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Abstract: In recent years, wearable systems based on inertial sensors opened new perspectives
for functional motor assessment with respect to the gold standard motion capture systems. The
aim of this study was to validate an experimental set-up based on 17 body-worn inertial sensors
(Awinda, Xsens, The Netherlands), addressing specific body segments with respect to the state-of-the
art system (VICON, Oxford Metrics Ltd., Oxford, UK) to assess upper limb kinematics in obese,
with respect to healthy subjects. Twenty-three obese and thirty healthy weight individuals were
simultaneously acquainted with the two systems across a set of three tasks for upper limbs (i.e.,
frontal arm rise, lateral arm rise, and reaching). Root Mean Square error (RMSE) was computed to
quantify the differences between the measurements provided by the systems in terms of range of
motion (ROM), whilst their agreement was assessed via Pearson’s correlation coefficient (PCC) and
Bland–Altman (BA) plots. In addition, the signal waveforms were compared via one-dimensional
statistical parametrical mapping (SPM) based on a paired t-test and a two-way ANOVA was applied
on ROMs. The overall results partially confirmed the correlation and the agreement between the
two systems, reporting only a moderate correlation for shoulder principal rotation angle in each task
(r~0.40) and for elbow/flexion extension in obese subjects (r = 0.66), whilst no correlation was found
for most non-principal rotation angles (r < 0.40). Across the performed tasks, an average RMSE of 34◦

and 26◦ was reported in obese and healthy controls, respectively. At the current state, the presence
of bias limits the applicability of the inertial-based system in clinics; further research is intended in
this context.

Keywords: obesity; functional assessment; upper limbs; IMU

1. Introduction

Obesity is a chronic disease associated with several comorbidities such as non-alcoholic
fatty liver, cardiovascular diseases, diabetes mellitus, chronic kidney disease, mental disor-
ders, and musculoskeletal diseases [1–3].

From a biomechanical point of view, excessive accumulation of fat tissue may lead
to increased axial loading on the spine and compressive forces on joints, causing alter-
ations in body geometry and aberrant motion patterns, reduced joint range of motion
(ROM), as well as to reduced postural control and stability, increasing the risk of falls and
injuries [4], and the development of musculoskeletal diseases such as osteoarthritis [5].
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Obesity thus hinders motor control and skills, negatively impacting daily life activities,
such as walking [6], lumbopelvic movements [7,8], sit-to-stand transition [9,10], and upper
limb movements [11,12].

Weight loss through controlled food intake and physical exercise may improve the
quality of life of obese individuals [13]. However, they may be reluctant to exercise due
to chronic joint pain and early fatigue [4]. For these reasons, obese individuals often
struggle to change their lifestyle and they have the tendency to avoid physical activity, thus
aggravating their condition [14]. Due to the wide range of functional limitations caused by
obesity, it is important to safely and reliably quantify their impact to prevent further issues.

Motor assessment in obese has been primarily focused on gait analysis performed
with marker-based optoelectronic motion capture (MoCap) systems within a controlled
laboratory set-up [15]. Differences in terms of spatio-temporal parameters between obese
and normal-weight individuals have been found, even though results are often inconsis-
tent among different studies, mainly due to the use of dissimilar experimental protocols
and the subjects’ characteristics. Regarding lower limb kinematics, the effect of body fat
accumulation has been investigated also in functional tasks such as sit-to-stand [10] and
stair climbing and descending [16], to detect possible adaptation strategies to avoid joint
pain [17–19]. With respect to trunk motion, the increased axial load on the spine causes
an increase in abdominal girth and a ventral shift of the center of gravity, resulting in a
loss of the neutral position. As a result, thorax is ventral to the pelvis, thus increasing the
forces experienced by the spine causing aberrant trunk kinematics during flexion, bending,
and rotation [20,21], and static load-handling tasks [7]. Concerning upper limbs, different
motion strategies during reaching tasks have been observed in obese patients [22] with
respect to normal-weight subjects, and reduced upper limb range of motion has been
measured in obese female workers during representative motion of common occupational
tasks [23].

In the last decade, wearable sensors based on inertial measurement units (IMUs) have
also been applied in motion analysis research on obese subjects, both in inpatient assessment
and in daily living activity monitoring. IMUs are stand-alone devices integrating micro-
electromechanical systems (MEMS) based on different tri-axial sensors (i.e., accelerometer,
gyroscope, and magnetometer) to provide orientation data with respect to a local reference
system. Therefore, IMUs can address different body segments to generally enable—through
a proper sensor-to-segment calibration—a direct determination of body kinematics [24–26].
IMU-based systems are inexpensive, portable, lightweight, easy to wear and set up, and
they do not require either the use of cameras or complex laboratory settings, enabling
motor assessment in unconstrained environments and in daily-life contexts [27–30].

IMU-based gait analysis in obese individuals has been performed in several studies,
although with different set-ups and protocols for sensors’ placement. For instance, Cimolin
et al. [31] used the information retrieved from a single IMU placed on the lower back to
compare the performance of specifically designed shoes for obese subjects with everyday
sneakers in terms of spatiotemporal parameters during the 6 min walking test (6MWT)
and a 30 min outdoor gait test. The use of complex systems based on multiple sensors has
also been explored. For instance, a seven-IMU set-up has been validated against multiple
systems consisting of six-foot switches and electro-goniometers [32] and then applied to
compare gait characteristics in terms of spatiotemporal parameters and lower limb joint
kinematics of obese and normal weight subjects during a 14 m straight walk [33]. Seven
IMUs have been used also by Meng et al. [34] to measure gait features and investigate the
possible relationship between body fat and gait features in normal weight, overweight, and
obese subjects. A 200 m straight walking was performed, and sensors were placed on the
sacrum and, bilaterally, on the front of the thighs, the shanks, and the dorsal surface of the
feet. On the other hand, there is little research concerning upper-limb movements in obese
individuals [15]. Nevertheless, promising results have been reported by various studies on
healthy individuals in estimating upper body joint angles using IMUs.
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Shoulder motion is the result of the contribution of five different joints, including
scapulothoracic, humerothoracic, and glenohumeral joints. With respect to scapulothoracic
and humerothoracic kinematics, Cutti et al. [35] compared IMU data with optoelectronic mo-
tion data while evaluating scapulothoracic during different single-joint-angle movements.
For both joints, an RMSE of between 0.2◦ and 3.2◦ was obtained. The same procedure
for calculating scapulothoracic joint angles was adopted by Parel et al. [36] when track-
ing scapular motion during shoulder flexion and abduction. Although higher than those
reported by Cutti et al. [35], the RMSE values are in line with those achieved by Friesen
et al. [37] during the execution of eight different dynamic tests, confirming the consistency
of the movement patterns between IMUs and MoCap. With respect to glenohumeral joint,
the highest accuracy was reported by Robert-Lachaine et al. [38] when comparing the data
recorded by a full-body IMU system and by a MoCap during short movements and long
handling tasks, with an RMSE below 3◦ and 5◦, respectively.

Concerning elbow motion, various studies assessed the agreement between IMU and
MoCap measurements during elbow flexion/extension and pronation/supination [39]. For
both movements, an RMSE lower than 5◦ was reported, not only during the execution of
short movements [35], but also during more complex daily-life tasks as pick-and-place and
drinking [40].

Although various systems using body-worn sensors to measure body kinematics
showed a good concurrent validity with respect to the gold standard, and their usage has
become widespread, their accuracy and reliability need to be further evaluated. In fact,
several validation studies have been conducted regarding IMUs in different clinical set-
tings [41], but error quantification differs among studies due to different sensor designs [42],
and lack of standardized protocols [43].

Despite the advantages offered by IMU-based set-ups, their use is thus not free from
concern. First, it should be noticed that non-invasive and skin-mounted technological
solutions may be vulnerable to soft tissue artifacts (STA) [44], particularly when considering
obese individuals. Since IMUs are usually fixed with elastic bands, the motion of the
underlying soft tissues between the sensor and the bone may cause a relative bone-sensor
motion leading to inaccuracies in the estimation of rigid body poses and kinematics [45].
In addition, kinematic crosstalk may happen and introduce an error in the definition of
the local reference frame of the body segment, thus affecting IMU measurement. These
drawbacks are particularly crucial when obese subjects are considered due to their abnormal
amount of fat tissue.

Despite the evidence of upper limb functional limitations in obesity, to the best of our
knowledge, just a few previous studies addressed upper body motion in such conditions
using IMUs. Indeed, we hypothesized that—in this specific context—the use of wearable
IMUs allows for the non-invasive analysis of upper limb function in obese subjects, also
considering a possible application in unsupervised environments. Therefore, the aim of
this study was to validate an experimental set-up based on IMUs for upper body motion
analysis in obese patients compared with respect to healthy subjects; furthermore, we
aimed to evaluate the upper limb functional limitations in this kind of obese patient.

To date, various studies investigated the application of inertial-based systems to
movement analysis in obese population, trying to address the presented drawbacks.

2. Materials and Methods
2.1. Participants

Two cohorts were enrolled on a voluntary basis. The first group included twenty-three
obese individuals (Obese Group, OG) recruited among the patients following a 4-week
multidisciplinary bodyweight reduction rehabilitation program at San Giuseppe Hospital
(IRCCS Istituto Auxologico Italiano, Piancavallo, Italy), whilst the second group included
thirty healthy weight individuals (Healthy Weight Group, HG). Inclusion criteria were
the following: age ≥ 18 years; BMI: 20–25 kg/m2 for HG and >30 kg/m2 for OG; and
the absence of neurological or musculoskeletal conditions affecting motor function and
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patterns. The study was approved by the Ethical Committee and carried out in accordance
with the ethical standards of the Institutions and to 1964 Helsinki Declaration and its latest
amendments. Written informed consent was obtained from all participants. The study took
place from November 2021 to December 2022 and it involved simultaneous data collection
with an optoelectronic marker-based motion capture system and an IMU-based system
across a set of tasks for upper limbs.

2.2. Experimental Set-Up and Study Design

Optical data collection was performed with two MoCap systems. The OG was acquired
at San Giuseppe Hospital using a 6-camera system (VICON, Oxford Metrics Ltd., Oxford,
UK; sample frequency: 100 Hz), whilst the HG was acquired at Politecnico di Milano via an
8-camera system (SMART-DX400, BTS Bioengineering SPA, Milan, Italy; sample frequency:
100 Hz). Participants’ anthropometrics (i.e., height, weight, distance between acromion
and shoulder joint center, elbow width, wrist width, distance between anterior iliac spines,
pelvis thickness, leg length, knee width, and ankle width) were measured. In both the
set-ups; we used the very same marker-set, which included the use of 65 spherical reflective
markers (Ø = 10–15 mm) that were attached over the anatomical landmarks of each subject
according to a modified version of the plug-in gait full-body [46,47], and specific 3D-printed
clusters.

Anatomical landmarks were manually identified by palpation as regions of reduced
tissue thickness between bone and skin. Thirty markers were placed on the junction be-
tween the clavicles, sternum, 7th cervical vertebrae, 10th thoracic vertebrae, and bilaterally
on the acromion, lateral and medial humeral condyle, laterally and medially on the wrist,
lateral and medial femoral epicondyle, lateral malleolus, calcaneus and foot (corresponding
to the 1st and 5th metatarsal heads). Eight 3D-printed 4-marker clusters were attached
with elastic bands to the subject’s arm, forearm, thigh, and shank on both sides, whilst a
3-marker cluster was placed on the sacrum.

The proposed adjustments with respect to the standard plug-in gait models were made
to attempt to reduce the STA and their related errors in the estimation of the biomechanical
quantities [45]. The clusters were introduced to define a technical reference system for
each segment to reduce STA-affecting markers individually placed over the body surface
and to reconstruct the model in case some markers were lost during the motion capture
process. In addition, the markers on the anterior superior iliac crests were not physically
placed on participants’ body to avoid their shift from the ideal position, that could have
occurred specially in obese individuals due to the high amount of abdominal fat. Instead,
such landmarks were manually identified by an expert operator and pointed out in an
additional static acquisition that was used to reconstruct their position afterwards.

Inertial measurements were collected with a 17-IMU system (Awinda, Xsens Technolo-
gies, Enschede, The Netherlands). Each IMU integrates a 3D accelerometer, a 3D gyroscope,
and a 3D magnetometer and it addresses a specific body segment according to its ID and
manufacturer’s guidelines. To reduce artifacts due to the use of clothing, double-sided tape
was used to attach the IMUs on sternum, scapulae, feet, hands, and forehead, whilst IMUs
on sacrum, upper and lower limbs were allocated in a specifically designed slot in each
3D-printed cluster fixed with an elastic band. Each participant was asked to move the arm
and the tightness of the band was regulated to limit relative motion between the structure
and the skin as much as possible.

Specific anthropometrics (i.e., height, shoulder width, elbow span, wrist span, arm
span, distance between anterior iliac spines, hip height, knee height, ankle height and foot
length) were required by the motion tracking system to perform a two-phase sensor-to-
segment calibration. Through the dedicated software (MVN Analyze software, v. 2023.0), a
3D virtual space was created to visualize the movement of an avatar moving according to
the subject equipped with the IMUs. The first calibration step required the subject to stand
still in an N-pose to define the relationship between each IMU and segment orientation,
whilst the second step required a dynamic acquisition, during which the subject was
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asked to walk back and forth for 5-to-10 m. Although the experimental protocols were
implemented for full-body analysis, in this specific study, for both the optoelectronic
systems and the IMU-based one, we focused the evaluation only on upper limbs.

A set of three tasks targeting upper limb motions were performed by each participant,
simultaneously equipped with the IMUs and the marker set (Figure 1). Starting from a
seated position and with arms along the sides (i.e., N-pose), the participants were asked to
perform the following gestures:

• Frontal rise of the arm: Six maximal frontal rises of the arm.
• Lateral rise: Six maximal lateral rises of the arm.
• Reaching: A target (i.e., a reflective marker) was mounted on the top of a tripod that

was placed at the maximum height that the subject could reach at a horizonal distance
corresponding to 80% of the subject’s arm length. Starting from the N-pose, each
subject was asked to reach the target for six times in their most natural way. The Range
of Motion (ROM) of both the shoulder and the elbow was approximately the same
throughout the task [48], and no forearm rotation was either required or noticed.
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Figure 1. A subject (HG) equipped with the marker set and the inertial system.

Each task was performed twice at the subject’s self-selected speed. Frontal and lateral
rises were performed bilaterally, whilst the reaching task was performed only with the
dominant upper limb. For the obese subjects, more prone to fatigue, we tried to guarantee
their overall comfort and safety throughout the tests.

2.3. Data Analysis and Processing

Raw optical data were processed with SmartTracker (BTS Bioengineering, Milan, Italy)
and Nexus (VICON, Oxford Metrics Ltd., Oxford, UK), respectively, and then by custom
routines implemented in Matlab (version R2022b, The MathWorks Inc., Natick, MA, USA).
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Each 3D marker coordinate of the static acquisition was linearly interpolated and filtered
with a zero-phase fourth-order low-pass Butterworth filter with a 1 Hz cut-off frequency.
Local reference system, relative roto-translation matrix, and joint centers were defined for
thorax, shoulders, elbow, wrists, and hands. The same interpolation and filtering methods
were applied to 3D coordinates of the marker of the dynamic trials. Starting from the 3D
coordinates in the global reference frame, the 3D coordinates in the local reference frame,
the joint centers, and the rotation matrices were defined for each joint and transformed into
their quaternion representation. Joint angles were then computed as the product between
the conjugate and the proximal and the distal joint quaternion and expressed in terms of
flexion/extension, adduction/abduction and internal/external rotation via an algorithm
based on Euler angles. The ZXY axis rotation sequence was adopted for elbow angles in
all tasks. Conversely, shoulder angles were computed using the YXY rotation sequence in
frontal rise and reaching tasks, whilst the XZY axis sequence was adopted in the lateral
rise. Finally, the so-computed angles were filtered with a zero-phase fourth-order low-pass
Butterworth filter with a 1 Hz cut off frequency.

All the data acquired via the IMU-based system were exported via MVN Analyze
Software and processed in Matlab. The anatomical frame of each sensor was retrieved from
the recordings and joint angles were computed using the same axis rotation sequences and
filtering approach as the optoelectronic data.

For each task, the performed repetitions were identified by detecting the position of
the maximum and minimum values of the angle in each curve, focusing on the principal
rotation angle involved in each movement (e.g., flexion angle in flexion movement); the
first and the last repetitions were removed to avoid irrelevant variability. The ROM
was computed by averaging the difference in degrees (◦) between the maximum and the
minimum reached during each repetition. All signals were detrended and resampled in
time on a 0–100% range.

2.4. Statistical Analysis

ROM data were checked for normality via the Lilliefors test. Since a normal data
distribution was confirmed for both groups, the variables were reported in terms of mean
and standard deviation.

The comparison between the ROMs retrieved from MoCap and inertial system was
performed in terms of accuracy and Root Mean Square Error (RMSE), which were computed
according to Equation (1) and Equation (2), respectively:

Accuracy =
ROMIMU − ROMMoCap

ROMMoCap
∗ 100 (1)

RMSE =

√√√√ n

∑
i=1

(ŷi − yi)
2

n
=

√√√√ n

∑
i=1

e2
i

n
(2)

In Equation (2), ŷi, . . ., ŷn are the ROMs computed from the MoCap, y1, . . ., yn are
the ROMs computed from the IMU (thus, ei,. . ., en are the errors), and n is the number of
observations (i.e., number of participants).

On the ROMs, Pearson’s correlation coefficient (r) was computed to describe the
agreement between the two systems. In addition, the level of agreement (LoA) between the
measurements was graphically assessed via Bland–Altman (BA) plots.

Finally, a two-way ANOVA test was applied on ROMs considering “patient” (OG or
HG) and “system” (MoCap or IMU) as factors. Whenever significant, multiple compar-
isons with Bonferroni correction were performed to highlight if the presence of a possible
functional limitation in the motor pattern was detected by both systems.

In addition, the waveforms of the signals were compared via a one-dimensional
statistical parametric mapping (SPM) based on a paired t-test.
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3. Results

The demographic characteristics of the involved populations are reported in Table 1.

Table 1. Mean anthropometric and clinical features of participants. Values are expressed as mean (SD).

Obese Group (OG) Healthy Weight Group (HG)

Participants (M/F) 23 (5/17) 30 (11/15)
Age (years) 46.39 (18.54) 24.76 (2.4)

Body Mass (kg) 112.48 (18.44) 65.66 (9.89)
Height (cm) 163.83 (8.51) 171.38 (8.97)

BMI (kg m−2) 41.63 (4.77) 22.29 (2.27)

A preliminary unpaired t-test was applied to compare right and left ROMs in frontal
and lateral rise. Since no significant difference (p > 0.05) was found, the two sides were
pooled together. Table 2 reports the mean and the standard deviation values, together
with the results of the comparison in terms of ROM and the agreement analysis between
MoCap and IMU-based systems. Since the tasks mainly involved shoulder motion, it was
decided to focus on shoulder joint angles. In the reaching tasks, the elbow’s motion was
also considered.

Table 2. Mean and standard deviation values, accuracy, RMSE and Pearson’s correlation coefficient
values for the joint angles estimated with the two systems divided per group (OG or HG) and task.
‘*’ = p-value < 0.05.

Group Task Joint Movement MoCap (◦) IMU (◦) Accuracy (%) RMSE (◦) r

HG

Frontal rise Shoulder Flexion/Extension 158.81
(21.09)

153.84
(22.87) 3.13 14.01 0.82 *

Lateral rise Shoulder Abduction/Adduction 119.36
(21.28)

141.16
(24.67) 18.26 26.39 0.80 *

Reaching
Shoulder Flexion/Extension 125.29

(9.90)
116.54
(8.87) 6.99 11.50 0.68 *

Elbow Flexion/Extension 60.04
(46.01)

50.06
(32.86) 16.62 30.67 0.77 *

OG

Frontal rise Shoulder Flexion/Extension 142.25
(29.73)

138.77
(29.21) 7.66 22.9 0.40 *

Lateral rise Shoulder Abduction/Adduction 99.91
(25.54)

129.19
(34.43) 28.31 42.90 0.43 *

Reaching
Shoulder Flexion/Extension 101.34

(22.95)
87.05

(23.43) 14.10 28.71 0.40 *

Elbow Flexion/Extension 61.30
(37.27)

45.13
(20.66) 26.38 32.11 0.66 *

Regarding HG, the ROM values appear to be coherent between the two systems
for shoulder and elbow flexion/extension, whilst a difference of about 20◦ can be ob-
served for shoulder abduction/adduction. Strong correlations were found for shoulder
flexion/extension in the frontal lift, for elbow flexion/extension during the reaching, and
for shoulder abduction/adduction in the lateral lift. Concerning the obese group, the
ROM values show a mean difference of about 19◦ between the two systems. Pearson’s
correlation coefficient values (r) range between 0.40 and 0.66, so only moderate correlations
were found.

The results of the two-way ANOVA are reported in Table 3. In all tasks, statistically
significant differences were found between the shoulder ROM of the two groups, whilst no
differences were found in elbow flexion/extension. Multiple comparisons with Bonferroni
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correction (Table 4) report that the inertial system was not able to detect a significant
difference between groups in shoulder abduction/adduction in the lateral lift as the MoCap.
For the other variables, the results indicate agreement between the two systems.

Table 3. Results of the two-way ANOVA. “Patient” (HG or OG) and “system” (MoCap or IMU) were
set as factors. The analysis was performed only on the principal angles of each movement.

Task Movement Factors p-Value

Frontal Lift Shoulder Flexion/Extension

Patient <0.001

System 0.275

Patient: system 0.847

Lateral Lift
Shoulder

Abduction/Adduction

Patient <0.001

System <0.001

Patient: system 0.413

Reaching

Shoulder Flexion/Extension

Patient <0.001

System 0.001

Patient: system 0.432

Elbow Flexion/Extension

Patient 0.803

System 0.078

Patient: system 0.674

Table 4. Results of the multiple comparisons with Bonferroni correction.

Task Movement Group A Group B p-Value

Frontal Lift
Shoulder

Flexion/Extension
HG-MoCap OG-MoCap 0.017

HG-IMU OG-IMU 0.038

Lateral Lift
Shoulder

Abduction/Adduction
HG-MoCap OG-MoCap 0.004

HG-IMU OG-IMU 0.129

Reaching
Shoulder

Flexion/Extension
HG-MoCap OG-MoCap < 0.001

HG-IMU OG-IMU < 0.001

Bland–Altman plots for all the estimated variables are reported in Figure 2. Bland–
Altman analysis is a graphical method to evaluate the agreement between two paired values
and to verify where the 95% difference falls. In each plot, the horizontal lines represent the
mean difference and the LoA, defined as the mean difference ± 1.96× standard deviations.
The differences between the two paired values are reported as y-values whilst their averages
are displayed as x-values. In the current analysis, a globally good association between the
measurements of the two systems for both groups could be observed, despite the presence
of some bias. In fact, BA plots for principal angles of each task reported the presence of
a bias for both groups. The lowest biases were obtained for shoulder flexion-extension
in frontal rise (HG: −4.967◦, OG: −3.477◦), whilst the highest values were reported for
shoulder abduction/adduction in lateral rise (HG: 21.79◦, OG: 28.28◦). All BA plots had
wide limits of agreement, especially for the obese group.
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Figure 2. Bland-Altman plots of the average value of ROM retrieved from the MoCap and the inertial
system plotted against the difference between the two systems for each group and motor task. Only
BA plots for the principal rotations of each task are reported.

The results of SPM waveform analysis are displayed in Figures 3 and 4 for healthy
weight and obese groups, respectively. In the healthy weight group, statistically significant
differences were found near the peaks of shoulder angles in all tasks, whilst no signifi-
cant difference was found for elbow flexion/extension in the reaching task. In the obese
group, a statistically significant difference was found only near the peaks of shoulder
abduction/adduction in lateral rise.
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Figure 3. Results of the SPM analysis and the hypothesis test for HG. Thick lines represent the mean
curves, with shaded areas representing the standard deviation. The analysis was performed only
on the principal angles of each movement. (a) SPM analysis (up) and hypothesis test (down) for
shoulder flexion/extension during the frontal rise. (b) SPM analysis (up) and hypothesis test (down)
for shoulder abduction/adduction during the lateral rise. (c) SPM analysis (up) and hypothesis
test (down) during the reaching task. (d) SPM analysis (up) and hypothesis test (down) for elbow
flexion/extension during the reaching task.
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Figure 4. Results of the SPM analysis and the hypothesis test for OG. Thick lines represent the mean
curves, with shaded areas representing the standard deviation. The analysis was performed only
on the principal angles of each movement. (a) SPM analysis (up) and hypothesis test (down) for
shoulder flexion/extension during the frontal rise. (b) SPM analysis (up) and hypothesis test (down)
for shoulder abduction/adduction during the lateral rise. (c) SPM analysis (up) and hypothesis
test (down) during the reaching task. (d) SPM analysis (up) and hypothesis test (down) for elbow
flexion/extension during the reaching task.

4. Discussion

The aim of this study was to validate an IMU-based experimental set-up for the quan-
titative measurement of upper limb kinematics in obese subjects, to compare it with respect
to the gold standard implemented using an optoelectronic system and also considering
healthy weight subjects as control group; furthermore, the study aimed to identify any
possible functional limitations in obese subjects compared to healthy subjects and evaluate
whether the IMU-based approach was able to discriminate these differences.

Focusing on ROMs, the comparison between MoCap and IMU-based systems reported
a moderate-to-strong correlation for shoulder principal rotation angle in each task and
for elbow flexion/extension in reaching task in healthy subjects, whilst only a moderate
correlation was found in obese individuals. In both groups, no correlation or only a
moderate correlation was reported for non-principal joint rotation angles.
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Concerning the agreement analysis, BA plots for the principal angles of each task
reported the presence of a bias for both groups, higher in OG; in addition, BA plots
presented wide limits of agreement, especially for the obese group. Similar results on
healthy-weight individuals were reported by Henschke et al. [49] who obtained a consid-
erable bias and wide limits of agreement in shoulder abduction/adduction and shoulder
flexion/extension when comparing MoCap and IMU measurements. The same issues were
also reported by Bravi et al. [50] when comparing IMU and goniometric measurements
of shoulder flexion/extension and abduction/adduction in both healthy individuals and
patients with cervical spinal cord injury; however, these similarities should be taken with
caution due to the differences in both experimental set-up and study population. Regarding
the estimation shoulder abduction/adduction, errors may arise from STA. In fact, when
the shoulder abducts, the scapula can glide over 10cm beneath the skin, displacing the
sensor on the scapular bone and thus introducing measurement errors [39,51]. The risk
of unwanted sensor displacement is higher in individuals with obesity, who have more
adipose tissue that may affect the scapula movements. It should also be noted that the
accuracy and consistency of joint movement estimates using IMUs are influenced by task
complexity, which can impact the variability of out-of-plane shoulder joint angles, such as
abduction/adduction [39,52].

With respect to waveform analysis, SPM highlighted a similar trend between the mea-
surements obtained with the MoCap and the IMU-based system in the healthy weight group.
On the other hand, statistically significant differences were found at either the maximum
or the minimum values of shoulder angle in each task. Conversely, statistically significant
differences were found only at positive and negative shoulder abduction/adduction peaks
in lateral rise for the obese group. However, it is worth noting that further differences
might be disguised to some extent by the high dispersion of the data, as highlighted by
the standard deviation values. Concerning elbow flexion/extension angle during reaching,
no differences were found in any group. Similar results have been reported by Goreham
et al. [53] for upper limb motion in healthy subjects; in this study, the authors hypothesized
that waveform differences could be due to kinematic cross-talk, as well as to gimbal lock,
and skin motion artefacts. Regarding cross-talk, according to the literature, IMU-based
joint-angle measurement accuracy depends not just on the specific joint under and the
motion task, but also on the employed IMU data processing [54]. According to a recent
literature review [39], the most precise IMU-based joint angles are obtained by exploiting
kinematic constraints on gyroscope data to refine joint axis definitions. Together with
a magnetometer-free sensor fusion algorithm, this approach yielded an RMSE between
IMU and MoCap below 2◦ during elbow flexion/extension [40]. In the current study, the
XSens MVN model was used to calculate IMU angles. During elbow flexion/extension,
the RMSE values were comparable to those reported by Humadi et al. [55], who used the
same model. It can be hypothesized that such a model may not be able to effectively offset
the technological error. However, it is also important to acknowledge that despite the
attempt to reduce skin motion and soft tissue artefacts by using rigid structures and elastic
bands for sensor attachment on subjects, their effect cannot be disregarded, particularly in
individuals with obesity. During the reaching task, the presence of the cluster on the arm
could have influenced the movement and thus the angle estimation.

Shifting our focus on the clinical importance of the presented approach, the comparison
of the angular outputs between healthy weight and obese subjects demonstrated a possible
functional limitation in obese subjects. In shoulder flexion/extension in frontal rise and
reaching, and in shoulder abduction/adduction in lateral rise, the ROMs of the obese
group were lower than the healthy weight group. Interestingly, the inertial system did not
detect differences in shoulder abduction/adduction angles, confirming its lower ability to
discriminate with respect to the MoCap system in terms of clinical relevance; no statistically
significant differences were found for elbow flexion/extension for IMU. Concerning arm
ROM, similar results have been reported by Cau et al. [23] when comparing the ROMs of
upper limbs in obese and healthy weight women during several movements mimicking
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some basic occupational tasks; the authors found a statistically significant difference for
arm elevation ROMs in frontal and lateral rise, where ROMs in obese group presented
lower values than what obtained in the healthy weight group. However, it is necessary to
underline that a different protocol was used for marker placement and angle computation,
so caution should be taken when making comparisons.

The main limitations of this study can be related both to the chosen experimental and
the analytical approach. It should be noted that due to the complexity of shoulder joint, it
is not easy to uniquely estimate its rotation angles. To compute shoulder angles, rotation
matrices were computed according to the MVM model provided by the manufacturer,
presenting its own degrees of freedom and functional constraints. The adoption of such
a model may have resulted in an underestimation of the actual shoulder joint rotation
angles [38]. In addition, as previously stated, only the four central repetitions out of the 6
performed were considered for the analysis of each task. Although this choice reduced the
variability in performing the gesture, it was difficult for the subjects to return to the exact
same position at the end of each repetition, resulting in the following repetition starting
from a different position. Unfortunately, it was not also possible to assess the repeatability
of the measurements, since obese patients became easily tired during the tests and we had
to guarantee their overall comfort and safety.

Apart from BMI, it should also be considered that the comparison between obese
and healthy weight individuals was conducted on two non-age-matched groups, and
this discrepancy is due to the availability of patients in the hospital during the testing
period. Although there is evidence that individuals with high BMI present reduced joint
mobility [56], it should also be noted that age can also affect the true joint mobility and
increase skin looseness [57–59], and thus increase the presence of STA. In addition, fat
distribution can also vary between genders and thus affect body morphometry [60], and
influence mobility.

Other limitations could be related to the performed analysis that was restricted only to
the shoulder and elbow principal angles and to a very limited set of functional tasks. In fact,
frontal and lateral rises are simple motions that develop only on the sagittal and frontal
plane, respectively, whilst reaching was performed only at a fixed height and distance of the
object. The investigation of movements in daily-life activities would represent an important
step toward the validation of inertial sensors for upper limb kinematics assessment and its
usage in several applications. In addition, the extension of the analysis to the estimation of
body segments’ velocity and acceleration would be interesting to have a more complete
evaluation of the motion. Furthermore, the development of modelling techniques to reduce
the impacts of skin motion and soft tissue artefacts might also improve the applicability on
obese subjects.

Finally, further studies with a higher number of participants, matched for age and sex,
would make it possible to increase the knowledge about upper-limb functional limitations
in an obese population.

5. Conclusions

Upper-limb motion analysis is crucial for identifying potential function limitations
and monitoring the progress of rehabilitation treatments. IMUs represent a promising
solution with several advantages over traditional MoCap systems, such as the ability
to monitor patients in real-life contexts while preserving the ecological validity of their
movements. The results of this study partly validated the correlation and concordance
between the assessed IMU-based system and the MoCap system, regarding the estimation
of shoulder and elbow principal angles in the explored motor tasks. According to the results,
the presence of bias and wide limits of agreement may not allow the use of the inertial
system in clinical evaluations, where accuracy is critical for identifying clinically relevant
thresholds. Furthermore, the IMU-based system demonstrated poorer performance in
identifying functional limitations in the obese participants while executing the assigned
motor tasks. Despite the presented limitations, it should be noticed that, to the best of our
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knowledge, this research is one of the first studies assessing the performance of IMU-based
system in estimating upper joint angles. Further research is necessary to improve the quality
of IMU-based measurements and increase the knowledge of possible alterations of motion
patterns in obese individuals. For instance, future studies should enhance functional joint
axis calibrations, and assess other configurations for the placement of the sensors to better
mitigate and reduce STA, particularly at the scapular level. Further research is also required
to develop more standardized modelling approaches and data-driven methods for IMU to
joint-angle conversion to decrease cross-talk and technological errors. Once the concerns
are addressed, implementing an IMU-based set-up would enable the evaluation of upper
limb movements in unconstrained environments and in daily-life contexts and also help to
monitor and quantify the effects of rehabilitative treatments in outpatient settings.
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