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Abstract: Sounding rockets constitute a class of rocket with a generally simple layout, being com-
posed of a cylindrical center-body, a nosecone, a number of fins placed symmetrically around the
longitudinal axis (usually three or four), and possibly a boat-tail. This type of flying craft is typically
not actively controlled; instead, a passive stabilization effect is obtained through suitable positioning
and sizing of the fins. Therefore, in the context of dynamic performance analysis, the margin of static
stability is an index of primary interest. However, the classical approach to static stability analysis,
which consists in splitting computations in two decoupled domains, namely, around the pitch and
yaw axis, provides a very limited insight to the missile performance for this type of vehicle due to the
violation of the classical assumptions of planar symmetry and symmetric flight conditions commonly
adopted for winged aircraft. To tackle this issue, this paper introduces a method for analyzing static
stability through a novel index, capable of more generally assessing the level of static stability for
sounding rockets, exploiting the same information on aerodynamic coefficients typically required for
more usual (i.e., decoupled) static stability analyses, and suggests a way to assess the validity and
shortcoming of the method in each case at hand.

Keywords: static stability; stability index; stability performance; stability assessment; compound
stability index; axial symmetric body; slender body; sounding rocket; aerodynamics; flight dynamics;
characterization; design

1. Introduction

Sounding rockets constitute a class of rockets often employed to carry out scientific
observations and perform experiments in the higher layers of the atmosphere, or when ex-
periencing a field of motion featuring high acceleration intensity is of interest (for example,
for testing novel sensors). Their layout is usually simple, being composed of a cylindrical
center-body, a nosecone, a number of fins placed symmetrically around the longitudinal
axis (usually three or four), and possibly a boat-tail. Fins are usually sized to achieve certain
performances in terms of passive stabilization. An object is considered passively stabilized
if it does not present any control system that modifies its stability or trajectory during flight.
Whenever an angle of attack develops during the flight of the rocket, the fins on the back
generate a force responsible for the stabilizing moment, contributing to the balance around
the center of mass. Another way to achieve passive stabilization is through the gyroscopic
effect by making the object spin around its lower moment of inertia axis, a technique used
in the majority of firearm projectiles that is beyond the scope of this paper. When it comes
to assessing the level of stability, most of the existing literature concentrates on the results
obtained from a standard analysis, usually carried out according to methods originally
developed for winged aircraft.

The definition of longitudinal and directional static stability, typically introduced for
flying bodies featuring a vertical plane of symmetry (i.e., most winged aircraft) [1–3], has
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been applied to rockets in papers and books. For example, Fleeman [4] explains how the
usual static stability criterion based on a sign constraint applied to a stability derivative
(recalled in Section 2 in this text) holds also for missiles. Several practical applications [5–7]
instead take advantage of Barrowman’s formulation [8] to compute the center of pressure
position, as well as the static stability margin, through a specific procedure. However, none
of them takes into account lateral-directional stability explicitly.

Even when actively controlled missiles are of interest, the investigation of control laws
to enhance the level of static (or dynamic) stability is typically carried out by splitting the
longitudinal and lateral-directional domains and considering them as uncoupled [9,10].

This approach to static stability analysis is intrinsically limited in scope, since it
neglects the change in the overall setup of aerodynamic forces and moments on the body
due to the actual direction of the perturbation.

Another assumption often made is that there is no relation between the components
of the aerodynamic moment and the aerodynamic angles defined with respect to two
different planes [11], or in analytic terms, the stability derivatives of the pitching moment
with respect to side-slip (cmCGβ

) and of the yawing moment with respect to the angle of
attack (cnCGα

) are considered null. Though this assumption is justified for a classically
configured winged aircraft, it is not necessarily verified for the geometry and flight charac-
teristics of rockets instead. The adoption of that hypothesis affects how well the two usual
static margins (i.e., longitudinal and directional) alone are capable of describing the static
stability qualities.

Therefore, for the rockets which are the subject of this study, static stability indices are
parameters of great relevance, both for prediction at the design stage and for verification in
the field. In fact, only a configuration offering an acceptable level of static stability on its
own (i.e., without stability-augmentation systems) can be adopted for a successful sounding
rocket flight. In this context, the employment of the traditional decoupled analysis to the
typical configuration of sounding rockets (i.e., cylindrical center body, nosecone, and fins
placed symmetrically around the longitudinal axis) can lead to misleading, and sometimes
even dangerous, results. A given configuration could be predicted as either stable or
unstable by simply changing the reference frame in which the computations are performed.
Moreover, the presence of numerical singularities when evaluating specific flight conditions,
as will be investigated in Section 2, proves the classical formulation to be unreliable in a
generic flight condition.

Section 2 presents the classical static stability analysis theory and how it is applied to
rockets, in particular, highlighting its limits and shortcomings when applied to passively
stabilized rockets. The cases of a three- and four-finned rocket, based on a test-bed geometry,
will be analyzed. In Section 3, we provide and justify the equations to compute the new
compounded stability index, as well as suggesting a way to determine the validity of that
index in each case considered.

Section 4 shows the numerical results of both the new and the classical methodologies
in a realistic test case. Finally, the static stability analysis method proposed herein was
successfully applied to the design of a sounding rocket test-bed in the field, called Gemini.
Details of this application are discussed in Section 5. The conclusions are then presented in
Section 6.

The evaluation of aerodynamic quantities required for assigning a virtual model of the
rocket was carried out through Missile DATCOM 97 [12,13], and the results cross-checked
through CFD simulations, as shown in Appendix A.

2. Classical Static Stability Analysis Applied to Missiles

In the literature dedicated to flight dynamics, when it comes to evaluating the static
stability of an aircraft, it is typical to discuss the levels of longitudinal and lateral-directional
static stability [2,3]. An aircraft is said to be statically stable in the longitudinal plane when
the derivative with respect to the angle of attack α of the pitching moment coefficient in the
center of gravity CG, CmCG is negative, yielding the well-known criterion
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cmCGα
< 0. (1)

For a rocket, the longitudinal static margin is an index of the intensity of the system
static response to a perturbation and is defined as SMlon, according to Equation (2)

SMlon =
cmCG

cN
, (2)

where cN is the force coefficient in the direction of the body axis zB, as in Figure 1 (note that
the reference frame and sign conventions are adopted according to the Missile DATCOM
97 user’s manual [12] and may differ from the more standard nomenclature adopted for
winged aircraft).

Figure 1. Rocket body reference frame.

Considering the lateral-directional motion, the aircraft is said to be statically stable
in a directional sense when the derivative of the yawing moment cnCG with respect to the
sideslip angle β is positive, yielding the criterion

cnCGβ
> 0, (3)

and the directional static margin for a rocket is defined correspondingly as

SMdir = − cnCG

cY
, (4)

where cY is a side force coefficient, proportional to the aerodynamic force component along
yB in Figure 1. In Equation (4), a negative sign is included in the definition, so that both the
static margins SMlon and SMdir are positive for a stable condition.

2.1. Limits of the Classical Formulation

This section aims at investigating the limits of the classical formulation for static
stability assessment when it is applied to certain geometries, specifically those with aero-
dynamic surfaces not aligned with any axes of the body reference system, which are of
great relevance for sounding rockets. To ensure a comprehensive analysis, the cases of a
four-finned and a three-finned configuration will both be analyzed.

To introduce the following discussion, consider that a longitudinal stability analysis is
typically employed in the rocket design loop as a component of performance assessment,
and is of particular interest when the rocket is flying in a typical symmetric condition with
a null roll angle ϕ (see Figure 2).
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Figure 2. Two sets of equivalent aerodynamic angles to describe the direction of a perturbation. (a) α

and β. (b) αtot and ϕ.

The left plot in Figure 2 shows the definitions of the angle of attack α and the sideslip
angle β for a missile associated to the body frame (·)B. On the right plot, the same
missile and flight condition are described via a total angle of attack αtot. In the latter case,
the aerodynamic roll angle ϕ has been introduced in association to a plane obtained from
the original body plane normal to yB, rotating it around the longitudinal axis xB, so as to
have the velocity vector lying on the new plane.

Considering now a condition where ϕ ̸= 0 (right plot), it can be observed that in
contrast to a purely symmetric flight case, the lateral-directional dynamics will be directly
involved in the stability analysis when αtot is figuratively perturbed. Therefore, in that case,
considering only the longitudinal behavior may be expected to produce inaccuracies in
estimating the static stability margin.

2.1.1. Four-Finned Rocket

Consider evaluating both the classical static margins in Equations (2) and (4) for a
rocket with four equal fins, arranged in a radial configuration, repeating the analysis for a
varying value of the aerodynamic angle ϕ. The body reference frame is the one considered
in Figure 1.

Figure 3 shows the two static margins as a function of the aerodynamic roll angle ϕ
considering constant values of the total angle of attack αtot and Mach number (αtot = 15◦

and M = 0.1; the aerodynamic coefficients are computed through Missile DATCOM 97 [12]).
These conditions are of interest since they are encountered at launchpad exit with a wind
magnitude at 9 m/s and a launchpad elevation of 90◦.
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Figure 3. Longitudinal and directional static margins as functions of the aerodynamic roll angle ϕ for
a four-finned rocket.

The two static margins feature asymptotes, where the respective force values (and
the corresponding moment) tend to zero. In particular, regarding the longitudinal static
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stability, CN is null at ϕ equal to 90◦ or 270◦, whereas for lateral static stability, CY is null
where ϕ is equal to 0◦ or 180◦.

It should be pointed out that choosing the body reference frame orientation with
respect to the body is not as straightforward as it is for standard winged aircraft due to the
fins being arranged in a radial symmetry. Considering again the same four-finned rocket
and flight condition, Table 1 reports the longitudinal and directional static margins for a
single flight condition, evaluated in different reference systems, where the longitudinal
plane of the body, normal to yB, and the corresponding reference system, is aligned with a
different fin.

Table 1. Longitudinal and directional static margin at αtot = 15◦ with respect to different body
reference frames (reflected by different values of ϕ), each with the zb axis aligned with respect to a
different fin in a four-finned configuration.

Reference Frame SMlon SMdir ϕ

RF1 3.86 −23.56 16◦

RF2 −23.56 3.86 106◦

RF3 3.86 −23.56 196◦

RF4 −23.56 3.86 286◦

As can be expected, from Table 1, it is possible to note that for a four-finned rocket,
the results depend on the actual body reference adopted according to a periodic rule.
In particular, the values of the longitudinal and the directional static margins are repeated
every 90◦.

In order to further interpret these results through the crossed derivatives cmCGβ
and

cnCGα
mentioned in Section 1, it can be reported that for the same four-finned rocket these

quantities are null, in particular, for all the considered body references in Table 1. Therefore,
the longitudinal and directional static margins are not coupled in this configuration.

These derivatives were checked numerically for changing values of β (for cmCGβ
) and α

(for cnCGα
) and are presented in Figure 4, clearly showing their constantly negligible value.
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Figure 4. Cross-derivatives of the aerodynamic pitching and yawing moment of a four-finned rocket
for changing values of the aerodynamic angles.

2.1.2. Three-Finned Rocket

Rockets with three fins exhibit significantly different behavior in terms of symmetry
with respect to the selection of the reference frame where the perturbation is taking place
(which is reflected by a different value of angle ϕ). A configuration featuring three fins
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at a mutual angle of 120◦ is considered in this paragraph. As can be seen from Figure 5,
considering the longitudinal static stability, CN is null at ϕ equal to 85◦ or 275◦, yielding
asymptotes in the static margin, whereas considering the directional stability, CY is null
at ϕ equal to 0◦ or 180◦. Therefore, it can be observed that the classical static margins do
not display a periodic pattern every 120◦, as would be expected from the configuration of
the tail.
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SMdir

Figure 5. Longitudinal and directional static margins as functions of the aerodynamic roll angle ϕ for
a three-finned rocket.

Furthermore, for this rocket configuration, the effect of the choice of the body reference
system influences the static stability margins according to the results reported in Table 2.
Given a flight condition, the static margin shall uniquely determine the static stability of
the rocket without depending on the considered reference frame, as was the case for the
four-finned rocket scenario (see Section 2.1.1). Conversely, from Table 2, the same flight
condition is predicted as either stable or unstable depending only on the orientation of
the body frame, rotated to be aligned with the three fins respectively, while preserving the
longitudinal body axis.

Table 2. Longitudinal and directional static margin at αtot = 15◦ with respect to different reference
frames (reflected by different values of ϕ), each with the zb axis aligned with respect to a different fin
in a three-finned configuration.

Reference Frame SMlon SMdir ϕ

RF1 3.04 −67.45 16◦

RF2 0.40 3.99 136◦

RF3 5.97 2.12 256◦

Comparing Figure 6 to Figure 4 for the four-finned configuration, it can be seen that
for a three-finned configuration the cross-derivative CmCGβ

cannot be neglected. Corre-
spondingly, in this configuration, the two static margins are coupled and, as a consequence,
they fail to accurately predict whether a certain missile layout is actually stable or unstable
in a certain flight condition.
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Figure 6. Cross-derivatives of the aerodynamic pitching and yawing moment of a three-finned rocket
for changing values of the aerodynamic angles.

3. Compounded Static Stability Index

Originally designed for winged aircraft, the classical formulation of static stability
has limitations when applied to axial-symmetric bodies with at least three fins disposed
in a radial fashion, such as the sounding rockets of interest. To address these limitations,
a single static margin is proposed here, rather than the two static margins currently in use,
as shown in Section 2.

To explain the definition of this static margin, consider the usual definition of a body
reference frame, as proposed in Figure 1. For simplicity, assume that the missile (or aircraft)
is flying with a velocity vector aligned with xB. Suppose now a perturbation is introduced
in the direction of the velocity vector, such that a change in αtot, defined in Figure 2, captures
the overall intensity of the perturbation. Considering the front body plane of the aircraft,
normal to xB, it is possible to define a single plane so as to fully contain the perturbed
velocity vector, while being normal to the front plane. This plane is here defined as the
αtot plane. For example, in Figure 7 the front body plane normal to xB is shown with the
corresponding cross-section of an example three-finned missile. The dashed line marks the
plane normal to the front body plane and containing the velocity vector, i.e., the αtot plane.

,tot plane

Fy

Fz Fk

F?

?

(a)

,tot plane

My

Mz

Mk

M?

?

(b)
Figure 7. (a) Rotated forces; (b) rotated moments.
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Furthermore, the two plots on Figure 7 show the decomposition of the aerodynamic
force and moments ensuing from a velocity vector misaligned with respect to xB, both
with respect to the body reference axes (blue) and to a rotated reference (red). The latter,
indicated as (·)R, shares the first axis with the original body reference so that xB ≡ xR,
whereas axes yR and zR are defined in the αtot plane and normal to it, respectively. This
can be equivalently described by defining the new (·)R reference as rotated by an angle ϕ
around xB with respect to the original body reference.

Analytically, it is possible to define the planar rotation through which the original and
rotated body references are connected as

R =

[
cos ϕ − sin ϕ
sin ϕ cos ϕ

]
, (5)

whereas the application of this rotation to the original force and moment components in
the frontal plane produces the rotated components here defined as

CR
Y

CR
N

CR
mCG

CR
nCG

 =

[
R 0
0 R

]
·


CY
CN

CmCG

CnCG

. (6)

According to these definitions, it is possible to introduce a compounded value of the
static stability margin as

SMcomp =
CR

mCG

CR
N

, (7)

which is representative of the static stability of the system irrespective of the actual direc-
tion of the velocity vector perturbation. By substitution of the respective definitions in
Equation (7), the explicit expression of the compounded static margin is obtained as

SMcomp =
CmCG cos ϕ − CnCG sin ϕ

CY sin ϕ + CN cos ϕ
. (8)

3.1. Assessing Static Stability via the Compounded Static Margin

While the newly introduced compounded static margin is capable of overcoming the
limits of a static stability assessment based on the longitudinal and directional stability for
an axial symmetric body (as will be shown in the next Section 4), its ability to describe the
level of static stability in a typical winged configuration is worse than that of the classical
stability indexes currently employed.

In order to highlight the effectiveness and limits of the compounded index of static
stability, an investigation is presented for four different body configurations. These config-
urations are chosen specifically to highlight that the more a body is able to respond to a
perturbation in any direction, the more relevant the compounded margin becomes. This
conceptual analysis was carried out with the help of numerical computations, employing
the code Tucan OpenVogel [14], a software based on a vortex lattice method to estimate
the aerodynamic coefficients of classic geometries consistent with all the hypotheses of
potential flow theory.

The focus in the analysis is on understanding the existing correlation between the
aerodynamic force and moment components associated with an assigned direction of the
velocity vector. The conceptual test case scenarios consist of bi-dimensional half-wings with
symmetric airfoils, characterized by the geometric parameters listed in Table 3 and defined
in Figure 8. The so-defined lifting surface is arranged to produce different configurations.
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Table 3. Geometry data of the reference lifting surface adopted in the analysis.

Value Unit

Root chord 3 m
Tip chord 1 m

Length (half-span) 5 m
Sweep-back 35 deg

Figure 8. Description of parameters in Table 3.

The four considered configurations can be described as follows:

1. A standard wing with no dihedral angle (Figure 9a).
2. A wing with a dihedral angle of 20° (Figure 9b).
3. A wing with a dihedral angle of −20° (Figure 9c).
4. A set of fins composed of three fins disposed with an angular displacement of 120°

between each other (Figure 9d).

The results presented in the following are obtained considering four test cases for each
geometry, with values of the sideslip angle β = 0◦, 2◦, 6◦, 8◦, for a total of 16 simulations.
The maximum angle of 8◦ is chosen to safely fall within the range of application of the
model of potential flow on which the software is based. The intensity of the velocity vector
was set to 50 m/s and the angle of attack α = 2◦.

Figure 10 shows the results of the analysis, portraying in each plot the outcome of the
four experiments carried out on a single configuration. In particular, the plot shows the
components of the velocity (red), aerodynamic force (black), and moment (blue) vector
lying on the plane normal to xB.

The 0◦ dihedral layout simulations show that the directions of the force and moment
are invariant with respect to the velocity direction. Actually, for this flying wing config-
uration, most of the aerodynamic force developed lies parallel to the plane of the airfoils
(i.e., xBzB), whereas the component not belonging to that plane is comparatively negligible.
Therefore, such aerodynamic force can only be effective in counteracting a perturbation
on α, which is obtained through a corresponding pitching moment. Conversely, the flying
wing is not capable of counteracting a perturbation on β (and as a consequence, such an
aircraft is not statically stable in a directional sense, as known).
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(a) (b)

(c) (d)

Figure 9. The considered layouts, visualized within Tucan OpenVogel: (a) no dihedral wing, (b) +20◦

dihedral wing, (c) −20◦ dihedral wing, and (d) set of three fins.
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On the other hand, for higher absolute dihedral values (i.e., +/−20◦), the directions
taken by the normal components are correlated with that of the velocity vector.

Finally, for the set of fins, which is of particular relevance since it resembles the fin of a
three-finned sounding rocket, a strong coupling with the direction of the velocity vector is
similarly obtained.

In order to quantify the ability of a compounded stability index alone to describe the
static stability of a system, it is possible to introduce the following parameter e, which is
based on the evaluation of the angle ∆ defined graphically in Figure 11, and analytically as

e =
∣∣∣∣ π

2 − ∆
π
2

∣∣∣∣ · 100. (9)

Inspecting Figure 10 and analyzing the value of the parameter e, it is possible to note
that it captures the level of correlation between the normal component of the relative wind
velocity and that of the normal force.

Figure 11. Definition of angle ∆.

In particular, the lower the value of e, the better the correlation. Correspondingly,
the significance of the compounded static stability index is increased for lower values of
e, meaning that the level of static stability can be employed to better describe the overall
(i.e., compounded) level of static stability of the system if the reaction to a perturbation is
such as to keep e lower. For example, for the null-dihedral flying wing, the value of e is
comparatively high, yielding an inaccurate description of the level of static stability via the
compound index, whereas for the set of fins, the parameter e keeps a lower value, and in
this case, the compound index of static stability is more descriptive than the two classical
indexes for longitudinal and directional stability.

To physically explain this effect, it can be said that the compounded static stability
index can be employed to study the static stability of an aircraft when the angle ∆ between
the normal component of the total aerodynamic moment and the normal component of
the relative wind is sufficiently close to ∆ = π

2 , for every combination of α and β (which
is captured by a corresponding value of αtot) within a reasonable range. This result is
conveniently shown in quantitative terms in Figure 12, where the parameter T has been
defined as a function of e only, as

T = 100 − e = 100 −
∣∣∣∣ π

2 − ∆
π
2

∣∣∣∣% (10)

According to its definition, this parameter shall take a higher value for a more reduced
level of parameter e. The plot in Figure 12, referring to the trials at several values of
the angle ϕ considered in the test at hand (which are obtained for the assigned α and β
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values, where, in particular, only the latter has been changed, as said), shows that for
the flying wing at null dihedral, the compounded stability index is descriptive only for
ϕ = 0, i.e., when this index is the same as that for the longitudinal static stability. In all
other cases, the compound index is poorly descriptive of the level of static stability for this
configuration. Substantially similar results are obtained for the flying wing with a positive
or negative dihedral. Conversely, for the set of fins, for whatever ϕ, the compounded
stability index remains descriptive of the static stability level, whereas the two classical
indexes are not, as pointed out in Section 1 as a problem statement.
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Figure 12. Parameter T as a function of the aerodynamic roll angle.

4. Analysis of Compounded Stability of a Realistic Sounding Rocket Configuration
4.1. Three-Finned Configuration

The configuration of a missile with a tail assembly composed of three fins placed at
120◦ from one another is of special relevance in sounding rocket applications. In Section 3.1,
it was shown that a three fins assembly can be effectively described in terms of static
stability through the compounded index introduced earlier in this text. A missile featuring
that tail assembly is generally constituted by an axial-symmetric body and the tail itself.
For an axial-symmetric body, like the one in Figure 13, it is intuitive to choose a reference
frame that contains the velocity vector in its xBzB plane. This plane coincides with the αtot
plane defined previously, so that evaluating the longitudinal static margin in a reference
where the xBzB plane is equal to the αtot plane allows to completely characterize the static
response of the body. Therefore, for an axial-symmetric body also, it can be expected that
the compounded static margin will be totally descriptive of the static stability level of
the system.

In order to show this in a practical case, the configuration and data for the Gemini [15]
sounding rocket are employed. Computations of the aerodynamic coefficients on this con-
figuration were carried out in both Missile DATCOM 97 and ANSYS Fluent [16], showing
good correlation (see Appendix A). A testing condition with a velocity of 32 m/s, αtot = 16◦

and ρ = 1.225 kg/m3 was considered. The rocket was set at several rotated conditions,
so as to produce values of ϕ ranging between 0◦ and 360◦. These values come directly
from the aerodynamic design process of Gemini, as is thoroughly explained in Section 5.
Figure 14 describes the output of the analysis in terms of the components of the force and
moment coefficients (normalized on their respective maxima to ease the comparison of
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trends), in the original body reference (attached to the missile, top plots) and in the rotated
(·)R reference (bottom plots), respectively.

Figure 13. Axial symmetric slender body of revolution.

In Figure 14c,d, it can be seen how CN and CmCG show the same pattern since they
are related to the longitudinal domain of the missile, while CY, ClCG (the rolling moment
coefficient) and CnCG , related to the lateral directional behavior, follow a different trend,
uncorrelated from that of the other quantities. The overall force coefficient CA instead
keeps a constant value in each flight condition, which is in accordance with the fact that the
speed and the total angle of attack remain constant.

The response along the longitudinal axis of the rotated frame is the one directly
involved in statically contrasting the perturbation itself (tending to reduce the value of αtot).

Figure 15 shows a direct comparison of the classical longitudinal and directional
static margins, as well as the compounded margin, for the same missile model and testing
conditions. It can be seen from this plot that the compounded static margin produces a
clearer and more complete assessment of the level of static stability of the platform, which,
as expected, is far less variable for different ϕ than is suggested by the classical indexes,
which appear harder to interpret and are largely misleading in this case.

It can be observed that, as Figure 15 shows, the compound stability index converges
to the classical longitudinal index when ϕ tends to 0◦ or 180◦, and to the directional index
when ϕ goes to 90◦.

4.2. More Geometries

The compounded stability formulation presented in this paper allows to accurately
assess the level of static stability for a body of revolution with more than two fins. To show
this, an analysis similar to that just presented for a three-finned missile was performed for
several different configurations.

In particular, a set of rocket models was created by varying the total L/D ratio,
the geometry of the fins, and their number, according to Table 4.

All the permutations were evaluated, discarding those producing extreme geometries,
which are of no interest for practical applications.

Each valid model was tested in the flight conditions reported in Table 5.
The T index was computed for all the considered flight conditions and geometries.

The results are presented in the histogram in Figure 16. This shows the frequency at which
a certain value of T appears within the considered sample space.

The generally high value of the T index, combined with the representativeness of the
sample, shows that this type of flying craft is generally well−described in terms of static
stability by employing the compounded stability index introduced in this text.
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Figure 14. Data at v = 32 m/s and αtot = 16 deg: (a) force coefficients; (b) moment coefficient;
(c) force coefficients rotated; (d) moment coefficients rotated.

Figure 15. Comparison between the classical and the compounded static margins for the three-
finned missile.
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Table 4. Rocket geometries for the analysis of the compound stability index validity.

Parameter Values Unit

Root chord 0.2, 0.4, 0.6 m
Free chord 0.1, 0.2, 0.3 m
Fin height 0.1, 0.2, 0.3 m

Fins number 3, 4, 5 −
Sweep−back length 0.1, 0.2 m
Fuselage diameter 0.1, 0.40, 0.60 m
Center body length 2, 3, 4 m

Table 5. Flight conditions considered for testing the validity of the compound stability index.

Parameter Values Unit

Angle of attack −20, −16, −12, −8, −4, −1, 0,
1, 4, 8, 12, 16, 20 deg

Sideslip angle −20, −16, −12, −8, −4, −1, 0,
1, 4, 8, 12, 16, 20 deg

Mach number 0.1, 0.3, 0.5 −

99 99.2 99.4 99.6 99.8 100

T, model validity [%]
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Figure 16. Distribution of T index, considering all testing conditions and configurations in
Tables 4 and 5.

5. Field Case Study: the Gemini Sounding Rocket

The method presented in this article was applied in the design process for the Gemini
rocket built by Skyward Experimental Rocketry [15], the first-ever SRAD (student-researched
and developed) hybrid−powered rocket launched in Italy. The launch took place in Roccaraso
on 19 September 2023. The rocket reached an altitude of 1350 m AGL and was successfully
recovered. Two representative pictures of the flight are shown in Figure 17, while its geometry
data and flight quantities are reported in Tables 6 and 7, respectively. The launch occurred
with a crosswind of 3 m/s at ground level, increasing to 14 m/s at the apogee altitude. No
stability anomalies were observed during the flight, which was, therefore, considered nominal
in terms of flight dynamics.
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(a) (b)

Figure 17. (a) Gemini lift-off from the launch rail; (b) Gemini airborne during the powered ascent phase.

Table 6. Gemini rocket geometry data.

Section Feature Value Unit

Nosecone Length 0.32 m
Shape Von Karman −

Center body Length 2.89 m
Diameter 0.15 m

Fins

Root chord 0.30 m
Free chord 0.14 m

Span 0.11 m
Number 3 −

Sweepback length 0.13 m

Boat tail Length 0.07 m
Final diameter 0.122 m

Table 7. Gemini rocket flight data.

Parameter Value Unit

Apogee 1350 m
Time to Apogee 17.5 s

Max Speed 150 m/s
Max Mach 0.45 −
Max Thrust 1800 N

Burning Time 4 s

The aerodynamic design of Gemini was aimed at maximizing the rocket apogee while
maintaining the worst-case static margin over an a priori specified limit of SM = 2.0 in this
case. The sizing of the tail fins was carried out specifically for this purpose.

It was observed that the worst-case condition in terms of static stability occurs at the
launch rail exit when the rocket is fully airborne at its slowest speed and its center of mass is
simultaneously at the lowest (i.e., most backward) possible position. The results presented
here from the static stability analysis are, therefore, from that phase.

At a design level, in order to ensure a sufficient level of static stability for the finalized
aerodynamic shape even in the worst−case scenario, the static margin was calculated for
a set of realistic yet conservative meteorological conditions, determined by studying the
launch location historical weather data.

This analysis resulted in the selection of a wind magnitude ranging from 0 to 9 m/s,
with no restrictions on direction. The static margin was evaluated knowing the speed
and direction of both the sounding rocket and wind at the launch rail exit in each flight
condition, thus allowing computation of the flight Mach number as well as the total angle
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of attack αtot and the aerodynamic roll angle ϕ. Figure 18 shows the output of this analysis
through a comparison of the output of the compounded method and the classical one,
based on the decoupled longitudinal and directional static stability indexes.
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Figure 18. Longitudinal (a), directional (b), and compounded (c) static margin behavior as functions
of the wind intensity and direction.

As can be seen, the output of the classical approach (standard stability indices) feature
significant discontinuities, proving unreliable in the correct assessment of the static stability
of the rocket, which was proved practically in flight.

In particular, asymptotes arise above a wind intensity of 2 m/s on both classical static
margin indices. In Figure 18a, the longitudinal static margin shows asymptotes around
ϕ = 90◦ and ϕ = 270◦, whereas in Figure 18b, the directional static margin shows an
asymptote around ϕ = 0◦.

In practical terms, since during the design process the minimum value of the static
margin index needs to be checked to be over the desired value (as previously pointed
out), the longitudinal and directional indexes were discarded as possible measures of
performance due to their non-significant behavior and reading.

On the other hand, the compounded method retains stable behavior in the whole
envelope of wind direction and intensity, and consequently better represents the intensity
of the static response of the rocket to a perturbation. Accordingly, the compounded static
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margin was chosen to be the best static stability index for the design process of the Gemini
sounding rocket.

The ensuing design proved faultless from the standpoint of static stability, confirming
the suitability of the proposed compounded stability index for the design of this type
of machine.

6. Conclusions

The present paper deals with the specific issues connected with the analysis of the
static stability of sounding rockets. The typical design configuration of the latter, basically
featuring an axial-symmetric main body and a set of fins, often produces results that are
difficult to interpret when it comes to judging the level of static stability of the system
through classical methods. In particular, the latter separately analyze the longitudinal
and directional static stability. In this paper, it was shown how the results of that analysis,
especially on three-finned tail configurations, are rather difficult to interpret, poor in
generality, even for a specific missile sizing, and potentially misleading, i.e., in particular,
predicting static stability issues when these do not actually appear in practice.

In order to overcome these limitations of standard static stability analyses, a com-
pounded static stability index and criterion were introduced, based conceptually on a smart
selection of the plane where the static stability analysis is carried out. After introducing
this stability analysis method both conceptually and analytically, its inherent advantages
and limits were thoroughly assessed by practically applying it to several geometries and
testing conditions. By selecting some extreme configurations for preliminary testing in a
virtual environment, the physics behind the proposed criterion were analyzed in-depth,
highlighting its limits. For realistic missile configurations, the method appears generally
to be promising, and extensive testing on several geometries confirms its general appli-
cability to the static stability analysis of typical sounding rocket geometries, with results
which are more complete and easier to interpret with respect to those obtained from a
classical approach.

Then the newly introduced methodology was applied to the design and aerodynamic
sizing of the sounding rocket Gemini, which flew successfully in September 2023. The design
of that sounding rocket was carried out in practice employing predictions of the static
stability level defined through the compounded index introduced here. In contrast to
the predictions of the classical stability assessment methods (i.e., a potentially highly
troublesome static stability level), the compounded method forecast a trouble-free static
response, which was verified in practice when the rocket was actually launched.

Further investigations of the newly introduced method, which proved very promising
in field application also, will involve its suitability in supersonic flight regimes, whereas
the current analyses considered subsonic flight as the case of interest.
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Appendix A

Appendix A.1

Each result in this paper was validated by comparing Missile DATCOM 97 [12] and
CFD simulations in ANSYS Fluent 2022 R1 [16]. The validation was carried out first
in terms of the aerodynamic coefficients, subsequently computing the corresponding
static margins.

The coefficients involved in the lateral and directional motions show a good correla-
tion between the Missile DATCOM 97 and CFD simulations, as evidenced by the plots in
Figures A1 and A2.

0 30 60 90 120 150 180

? [deg]

-5

-4

-3

-2

-1

0

1

C
Y

[-
]

CY

MD

CFD

0 30 60 90 120 150 180

? [deg]

-5

0

5

C
N

[-
]

CN

MD
CFD

0 30 60 90 120 150 180

? [deg]

-20

-10

0

10

20

C
m

[-
]

Cm

MD
CFD

0 30 60 90 120 150 180

? [deg]

-10

-5

0

5

10

15

C
n

[-
]

Cn

MD

CFD

0 30 60 90 120 150 180

? [deg]

0

2

4

6

8

10

S
ta
b
il
it
y
M
a
rg
in

Longitudinal stability margin

MD

CFD

0 30 60 90 120 150 180

? [deg]

0

2

4

6

8

10

S
ta

b
il
it
y

M
a
rg

in

Directional stability margin

MD

CFD

Figure A1. Comparison between the values of CY , CN , CmCG , CnCG and the longitudinal and direc-
tional stability margins SMlon and SMdir for the reference three-finned configuration, obtained from
Missile DATCOM 97 and CFD simulations in ANSYS Fluent 2022 R1.
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Figure A2. Comparison between the values of the compound static margin and the T index for the
reference three-finned configuration, obtained from Missile DATCOM 97 and CFD simulations in
ANSYS Fluent 2022 R1.

Appendix A.2

All CFD simulations were computed in steady−state. The fluid domain is bullet-
shaped because different directions of the relative wind are needed. The mesh is a poly-
hexcore mesh [17] computed through the mesher available within the code suite, and counts
2.8 million elements. This elements count was chosen because it is above the mesh inde-
pendence value of 2.5 million, stated through a parallel mesh independence campaign. All
simulations were performed at Mach number M = 0.1 at an air density of ρ = 1.225 kg/m3;
therefore, a set of incompressible settings are chosen.

The turbulence model employed is the standard k − ω SST, widely adopted in cases
like this.

The boundary layer is composed of 20 cells, where the first layer height is 5 · 10−6 m,
chosen after a few iterations to achieve a maximum value of y+ = 1 on the walls of the
rocket model.

(a) (b)

Figure A3. Fluid domain hexahedral dominant mesh. (a) Polyhedral elements near the body;
(b) hexahedral elements sufficiently far from it.
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