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Abstract: When it comes to harvesting operations, precision agriculture needs to consider both
combine harvester technology and the precise execution of the process to eliminate harvest losses and
minimize out-of-work time. This work aims to propose a complete control framework defined by a
two-layer-based algorithm and a simulation environment suitable for quantitative harvest loss, time,
and consumption analyses. In detail, the path-planning layer shows suitable harvesting techniques
considering field boundaries and irregularities, while the path-tracking layer presents a vision-guided
Stanley Lateral Controller. In order to validate the developed control framework, challenging driving
scenarios were created using IPG-CarMaker software to emulate wheat harvesting operations. Results
showed the effectiveness of the designed controller to follow the reference trajectory under regular
field conditions with zero harvest waste and minimum out-of-work time. Whereas, in presence
of harsh road irregularities, the reference trajectory should be re-planned by either selecting an
alternative harvesting method or overlapping the harvester header by some distance to avoid missing
crops. Quantitative and qualitative comparisons between the two harvesting techniques as well
as a relationship between the level of irregularities and the required overlap will be presented.
Eventually, a Driver-in-the-loop (DIL) framework is proposed as a methodology to compare human
and autonomous driving.

Keywords: precision agriculture; harvesting; path planning; path tracking; CarMaker; agricultural
simulator

1. Introduction

This paper aims to review the previous work and research developments in the field
of autonomous combine harvesters and precision agriculture from the point of view of
simulation scenarios, cutting methods, control architectures, and sensors.

The integration of crop growth simulation has become integral in advancing the un-
derstanding of agricultural systems. Some of the most prominent models includes APES,
CROPSYST, DAISY, DSSAT, FASSET, HERMES, STICS, and WOFOST, which integrate daily
weather statistics, soil properties, and detailed crop and soil management information. The
study conducted in [1] serves as an important reference, offering a comparative analysis of
these models in simulating winter wheat yield and variability across different climates in
Europe. The comprehensive use of daily weather statistics, soil properties, crop phenol-
ogy, and management information in these models reflects their capacity to significantly
contribute to the advancement of agricultural science.

In the context of wheat harvesting, the choice of cutting technique significantly in-
fluences the overall effectiveness of the process and has a direct impact on harvest losses.
Two notable harvesting techniques, “Harvesting Method by Going and Return” shown
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in Figure 1 and “Harvesting Method by Rotation Oceanic” shown in Figure 2 have been
explored in the literature to address the challenge of minimizing harvest losses [2].

Figure 1. Harvesting Method by Going and Return, source [2].

Figure 2. Harvesting Method by Rotation Oceanic, source [2].

In both of the approaches, efficient headland (end-of-row) maneuvering stands as
a critical element for operational effectiveness, as shown in Figure 3. While automatic
guidance systems commonly excel in parallel tracking, the inclusion of headland maneu-
vering is often overlooked. The conventional Dubins Curves method, employed for path
generation, lacks consideration for critical parameters like maximum steering angle [3].
Addressing this gap, an algorithm was introduced to formulate a seamless path for head-
land maneuvering, ensuring continuity in curvature and speed. Notably, the algorithm
incorporated considerations for both the maximum steering angle and the maximum ac-
celeration of the agricultural vehicle. Moreover, it allowed for the definition of a target
speed profile, offering the flexibility to either increase or decrease the speed during the turn.
It also enabled the smooth connection from zero curvature to maximal curvature, which
represents the reciprocal of the minimum turning radius [4].

In the field of agricultural automation, the primary focus of path-tracking control
algorithms is often directed towards enhancing the trajectory-tracking performance of
autonomous agricultural machinery. Typically, agricultural productivity is optimized
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through a two-layer approach. The upper operational layer strives to optimize an ideal
tracking trajectory that maximizes productivity; see Figure 4. Meanwhile, the lower control
layer is responsible for receiving this optimized trajectory and steering the vehicle with
high precision to follow it [5].

Figure 3. Three commonly used maneuvers in the headland turns, source [4].

Figure 4. The given optimized tracking trajectory by the operational layer (red curves), source [4].

Central to this endeavor is the design of path-tracking controllers that carefully con-
sider the stability of the yaw (heading angle) and the constraints inherent in vehicle
dynamics. Current research predominantly revolves around a lateral controller design,
often relying on the identification of a path reference point based on the shortest distance
to the vehicle from the current state. However, this approach imposes limitations on the
controller’s adaptability to sudden changes in the trajectory heading angle [6]. In [7], a
novel approach to path tracking aimed to emulate human driving behavior. Departing
from traditional methods, this approach was grounded in a discrete prediction model that
anticipates the future states of the vehicle. By enabling the control algorithm to operate
on future-predicted states in conjunction with the current controller output, the proposed
methodology sought to enhance the system’s responsiveness to dynamic changes in the
environment. In contrast, the work presented in [8] mainly aimed at automatizing the
U-turn of combine harvesters to account for both vehicle constraints and overlap in order
to eliminate harvest losses. In the context of harvesting, overlap refers to the repeated
coverage of a portion of the field or crop by the combine header during successive passes.
Overlap can occur when the harvesting equipment covers more ground than necessary,
resulting in redundant or double harvesting of certain areas. In understanding harvest
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losses, several factors play a crucial role; however, in this project the focus is only on the
field topography effect on harvest losses in the context of precision agriculture.

To efficiently address the soil irregularities, the choice of a proper sensor is crucial in
order to obtain a reliable feedback. For this reason, sensor-based controllers play an impor-
tant role in autonomous agriculture. Recently, [9] introduced a noteworthy technological
advancement in wheat harvesting, enhancing the efficiency of the harvesting process by
integrating a GPS receiver and a grain level sensor into a wheat harvester combine. In [10],
the authors introduced an approach that aimed to address the specific needs of small-scale
wheat farmers by developing a scalable, low-cost technique for wheat harvesting. The
core of their methodology involved the integration of a standard camera, in conjunction
with a GPS-assisted unit , served as the sensory input for the system. An image-processing
module was employed to extract relevant information from the captured images, with
data sourced from the sensor module. A microcontroller was responsible for steering and
driving motor control, allowing the robot to navigate the wheat fields effectively.

2. Motivations and Methodology

The motivation behind research in autonomous agriculture stems from addressing
various challenges in traditional harvesting methods. They include the following:

• Operator Stress and Fatigue: the current reliance on manual operation leads to operator
stress and fatigue, affecting overall efficiency and well-being;

• Challenging Field Conditions: conventional harvesting faces difficulties in effectively
navigating and operating in challenging field conditions;

• Soil Compaction and Passes: manual harvesting can contribute to soil compaction due
to excessive passes, impacting soil health and overall crop yield;

• Damaged or Missing Crops: human-operated harvesters may inadvertently cause
crop damage during the harvesting process, leading to yield losses;

• Tire and Track Wear: traditional harvesting equipment experiences wear and tear on
tires and tracks, requiring frequent maintenance and replacement;

• High Fuel Consumption: manual harvesting often involves high fuel consumption,
contributing to increased operational costs and environmental concerns [11].

To test a wide variety of scenarios, especially regarding soil irregularities, the entire
work is conducted in simulation. This paper is structured as follows. In Section 3, a proper
scenario and harvester modeling is presented. This work makes use of IPG-CarMaker
software to create wheat crops and soil, import a harvester model within the scenario,
and then perform virtual driving tests to model wheat harvesting operations and validate
autonomous driving control algorithms. In Section 4, vehicle modeling is reported. In
Section 5, path-planning and path-following algorithms are described. This work presents
an effective Stanley Lateral Controller developed on Simulink and tested on CarMaker,
for either tracking a predefined trajectory assuming knowledge of the agricultural field or
following the field borders online by means of a vision sensor for crop edge guidance. In
Section 6, a quantitative comparison between two harvesting techniques—cutting by go-
and-return and oceanic cutting—in terms of harvesting time, fuel consumption, and need
for overlapping the cutter to eliminate harvest losses is presented. Moreover, a framework
to compare manual driving and automated driving is proposed. Eventually, in Section 7,
conclusions are drawn based on the previously listed motivations.

3. Scenario Generation
3.1. Environment Definition

To model a wheat field, the following scenario was created through the editor tab of
CarMaker [12]: a vast space of land (road) where a 50-square-meter dense area of wheat
crops was added. Crops were modeled as traffic objects of type ‘Bush’; see Figure 5.

As the number of traffic objects in the scenario was limited to 700, the crops were 2 m
apart from each other to make a relatively large but dense field. However, to have a realistic
model of the crop size, virtual 1-centimeter-radius circles were placed around the center of
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each crop by means of C code. Thus, from a vision sensor point of view, that area was fully
dense of quite big crops, while from the harvester point of view, the crops were small and
distant, as shown in Figure 6.

Figure 5. Wheat field model.

Figure 6. Harvester-based crop model.

Eventually, to make this scenario resemble a challenging wheat field, irregularities
were introduced through wave function of different orientations, heights, and period
lengths. A schematic representation is shown in Figure 7.
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Figure 7. Wavy field.

3.2. Harvest Modeling

A combine harvester is a machine that is primarily used for harvesting cereal crops
such as wheat. It is designed to cut, thresh, and clean the crop in one operation, separating
the grain from the straw and chaff. The grain is collected in a tank for transport, while the
straw is either spread back onto the field or baled for use as animal feed or bedding. As an
example, John Deere X9 1100 stands as a cutting-edge combine harvester ranking among
the largest globally [13]. A generic combine harvester model was first defined based on
four parameters, namely, cutter width, cutter depth, cutter waste-off, and cutter waste rate.
For details, see Figure 8.

Figure 8. Generic harvester.

While the cutter waste-off and waste rate were additional parameters for determining
where and how often to place waste behind the combine, the cutter width and depth
were fundamental in the cutting mechanism. The cutter’s end line shown in Figure 8 was
modeled as a virtual moving segment of length equal to the cutter width, slope equal to
the combine heading angle (ψ), and intercept depending on the position of the combine
reference frame (Fr1) in the global one (Fr0). It was developed as a custom C code for the
specific application. The concept is easily explained by Figure 9 and Equation (1) [14].
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Figure 9. Combine’s pose in the global reference frame, source [14].

The translation matrix (t) and rotation matrix (r) from Fr0 to the end points of the
cutter’s virtual line are defined as follows:

t =

X + l + cutter depth
Y ± cutter width

2
0


r =

cos ψ −sin ψ 0
sin ψ cos ψ 0

0 0 1

 (1)

As shown in Figure 10, l is the combine length in meters, and X-Y (meters) and ψ
(radians) characterize the pose of Fr1 in the global frame Fr0, which are obtained directly
as accessible quantities from the simulation environment.

Figure 10. Vehicle kinematic model, source [15].

Once the dynamic virtual line intersects at least one time with with any of the fixed
virtual circles previously defined around the center of each crop (this is detected by a
custom routine defined) as reported in Figure 11, the corresponding crop disappears from
the scenario emulating a real harvesting operation.
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Figure 11. Cutting condition by the intersection of a line and circle.

4. Vehicle Model

In order to move from a generic model to a more appropriate one capable of taking
into account kinematic and dynamic characteristics of a real harvester, a 3D model of the
harvester was included in the virtual environment, as shown in Figure 12.

Figure 12. Harvester 3D object.

Agricultural machinery should be modeled with high-fidelity nonlinear dynamic
models, in order to highlight and consider every force that affects the system. However, this
approach would require an extensive modeling of the environments (for example, slipping
effects, which depend on soil moisture and tire properties) and a high computational
burden. For this reason, under the hypothesis of low harvesting speeds, a kinematic
modeling was considered a good compromise for the study. The scheme is reported in
Figure 10, where lr and lf represent the longitudinal distances from center of gravity (G)
to the rear and front axles, respectively, v is the velocity vector, β is the slip angle and is
assumed to be zero, and δ is the steering angle.

The mathematical formulation of the kinematic model, as well as system states (z) and
control input (u), are defined in Equations (2), respectively.

Ẋ
Ẏ
ψ̇

 =

v · cos ψ
v · sin ψ

v·tan δ
lr+lf

,

z =

X
Y
ψ


u = δ

(2)
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5. Control Architecture
5.1. Path Planning

Cutting by go-and-return is the most popular harvesting technique and the easiest to
control. Its most challenging sub-task consists in the planning phase of the 180o end-of-row
turn, highlighted in red in Figure 13. The advantage of this techniques is represented
by the combine’s ability to demonstrate an almost constant speed in the following trajec-
tory performed.

Figure 13. Vehicle trajectory in cutting by go-and-return.

These turns, however, need to minimize the out-of-work time while considering the
vehicle constraints: maximum and minimum speed in [m/s] and maximum steering angle
in [rad]. In order to minimize distance traveled from an initial pose characterized by
0o or 180o heading angle to a final pose characterized by 180o or 0o heading angle, an
optimization problem was formulated, as shown in Equation (3) and numerically solved
offline (MATLAB routine). 

min J =
N
∑

i=1
(∥zi − zi-1∥2 · α)

s.t. z(0) = z0,

z(N) = z1,

vmin ≤ vi ≤ vmax,

|δi| ≤ δmax

(3)

In the above, J is the cost function to be minimized, i.e., the sum of the squared distances
between two consecutive points in the trajectory. N is the total number of (spatial) dis-
cretization points of the trajectory (for the considered case, N is set to be equal to 20), i is
the index of a point in the trajectory, (α) is a weighting matrix, and z0 and z1 are the initial
and final poses, respectively.

In Figure 14, steering angle range constraint influence over the resulting maneuver is
presented as an example.
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Figure 14. Effect of the steering angle range constraint (in degrees) on the optimal trajectory.

In detail, narrowing the steering angle range leads to longer travel distances and more
out-of-work time; furthermore, increasing the speed minimum value beyond 20 km/h
makes the vehicle unable to take this sharp turn. Hence, suitable ranges for both steering
angle and velocity were selected as [−30:30] degrees and [1:20] km/h according to the
numerical results. Moreover, these values are consistent with the physical constraints of
the typical state-of-the-art combine harvesters.

Irregularities are introduced in the virtual environment in order to reproduce a more
realistic scenario and verify tracking performances of the control system presented. A
comparison between regular field (blue) and wavy field (red) tracking results is presented
in Figure 15, where the effect is well represented. In detail, the wavy field scenario considers
a wave orientation equal to 90o, wave height equal to 20 cm, and wave period length equal
to 2 m.

Figure 15. Reference vs. actual trajectories in wavy and regular fields.



Sensors 2024, 24, 1214 11 of 20

The error (lateral deviation from ref.) associated with each of the two cases is shown
in Figure 16.

Figure 16. Errors in wavy and regular fields.

As can be seen from Figures 15 and 16, the lateral deviation from the reference tra-
jectory in the case of a wavy field is not negligible, and will inevitably lead to harvest
losses. This leads to the necessity of adopting a safe overlap distance (at least equal to
the maximum value of error) inside the field. This affects the optimal turn numerical
calculation where the considered width becomes equal to the difference between the cutter
depth and the overlap. However, this implies that the combine has to pass twice through a
certain area at the intersection of two rows, which might cause soil compaction.

An alternative solution is to adopt a completely different harvesting technique called
oceanic cutting, which has the advantages of reducing harvest losses to zero without the
necessity of overlap and self-containing the combine within the field’s borders (which
may be important in case it is not possible to perform a U-turn due to space constraints).
However, this technique presents some known drawbacks such as a longer harvesting
time, more fuel consumption, and ride discomfort because of the reverse motion direction
required at the end of each row/column performed. An example of trajectory performed
during oceanic cutting is shown in Figure 17.

Figure 17. Vehicle trajectory in oceanic cutting.
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5.2. Path Tracking

In order to properly track the reference trajectory computed by each harvesting tech-
nique, a Stanley Lateral Controller was implemented. This path-tracking technique was
firstly introduced by Standford University’s Darpa Grand Challenge team as reported
in [16]. Unlike other path-tracking methods, which make use of the rear axle as reference
point, Stanley methods use the front axle. The controller is specifically designed in order to
minimize both the heading error and cross-track error while ensuring the steering angle to
remain in a feasible range of motion. As a result of this control architecture, steering input
equations are reported in Equation (4): δ(t) = ψ(t) + tan-1

(
k·e(t)

ks+v(t)

)
s.t. δ(t) ∈ [δmin, δmax]

(4)

where k is the position gain of forward motion, ks is a softening constant to ensure the
denominator is non-zero, e(t) is the cross-track error, and ψ is the heading error. The
Cross-track error is defined as the distance between the closest point on the path with the
front axle of the vehicle (lateral deviation seen in Figure 16) while heading error is the
difference between heading angle and trajectory angle. Both errors are evaluated according
to path references defined in Figures 13 and 17 for the different cutting methods.

In this paper, path tracking is computed by means of the use of GNSS data and by
means of a distance sensor-based data.

In the first implementation presented, GNSS data are considered as measurement
variables. In this case, the procedure directly computes tracking, comparing measured
position and orientation to the reference path previously computed offline. This approach
is required when local measurements (distance sensors or cameras) are not available, but
accuracy may be reduced according to weather conditions and GNSS reliability.

For this reason, a more reliable approach based on local measurements was developed.
In detail, the possibility of taking advantage of relative distance information between the
vehicle and crops was analyzed. Considering CarMaker virtual simulator software, the
approach developed is based on the use of two “Free Space” sensors mounted on the most
right and left positions of the cutter. The “Free Space” sensor is an ideal sensor module
used to scan the environment like a stereo camera and capture the free and the occupied
space around the vehicle, as shown in Figure 18.

Figure 18. Free Space Sensor detection.
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The design choice adopted consists of placing the harvester at any arbitrary starting
position as long as the right sensor sees the right edge of the field. Under this working
condition, the control goal is set to maintain the average longitudinal and lateral distances
in the sensor frame with respect to the nearest crop equal to zero until the end of the row
is reached. Afterwards, depending on the harvesting method, the harvester then either
performs a 180o turn and then engages the left sensor to follow the left edge of the field
(cutting by go-and-return), or reverses the motion direction and drives backward until the
vehicle is ready to perform a 90o turn to re-engage the right sensor again with the right
perpendicular edge of the field (oceanic cutting).

6. Simulation Results

In this section, simulation results are reported. In detail, the two tracking control
techniques previously presented are compared and discussed. Then, the adoption of a
safety overlapping distance in go-and-return cutting operation is discussed and analyzed
considering the main irregularity parameters affecting its severity. Finally, a comparison
between go-and-return and oceanic cutting strategies in terms of harvesting time and fuel
consumption is reported.

6.1. Sensor vs. GPS-Based Control

Simulation results highlight the advantages of vision-based control over the GPS-based
one. In detail, vision-based control, even though it requires higher onboard computing
power and the system’s ability to process sensor information in real-time, makes possible
an online replanning of the trajectory without any a priori knowledge of field geometry
that is required by a GPS-based controller. Moreover, its improved tracking performance
reduces the need of overlapping over consecutive harvesting iterations. In Figure 19, the
expected trajectory (black line) is compared to sensor-based (green) and GPS-based (purple)
simulated trajectories. All trajectories are capable of following the reference, thus showing
that a Stanley controller based on a point-by-point feedback is enough for operations inside
the field (where cutting trajectory is usually almost rectilinear). A deeper comparison in
terms of lateral deviation of the trajectories with respect to the reference one is reported in
Figure 20.

Figure 19. Expected trajectory against actual trajectories of sensor- and GPS-based control.
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Figure 20. Lateral deviations from reference of sensor- and GPS-based control.

The results show how the vision-based controller presents a lower tracking error
(lateral deviation) when the harvesting operation is taking place (inside the field).

6.2. Overlap

In order to avoid missing crops during the harvesting operation, the adoption of a
safe overlap distance is required, in particular when external disturbances (field irregulari-
ties) are present when applying a go-and-return technique. In real-life agricultural fields,
irregularities in the terrain can vary widely; a common approach, also reproduced in simu-
lation environment in CarMaker, is to consider the irregularity as a combination of three
wave variables: orientation, height, and period length. Thereafter, an extensive simulation
campaign constituted by 64 different scenarios—with all the possible combinations of the
three wave variables where for each parameter a set of four different values is considered
according to the state of the art in [17]—was performed to evaluate the need of a safety
overlap distance for each scenario. In particular, the four values considered for orientation
were 0°, 45°, 90°, and 135°, for the period length 1 m, 2 m , 3 m, and 4 m, and for the
height 0.05 m, 0.1 m, 0.15 m, and 0.2 m. Figure 21 summarizes all simulation results. It is
important to notice that in case an overlap is not necessary (no missed crops), a minimum
safety distance of 0.2 m is suggested. On the other hand, in case of an unfeasible scenario
(the vehicle fails in tracking the trajectory), an overlap of 3.5 m is reported (for clarity in the
plots presented).

Figure 21. Effect of different wave parameter combinations on the required overlap.
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From the simulation results it is possible to conclude that the larger the wave height
the larger the overlap. At the same time, smaller wave length requires a larger overlap.
Wave orientation influence is not clear. Therefore, the results of the previous simulation
campaign can be reported in a figure in order to show overlap, wave height, and period
length dependency considering a specific wave orientation to emphasize the effect of these
two parameters. Figure 22 , as an example, reports the case with zero degrees of orientation.

Figure 22. Effect of wave height and period length on the required overlap at zero-degree wave
orientation.

6.3. Go-and-Return vs. Oceanic Cutting

The second harvesting methodology considered in this study is oceanic cutting. It is
characterized by following the borderlines of the field in a spiral motion until the whole area
is covered. The two cutting strategies were tested and compared with one of the previously
presented challenging scenarios where the required overlap of the go-and-return strategy
was evaluated to be 1.55 m. Tracks of the cutter’s end line movement within the field is
considered in order to compare the two strategies and to check whether the whole field
was properly covered by the cutter.

Figure 23, shows the cutter’s end line when cutting by go-and-return is performed
and no overlap is implemented. The hsrvesting operation is performed in most of the area
(green), but some uncovered (white) areas within the field borders (in black) are visible.
This confirms the need of the adoption of an overlap to avoid missing crops. On the other
hand, oceanic cutting simulation shown in Figure 24 demonstrated the self-recovering of
the missed crops that would occur at the end of the first straight line. This proves how
oceanic cutting does not need overlap adoption.

A comparison in terms of harvesting time between the two methods is provided in
the following. In particular, considering a square field of a side length equal to 50 m and
ideal road conditions (no irregularities), applying the go-and-return strategy required the
vehicle four passes to complete cutting operation and considering a speed of 10 km/h, it
took a total of 126.3 s. On the other side, applying an ocean cutting approach considering
the same scenario and the same speed, it took 252.3 s. It can be seen that cutting by go-and-
return is almost twice as fast as oceanic cutting; however, tests were repeated considering
irregularities and so the need of safety overlap for go-and-return strategy. The safe overlap
distance increased the number of required passes, making the overall harvesting time
higher, whereas the oceanic cutting time only slightly increases due to pitch and/or roll
oscillations, which affects the proper tracking control action a little. A sensitivity analysis
of irregularities over the harvesting time is eventually conducted and the simulated results
are reported in Table 1.
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Figure 23. Cutter’s end line movement in cutting by go-and-return.

Figure 24. Cutter’s end line movement in oceanic cutting.

Table 1. Harvesting time as a function of field irregularities in cutting by go-and-return and
oceanic cutting.

Irregularities Go-&-Return Oceanic

Orientation (deg) Height (m) P. Length (m) Overlap (m) Time (s) Time (s)

No Irregularities 0 126.3 252.3

0 0.15 1 2.17 164.81 255.25

0 0.2 2 1.55 164.45 255.12

45 0.15 2 1.2 164.44 255.1

45 0.2 2 1.76 164.46 255.23

90 0.2 2 3.14 164.93 255.36

135 0.2 2 3.07 164.87 255.28
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It can be noticed that harvesting time is not very sensitive to the severity of the field,
but depends only on the number of required passes. It can be concluded that harvesting
time is just affected by the overall number of passes required to complete the task. This
means that for larger fields where the overlap can accumulate more and more passes in
cutting by go-and-return, the oceanic cutting could become convenient.

As it can be deduced from the previous results, due to its variable speed and longer
harvesting time, the oceanic cutting technique is more fuel-consuming than cutting by
the go-and-return strategy whose speed remains mostly constant and harvesting time
is shorter.

Figure 25 shows the fuel consumption of the two strategies for the square field of a
side length equal to 50 m and ideal road conditions already considered. Combine harvester
consumption in cutting by go-and-return (blue line) is evaluated to be around 0.12 L of
fuel to complete the operation, while it consumed almost 10 times more fuel (0.98 L) in
oceanic cutting mode (red line), mainly due to the reversing motion maneuver. This can
be seen clearly after the end of the first row of crops where the consumption of the two
methods was the same. In fact, due to braking and motion reversing, oceanic cutting’s fuel
consumption rose significantly at the end of every row/column.

Figure 25. Consumption comparison between the two strategies.

Eventually, it is worth noticing that the oceanic cutting method does not allow a
constant cutting speed like the go-and-return, thus worsening the ride comfort. On the
other hand, the oceanic cutting does not require prior knowledge of the field since it consists
of cutting by following the edge according to sensor feedback.

6.4. Driver-in-the-Loop (DIL)

In this section, a framework to compare human and autonomous driving is proposed:
a Driver-in-the-loop approach based on a custom driver’s seat connected to the virtual
simulator as shown in Figure 26. The experimental setup consists of a driving seat, all
manual HMI commands for driving the vehicle, a display reporting the internal view of
the driving cockpit, and the computer running the software. This system allows us to
reproduce scenarios and harvester models as well as path planning resulting trajectories
for the different harvesting strategies (as previously described). Thanks to an interactive
interface, several Driver-in-the-loop (DIL) solutions to track trajectories are made available
(manned, assisted, or unmanned).

This platform can be considered a reasonable methodology for a fair comparison
considering the high repeatability of the test available and the fully controlled environment.
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Figure 26. AgriSIm driving simulator.

As an example, 10 attempts of manual driving were performed for cutting by go-and-
return. In this paper, just the best human driven trajectory performed was reported (red
line) and compared both to the automated one (blue line) and to the reference trajectory
(black line) as shown in Figure 27.

Figure 27. Reference trajectory tracking in autonomous vs. manual driving.

As the human driver was not professional, the results cannot be considered as evidence
of the advantages offered by an automated control over manual driving, even if from the
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figure manual driving appears to be more sensitive to irregularities and is not able to
optimally turn and properly follow straight lines like automated driving.

As a future development, this methodology could be applied to perform a cost–benefit
analysis of a control framework respect to a human-driven approach.

7. Conclusions

The presented research provides a full description of the virtual modeling and sim-
ulation of wheat crop, wheat field, and combine harvester. Proper path-planning and
path-tracking algorithms were implemented.

In detail, two harvesting techniques were investigated and compared to assess their
performance with the aim of reducing harvest losses and minimizing out-of-work time
in the presence of ground irregularities simulated by means of sinusoidal waves. It was
demonstrated how ground irregularities (high amplitude or low period) degrades cutting
by go-and-return performances by requiring an higher overlap to avoid harvest losses. In
these conditions the adoption of the slower oceanic cutting method (where no overlap is
required) is preferable than the faster cutting by go-and-return. The path-tracking problem
was then investigated and both a GPS-based and a vision-based implementation were
presented. The Vision-guided Stanley Controller proved its effectiveness in following
the crop edge even under the event of disturbances. The overall performance of the
control shows that no abrupt maneuvers, potentially dangerous for the integrity of the
crops, are required during inside-the-field operations due to the low speed. In order to
test the developed control algorithms, co-simulations between CarMaker and Simulink
were proposed.

Eventually, additional considerations and future development directions can be drawn:

• Operator Stress and Fatigue: this point could be investigated using the framework
presented in Section 6.4 to show advantages of automated harvesting operation over
human-driven ones;

• Soil Compaction and Passes: cutting by go-and-return, in absence of irregularities,
guarantees better performances than oceanic cutting since the combine passes just
once on each point of the field. In the presence of overlap, a deeper analysis could be
conducted;

• Tire and Track Wear: cutting by go-and-return, in absence of irregularities, guarantees
better performances than oceanic cutting since the combine travels a shorter distance.
In presence of overlap a deeper analysis could be conducted;
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