

and then obtain

v∗(t) = min

(
vmax,max

(
0,

(λ1(t) − λ3(t) − Cλ5(t))S(t)

2λ5(t)B

))
.

Appendix A.4: Minimize Intervention Costs with Fixed New Infections

Given an upper bound P on the number of new infections, we define the control set
F2 as

F2 =
{
v ∈ V |

∫ T

0
An[βI S(t)I (t) + βW S(t)W (t)] dt ≤ P

}
,

where S is the susceptible compartment, I the infected compartment, and W the
environmental contamination compartment of the population corresponding to the
control v.

The alternative objective functional minimizing cost is defined as

min
v∈F2

∫ T

0
[Bv2(t) + Cv(t)S(t)] dt .

To handle the constraint on the new cases, we introduce a new state variable, x5
with

x ′
5 = An[βI S(t)I (t) + βW S(t)W (t)], x5(0) = 0, x5(T ) = P.

The Hamiltonian is then

H = Bv2 + CvS + λ1[μN − βI S I − βW SW − μS − vS]
+ λ2[βWWS + βI S I − γ I − μI − δ I ]
+ λ3[γ I − μR + v(t)S]
+ λ4[ξ(I − W )] + λ5[AnβI S I + AnβW SW ]

with the following adjoints and tranversality conditions:

λ′
1 = −[Cv − λ1βI I − λ1βWW − λ1v + λ2βWW + λ2βI I

+ λ3v + Anλ5βI I + Anλ5βWW ]
λ′
2 = −[λ1μ − λ1βI S + λ2βI S − λ2γ − λ2μ − λ2δ + λ3γ + λ4ξ + Anλ5βI S]

λ′
3 = −[λ1μ − λ3μ]
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λ′
4 = −[−λ1βW S + λ2βW S − λ4ξ + Anλ5βW S]

λ′
5 = 0

λ1(T ) = 0, λ2(T ) = 0, λ3(T ) = 0, λ4(T ) = 0.

Note thatλ5 takes no boundary condition because x5 takes two boundary conditions,
x5(0) = 0 and x5(T ) = P .

We can then characterize the optimal control, using this optimality condition, on
the interior of the control set.

∂H

∂v
= 2Bv + CS − λ1S + λ3S = 0 at v∗

Note that ∂2H
∂v2

= 2B > 0, since B > 0. Therefore, we find that

v∗(t) = min

(
vmax,max

(
0,

(λ1(t) − λ3(t) − C)S(t)

2B

))
.

Appendix A.5: Minimize New Infections under Fixed Budget

Given a budget constraint G, we use the same control set as “Appendix A.3”,

F1 =
{
v ∈ V |

∫ T

0
(Bv2(t) + Cv(t)S(t)) dt ≤ G

}
.

The alternative objective functional minimizing the new infections is then defined
as

min
v∈F1

∫ T

0
An[βI S(t)I (t) + βW S(t)W (t)] dt .

To handle the budget constraint, we introduce a fifth state variable, x5, defined by

x ′
5 = Bv2 + CvS

with the boundary conditions x5(0) = 0 and x5(T ) = G.
The Hamiltonian is then

H = AnβI S I + AnβW SW + λ1[μN − βI S I − βW SW − μS − vS]
+ λ2[βWWS + βI S I − γ I − μI − δ I ]
+ λ3[γ I − μR + v(t)S]
+ λ4[ξ(I − W )]
+ λ5[Bv2 + CvS]
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with the following adjoints and boundary conditions:

λ′
1 = −[AnβI I + AnβWW − λ1βI I − λ1βWW − λ1v + λ2βWW

+ λ2βI I + λ3v + λ5Cv]
λ′
2 = −[AnβI S + λ1μ − λ1βI S + λ2βI S − λ2γ − λ2μ − λ2δ + λ3γ + λ4ξ ]

λ′
3 = −[λ1μ − λ3μ]

λ′
4 = −[AnβW S − λ1βW S + λ2βW S − λ4ξ ]

λ′
5 = 0

λ1(T ) = 0, λ2(T ) = 0, λ3(T ) = 0, λ4(T ) = 0.

Note λ5 takes no boundary condition since x5 takes two boundary conditions.
We can then characterize the optimal control, using this optimality condition, on

the interior of the control set.

∂H

∂v
= 2Bλ5v + Cλ5S − λ1S + λ3S = 0 at v∗

Note that ∂2H
∂v2

= 2Bλ5 > 0 if λ5 > 0.
Therefore, we find that

v∗ = min

(
vmax,max

(
0,

(λ1 − λ3 − Cλ5)S

2λ5B

))
.

Appendix B: Combined OC: Minimize the Sum of Disease Burden and
the Costs of Interventions

Minimizing the cost of interventions and the integral of the infected compartment,
scaled appropriately to represent the cost of disease burden, is commonly seen as the
goal in management of disease models. The case of a combined objective functional
with burden (Eq.2) is illustrated here in Fig. 7with model parameters listed in the
caption of Table 8. In that table, one can see the positive effects of implementing the
optimal control on the disease are striking. Since the number of susceptible individuals
has become low about half way through the time interval, the constant control (set at
the maximum control value, 0.04) has similar effects to the optimal control resulting
from the combined objective functional (1% reduction in disease burden), but has
a slightly higher intervention cost compared to the optimal control (11% increase).
These simulations show that considering a time varying control allows for a better
result (i.e. a smaller objective functional) than a constant control at the maximum will
allow, by 1.4% in this case.

Using the parameters in Table 9and a combined objective functional with burden
(Eq.2), we compare the optimal control to a constant control with same cost and to the
no control case. The plots shown in Fig. 8do not showmuch difference in the dynamics
of the compartments when comparing the optimal control case and a constant control
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Fig. 7 Optimal control and corresponding states for the combined objective functional with disease burden
compared to the no control case and a constant control with the above parameters, corresponding to the
results in Table 8

Table 9 Results of combined objective functional with disease burden with time horizon of 60 days and
Ab = 1, B = 40, C = 0.0464, vmax = 0.16, βI = 2.64e − 6, βW = 1.21e − 5, γ = 0.05, S(0) = 9700,
I (0) = 300, R(0) = 0, and W (0) = 300

No Control Comb. OC v ≡ 0.13

Disease burden cost Jb(v) 47,933 10,576 11,658

Intervention costs Jc(v) 0 479 477

Total cost Jb(v) + Jc(v) 47,933 11,055 12,135

Max number of infected 1069 363 376

Number of deaths 24 5 6

Number of vaccinations 0 9460 9422

The R0 for this simulation is 2.9

of 0.13. The two controls result in similar intervention costs but have 10% difference
in the overall combined cost.
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Fig. 8 Optimal control and states for the combined objective functional with burden compared to a constant
control with the same intervention cost and the no control case, corresponding to results in Table 9
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