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A B S T R A C T

This article focuses on maximizing the thermal energy collected by parabolic-trough solar collector fields to
increase the production of the plant. To this end, we propose a market-based clustering model predictive
control strategy in which controllers of collector loops may offer and demand heat transfer fluid in a market.
When a transaction is made between loop controllers, a coalition is formed, and the corresponding agents
act as a single entity. The proposed hierarchical algorithm fosters the formation of coalitions dynamically
to improve the overall control objective, increasing the thermal energy delivered by the field. Finally, the
proposed controller is assessed via simulation with other control methods in two solar parabolic-trough fields.
The results show that the energy efficiency with the clustering strategy outperforms by 12% that of traditional
controllers, and the method is implementable in real-time to control large-scale solar collector fields, where
significant gains in thermal collected energy can be obtained, due to its scalability.
1. Introduction

The increasing trend of energy demand causes a significant impact
on the environment. Efficient, clean, and secure renewable energy
sources such as solar, hydropower, wind, biomass, and geothermal are
essential to deal with this steep demand. Indeed, renewable energy
accounted for nearly 28% of global electricity generation in the first
quarter of 2020 and is projected to increase to almost 30% in 2021 [1,
2]. Since the most abundant and cost-effective renewable source in
many countries is the sun, solar power has been widely researched in
the last decades [3,4]. The most standard solar technologies are pho-
tovoltaic cells (PV), which directly generate electricity from sunlight,
and concentrating solar power (CSP), which concentrates sun radiation
in a heat transfer fluid (HTF) to produce steam and drive an electricity
generator (see Fig. 1). For large-scale power generation, CSP presents
further advantages due to storing thermal energy to produce electricity
when there is low or no sunlight, e.g., cloudy days and nights.

This work focuses on parabolic-trough collector fields, which belong
to the family of CSP systems [5]. Other members are linear fresnel
collectors [6], parabolic dishes [7], and solar power towers [8]. Our
challenge here is to maximize the energy production despite the day-
light discontinuity by manipulating the inlet valves of the collector
loops.

Numerous control techniques for solar collector fields are presented
in the exhaustive surveys [9,10]. A remarkable control strategy with
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widespread use in the industry and academia is model predictive con-
trol (MPC) because it handles complexities such as delays, constraints,
and unstable, non-minimum phase, and multivariable systems [11].
Many applications of MPC in solar collector fields can be found in
the literature. For example, [12] proposes an adaptive MPC with a
Kalman filter to estimate the solar radiation and temperature pro-
files, [13] details an MPC scheme for optimal scheduling, and [14]
presents a dual MPC based on a linear model for tracking and distur-
bance rejection. The nonlinear behavior of distributed solar collector
fields also promotes nonlinear model predictive strategies (NMPC).
For instance, [15] proposes an NMPC with guaranteed stability, and
studies as [16,17] present NMPC methods that deal with dead-times
and nonlinear dynamics.

Most of the studies mentioned above optimize the global flow while
tracking a reference for the outlet temperature of the solar collector
fields. Nonetheless, these centralized strategies may fail to manage
large-size fields due to the significant computational times. For in-
stance, in a parabolic-trough solar collector plant like Solana, which has
around 800 loops, centralized control cannot be performed due to the
significant number of decision variables. For that reason, distributed
control methods are more suitable to deal with these issues [18]
because they divide the system into subsystems controlled by local
agents. In a distributed fixed cooperation structure, local controllers
with partial system information cooperate to decide what control action
vailable online 13 October 2021
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Fig. 1. Schematic of a parabolic-through solar collector plant.

to implement. Various studies in this context propose distributed MPC
strategies where it is assumed that there are valves at the beginning
of each loop and can be controlled individually. For example, a non-
cooperative distributed MPC is proposed in [19], where each loop
controller computes its HTF flow individually; [20] details a logic-
based distributed MPC to approach the performance of a centralized
controller while reducing the computational load; and [21] studies
the manipulation of loop valves to homogenize the temperature of
the solar field. There are several challenges regarding the application
of distributed control strategies in commercial plants. Firstly, valves
are not currently employed to control their plants but for balancing
hydraulically the flow of loops in the field. Secondly, the fixed cooper-
ation structure between loop controllers cannot deal with the changing
operation conditions, e.g., high solar irradiance differences between
loops caused by clouds covering partially large-scale solar fields.

A more sophisticated approach is coalitional model predictive con-
trol [22,23], which arranges local agents in time-varying cooperating
clusters to attain a trade-off between the cooperation effort and perfor-
mance. This approach can be seen as a dynamically changing system
partitioning that deals with the varying conditions of the system opera-
tion [24,25]. From this viewpoint, partitions can be computed in a fully
distributed manner or using a hierarchical architecture. An example
of the former is presented in [26], which uses the Shapley value to
find the best partition. Regarding the latter, [27] proposed a two-layer
architecture in which local agents compute their control inputs using
MPC in the lower layer, and, in the upper one, a supervisor checks and
re-balances the inputs as needed to reject disturbances. Potential appli-
cations of this approach include microgrids [28], chemical plants [29],
robot fleets [30], traffic networks [31], supply chains [32], telecommu-
nication networks [33], wind farms [34], irrigation canals [22], water
networks [35], automated vehicles [36], and also parabolic-trough
solar collector plants [37].

In this article, we propose a hierarchical market-based coalitional
MPC to maximize the thermal energy collected by distributed solar
parabolic-trough plants. The upper control layer periodically executes
an NMPC controller combined with a market mechanism to select the
partition that maximizes the overall utility. In the lower layer, the
resulting coalitions work independently to solve their NMPC subprob-
lems, which maximize the thermal energy production. Another objec-
tive of the proposed coalitional approach is to simplify the search of
the field partition making feasible to control large-scale solar collector
plants. Therefore, the contributions of this paper are:

• A market-based scheme for selecting the field partition online. We
propose to let local controllers offer and demand HTF in a market
2

to mitigate the effects derived from clouds, dusty collectors,
and maintenance issues. Once fluid transactions are settled, the
agents involved in the trades form coalitions and operate as single
entities. This method is inspired by the electricity intraday mar-
ket [38,39], where prices are set dynamically, and auction-based
strategies as those proposed in [40,41].

• Improvements of thermal energy efficiency by up to 12% by
implementing the proposed coalitional MPC strategy in two sim-
ulated solar collector fields of 10 and 100 loops modeled after the
ACUREX field at the Plataforma Solar de Almería (PSA) [16,12].

• Feasible real-time implementation in large-scale fields applying
the proposed method due to its superior scalability. Since real
plants use a sampling time of 60 s, it would be feasible to
control fields of up to 300 loops approximately with our current
implementation.

• The payback period on software investments for controlling
valves in a decentralized way will be between one and six months,
depending on the plant’s energy production.

Index of contents. Section 2 introduces the nonlinear model and con-
straints of distributed parabolic-trough solar collector fields. Section 3
explains and illustrates the market mechanism to determine the co-
operation partition. Section 4 describes the control objective and the
proposed algorithm. Details of the case studies and results from the
coalitional control regarding other strategies are illustrated in Sec-
tion 5. Conclusions are summarized in Section 6. Finally, a brief design
guide for the main parameters of the controller is given in Appendix.

2. Parabolic-trough solar collector field model

This section presents the model of a parabolic-trough solar collector
field as the one depicted in Fig. 1. It is composed of concave mirrors
that concentrate the solar direct normal irradiance (DNI) on a tube
located in its focal line. The HTF that circulates through the tube
absorbs the thermal energy and is sent to the power conversion system
(PCS), where superheated steam is produced to drive turbines and
generators. Likewise, the HTF can also be sent to a thermal energy
storage (TES) system in some plants for later use.

2.1. Nonlinear system dynamics

The parabolic-through solar collector field can be disaggregated
into a set of parallel loops  ≜ {1,… , 𝑁loop}, which are split into
 ≜ {1,… , 𝑁seg} segments of length 𝛥𝑙, as represented in the field
of Fig. 1. The system dynamics can be described by a distributed
parameter model of the temperature composed of partial differential
equations (PDEs) that depend on time (𝑡) and space (𝑙), describing the
energy balance [9]:

𝜌m𝐶m𝐴m 𝜕𝑇m

𝜕𝑡
(𝑡, 𝑙) = 𝜂col(𝑙)𝐺(𝑙)𝐼(𝑡, 𝑙) − 𝜋𝐷m𝐻 l(𝑇m(𝑡, 𝑙) − 𝑇 a)

−𝜋𝐷f𝐻 t (𝑡, 𝑙)
(

𝑇m(𝑡, 𝑙) − 𝑇 f (𝑡, 𝑙)
)

,
(1)

𝜌f𝐶 f𝐴f 𝜕𝑇 f

𝜕𝑡
(𝑡, 𝑙) + 𝜌f𝐶 f 𝑞(𝑡) 𝜕𝑇

f

𝜕𝑡
(𝑡, 𝑙) = 𝜋𝐷f𝐻 t (𝑡, 𝑙)

(

𝑇m(𝑡, 𝑙) − 𝑇 f (𝑡, 𝑙)
)

, (2)

where superscripts m, f , and a represent the metal tube, the HTF,
and the ambient, respectively. The model parameters and variables are
summarized in Table 1.

The PDEs can be approximated using the forward Euler’s method
as:
𝜕𝑇
𝜕𝑡

(𝑡, 𝑙) ≈
𝑇 (𝑡 + 𝛥𝑡, 𝑙) − 𝑇 (𝑡, 𝑙)

𝛥𝑡
, 𝜕𝑇

𝜕𝑙
(𝑡, 𝑙) ≈

𝑇 (𝑡, 𝑙 + 𝛥𝑙) − 𝑇 (𝑡, 𝑙)
𝛥𝑙

, (3)

so that Eqs. (1) and (2) can be solved by a two-step iterative process
with finite differences as proposed by [3]:



Applied Energy 306 (2022) 117936E. Masero et al.

i
e
o
i
l
b

3

i
d
c
t
c
t
a
s
t
o
T
H
a

3

d

w
f

Table 1
Summary of model parameters and variables.

Symbol Description Unit

𝜂col Efficiency of collectors –
𝐺 Aperture of collectors m
𝐼 Direct solar irradiance W∕m2

𝐷m Outside diameter of the pipe m
𝐷f Inside diameter of the pipe m
𝐻 t Coef. of transmission metal-fluid W∕(m2 ◦C)
𝐻 l Coef. of thermal losses W∕(m2 ◦C)
𝑞 Flow rate l/s
𝛥𝑡 Discretization time of the model s
𝛥𝑙 Length of segments m
𝜌m , 𝜌f Densities kg∕m3

𝐶m , 𝐶 f Specific heat capacities J∕(kg ◦C)
𝐴m , 𝐴f Cross-sectional areas m2

𝑇m , 𝑇 f , 𝑇 a Temperatures ◦C

• The metal tube and fluid temperature are computed at the first
stage, considering the fluid to be steady-state:

𝑇m
𝑖,𝑗 (𝑘) = 𝑇m

𝑖,𝑗 (𝑘 − 1) + 𝛥𝑡
𝜌m𝐶m𝐴m

(

𝜂col𝑖,𝑗 𝐺𝑖,𝑗𝐼𝑖,𝑗 (𝑘)

−𝜋𝐷m𝐻 l
𝑖,𝑗 (𝑘 − 1)

(

𝑇m
𝑖,𝑗 (𝑘 − 1) − 𝑇 a(𝑘)

)

−𝜋𝐷f𝐻 t
𝑖,𝑗 (𝑘 − 1)

(

𝑇m
𝑖,𝑗 (𝑘 − 1) − 𝑇 1f

𝑖,𝑗 (𝑘 − 1)
)

)

,
𝑇 f
𝑖,𝑗 (𝑘) = 𝑇 1f

𝑖,𝑗 (𝑘 − 1)

+
𝜋𝐷f𝐻 t

𝑖,𝑗 (𝑘 − 1)𝛥𝑡

𝜌f𝑖,𝑗 (𝑘 − 1)𝐶 f
𝑖,𝑗 (𝑘 − 1)𝐴f

(

𝑇m
𝑖,𝑗 (𝑘 − 1) − 𝑇 1f

𝑖,𝑗 (𝑘 − 1)
)

,

(4)

where segment 𝑖 ∈  and loop 𝑗 ∈  represent the spatial
dependence (𝑙), and 𝑘 denotes the discrete-time instant 𝑡 = 𝑘𝛥𝑡.

• At the second stage, the fluid temperature is corrected using the
net energy transported by the fluid:

𝑇 1f
𝑖,𝑗 (𝑘) = 𝑇 f

𝑖,𝑗 (𝑘) −
𝑞𝑗 (𝑘)𝛥𝑡

𝛥𝑙 𝐴f

(

𝑇 f
𝑖,𝑗 (𝑘) − 𝑇 f

𝑖−1,𝑗 (𝑘)
)

. (5)

2.2. Inlet and outlet temperature

The inlet temperature of the initial segments of each loop 𝑗 ∈  is
considered to be equal to the inlet temperature of the field, i.e., 𝑇 f

1,𝑗 (𝑘) =
𝑇 in(𝑘) for all 𝑘. Note that the inlet temperature 𝑇 in(𝑘), the corrected
solar DNI 𝐼𝑖,𝑗 (𝑘), and the ambient temperature 𝑇 a(𝑘) are considered as
disturbances that can be measured or estimated at instant 𝑘 from the
control viewpoint.

Additionally, the outlet temperature of the solar field is computed
considering the temperature of the final segments of the loops as

𝑇 out (𝑘) =

∑

𝑗∈ 𝑇 f
𝑁seg ,𝑗

𝑞𝑗 (𝑘)

𝑞T(𝑘)
, (6)

where 𝑞T(𝑘) =
∑

𝑗∈ 𝑞𝑗 (𝑘) is the total flow rate.

2.3. Operational constraints

The solar collector field presents several operational constraints that
need to be considered. The first one is the flow rate of each loop 𝑗 ∈ ,
which is bounded by

𝑞min
𝑗 ≤ 𝑞𝑗 (𝑘) ≤ 𝑞max

𝑗 , (7)

where the minimum flow rate 𝑞min
𝑗 > 0 is based on the Reynolds number

to guarantee a turbulent flow and, therefore, achieve homogeneous
HTF temperature along the pipe. The maximum value 𝑞max

𝑗 depends on
the maximum allowed pressure drop. The total flow 𝑞T(𝑘) is also upper
bounded by the maximum total flow rate 𝑞max.
3

T d
Another constraint is considered in each loop 𝑗 ∈  to keep the
overall outlet temperature 𝑇 out within its operational limits:

𝑇 f ,min ≤ 𝑇 f
𝑁seg ,𝑗

(𝑘) ≤ 𝑇 f ,max. (8)

where 𝑇 f ,min and 𝑇 f ,max are, respectively, the minimum and the max-
mum temperature of the fluid. Since the outlet HTF temperature of
ach loop depends on the HTF flow, the constraints on the maximum
perating temperatures may impose some limitations on the HTF flow
n each loop. These limitations also rely upon the DNI received by the
oop and its reflectivity, which depends on the maintenance received
ecause recently cleaned loops will have much higher reflectivity.

. HTF flow market

Our objective is to maximize the resulting thermal power while min-
mizing control efforts and temperature constraint violations despite
isturbances such as the changes in the solar irradiance due to the
louds and the reflectivity differences between the loops. To this end,
he HTF flow of each loop is locally controlled by an agent that can
ooperate with other agents to reduce its local cost and contribute to
he global objective. However, satisfying the coupling constraints in

non-centralized fashion requires setting local constraints that split
hared resources as the HTF. Consequently, some loops might improve
heir performance by increasing their flow over their limits, while
thers may reach the optimum without activating their constraints.
herefore, we proposed to organize the agents’ supply and demand of
TF in a market following the idea of the electricity intraday market
nd auction-based mechanisms [39,40].

.1. Field partitioning

The solar collector field can be considered a cooperative network
escribed by an undirected graph 𝐺 ≜ (, ) with a set of loops  and

a set of cooperating links  ⊆ ×. Each loop 𝑗 ∈  is locally managed
by a controller with local information, and each enabled link 𝑒 ∈ 
establishes a bidirectional information flow between the corresponding
loop controllers.

Definition 1 (Field Partition). A partition (𝑘) of the graph  is formed
by a set of connected, non-overlapping, non-empty clusters of loops (the
so-called coalitions):

(𝑘) ≜ {1,… ,𝑁}, (9)

satisfying ⋃

∈(𝑘)  = .

Note that the size of a coalition can vary from a single loop to the
entire solar collector field.

Given partition (𝑘) at instant 𝑘, the thermal power of each coali-
tion is defined as

𝑊 (𝑘) = 𝑊 out
 (𝑘) −𝑊 in

 (𝑘) =
∑

𝑗∈
𝑊 out

𝑗 (𝑘) −
∑

𝑗∈
𝑊 in

𝑗 (𝑘), (10)

where the output and input thermal powers of each loop 𝑗 ∈  are,
respectively,

𝑊 out
𝑗 (𝑘) = 𝜌f𝑁seg ,𝑗

(

𝑇 f
𝑁seg ,𝑗

(𝑘)
)

𝐶 f
𝑁seg ,𝑗

(

𝑇 f
𝑁seg ,𝑗

(𝑘)
)

𝑞𝑗 (𝑘) 𝑇 f
𝑁seg ,𝑗

(𝑘),

𝑊 in
𝑗 (𝑘) = 𝜌f1,𝑗

(

𝑇 f
1,𝑗 (𝑘)

)

𝐶 f
1,𝑗 (𝑇

f
1,𝑗 (𝑘))𝑞𝑗 (𝑘) 𝑇

f
1,𝑗 (𝑘).

The coalition flow rate 𝑞 (𝑘) is used as a control input, assuming
that the hydraulic dynamics are considerably faster than the thermal
dynamics. Moreover, the outlet temperature of any coalition is

𝑇 out
 (𝑘) =

∑

𝑗∈ 𝑞𝑗 (𝑘)𝑇
f
𝑁seg ,𝑗

𝑞 (𝑘)
, (11)

here the coalition flow rate 𝑞 (𝑘) =
∑

𝑗∈ 𝑞𝑗 (𝑘) by aggregating the HTF
low rates of all loops grouped in . Moreover, it is lower and upper
elimited by 𝑞min =

∑

𝑞min and 𝑞max =
∑

𝑞max, respectively.
 𝑗∈ 𝑗  𝑗∈ 𝑗
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3.2. Control objective

The control goal of any coalition  ∈ (𝑘) is to compute the flow
ate sequence in the control horizon 𝑁u

𝑄 (𝑘) ≜ [𝑞 (𝑘), 𝑞 (𝑘 + 1),… , 𝑞 (𝑘 +𝑁u − 1)],

to minimize the cost function:

𝐽 (⋅) =
𝑁p
∑

𝑛=1

(

−𝑊 (𝑘 + 𝑛) + 𝛼𝛹
(

𝑇 f
𝑁seg ,𝑗

(𝑘 + 𝑛)
)

)

+ 𝛽

𝑁p−1
∑

𝑛=0

∑

𝑗∈

(

𝑞𝑗 (𝑘 + 𝑛) − 𝑞𝑗 (𝑘 + 𝑛 − 1)
)2 ,

(12)

where 𝑁p is the prediction horizon,1 (𝑘 + 𝑛) represents the predicted
value 𝑛 steps ahead of 𝑘, 𝛼 , 𝛽 ∈ R>0 are tuning parameters, and

𝛹

(

𝑇 f
𝑁seg ,𝑗

(𝑘 + 𝑛)
)

=
∑

𝑗∈
max

(

𝑇 f
𝑁seg ,𝑗

(𝑘 + 𝑛) − 𝑇 f ,max

𝑇 f ,max
,
𝑇 f ,min − 𝑇 f

𝑁seg ,𝑗
(𝑘 + 𝑛)

𝑇 f ,max
, 0

)2

.
(13)

By minimizing 𝐽 , we maximize the thermal power delivered in the
rediction horizon while minimizing the control efforts and tempera-
ure violations. Notably, the second and the third terms of (12) are soft
onstraints weighted by the tuning parameters 𝛼 and 𝛽 . The second

term, which corresponds to (13), penalizes the maximum quadratic
violation of the outlet temperature constraints of coalition . The third
term of (12) penalizes the variations in the inputs to reduce the flow
rate oscillation and the wear of valves during daily operation.

Remark 1. The control problem of each coalition can be solved by
a loop that works as a leader, e.g., the smallest numbered loop, or
distributed among the loops in the coalition [42].

3.3. Market mechanism

The set of loops  can be divided into two disjoint subsets: 𝑠 and
𝑑 of supply and demand loops, respectively. To gain performance,

• any supply loop 𝑠 ∈ 𝑠 can decrease 𝑠𝑢𝑝𝑠 ∈ R>0 its assigned HTF
flow,

• any demand loop 𝑑 ∈ 𝑑 can increase 𝑑𝑒𝑚𝑑 ∈ R>0 its assigned
HTF flow.

The total demand and supply of HTF flow are computed as

𝑢𝑝T(𝑘) =
∑

∈(𝑘)

∑

𝑠∈∩𝑠

𝑠𝑢𝑝𝑠(𝑘),

𝑒𝑚T(𝑘) =
∑

∈(𝑘)

∑

𝑑∈∩𝑑

𝑑𝑒𝑚𝑑 (𝑘),

here both are constrained by 0 as the lower limit, and 𝑞max
T −

∑

𝑗∈ 𝑞min
𝑗

s the upper limit.
The challenge is to find the best partition (𝑘) of the field to

eal with the disturbances at each time instant 𝑘. We propose an
uction-based mechanism inspired by the electricity intraday market
hat allows agents to offer and demand HTF flow. In particular, the
TF transactions are swapped immediately between agents based on

heir utility gain to HTF flow changes, with the utility function defined
s:

 (⋅) = −𝐽 (⋅). (14)

he market mechanism goes as follows:

1 See Appendix for further details.
4

Fig. 2. Example of five demand and five supply loops in an HTF flow market, which
are represented in solid red and dashed blue lines, respectively.

1. Each coalition initially contains one agent  = {𝑗}, with its
utility gain computed using (14) when its HTF flow is in-
creased/decreased a quantum 𝛥𝑞 . Those with higher utility
gains when their flow is increased contain demand agents 𝑑 ;
otherwise, they contain supply agents 𝑠.

2. The HTF transactions take place in coalitions of two agents
following an auction-based mechanism in which the supplier
with the highest utility gain shares its surplus of HTF with the
highest bidder. Afterward, the supplier with the second-highest
utility gain is grouped with the second-highest bidder, and so
forth. Therefore, new coalitions are formed by merging entities
starting from top-winning pairs to least-losing pairs.

3. Let 𝑈𝑑 be the utility of the demand agent and 𝑈𝑠 denote that of
the supplier. The resulting entity has a utility 𝑈 computed by
(14), providing surpluses (𝑈 −𝑈𝑑 ) and (𝑈 −𝑈𝑠) to the demand
and supply agent, respectively. If any surplus is below a given
threshold 𝜑 ∈ R0+, we consider that it is not worth forming a
coalition so as to reduce the computational burden.

The resulting coalitions can also be classified again into supply
nd demand entities repeating this procedure 𝑀 ∈ N+ times to find
better partition (𝑘) = 𝑀 , subject to a maximum coalition size

onstraint ||max ∈ N+. Note that the bigger a coalition  is, the better
ts performance becomes but at the expense of increasing the computa-
ional effort. For that reason, 𝑀 and ||max need to be properly set to
ind a trade-off between performance improvement and computational
urden.

emark 2. The set 𝑑 (or 𝑠) may be empty if all agents want to
ncrease (or decrease) their HTF flows. In this situation, agents can also
e sorted attending to their utility gains. Coalitions of a feasible size
an be formed by grouping agents with low and high utility gains if
urpluses greater than 𝜑 can be obtained.

emark 3. There are no physical HTF exchanges between loops. That
s, the HTF transactions are more related with changes in the local
estrictions of the problems than with a physical transfer of HTF. The
low is a shared resource and the market mechanism improves the
fficiency of the distribution.

xample 1 (HTF Flow Market). Let us consider a solar collector field of
= 10 loops with | | = 5 demand loops and | | = 5 supply loops.
loop 𝑑 𝑠
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In Fig. 2, the demand curve is sorted in descending order according
to the utility gains of those loops that are willing to increase their
HTF. Thus, these utility gains can be interpreted as the maximum
amount of utility that these entities are willing to trade to get an
additional quantum of HTF flow. Likewise, the supply curve is arranged
in increasing order with regard to the utility loss. The value depicted
in the figure corresponds to the compensation in utility units that the
suppliers require to reduce their local HTF flow. Therefore, it can be
interpreted as the price measured in utility units that is demanded to
rovide the corresponding quantum of HTF flow.

A measure of each trade is represented by the purple dotted lines
f Fig. 2, which is computed as the arithmetic mean between the
tility gains demanded by HTF flow suppliers and the utility offered
y demand agents. Note that this could be seen as the average price of
he transaction.

As shown in Fig. 2, the demand loop 𝑑1 offers 280 utility units for a
uantum of HTF, whereas supply loop 𝑠1 demands, at least, 20 utility
nits to share its quantum. Therefore, the HTF flow quantum is traded
enerating an overall a surplus of 260 utility units, which represents an
verage agent surplus of 130 utility gains. Finally, the resulting partition
s
1 = {1,2,3,4,5}

= {{𝑑1, 𝑠1}, {𝑑2, 𝑠2}, {𝑑3, 𝑠3}, {𝑑4, 𝑠4}, {𝑑5, 𝑠5}}.

. Coalitional algorithm

The flow rate of the field can be non-uniformly distributed due
o reflectivity differences between loops, giving rise to a loss of per-
ormance. To overcome this imbalance, we allow agents to offer and
emand HTF flow in a spot market. Therefore, it is proposed a heuris-
ic, hierarchical coalitional NMPC based on a market mechanism for
lustering loops in such a way that the resulting energy is maximized.
etails of the proposed algorithm are specified hereunder.

.1. Upper control layer

This layer executes Algorithm 1 to decide the new partition ev-
ry 𝑇up ∈ N+ time instants, according to the available information
system state, disturbances). Recall that the procedure to obtain the
artition can be repeated 𝑀 iterations, generating larger coalitions
ith increased performance and computational burden.

Algorithm 1 (Upper control layer).
Output: (𝑘)
if mod (𝑘, 𝑇up) = 0 then:

0: Set 𝑀 , 𝜑, and ||max.
1: Estimate the solar DNI in the prediction horizon (e.g., follow-

ing [43,44], and measure/estimate temperature 𝑇 f
𝑖,𝑗 (𝑘) ∀𝑖 ∈

, and flow rate 𝑞𝑗 (𝑘−1) for any 𝑗 ∈  (e.g. based on 𝑞T(𝑘−1)
and the valve position via a hydraulic model).

2: Set initial coalitions as singletons containing one agent, i.e.,
𝑗 = {𝑗}, and the initial partitioning 0 =

⋃

𝑗∈ 𝑗 .
for 𝑚 = 1 to 𝑀 iteration do:

3: Evaluate the utility gain of each coalition using (14)
and classify it as a supply or demand entity.

4: Sort demand and supply coalitions in descending order
regarding their utility gains.

5: Merge one supply and one demand coalitions if the
resulting surpluses exceed the threshold 𝜑 and the
resulting size is below ||max.

6: Partition 𝑚 is composed of the resulting coalitions.

end for
5

7: After 𝑀 iterations, the final partition (𝑘) = 𝑀 is sent to
the lower control layer.

end if

4.2. Lower control layer

After the selected partition is received from the upper control layer,
coalitions compute their optimal control actions and implement them.
The steps in the lower control layer are detailed in Algorithm 2.

Algorithm 2 (Lower control layer).
At each time instant 𝑘:

1: Each coalition  ∈ (𝑘) receives its forecasted solar
DNI in the prediction horizon 𝑁p, and measures/estimates
𝑇 f
𝑖,𝑗 (𝑘),∀𝑖 ∈  of any loop 𝑗 ∈ .

2: For each  ∈ (𝑘), compute the optimal flow rate of each
loop belonging to coalition :

𝑄∗
 (𝑘) = arg min

𝑄 (𝑘)
𝐽 (⋅), (15)

subject to the dynamics (4)–(5), the constraints (7)–(8), and
𝑞max
 =

𝑞max
T ||
𝑁loop

, considering that the demand loops of coalition
 can benefit from the extra flow rate of supply loops.

3: Each coalition  ∈ (𝑘) applies the first element of its optimal
input sequence 𝑄∗

 (𝑘), and the rest is discarded.
4: Set 𝑘 ← 𝑘 + 1.

5. Simulation benchmarks

Two solar parabolic-trough fields are described here: (i) the
ACUREX field, which has ten loops, and (ii) its ten-time extension,
i.e., a 100-loop field. Both fields are simulated to analyze the advan-
tages of the proposed coalitional algorithm in terms of scalability and
performance for the following methods:

1. No-valves Track denotes a PI controller, which manages the
whole field (without valves) to hold the outlet temperature in
the set-point 𝑇 out

ref = 280◦C.
2. No-valves represents a centralized MPC method that considers

that loops cannot be controlled independently, and thus, the
same flow rate is applied to all of them. Its cost function is (12),
being  = .

3. Cen refers to a centralized MPC where the controller manages
the whole field  = . Its cost function is (12).

4. Dec denotes a decentralized MPC with cost function (12) where
each loop 𝑗 ∈  is managed by a local controller with no
information about the rest of loops, i.e.,  = {𝑗} for all  ∈
(𝑘). Note that the maximum flow in each loop becomes 𝑞max

𝑗 =
𝑞max
T ∕𝑁loop in this case.

5. Coal. Pair indicates the loop-pair clustering algorithm proposed
in [37], which promotes coalitions of two loops to balance
the field, but the upper control layer is here established to be
executed every 𝑇up = 5 time instants.

6. Coal. Market represents the proposed coalitional MPC method.
The partition is updated every 𝑇up = 5 time instants by the upper
layer after 𝑀 = 2 iterations, with parameters 𝛥𝑞 = 0.5 l/s and
||max = 3 selected due to their good trade-off between perfor-
mance and computational burden in the simulations ( Appendix

details the procedure performed to tune these parameters).
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Table 2
Model parameters and constraints of the collector field.

Symbol Value Units

𝜌m 7800 kg∕m3

𝐶m 550 J∕(kg ◦C)
𝐴f 7.55 ⋅ 10−4 m2

𝐷m 0.031 m
𝐷f 0.0254 m
𝑞min
𝑗 0.2 l/s
𝑞max
𝑗 1.5 l/s
𝑞max
T 6.5 l/s
𝑇 a 25 ◦C
𝑇 f ,min 220 ◦C
𝑇 f ,max 300 ◦C

These control methods are compared in terms of the average energy
roduced (𝐸̄) for the simulation time 𝑁sim. Another key feature is the

maximum computational time, which is computed as the maximum
time needed per coalition to solve problem (15) plus the time needed
to compute the partition of the field divided among the number of
coalitions, i.e.,

𝜏 = max
(

𝜏max
 (𝑘) +

𝜏 (𝑘)
|(𝑘)|

)

, ∀𝑘 ∈ 𝑁sim (16)

where 𝜏max
 (𝑘) is the maximum time to solve the optimization problem

of all coalitions at time instant 𝑘, 𝜏 (𝑘) is the time required to compute
the partition, and |(𝑘)| indicates the number of coalitions in partition
(𝑘).

5.1. Description of solar collector fields

The distributed collector field of ten loops considered is ACUREX,
which was located at the Plataforma Solar de Almería (PSA) [16]. This
field was composed of East–West aligned single axis parabolic-trough
collectors. There were 𝑁loop = 10 parallel collector loops of length
𝑑loop = 174 m, which were discretized into 𝑁seg = 174 segments of
ength 𝛥𝑙 = 1 m. Each loop 𝑗 ∈ {1,… , 𝑁loop} had 12 collectors con-

nected in series, being the active part (that receiving solar irradiance)
144 m long, and the passive part 30 m. The HTF in ACUREX was the
Therminol 55 thermal oil, whose density and its specific heat capacity
were, respectively,

𝜌f𝑖,𝑗
(

𝑇 f
𝑖,𝑗 (𝑘)

)

= 903 − 0.672𝑇 f
𝑖,𝑗 (𝑘),

𝐶 f
𝑖,𝑗
(

𝑇 f
𝑖,𝑗 (𝑘)

)

= 1820 + 3.478𝑇 f
𝑖,𝑗 (𝑘).

The coefficients of metal-fluid transmission and thermal losses were,
respectively, defined as

𝐻 t
𝑖,𝑗
(

𝑞𝑖(𝑘), 𝑇 f
𝑖,𝑗 (𝑘)

)

= 𝑞0.8𝑖 (𝑘)𝛷
(

𝑇 f
𝑖,𝑗 (𝑘)

)

,
𝐻 l

𝑖,𝑗
(

𝑇 f
𝑖,𝑗 (𝑘), 𝑇

a(𝑘)
)

= 0.00249
(

𝑇 f
𝑖,𝑗 (𝑘) − 𝑇 a(𝑘)

)

− 0.06133,

where 𝛷
(

𝑇 f
𝑖,𝑗 (𝑘)

)

is defined as follows, in accordance with [3]:

𝛷(𝑇 f
𝑖,𝑗 (𝑘)) = 2.17 ⋅ 106 − 5.01 ⋅ 104𝑇 f

𝑖,𝑗 (𝑘) + 4.53 ⋅ 102𝑇 f
𝑖,𝑗 (𝑘)

2

−1.64𝑇 f
𝑖,𝑗 (𝑘)

3 + 2.1 ⋅ 10−3𝑇 f
𝑖,𝑗 (𝑘)

4.

A summary of the main model parameters and constraints is shown in
Table 2. In this case, the ambient temperature 𝑇 a(𝑘) is considered as a
constant for simplicity.

The outlet temperature of the steam generator is considered to have
a temperature drop of 90◦C with respect to the inlet temperature and
a time constant of 600 s. That is,

𝑇 in(𝑠)
𝑇̂ out (𝑠)

= 1
600𝑠 + 1

, (17)

where 𝑇̂ out (𝑠) = 𝑇 out (𝑠) − 90. Applying the z-transform to (17) with a
discretization step 𝛥𝑡 = 0.5 s, the resulting discrete-time equation of
nlet temperature is

in in −4( out )

(18)
6

𝑇 (𝑘) = 0.999167 𝑇 (𝑘 − 1) + 8.33 ⋅ 10 𝑇 (𝑘 − 1) − 90 . e
The second collector field considered is composed of 𝑁loop = 100
loops. Since it is an extension of ACUREX, the previous equations
are held. The constraints and model parameters are equal to these
of Table 2 except for the maximum total flow rate, which becomes ten
times larger, i.e., 𝑞max

T = 65 l/s.

5.2. Design of the parameters and defocus mechanism

All simulations have been performed in Matlab® version R2020a
ith a PC Intel® Core™ i7-8700 CPU at 3.20 GHz and 16 GB RAM. Algo-

ithms 1 and 2 have been implemented using the solver fmincon from
he Optimization Toolbox with the option: interior-point. The following
implifications are also considered: (i) the coefficient of thermal losses
l is pre-computed for a given set of flow rates and temperatures, and

ii) the sampling time of the controller 𝛥𝑡ctr is selected as a multiple
f the discretization time of the model (i.e., 𝛥𝑡ctr = 𝛾𝛥𝑡 with 𝛾 ∈
+). For all MPC strategies, the prediction and control horizons are,

espectively, 𝑁p = 12 and 𝑁u = 10 samples. These values have been
elected by trial and error to reach the maximum performance with
easonable computational effort. To keep the outlet temperature within
ts bounds, tuning parameters for the 10-loop and 100-loop fields have
een selected as 𝛼𝑗 = 5⋅10−4 and 𝛼𝑗 = 8⋅10−3, respectively. Furthermore,
simple defocus mechanism is employed to prevent HTF degradation

rom exceeding the maximum temperature 𝑇 f ,max. To this end, mirror
efocusing is applied in the last six collectors of each loop as needed.
ence, the efficiency of the last six collectors 𝜂𝑐𝑜𝑙, which depends on

he defocusing angle 𝜃 as described in [45], have been made dependent
n loop temperature as follows:

Defocusing algorithm.

𝜂col0 = 𝜂col

if 𝑇 f
𝑁seg ,𝑗

> 290◦C then
𝜃 = 1.6◦, 𝜂col ← 0.75 𝜂col0

end if
if 𝑇 f

𝑁seg ,𝑗
> 292◦C then

𝜃 = 2.25◦, 𝜂col ← 0.5 𝜂col0
end if
if 𝑇 f

𝑁seg ,𝑗
> 294◦C then

𝜃 = 2.75◦, 𝜂col ← 0.25 𝜂col0
end if
if 𝑇 f

𝑁seg ,𝑗
> 295◦C then

𝜃 = 5◦, 𝜂col ← 0 𝜂col0
end if
where 𝜂col0 corresponds to the collector efficiency when it is
defocused.

The tuning parameter 𝛽𝑗 = 3 has been chosen to weigh the valve
control effort for both fields, considering that a small and large value
will lead to more and less flow rate oscillation in all the valves during
daily operation, respectively. In the control model, 𝛥𝑙 = 6 m and
𝛥𝑡 = 3 s are considered to speed up the computational time. Thus, the
sampling time of the controllers is 𝛥𝑡ctr = 𝛾𝛥𝑡 = 60 s by setting 𝛾 = 20.
nitially, it is considered 𝑇 in, 𝑇 f

1,𝑗 , 𝑇
1f
1,𝑗 = 155 ◦C and 𝑇m

1,𝑗 = 165 ◦C,∀𝑗 ∈ .

.3. Results of the 10-loop field

The simulation length is 𝑁sim = 120 min, and the two-hour effective
olar DNI (𝜂col𝑖,𝑗 𝐺𝑖,𝑗𝐼𝑖,𝑗 (𝑘)) profile used as disturbances is shown in Fig. 3.
s observed, it is considered that 20% of the ACUREX field has 480 W/m

loops #5 and #10), another 20% has 900 W/m (loops #3 and #4) and
the rest has 800 W/m. Additionally, a moving cloud entering from 𝑡 =
3 min to 𝑡 = 76 min is considered (see Fig. 3 (b)–(d)). As observed, the

ffective solar DNI at 𝑡 = 70 min decreases significantly. This moving
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Fig. 3. Collectors view of the 10-loop field.
Fig. 4. Total flow trajectories in the 10-loop collector field.
Fig. 5. HTF flow trajectories of the loops specified in the legend for the 10-loop collector field.
7
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Fig. 6. Formation of coalitions with the Coal. Market method in the ACUREX field.
Fig. 7. Collectors view of the 100-loop field.
Fig. 8. Total flow trajectories in the 100-loop collector field.
Table 3
Numerical results obtained by applying different controllers in a two-hour simulation
of the 10-loop solar field.

Control method 𝜏 [s] 𝐸̄ [kWh] Improvement

No-valves track 0.43 2093.6 –
No-valves 28.34 2308.6 10.27%
Dec 2.5 2335.2 11.54%
Coal. Pair 9.167 2347.8 12.14%
Coal. Market 19.17 2349.4 12.22%
Cen 275.28 2355.6 12.51%

cloud represents small cumulus of clouds that can affect solar collector

fields on partially cloudy days.
8

Table 3 displays the mean energy obtained with all control meth-
ods in the ACUREX field. The resulting energy is delimited by the
No-valves Track method, which provides the lowest energy 𝐸̄ =
2093.6 kWh, and the Cen method, which produces the highest energy
𝐸̄ = 2355.6 kWh. Conversely, the high computational time 𝜏 =
275.28 s becomes centralized control in an unfeasible strategy to be
implemented in real-time. Note that the sampling time of the controller
is usually around 𝛥𝑡ctr = 60 s in these types of solar fields. Therefore,
the No-valves, Dec, Coal. Pair, and Coal. Market schemes (with 10.27%,
11.54%, 12.14%, and 12.22% of mean energy improvement regarding
No-valves Track, respectively) are more suitable to manage this solar
collector field.
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Fig. 9. Formation of coalitions with the Coal. Market method for the two-hour
simulation.

Fig. 4 shows the overall trajectories of the outlet temperature, the
thermal power, and flow rate in the ACUREX field.2 As observed in
Fig. 4 (a), the outlet temperature of the field holds within limits 𝑇 f ,max =
300◦C and 𝑇 f ,max = 220◦C for all methods considered thanks to the
controller and the defocus mechanism triggered as needed. Observe
that the No-valves Track method holds the outlet temperature in the
set-point 𝑇 f

ref = 280◦C. The total HTF flow also decreases when the
moving cloud is covering part of the field (see Fig. 4 (c)). As an
example, it is shown the outlet temperature and the local flow rate of a
clean loop #2 and a dusty loop #10 in Fig. 5. The flow rate is decreased
because of the drop in DNI between 𝑡 = 63 min and 𝑡 = 76 min.
Providing the outlet temperature of a loop reaches 290◦C, the defocus
mechanism is triggered, e.g., as seen in loop #2 with the No-valves
method at 𝑡 = 70 min.

The coalitions formed by applying the Coal. Market scheme to the
ACUREX field are displayed in Fig. 6. The 𝑦-axis represents the loops,
the 𝑥-axis indicates the length of the simulation, and the color bar
shows the ten different colors, i.e., it represents up to ten coalitions in
total. For example, the partition of the system is  = {{1}, {2}, {6}, {7},
{4, 8, 10}, {3, 5, 9}} at time instant 𝑡 = 1 min, and  = {{1}, {4}, {6}, {7},
{8}, {2, 5}, {3, 9, 10}} at 𝑡 = 120 min. After evaluating the maximum
coalition sizes as shown in Appendix, the limit was set to ||max =
3 because it provides the best trade-off between performance and
computational load.

5.4. Results of the 100-loop field

For the 100-loop field, we also simulate two hours using the effec-
tive solar DNI profile represented in Fig. 7. As shown, it is considered
that 20% of loops have 450 W/m, 16% have 900 W/m, and the rest have
750 W/m. Additionally, a moving cloud is considered passing over the
field from 𝑡 = 65 min to 76 min (see Fig. 7 (b)–(d)).

Fig. 8 shows the overall trajectories of the outlet temperature, the
thermal power, and the flow rate obtained in the 100-loop field by
implementing the considered controllers. Similar to the previous case,
the outlet temperature increases, and the flow rate decreases in the
time interval that the moving cloud covers the field to maximize the
resulting thermal power. Note that the centralized MPC has not been
implemented because of the substantial computational (approximately
𝜏 = 410 min). Therefore, the centralized approach is not suitable to
handle this field in real-time.

The resulting partitions with Coal. Market are depicted in Fig. 9,
where the color bar represents up to 100 colors for the total number
of coalitions. As an example, there are 60 coalitions at time instant
𝑡 = 1 min, 100 coalitions at 𝑡 = 66 min, and 43 coalitions at 𝑡 = 101 min,
with the maximum coalition size ||max = 3 established previously.

2 The reader is referred to the electronic version of the manuscript to
interpret the color legends of most figures.
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Table 4
Numerical results by applying the control techniques in the two-hour simulation of the
100-loop solar field.

Control method 𝜏 [s] 𝐸̄ [kWh] Improvement

No-valves track 2.66 20672 –
No-valves 228.39 21276 2.92%
Dec 3.11 22688 9.75%
Coal. Pair 13.86 22778 10.19%
Coal. Market 35.19 22826 10.42%

The numerical results obtained by implementing the mentioned
control strategies in the large-scale field are collected in Table 4. The
mean energy obtained on applying the No-valves Track method is
outperformed 2.92% by No-valves, 9.75% by Dec, 10.19% by Coal. Pair,
and 10.42% by Coal. Market. In this regard, the proposed Coal. Market
presents the best improvement of mean energy (10.42%) and can be
computed in a reasonable time (𝜏 = 35.19 s). Hence, the proposed
coalitional MPC scale suitably for controlling this distributed solar
collector field.

5.5. Discussion: Applicability to a real scenario

The market-based scheme for selecting the solar field partition is a
novel method inspired by the electricity intraday market. It allows loop
controllers to offer and demand HTF flow aware of the utility gain of
the transactions, which can be done almost instantaneously because we
only increase/decrease the HTF limits of each loop within the coalition.
Nowadays, there is no prototype of this mechanism in practice, but as
we have shown it would be profitable and feasible to be implemented
the method in a real scenario. Nevertheless, the applicability of the
proposed method may present the following limitations in practice:

(i) Flow meters are supposed to be installed in each loop. However,
most commercial plants do not have flow meters in all loops,
but only in various field sectors. In this case, the flow rate of
each loop can be estimated from the total flow, which is often
measured, and the valve position of all loops with the aid of a
hydraulic model.

(ii) Valves are already installed in many solar parabolic-trough
plants and can be manipulated from the SCADA system. How-
ever, this manipulation is only made for balancing the flow
of the solar field hydraulically. To the best of our knowledge,
some solar power companies are now considering the use of
loop valves for controlling their plants and not just for hydraulic
balance.

(iii) Scalability in large-scale fields. The proposed clustering ap-
proach is scalable from the 10-loop to the 100-loop solar col-
lector field, as shown in the results section. In a larger field,
the limitation of scalability is given by the computational time,
which is composed of: (i) the time that the coalition requires
to solve the MPC problem, which is related to the number of
loops per coalition, and (ii) the time needed to compute the
partition of the field. We have elaborated a simulation study
with fields of increasing number of loops, as displayed in Fig. 10.
Considering that real plants use a sampling time of 60 s, it
would be feasible to control fields of up to 300 loops approx-
imately with our current implementation. Implementations in
larger fields would require more powerful computers and more
efficient programming languages than Matlab, which focuses
on mathematical prototyping rather than on the speed of the
solution. In this regard, there are implementations of MPC in C
and C++, e.g., QP-OASES [46] and C/GMRES [47], which could
be employed. Therefore, our assessment must be considered as
a lower bound of the size of the plants that could be calculated
with the proposed method.
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Fig. 10. Relationship between the number of loops of the field (𝑁loop) and the
aximum computational time per coalition (𝜏 ) by implementing the market-based

oalitional MPC with ||max = 3.

. Conclusions

A hierarchical coalitional model predictive control (MPC) algorithm
ased on a heuristic market mechanism where agents can demand
nd offer heat transfer fluid flow is proposed to maximize the energy
roduced in large-scale solar parabolic-trough fields. When a transac-
ion is generated, the agents form a coalition and benefit from sharing
heir heat transfer fluid flows. To this end, the upper control layer
eriodically compute the best subsystem clustering (i.e., set of coali-
ions) to take advantage of the extra flow in those collector loops with
ow effective solar irradiance and reflectivity. Afterward, the resulting
oalitions compute their optimal control sequences and implement
hem.

As has been seen, the proposed heuristic coalitional criterion sim-
lifies the search for suitable partitions, mitigating the combinatorial
xplosion with the number of cooperation links. Additionally, limits
n the coalition size, which is closely related to performance and
omputational time, make the approach feasible to control large-scale
ystems in real-time.

The proposed strategy has been compared with other control meth-
ds and tested in two simulated parabolic-trough solar collector fields
o assess its scalability using synthetic solar irradiance profiles with
oving clouds, loops with different reflectivity, and a simple defo-

us mechanism. The numerical results based on averaged energy pro-
uction show that centralized MPC provides the best performance.
owever, it cannot be implemented in real-time because of its high
omputational time. Remarkably, the thermal energy improvements
btained by applying loop valves control and the coalitional MPC ac-
ounts for up to 12% regarding traditional controllers, and its maximum
omputational time per coalition is 35.19 s. Since real plants use a
ampling time of 60 s, it would be feasible to control plants of up to
00 loops approximately with our current implementation. Note that
he centralized control cannot be performed in real-time in large-scale
olar collector fields due to the significant number of decision variables.
herefore, our contribution improves the scalability of the method
ubstantially.

Regarding the energy improvement of 0.7% obtained in the 100-
oop field when comparing the decentralized and coalitional MPC meth-
ds, it represents, in a plant like Solana (808 loops with a production

of 944 GWh/year),3 an improvement of 6608 MWh/year. Considering

3 https://solarpaces.nrel.gov/project/solana-generating-station
10

p

the average price of the MWh in Spain during the first six months of
2021, which is 65 e/MWh, it is obtained 430000 e/year approximately.
Considering that the software investment for controlling valves in a
decentralized way is worth about 50000 e, the payback period is less
than two months. Similarly, in the Mojave solar parabolic-trough plant
(282 loops with an annual production of 617 GWh),4 the 0.7% represents
an improvement of 4319 MWh/year and 281000 e/year approximately,
and the payback period is less than three months. Therefore, we esti-
mate that the payback period on software investments will be between
one and six months, depending on the plant’s energy production.

Future research lines connected to this work are the fully distributed
implementation of the coalitional model predictive control strategy, its
implementation in the C programming language, the integration of a
detailed hydraulic model, and the use of neural networks to speed up
the computation of the field partition.
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Appendix. Controller design

The proposed clustering controller is based on MPC and the HTF
flow market. The design of the main controller parameters are discussed
hereunder:

Sampling time (𝛥𝑡ctr). The sampling time sets the rate at which the
controller executes the control algorithm. If 𝛥𝑡ctr is too large, the
controller will not react to the disturbances fast enough. In the opposite
case – when 𝛥𝑡ctr is too small – the controller will deal with disturbances
much faster at the expense of increasing the computational burden
excessively. Usually, it is recommended to set 10 to 20 samples within
the rise time of the open-loop system response to find the right balance
between performance and computational effort. In this work, it is
employed 𝛥𝑡ctr = 60 s because it is usually the sampling time considered
to control the solar collector fields in practice.

4 https://www.power-technology.com/projects/mojave-solar-thermal-
ower-california-us/

https://solarpaces.nrel.gov/project/solana-generating-station
https://www.power-technology.com/projects/mojave-solar-thermal-power-california-us/
https://www.power-technology.com/projects/mojave-solar-thermal-power-california-us/
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Table A.5
Relationship between the maximum coalition size ||max, the maximum computational
ime per coalition 𝜏 , and the mean energy obtained 𝐸̄ in a two-hour simulation of
he 100-loop solar field.
MPC methods ||max 𝜏 [s] 𝐸̄ [kWh]

Dec 1 3.11 22688
Coal. Pair 2 13.86 22778
Coal. Market 3 35.19 22826
Coal. Market 4 54.267 22842

Prediction horizon (𝑁p). At each time step, the MPC controller makes
predictions about the future system output to determine the optimal
control sequences in accordance with the system objective. The predic-
tion horizon is the number of prediction steps toward the future. This
finite horizon should cover the significant system dynamics. A usual
approach for selecting 𝑁p is to have 20 to 30 samples covering the open-
loop transient system response. In the simulations, it is selected 𝑁p = 12
amples.

ontrol horizon (𝑁u). The control horizon 𝑁u ≤ 𝑁p sets how many time
steps at the beginning of the prediction horizon the control input value
needs to be computed. After that instant, the predicted input keeps the
last value calculated until the end of the prediction horizon. A really
small value reduces the number of decision variables but might not pro-
vide the best predicted output behavior. On the contrary, using a large
control horizon may improve behavior at the expense of increasing the
computational complexity. Moreover, the control horizon can be the
same as the prediction horizon. However, note that the first control
moves usually have a more significant effect on the output trajectory,
while the remaining ones have a minor impact. In the simulation, it is
selected 𝑁u = 10 samples.

Weights (𝛼, 𝛽). When the objective function has multiple goals, some
weights can be assigned to balance these competing goals. The weight
𝛼 is used to penalize the maximum quadratic violation of the outlet
temperature constraints. The larger 𝛼 is, the more weight has in the
objective function, and thus a greater effort is made to keep the outlet
temperature within its bounds. Moreover, the parameter 𝛽 weighs the
valve control effort in the cost function. Hence, a small and large value
of 𝛽 will lead respectively to more and less flow rate oscillation in the
valves during daily operation. In the simulations, these values have
been selected by trial and error: 𝛼𝑗 = 5 ⋅ 10−4 and 𝛼𝑗 = 8 ⋅ 10−3 for
the 10-loop and 100-loop fields, respectively; and 𝛽𝑗 = 3 for both fields
to weigh the valve control effort.

Partition update period (𝑇up). The clustering algorithm reconfigures
the partition of the field according to the HTF transactions made
between the loop controllers every 𝑇up time samples. This flexibility
degree allows overcoming disturbances such as the changes in the solar
irradiance and the reflectivity differences between the loops. If the
update period 𝑇up is too large, the partition will not be fit fast to the
disturbances. On the other hand, if 𝑇up is too small, the partition will
capture the disturbances faster, but the increase of the computational
load may be impractical. In the simulations, the partition is updated
every 𝑇up = 5 time instants.

Maximum coalitional size (||max). The time that the coalition requires
to solve the MPC problem and its resulting performance is related
to the number of loops per coalition. The greater the coalition size,
the better performance is achieved (see Table A.5), but more time is
required to solve the MPC problem. Note that if ||max = 1 we have
the decentralized partition. Note also that the maximum computational
time per coalition is given by the sampling time 𝛥𝑡ctr = 60 s. In this
work, we select ||max = 3 as the maximum number of loops per
coalition to find a trade-off between performance and computational
11

issues in the two scenarios.
Fig. A.11. Study of design parameters 𝛥𝑞 and ||max with Coal Market method in the
10-loop field showing the averaged energy production during the simulation.

Flow quantum (𝛥𝑞). This is the quantity of HTF that is offered and
demanded in the flow market. In this work, 𝛥𝑞 was selected by mapping
it out from 0.1 to 1 liters per second with two coalition size constraints
in the two solar parabolic-trough fields. As an example, in Fig. A.11, it
is displayed the averaged energies obtained for the 10-loop solar field
during a two-hour simulation.
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