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A B S T R A C T

Performance evaluation methods are important to design and control manufacturing systems. Approximate
analytical methods are fast, but they may be limited by the restrictive assumptions on the system. On
the contrary, simulation has not specific limitations in its applicability, but the time to model and analyse
a manufacturing system can increase as the level of detail addressed by the model increases. The main
contribution of this study is presenting a computationally efficient methodology to simulate single-part
continuous-flow manufacturing systems with assembly/disassembly machines, multiple loops, general layout
and general inter-event time distributions. By using graph theory, a new method is presented to identify the
machines causing slowdown, blocking and starvation in a general layout and determine the time before the
occurrence of a state transition for each machine and the time before the fulfilment or depletion of each buffer.
By advancing the time clock to the next event-time accordingly, the number of discrete events needed to be
simulated is decreased compared to a discrete-event simulation with discrete flow of parts. As a result, the
proposed method is on average 15 times faster than DES methods in the analysis of discrete-flow systems, and
110 times faster on average in the analysis of continuous-flow systems. The low computational time of the
proposed method allows to simulate systems under general assumptions and in a very short time.
1. Introduction

In the manufacturing industry, using fast and reliable methods for
the evaluation of production systems is fundamental for supporting
decision making. The performance of existing systems are evaluated
by analysing the data collected in the production plant. However, the
production performance of systems during the design phase, during the
reconfiguration phase and as a result of changes in the control policies
of the system can be evaluated by using performance evaluation tools
such as simulation and analytical methods [1].

During the design phase, several configurations must be evaluated
before the selection and the implementation of the final solution.
For example, selecting the appropriate machine for a manufacturing
process involves evaluating a multitude of potential solutions that vary
in terms of cost, flexibility, and production capacity. Similarly, the
allocation of the buffer capacity between production stages directly
affects the overall performance of the manufacturing system, and it
can pose a challenging problem due to the space limitations usually
faced by production facilities. In addition, in the operational phase
of a manufacturing system, the vast set of improvements that can be
introduced in a plant must be evaluated such that the limited resources

∗ Corresponding author.
E-mail address: salvatore.scrivano@polimi.it (S. Scrivano).

of a company in terms of time and investment can be addressed
to the implementation of the most profitable actions. Evaluating the
alternatives by using simulation requires fast and accurate methods.

This work presents a fast and accurate simulation method for the
analysis of manufacturing systems and the evaluation of the production
performance, such as the production rate (throughput), the level of the
WIP, the lead time of the system, and the portion of up time, downtime
and idle time of each machine.

Regardless of whether the material flow in the analysed manufactur-
ing system is composed of discrete parts or a continuous stream, in the
proposed simulation method it is represented as a continuous flow. The
time is advanced in the simulation between discrete events affecting the
flow rate of material in the system. Every continuous change of the state
of the system, such as the buffer level, is analytically formalized in a
set of equations which are solved at each event time in the simulation.
This approach decreases the number of discrete events needed to be
simulated compared to a discrete event simulation when the flow of
each discrete part is modelled separately.

The proposed simulation method introduces a novel methodology
based on graph theory, which can simultaneously identify any cause
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of slowdown, blocking, or starvation for any machine in the system,
at any event time during the simulation. This approach enables the
determination of effective production rates of all machines in the
system in a single step, whenever an event occurs in the simulation.

The manufacturing systems analysed by the continuous-flow sim-
ulation method have a general layout, with a linear structure in
which the material sequentially flows through all the machines and
buffers, or with a non-linear structure because of the presence of as-
sembly/disassembly machines that combine/divide the material flows
from/to different portions of the system. Stochastic events occurring
in the manufacturing system, such as machine failures and repairs,
have general inter-event time distributions. As a result, the proposed
method is more general and the computational effort is significantly
lower compared to the ones given in the literature.

The rest of the paper is organized as follows. In Section 2, a
review of the approaches proposed in the literature for the evaluation
of the production performance of manufacturing systems is given.
Section 3 describes the main dynamics of the systems under anal-
ysis and defines the general notation of the system parameters. In
Section 4, the continuous-flow simulation method is defined. In Sec-
tion 5, the methodology presented in Section 4 is applied to a specific
production system to explain how it can be used to analyse a given
system. The numerical results and the computational performance of
the continuous-flow simulation for four different production layouts are
shown in Section 6. In Section 7 an industrial case from the manufac-
turing industry is presented. In the industrial case, the continuous-flow
simulation has been exploited to analyse and optimize the reconfigura-
tion of a production line. Finally, conclusions and future developments
are given in Section 8.

2. Literature review

This section gives a review of the two main modelling approaches
available in the literature for the evaluation of the production perfor-
mance of manufacturing systems, which are analytical methods and
simulation methods.

2.1. Analytical methods

Among the several alternatives for the evaluation of production sys-
tems, approximate analytical methods are proposed as fast and intuitive
approaches [2]. The work in [3] provides a complete classification of
analytical methods for the performance evaluation of manufacturing
systems.

Analytical methods can be classified into discrete-flow methods
and continuous-flow methods [4]. In discrete-flow methods, the move-
ment of discrete parts is represented. The work in [5] presents an
evaluation model of a discrete-flow transfer line with two unreliable
machines and finite storage buffer. When the analysed manufacturing
system has finite buffers and more than two machines, decomposition
techniques have been developed to estimate manufacturing systems
performance [6,7].

Analytical models based on a continuous approximation of the
discrete flow of parts have been extensively employed for the analysis
of systems with asynchronous machines characterized by deterministic
processing times and stochastic failures and repairs. [8–10] are some of
the earliest works for the evaluation of unreliable two-station systems
with a finite intermediate buffer. The work in [11] analyses continuous-
flow two-machine lines with multiple failure modes, while [12,13]
generalize the approach to multiple-up and multiple-down machines.
In [14,15], continuous-flow analytical models with threshold-based
control policy are presented for the analysis of two-stage lines. If one or
more machines in the system have stochastic processing times, the work
in [16] provides a Markov Chain approximation of stations with general
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processing time distributions, to be used in continuous-flow models.
Decomposition methods based on continuous-flow analytical mod-
els have been developed to evaluate asynchronous serial lines with
deterministic processing times. Some of the decomposition methods
proposed in the literature are the work in [17] for machines with iden-
tical processing times, in [18] for machines with different processing
times, in [19] for multiple-up and multiple-down machines, in [20]
for systems with merge of material flows, and in [21] for multiple
assembly/disassembly machines.

The mathematical complexity that may arise in the analytical mod-
elling of complex real system often requires significant simplification
of the problem. These simplifications may limit the applicability of
analytical models to analyse a given manufacturing system [22].

2.2. Simulation methods

When no analytical models are available in the literature to analyse
the system of interest, simulation techniques are used. Simulation can
be utilized for any manufacturing system where different entities move
through the system [23].

One of the biggest challenge in the definition of a simulation model
is selecting the level of abstraction, that is the level of detail to include
in a model to ensure accuracy in its application [24]. As opposed
to emulation, simulation does not mimic the entire behaviour of a
reference system, but it captures though an abstract model only the
behaviours of interest.

Among the simulation techniques, discrete event simulation (DES)
usually operates at a low abstraction level (that is a high level of detail),
and it is used for the simulation of a given system on operation level.
Instead, system dynamics (SD) generally operates at a high abstraction
level and it is used to simulate strategic issues [25]. The work in [26]
explores the application of DES and SD as decision support systems in
logistics and supply chain management.

2.2.1. Simulation of discrete-flow systems
DES is the most popular approach among simulation methods for

manufacturing systems [27]. The work in [28] provides a classification
of the literature on the use of DES for manufacturing system design
and operation problems. In [29], a comprehensive review of DES
publications with a particular focus on applications in manufacturing
is given.

Some examples of application of DES for manufacturing systems
are the work in [30] to design a production line against multiple-user
criteria, and the work in [31] to evaluate the production efficiency and
reliability of manufacturing systems with human operators or industrial
robots.

The employment of DES with discrete flows of entities may face
significant limitations because of the complexity and the computational
time to simulate it [23]. In DES models with discrete flow of parts,
each unitary increase and decrease of the buffer levels is modelled as a
discrete event, although it may not affect the material flow in the sys-
tem [32]. By increasing the simulation time or the size of the simulated
system, the number of events in the simulation can dramatically grow
up causing long computational times of the simulation.

If DES must be used as an evaluation method in optimization
problems such as the buffer capacity allocation problem, the num-
ber of system configurations that have to be evaluated can be too
high to be simulated in acceptable computational times. Mathematical
programming approaches have been developed in the literature for
the simulation and optimization of discrete material flow production

systems with linear layout, as the works in [33–35].
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2.2.2. Simulation of continuous-flow system
The issue of long computational times of DES with discrete entities

becomes more critical when the system to be simulated is a continuous-
flow system. Continuous material flows can be approximated with
discrete flows of entities in DES approaches. The smaller the amount
of material represented by a discrete entity, the closer the dynamics
of the discrete-flow system are to the dynamics of the continuous-flow
system. However, by reducing the amount of material represented by a
discrete entity, the number of events in the simulated system increases,
and the computational time becomes longer.

Among the simulation techniques, SD is considered an appropriate
approach in analysing continuous-flow systems [26]. In SD models,
individual entities are not modelled specifically; rather, they are repre-
sented as a continuous quantity in a stock [36]. The ordinary differen-
tial equations that represent continuous changes of the stocks over time
are approximated by calculations performed at fixed time step, called
Delta Time (DT).

The first system simulated with the SD approach was a simple
inventory control system [37]. The work in [38] investigates the op-
portunities in the employment of system dynamics in manufacturing
system modelling.

SD models have been used in the literature to analyse production
lines with constant work in process policy [39], pull production systems
with uncertain demand and kanban control policy [40], and manufac-
turing systems with unexpected problems and disturbances [41].

A key factor in SD models is the definition of the time interval DT
between calculations. Indeed, as DT gets smaller, the overall solution
of the equations describing the continuous change of the system state
becomes more accurate [42]. On the other hand, a small DT increases
the number of calculations performed during a simulation run, resulting
in longer computational time.

An alternative approach to the time discretization in continuous
systems is quantization [43], that is the partitioning of the state space
while keeping the time continuous. The main idea of quantization is the
definition of the next time at which the variable describing the system
state is going to cross the boundaries of the current partition [44]. The
formalism defined in Discrete Event System Specifications (DEVS) [43,
45] has shown to exactly represent and simulate continuous systems as
discrete event models by means of quantization [46,47].

The work of [48] has proposed a simulation method of manufac-
turing systems based on the continuous approximation of the material
flow in the system. Similarly to quantization, the main idea beyond
the simulation of the continuous flow is the definition of the earliest
time at which one of the variables describing the system state reaches
a threshold value that causes a change in the rate of the material
flow. The systems analysed in [48] are serial lines with unreliable
machines characterized by stochastic times to failure and times to
repair and with finite intermediate buffers. The events that change the
rate of the material flow are machine failures and repairs, and buffer
fulfilment and depletion. Between two events, the continuous changes
of the buffer levels are represented as linear functions depending on the
constant production rates of the upstream and downstream machines.
The overall trajectory of a buffer level over the simulation time results
a piecewise linear segment.

An equivalence between the approach proposed in [48] and the
formalism defined in the Generalized Discrete Event Specifications
(GDEVS) for modelling dynamic systems [49,50] can be noticed. In
GDEVS, the input, output and state trajectories representing a dynamic
system are approximated with piecewise polynomial function. The next
event in a simulation model with GDEVS is the earliest event that
change the gradients or the intersects of the polynomial function of the
input trajectory or the state trajectory.

In the works of [32,51], a mathematical programming approach
is presented to simultaneously simulate and optimize continuous-flow
105

production systems with two stages and an intermediate buffer.
Regardless of the discrete-event formalism used to simulate con-
tinuous systems, the definition of the next event in the simulation
of continuous-flow systems becomes complicated and time consuming
when the system layout is not a serial line. In a serial line, a flow
interruption in a machine can propagate to the upstream portion,
which become blocked, and to the downstream portion of the line,
which become starved. In non-serial systems, the flow interruption
propagation can branch off in more than two directions. Consequently,
the identification of all the machines anywhere in the system that cause
blocking, starvation or slowdown of the material flow is a hard prob-
lem. This problem needs to be solved to define the effective production
rate of each machine and the next event in the simulation (i.e. buffer
fulfilment, depletion, machine failure, repair, etc.).

In the work [52], a continuous-flow simulation model for assembly
and disassembly systems is provided. The complex issue of defining the
effective production rate of each machine in the system at any event
time is sequentially solved machine by machine through a new algo-
rithm. However, by applying the algorithm in systems with multiple
loops, the continuous-flow simulation can get trapped in the execution
of an endless sequence of simultaneous events.

2.3. Progress beyond the current state of the art

Starting from the works in [32,48,51,52], in this paper a new and
fast discrete-event continuous-flow simulation method is presented. A
new methodology based on graph theory is introduced in the simulation
method, that extends the results given in [52] to analyse systems with
a general layout, assembly/disassembly machines and multiple loops.

Unlike SD approaches, the accuracy of the continuous-flow simula-
tion method presented in this work is not affected by the approximation
of the continuous changes of the system variables at fixed discrete
steps [26].

Differently to DES methods, in the proposed continuous-flow sim-
ulation method each unitary increase or decrease of the level of any
buffer in the system does not generate a discrete event in the simula-
tion. As a main consequence, the continuous-flow simulation method
proposed in this paper provides a significant improvement in analysis
speed for both discrete-flow and continuous-flow systems, with respect
to DES approaches with discrete entities.

3. General notation and dynamics of the system

In this section, the general notation of the continuous-flow sim-
ulation and the main dynamics of the manufacturing systems under
analysis are introduced. All the notations referring to variables or
parameters which do not depend on the event time of the simulation are
represented with curly brackets, and all the variables in the continuous-
flow simulation whose values depend on the event time are represented
with round brackets.

The manufacturing system of interest is a general network with 𝑀
unreliable machines and 𝐵 finite buffers. Fig. 1 provides the graphical
representation of a general network composed by four machines and
four buffers. This example will be analysed in Section 5 to explain the
methodology presented in this paper in detail.

3.1. Machine parameters

Each machine in the reference system is represented by the notation
M{𝑚}, with 𝑚 = 1,… ,𝑀 . The flow of material in the system is
continuous, and the behaviour of each machine in isolation can be
described by the set of states 𝑆{𝑚} =

{

𝑆1{𝑚},… , 𝑆𝐼{𝑚}{𝑚}
}

, with size
𝐼{𝑚}. At a general event time 𝑡𝑘 in the simulation, the current state of
a machine M{𝑚} is represented by the column vector 𝑠(𝑚, 𝑡𝑘), with size
𝐼{𝑚}. Each entry 𝑠𝑖(𝑚, 𝑡𝑘) in the vector 𝑠(𝑚, 𝑡𝑘) is defined as:

𝑖(𝑚, 𝑡𝑘) =

{

1, if M{𝑚} is in the state 𝑆𝑖{𝑚} at the time 𝑡𝑘 (1)

0, otherwise.
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Fig. 1. Graphical representation of a manufacturing system with loops and assembly/disassembly machines.
Since machine M{𝑚} can be in only one state at time, it results that
only one entry in the vector 𝑠(𝑚, 𝑡𝑘) is equal to 1:
𝐼{𝑚}
∑

𝑖=1
𝑠𝑖(𝑚, 𝑡𝑘) = 1, ∀𝑚,∀𝑡𝑘. (2)

When the simulation starts at time 𝑡0, the current state 𝑠(𝑚, 𝑡0) of
each machine M{𝑚} is given as the initial state.

The time to transition between two states 𝑆𝑖{𝑚} and 𝑆𝑗{𝑚} is
stochastic with a general probability distribution 𝐷𝑖,𝑗{𝑚}. Times to
transition are assumed to be independent between couples of states,
that is, the occurrence of a transition from the state 𝑆𝑖{𝑚} to a state
𝑆𝑗{𝑚} does not affect the remaining time before the occurrence of the
transition from 𝑆𝑖{𝑚} to another state 𝑆𝑙{𝑚}. However, the sequence
of times generated from the distribution 𝐷𝑖,𝑗{𝑚} can also be correlated.

In each state 𝑆𝑖{𝑚} ∈ 𝑆{𝑚}, the machine M{𝑚} processes material
with a nominal production rate 𝜇𝑖{𝑚}. A state 𝑆𝑖{𝑚} is defined opera-
tional if 𝜇𝑖{𝑚} > 0, while it is defined as a down state if 𝜇𝑖{𝑚} = 0. The
row vector of the nominal production rates of all the states 𝑆{𝑚} of
the machine M{𝑚} is defined as 𝜇{𝑚} =

[

𝜇𝑖{𝑚}
]

, with 𝑖 = 1,… , 𝐼{𝑚}.
Therefore, the nominal production rate of the state of M{𝑚} at time 𝑡𝑘
is defined by the matrix product 𝜇{𝑚} ⋅ 𝑠(𝑚, 𝑡𝑘).

In this work, a transition from a state 𝑆𝑖{𝑚} to any state 𝑆𝑗{𝑚} is
assumed to be operation-dependent if 𝑆𝑖{𝑚} is an operational state,
while it is assumed to be time-dependent if 𝑆𝑖{𝑚} is a down state.
An operation-dependent transition from a state 𝑆𝑖{𝑚} to a state 𝑆𝑗{𝑚}
occurs according to its distribution 𝐷𝑖,𝑗{𝑚} if the machine M{𝑚} is not
slowed down, blocked or starved by other machines. If M{𝑚} is slowed
down, the remaining time before the occurrence of an operation-
dependent transition is exhausted slowly, proportionally to the ratio
between the effective production rate and the nominal rate. Instead, if
the machine is blocked or starved, no operation-dependent transition
can occur during the whole blocking or starvation period. On the other
hand, time dependent transitions do not depend on the operational
mode of the machine.

At any event time 𝑡𝑘, the effective production rate of a machine
M{𝑚} is defined by the variable 𝜇(𝑚, 𝑡𝑘). The effective production rate
𝜇(𝑚, 𝑡𝑘) may differ from the nominal production rate 𝜇{𝑚} ⋅ 𝑠(𝑚, 𝑡𝑘) of
M{𝑚} at 𝑡𝑘, if at 𝑡𝑘 M{𝑚} is slowed down, blocked or starved by other
machines in the system. The identification of the machines affecting, at
time 𝑡𝑘, the production rate of any another machine in the system and
the computation of the effective production rate are critical steps in
the continuous-flow simulation and they are explained in Section 4.4.
In Section 3.3, the definition of the slowdown, blocking and starvation
phenomena in a continuous-flow system are given.

3.2. Buffer parameters

Each buffer of the system is represented by the notation B{𝑏}, with
𝑏 = 1,… , 𝐵. Each buffer B{𝑏} can have a finite or infinite capacity,
defined by an upper boundary 𝑁{𝑏} and by a lower boundary 𝐿{𝑏},
with 𝑁{𝑏} > 𝐿{𝑏}. If 𝐿{𝑏} < 0, it means that the backlog of orders
related to the material stored in the buffer B{𝑏} is allowed until the
maximum value |𝐿{𝑏}|, beyond which a stockout occurs.
106
At any event time 𝑡𝑘, the current level of a buffer B{𝑏} is defined by
the continuous variable 𝑥(𝑏, 𝑡𝑘), such that 𝐿{𝑏} ≤ 𝑥(𝑏, 𝑡𝑘) ≤ 𝑁{𝑏}. When
the simulation starts at time 𝑡0, the current level 𝑥(𝑏, 𝑡0) of each buffer
B{𝑏} is given as its initial value.

Each buffer B{𝑏} is fed by only a single upstream machine, and
it feeds only a single downstream machine. On the other hand, each
machine can feed more than one buffer and it can be fed by more
than one buffer. Machines fed by multiple buffers are defined as assem-
bly machines, while machines feeding multiple buffers are defined as
disassembly machines. In a disassembly machine, the flow of material
is divided into different material types, one for each immediately
downstream buffer. In an assembly machine, the different material
types from the immediately upstream buffers are combined in a single
flow of material. In this work it, is assumed that each buffer in the
system can hold only one type of material.

No split and merge machines are considered in this work. It means
that a machine cannot selectively process material from one of its
upstream buffers or to one of its downstream buffers. In the proposed
model, for each unit of material processed by a machine, it is assumed
that one unit of material is received from each upstream buffer and one
unit of material is fed into each downstream buffer.

3.3. Dynamics of the system

The layout of the system is formalized through the flow matrix 𝐹 ,
composed by 𝐵 rows and 𝑀 columns representing respectively the
buffers and the machines of the system. Each entry 𝐹𝑏,𝑚 in the matrix
𝐹 is defined as:

𝐹𝑏,𝑚 =

⎧

⎪

⎨

⎪

⎩

1, if the machine M{𝑚} feeds the buffer B{𝑏}
−1, if the buffer B{𝑏} feeds the machine M{𝑚}
0, otherwise,

∀𝑏,∀𝑚.

(3)

Considering two machines M{𝑚} and M{𝑚′}, M{𝑚} is an imme-
diately upstream machine of M{𝑚′} and M{𝑚′} is an immediately
downstream machine of M{𝑚}, if a buffer B{𝑏} exists in the system
such that 𝐹𝑏,𝑚 = 1 and 𝐹𝑏,𝑚′ = −1. In a subsystem composed by a buffer
B{𝑏} and its upstream and downstream machines M{𝑚} and M{𝑚′}, the
following dynamics summarize the behaviour of the subsystem.

If the machine M{𝑚} is in a state 𝑆𝑖{𝑚} and M{𝑚′} is in a state
𝑆𝑗{𝑚′} such that M{𝑚} processes material faster than M{𝑚′}, that is
𝜇𝑖{𝑚} > 𝜇𝑗{𝑚′}, after a certain time period the level of the buffer
B{𝑏} reaches the upper boundary 𝑁{𝑏}, and the machine M{𝑚} is
forced to process material at the same production rate of M{𝑚′}. In
this condition, if the production rate 𝜇𝑗{𝑚′} of M{𝑚′} is higher than
zero, the upstream machine M{𝑚} is slowed down at the same rate.
Instead, if 𝜇𝑗{𝑚′} = 0, the upstream machine M{𝑚} is blocked and it
does not process material. The subsystem stays in this state until an
event changing the production rate of one of the two machines occurs.

Similarly, if the machine M{𝑚} in the state 𝑆𝑖{𝑚} is slower than
M{𝑚′} in the state 𝑆𝑗{𝑚′}, after a certain time period the buffer level
of B{𝑏} reaches the lower boundary 𝐿{𝑏} and the machine M{𝑚′} is
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forced to process material at the same production rate of M{𝑚}. If the
production rate 𝜇𝑖{𝑚} is higher than zero, the downstream machine
M{𝑚′} is slowed down at the same production rate, while if 𝜇𝑖{𝑚} = 0,
he downstream machine is starved and it does not process material,
ntil another event occurs.

Extending the analysis to a serial line with 𝑀 machines and 𝑀 − 1
uffers, it is possible to state that a machine M{𝑚′} is slowed down or
tarved by an upstream machine M{𝑚} if all the buffers between M{𝑚}
nd M{𝑚′} are empty and if the production rate of M{𝑚} is the lowest
mong the nominal production rates of all the machines from M{𝑚}
o M{𝑚′}. Similarly, a machine M{𝑚′} is slowed down or blocked by

downstream machine M{𝑚′′} if all the buffers between M{𝑚′} and
{𝑚′′} are full and if the production rate of M{𝑚′′} is the lowest among

he nominal production rates of all the machines from M{𝑚′} to M{𝑚′′}.
However, when the layout of the system is not a serial line, the

dentification of the machine causing the slowdown, blocking or star-
ation of other machines in the system is not so simple. Consider, for
nstance, an assembly machine that combines the flows of material
rom several upstream machines. If one of these upstream machines
ails, after a certain time period the intermediate buffer between the
ailed machine and the assembly machine becomes empty, and the
ssembly machine cannot process material from any upstream buffer.
onsequently, all the other upstream machines become blocked, while
ll the downstream machines become starved. Therefore, in a system
ith a general layout, a flow interruption or slowdown can propagate
cross any branch in the whole system through a non-serial path of
achines.

The identification of the machine causing the slowdown, blocking
r starvation of any machine in a general system, must be carried out
y simultaneously analysing every single branch of the material flow
ithin the system. For large systems, this analysis can be computa-

ionally demanding and it can dramatically increase the time to run
he simulation. In Section 4.4, a new method to quickly perform this
nalysis at each event time in the simulation is provided.

. Continuous-flow simulation

The continuous-flow simulation for a system with general layout
onsists of two main steps which are iteratively performed. The first
tep is the definition of the advancement rule of the clock time in the
imulation. The second step is the update of all the system variables
fter the clock time advancement. All the mathematical computations
erformed in the following sections are defined in the extended real
umber system R̄ = R ∪ {−∞,+∞}.

.1. Definition of the simulation time advancement

The first step of the continuous-flow simulation is the definition of
he next event time 𝑡𝑘+1 related to a state transition of a machine or to
change of the material flow in one or more machines in the system.
he next event time 𝑡𝑘+1 is equal to:

𝑘+1 = 𝑡𝑘 + 𝛥𝑡𝑘 (4)

here 𝛥𝑡𝑘 is the time period before the occurrence of the next event
n the system. After the identification at time 𝑡𝑘 of the next event that
ill occur, the clock time is immediately advanced at the time 𝑡𝑘+1.

The next event occurring at time 𝑡𝑘+1 can be of three different types:
state transition of a machine in the system, the fulfilment or depletion
f a buffer in the system, and the end of the simulation. The time period
𝑡𝑘 corresponds to the minimum time before the occurrence of any
vent among these three types.

Therefore, for the computation of 𝛥𝑡𝑘 it is necessary to define:

• the remaining machine time RM(𝑚, 𝑡𝑘) of each machine in the
system, that is the time before the occurrence of a state transition
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for each machine M{𝑚}; w
• the remaining buffer time RB(𝑏, 𝑡𝑘) of each buffer, that is the time
before the fulfilment or depletion of each buffer B{𝑏};

• the remaining simulation time 𝑇 − 𝑡𝑘, that is the time before the
end of the simulation at time 𝑇 .

ccording to this, the time period 𝛥𝑡𝑘 is formalized as follows:

𝑡𝑘 = min{RM(1, 𝑡𝑘),… ,RM(𝑀, 𝑡𝑘),RB(1, 𝑡𝑘),… ,RB(𝐵, 𝑡𝑘), 𝑇 − 𝑡𝑘}, (5)

with RM(𝑚, 𝑡𝑘) and RB(𝑏, 𝑡𝑘) defined in the following sections.

4.2. Remaining machine time

For each machine M{𝑚}, the remaining machine time RM(𝑚, 𝑡𝑘) that
ill take before the occurrence of the next event related to a change
f the machine state must be defined. Assuming that at time 𝑡𝑘 the
achine M{𝑚} is in the state 𝑆𝑖{𝑚}, for the definition of RM(𝑚, 𝑡𝑘), it

s necessary to know the time period between 𝑡𝑘 and the occurrence of
transition from the state 𝑆𝑖{𝑚} to each other state 𝑆𝑗{𝑚} with 𝑖 ≠ 𝑗.

ndeed RM(𝑚, 𝑡𝑘) will correspond to the minimum among all these time
eriods.

According to this, a time to transition matrix 𝜏(𝑚, 𝑡𝑘) is introduced
uch that each entry 𝜏𝑖,𝑗 (𝑚, 𝑡𝑘) defines the time period between 𝑡𝑘
nd the occurrence of a transition from the state 𝑆𝑖{𝑚} to the state
𝑗{𝑚} of the machine M{𝑚}. Each entry 𝜏𝑖,𝑗 (𝑚, 𝑡𝑘) is defined under the
ssumption that at 𝑡𝑘 the effective production rate 𝜇(𝑚, 𝑡𝑘) is equal
o the nominal production rate 𝜇𝑖{𝑚}. The time to transition matrix
(𝑚, 𝑡𝑘) is a square matrix with size 𝐼{𝑚}×𝐼{𝑚}, with 𝐼{𝑚} the number
f states of M{𝑚} as defined in Section 3.1. When the simulation starts
t 𝑡0, the value of each entry 𝜏𝑖,𝑗 (𝑚, 𝑡𝑘) with 𝑖 ≠ 𝑗 is initialized with
andom variables simulated according to the probability distribution
𝑖,𝑗{𝑚} of the time to transition from 𝑆𝑖{𝑚} to 𝑆𝑗{𝑚}. Each entry
𝑖,𝑖(𝑚, 𝑡𝑘) is set equal to +∞ since it does not represent any change of
tate of the machine M{𝑚}.

If at time 𝑡𝑘 the machine M{𝑚} is in the state 𝑆𝑖{𝑚}, the times
o transition related to the changes of state that can occur from
𝑖{𝑚} are all the entries in the 𝑖th row of the matrix 𝜏(𝑚, 𝑡𝑘). There-

ore, the remaining machine time RM(𝑚, 𝑡𝑘) is the minimum value
mong 𝜏𝑖,1(𝑚, 𝑡𝑘),… , 𝜏𝑖,𝐼{𝑚}(𝑚, 𝑡𝑘), divided by the capacity saturation
atio 𝑐(𝑚, 𝑡𝑘) of M{𝑚} at time 𝑡𝑘. The capacity saturation ratio of a
achine M{𝑚} considers any possible slowdown, starvation or blocking

f M{𝑚} at time 𝑡𝑘. If at time 𝑡𝑘 the machine M{𝑚} is not slowed down,
locked or starved by other machines, 𝑐(𝑚, 𝑡𝑘) = 1. Otherwise, 𝑐(𝑚, 𝑡𝑘) is
qual to the ratio between the effective production rate and the nominal
roduction rate of M{𝑚} at 𝑡𝑘. That is:

(𝑚, 𝑡𝑘) =

{

1, if 𝜇(𝑚, 𝑡𝑘) = 𝜇{𝑚} ⋅ 𝑠(𝑚, 𝑡𝑘)
𝜇(𝑚,𝑡𝑘)

𝜇{𝑚}⋅𝑠(𝑚,𝑡𝑘)
, otherwise.

(6)

Consequently, the remaining machine time RM(𝑚, 𝑡𝑘) is computed
s:

M(𝑚, 𝑡𝑘) =
min{𝜏𝑖,1(𝑚, 𝑡𝑘),… , 𝜏𝑖,𝐼{𝑚}(𝑚, 𝑡𝑘)}

𝑐(𝑚, 𝑡𝑘)
, with 𝑖 ∶ 𝑠𝑖(𝑚, 𝑡𝑘) = 1.

(7)

Each entry of 𝜏(𝑚, 𝑡𝑘) has been defined under the assumption 𝜇(𝑚, 𝑡𝑘)
{𝑚} ⋅ 𝑠(𝑚, 𝑡𝑘). Accordingly, when the machine is slowed down, the
emaining time before the occurrence of the operation dependent
ransition from 𝑆𝑖{𝑚} to 𝑆𝑗{𝑚} is exhausted more slowly. The transition
ill occur after the time period 𝜏𝑖,𝑗 (𝑚,𝑡𝑘)

𝑐(𝑚,𝑡𝑘)
with 𝑐(𝑚, 𝑡𝑘) < 1, if no other

events occur in the meanwhile. If at time 𝑡𝑘 the machine is blocked or
starved, that is if 𝑐(𝑚, 𝑡𝑘) = 0, the remaining machine time RM(𝑚, 𝑡𝑘)
s equal to +∞. In this case, there will be no state transitions of the
achine M{𝑚} until an event that will change its effective production

ate occurs in the simulation.
Eqs. (6) and (7) also address the case of time dependent transitions,

hich are not affected by the effective production rate of the machine.
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According to Section 3.3, only the transitions from down states are
assumed to be time-dependent. Since in a down state 𝜇(𝑚, 𝑡𝑘) = 𝜇{𝑚} ⋅
𝑠(𝑚, 𝑡𝑘) = 0, the capacity saturation ratio 𝑐(𝑚, 𝑡𝑘) is equal to 1 in Eq. (6),
such that 𝑐(𝑚, 𝑡𝑘) does not affect the computation of RM(𝑚, 𝑡𝑘) in Eq. (7).

4.3. Remaining buffer time

The remaining buffer time RB(𝑏, 𝑡𝑘) of a buffer B{𝑏} is defined as
the time period before the fulfilment or depletion of B{𝑏}. To define
RB(𝑏, 𝑡𝑘), the vector 𝛽(𝑏, 𝑡𝑘) of size 1 × 2 is introduced such that the entry
𝛽1(𝑏, 𝑡𝑘) defines the time to fulfil B{𝑏}, while the entry 𝛽2(𝑏, 𝑡𝑘) defines
the time to deplete B{𝑏}. The values of 𝛽1(𝑏, 𝑡𝑘) and 𝛽2(𝑏, 𝑡𝑘) depend on
the current buffer level 𝑥(𝑏, 𝑡𝑘) and on the effective production rates of
the immediately upstream and downstream machines M{𝑚} and M{𝑚′}
such that:

𝛽1(𝑏, 𝑡𝑘) =

{ 𝑁{𝑏}−𝑥(𝑏,𝑡𝑘)
𝜇(𝑚,𝑡𝑘)−𝜇(𝑚′ ,𝑡𝑘)

, if 𝜇(𝑚, 𝑡𝑘) > 𝜇(𝑚′, 𝑡𝑘)

+∞, otherwise
(8)

𝛽2(𝑏, 𝑡𝑘) =

{ 𝑥(𝑏,𝑡𝑘)−𝐿{𝑏}
𝜇(𝑚′ ,𝑡𝑘)−𝜇(𝑚,𝑡𝑘)

, if 𝜇(𝑚, 𝑡𝑘) < 𝜇(𝑚′, 𝑡𝑘)

+∞, otherwise
(9)

with 𝑚 and 𝑚′ such that 𝐹𝑏,𝑚 = 1 and 𝐹𝑏,𝑚′ = −1.
In Eq. (8), the time to fulfil the buffer 𝛽1(𝑚, 𝑡𝑘) is set equal to +∞

if at 𝑡𝑘 the upstream machine M{𝑚} is not faster than the downstream
machine M{𝑚′}. Similarly, the time to deplete the buffer 𝛽2(𝑚, 𝑡𝑘) is set
equal to +∞ in Eq. (9) if at 𝑡𝑘 the downstream machine M{𝑚′} is not
faster than the upstream machine M{𝑚}.

The remaining buffer time RB(𝑏, 𝑡𝑘) is equal to the minimum value
between the time to fulfil the buffer and the time to deplete the buffer:

RB(𝑏, 𝑡𝑘) = min{𝛽1(𝑏, 𝑡𝑘), 𝛽2(𝑏, 𝑡𝑘)}. (10)

Since the remaining machine times and the remaining buffer times
depend on the effective production rates at time 𝑡𝑘 of the machines in
the system, the computation of 𝜇(𝑚, 𝑡𝑘) for each machine M{𝑚} must
be defined in order to finally solve Eq. (5) of the time period 𝛥𝑡𝑘
and Eq. (4) of the next event time 𝑡𝑘+1.

4.4. Propagation analysis of flow interruptions and slowdowns

As explained in Section 3.3, the identification of the machines
causing the slowdown, blocking or starvation of any other machine
in the system and then the computation of the effective production
rate of each machine at each event time 𝑡𝑘 are complicated tasks when
systems have a general layout, and they can increase the time to run
the continuous-flow simulation significantly. In this section, a new
methodology based on the graph theory is presented to address this
problem.

In order to identify the machines causing the slowdown, blocking
or starvation in a general layout, the adjacency matrix 𝑉 (𝑡𝑘) and the
reachability matrix 𝑊 (𝑡𝑘) are introduced in the continuous-flow simu-
lation method. By means of 𝑉 (𝑡𝑘) and 𝑊 (𝑡𝑘), all the machines causing
slowdown, blocking or starvation of the material flow anywhere in the
system are simultaneously identified in few simple steps and then the
computation of the effective production rates of all the machines is
quickly performed.

Definition 1 (Adjacency Matrix). At each event time 𝑡𝑘, the adjacency
matrix 𝑉 (𝑡𝑘) is a square Boolean matrix with size 𝑀×𝑀 , where 𝑀 is the
number of machines in the system. Each entry 𝑉𝑚,𝑚′ (𝑡𝑘) in 𝑉 (𝑡𝑘) is equal
to 1 if at time 𝑡𝑘 the effective production rate of the machine M{𝑚}
can be affected by the state of the immediately upstream/downstream
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machine M{𝑚′}, otherwise it is equal to 0. Therefore, each entry
𝑉𝑚,𝑚′ (𝑡𝑘) is defined as follows:

𝑉𝑚,𝑚′ (𝑡𝑘) =

⎧

⎪

⎨

⎪

⎩

1, if ∃𝑏 ∶
(

𝐹𝑏,𝑚 = 1 ∧ 𝐹𝑏,𝑚′ = −1 ∧ 𝑥(𝑏, 𝑡𝑘) = 𝑁{𝑏}
)

1, if ∃𝑏 ∶
(

𝐹𝑏,𝑚 = −1 ∧ 𝐹𝑏,𝑚′ = 1 ∧ 𝑥(𝑏, 𝑡𝑘) = 𝐿{𝑏}
)

0, otherwise,

∀𝑚,∀𝑚′.

(11)

According to Eq. (11), an entry 𝑉𝑚,𝑚′ (𝑡𝑘) is equal to 1 in two different
cases. The first case occurs if the machine M{𝑚′} is an immediately
downstream machine of M{𝑚}, that is ∃𝑏 ∶ 𝐹𝑏,𝑚 = 1 ∧ 𝐹𝑏,𝑚′ = −1,
and if at time 𝑡𝑘 the intermediate buffer B{𝑏} is full, that is 𝑥(𝑏, 𝑡𝑘) =
𝑁{𝑏}. In this case M{𝑚} can be potentially blocked or slowed down by
M{𝑚′}. The second case occurs if the machine M{𝑚′} is an immediately
upstream machine of M{𝑚}, that is ∃𝑏 ∶ 𝐹𝑏,𝑚 = −1 ∧ 𝐹𝑏,𝑚′ = 1, and if
at time 𝑡𝑘 the buffer B{𝑏} is empty, that is 𝑥(𝑏, 𝑡𝑘) = 𝐿{𝑏}. In this case
M{𝑚} can be potentially starved or slowed down because of M{𝑚′}.

Definition 2 (Reachability Matrix). At each event time 𝑡𝑘, the reacha-
bility matrix 𝑊 (𝑡𝑘) is a square boolean matrix with size 𝑀 ×𝑀 , where
𝑀 is the number of machines in the system. Each entry 𝑊𝑚,𝑚′ (𝑡𝑘) in
𝑊 (𝑡𝑘) is equal to 1 if at time 𝑡𝑘 the effective production rate of the
machine M{𝑚} can be affected by the state of the machine M{𝑚′}
located anywhere in the system, and 0 otherwise.

To compute the reachability matrix 𝑊 (𝑡𝑘), it is necessary to intro-
duce and define in this work the system parameter 𝑀∗, that is the
maximum length of propagation of a flow interruption or slowdown
in the system.

Definition 3 (Maximum Length Of Propagation). The maximum length
𝑀∗ of propagation of a flow interruption or slowdown in a manufactur-
ing system is defined as the length of longest sequence of adjacent and
distinct machines, through which a flow interruption or slowdown can
potentially propagate in the system. 𝑀∗ is constant over the simulation
time, and for any system with 𝑀 machines the inequality 𝑀∗ ≤ 𝑀 − 1
is always verified.

Considering a serial line with 𝑀 machines, a flow interruption or
slowdown caused by the first machine M{1} can propagate at most to
the last machine M{𝑀} through all the other 𝑀−2 machines, such that
𝑀∗ = 𝑀−1. Instead, when the machines are not serially arranged in the
system, a sequence of 𝑀 distinct and adjacent machines does not exist,
and so a flow interruption/slowdown cannot sequentially propagate to
𝑀 − 1 machines, that is 𝑀∗ < 𝑀 − 1. Therefore, it is proved that the
inequality 𝑀∗ ≤ 𝑀−1 in Definition 3 is always verified for any system.

In this paper, 𝑀∗ is computed by using the results from the graph
theory. First of all, a graph 𝐺 is defined with 𝑀 nodes representing the
𝑀 machines in the manufacturing system. In the graph 𝐺, an edge is
added between each couple of nodes (𝑚,𝑚′), if in the manufacturing
system a buffer B{𝑏} exists between the machines M{𝑚} and M{𝑚′}.
For each couple of nodes (𝑚,𝑚′), all the possible paths connecting 𝑚
and 𝑚′ are found through the Depth First Search algorithm presented
in [53]. The length of the longest path between 𝑚 and 𝑚′ is defined as
𝑙𝑚,𝑚′ . The maximum length of propagation 𝑀∗ is equal to the maximum
value among all the lengths 𝑙𝑚,𝑚′ :

𝑀∗ = max
𝑚,𝑚′

{

𝑙𝑚,𝑚′ ∶ 𝑚 = 1,… ,𝑀 ∧ 𝑚′ = 1,… ,𝑀
}

. (12)

At this point, the reachability matrix 𝑊 (𝑡𝑘) is given in Lemma 1 as
a function of 𝑉 (𝑡𝑘) and 𝑀∗. Since Lemma 1 makes use of the boolean
sum, the boolean product and the power of boolean matrices, the
definitions of these boolean operations according to the work in [54]
are reported in Appendix A.
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𝑡

𝑥

Lemma 1. Given at time 𝑡𝑘, the adjacency matrix 𝑉 (𝑡𝑘) of a manufac-
turing system with 𝑀 machines and with maximum length of propagation
𝑀∗, the reachability matrix 𝑊 (𝑡𝑘) is computed as follows:

𝑊 (𝑡𝑘) =
(

I + 𝑉 (𝑡𝑘)
)𝑀∗

(13)

where I is the identity matrix of size 𝑀 ×𝑀 .

The proof of Eq. (13) in Lemma 1 is given in Appendix B by using
the results from the graph theory. Indeed, the problem of defining
if a machine M{𝑚} can be affected by the propagation of a flow
interruption/slowdown from a machine M{𝑚′} is equivalent to the
problem of defining if in a graph 𝐺 a node 𝑚 is reachable from a node
𝑚′.

Once 𝑊 (𝑡𝑘) is calculated, the effective production rate 𝜇(𝑚, 𝑡𝑘) of
each machine M{𝑚} can be computed as the minimum value among the
nominal production rates at time 𝑡𝑘 of all the machines M{𝑚′} which
can potentially affect M{𝑚}, that is:

𝜇(𝑚, 𝑡𝑘) = min
𝑚′

{

𝜇{𝑚′} ⋅ 𝑠(𝑚′, 𝑡𝑘) ∶ 𝑚′ = 1,… ,𝑀 ∧𝑊𝑚,𝑚′ (𝑡𝑘) = 1
}

, ∀𝑚.

(14)

By computing 𝑊 (𝑡𝑘) according to Eq. (13), it is possible to no-
tice that the diagonal entries of 𝑊 (𝑡𝑘) are all equal to 1. Therefore,
in Eq. (14), the effective production rate of each machine M{𝑚} at time
𝑡𝑘 depends also on the current state at 𝑡𝑘 of the machine M{𝑚} itself.

With the definition of the effective production rates, all the variables
required for the computation of the next event time 𝑡𝑘+1 have been
provided.

4.5. System state update

After the definition of the inter-event time 𝛥𝑡𝑘, the clock time of the
simulation can be instantaneously advanced at the time 𝑡𝑘+1 = 𝑡𝑘 +𝛥𝑡𝑘.
All the variables describing the whole system must now be updated.

The new state 𝑠(𝑚, 𝑡𝑘+1) of each machine M{𝑚} at 𝑡𝑘+1 is 𝑠(𝑚, 𝑡𝑘+1) =
𝑠(𝑚, 𝑡𝑘) if the event at time 𝑡𝑘+1 is not a state transition of the machine
M{𝑚}, while 𝑠𝑗 (𝑚, 𝑡𝑘+1) = 1 and 𝑠𝑖(𝑚, 𝑡𝑘+1) = 0 ∀𝑖 ≠ 𝑗 if the event at time
𝑡𝑘+1 is a transition from a state 𝑆𝑖{𝑚} to the state 𝑆𝑗{𝑚} of M{𝑚}.

The new level 𝑥(𝑏, 𝑡𝑘+1) of each buffer B{𝑏} in the system is defined
as the level of the buffer B{𝑏} at time 𝑡𝑘, plus the difference between
the quantities of material processed by the upstream machine M{𝑚}
and by the downstream machine M{𝑚′} in the time period 𝛥𝑡𝑘, that is:

𝑥(𝑏, 𝑡𝑘+1) = 𝑥(𝑏, 𝑡𝑘) +
(

𝜇(𝑚, 𝑡𝑘) − 𝜇(𝑚′, 𝑡𝑘)
)

⋅ 𝛥𝑡𝑘 (15)

with 𝑚 and 𝑚′ such that 𝐹𝑏,𝑚 = 1 and 𝐹𝑏,𝑚′ = −1.
The matrices 𝑉 (𝑡𝑘+1) and 𝑊 (𝑡𝑘+1) and the effective production rate

𝜇(𝑚, 𝑡𝑘+1) of each machine are updated as defined in the previous
section.

The last variable that must be updated at time 𝑡𝑘 + 1 is the time
to transition matrix 𝜏(𝑚, 𝑡𝑘+1) of each machine M{𝑚}. Only the entries
of 𝜏(𝑚, 𝑡𝑘+1) in the row 𝑖 corresponding to the state 𝑆𝑖{𝑚} of M{𝑚} at
𝑡𝑘 must be computed, and each entry 𝜏𝑖,𝑗 (𝑚, 𝑡𝑘+1) is computed as the
difference between the time to transition 𝜏𝑖,𝑗 (𝑚, 𝑡𝑘) and the product be-
tween the inter-event time 𝛥𝑡𝑘 and the capacity saturation ratio 𝑐(𝑚, 𝑡𝑘).
Instead, all the other rows in 𝜏(𝑚, 𝑡𝑘+1) are equal to the corresponding
rows in 𝜏(𝑚, 𝑡𝑘). Therefore, each entry in the matrix 𝜏(𝑚, 𝑡𝑘+1) is updated
as follows:

𝜏𝑖,𝑗 (𝑚, 𝑡𝑘+1) =

{

𝜏𝑖,𝑗 (𝑚, 𝑡𝑘) − 𝛥𝑡𝑘 ⋅ 𝑐(𝑚, 𝑡𝑘), if 𝑠𝑖(𝑚, 𝑡𝑘) = 1
𝜏𝑖,𝑗 (𝑚, 𝑡𝑘), otherwise,

∀𝑖,∀𝑗. (16)

The update of the time to transition matrix 𝜏(𝑚, 𝑡𝑘 + 1) performed
in Eq. (16) can also be implemented through the following matrix
notation:

𝜏(𝑚, 𝑡 ) = 𝜏(𝑚, 𝑡 ) − 𝛥𝑡 ⋅ 𝑐(𝑚, 𝑡 ) ⋅
[

𝑠(𝑚, 𝑡 ),… , 𝑠(𝑚, 𝑡 )
]

(17)
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𝑘+1 𝑘 𝑘 𝑘 𝑘 𝑘
with the matrix
[

𝑠(𝑚, 𝑡𝑘),… , 𝑠(𝑚, 𝑡𝑘)
]

obtained by horizontally concate-
nating the state vector 𝑠(𝑚, 𝑡𝑘) with itself for a number of times equal
to the number of states of the machine M{𝑚}, that is 𝐼{𝑚} times.

If the event at time 𝑡𝑘+1 is a transition of the machine M{𝑚} from
the state 𝑆𝑖{𝑚} to a state 𝑆𝑗{𝑚}, the corresponding entry 𝜏𝑖,𝑗 (𝑚, 𝑡𝑘+1)
results equal to 0 in Eq. (16). In this case, a new value of 𝜏𝑖,𝑗 (𝑚, 𝑡𝑘+1)
is randomly generated according to the probability distribution 𝐷𝑖,𝑗{𝑚}
of the time to transition from 𝑆𝑖{𝑚} to 𝑆𝑗{𝑚}.

At this point, all the variables describing the system have been up-
dated at time 𝑡𝑘+1. The clock time advancement described in Section 4.1
and the update of the system variables described in this section are then
iteratively performed for 𝑡𝑘+2,… , 𝑡𝐾 until the end of the simulation at
time 𝑡𝐾 = 𝑇 .

4.6. Estimation of the system performance

The output of the continuous-flow simulation model is the event log
with the state of the whole system described at any event time 𝑡𝑘. By
means of the event log of a single simulation run, the main aggregated
performance of a manufacturing system, such as the system throughput,
the average buffer levels and the machine state probabilities can be
easily computed. In the following, the formulas to compute the machine
throughput, the average buffer level and the time percentages of full
and empty buffer are provided as example.

Given the simulation time 𝑇 of a simulation run with 𝐾 events, the
average throughput 𝑡ℎ(𝑚) of a machine M{𝑚} is

ℎ(𝑚) =
∑𝐾−1

𝑘=0 𝜇(𝑚, 𝑡𝑘) ⋅ 𝛥𝑡𝑘
𝑇

, (18)

the average buffer level �̄�(𝑏) of a buffer B{𝑏} is

̄(𝑏) =
∑𝐾−1

𝑘=0
(

𝑥(𝑏, 𝑡𝑘) + 𝑥(𝑏, 𝑡𝑘+1)
)

⋅ 𝛥𝑡𝑘
2 ⋅ 𝑇

, (19)

the time percentage during which the buffer level of B{𝑏} is empty, that
is the buffer level is equal to the lower boundary 𝐿{𝑏}, is:

𝑃
(

𝐿{𝑏}
)

=
∑

𝑘 𝛥𝑡𝑘
𝑇

⋅100%, with 𝑘 ∶
(

𝑥(𝑏, 𝑡𝑘) = 𝐿{𝑏}∧𝑥(𝑏, 𝑡𝑘+1) = 𝐿{𝑏}
)

(20)

and the time percentage during which the buffer level of B{𝑏} is full is:

𝑃
(

𝑁{𝑏}
)

=
∑

𝑘 𝛥𝑡𝑘
𝑇

⋅ 100%, with 𝑘 ∶
(

𝑥(𝑏, 𝑡𝑘) = 𝑁{𝑏} ∧ 𝑥(𝑏, 𝑡𝑘+1) = 𝑁{𝑏}
)

.

(21)

5. Analysis of a specific system with the continuous-flow simula-
tion

In this section, the specific manufacturing system with general lay-
out provided in Fig. 1 is analysed to explain in detail the computation of
the effective production rates of the machines, which is the most critical
step of the continuous-flow simulation. In this example, the simulation
time 𝑇 is assumed to be equal to 105 time units. In Section 5.1, the
clock time is assumed to have been advanced until the 8th event in
the simulation at time 𝑡𝑘 = 𝑡8 = 129.7, and the numerical values of the
variables describing the system at this time are provided. In Section 5.2
the computation of the effective production rates is performed. In
Appendix C, the computation of the next event time 𝑡𝑘+1 = 𝑡9 and the

update of the variables describing the system are given.
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Fig. 2. Example of the buffer levels at time 𝑡𝑘 = 𝑡8 in a general network.

5.1. System variables

The following sets of states 𝑆{1},… , 𝑆{4} and row vectors of nom-
inal production rates 𝜇{1},… , 𝜇{4} are assumed to represent the be-
haviour in isolation of the corresponding machines M{1},… ,M{4} in
the system:

𝑆{1} =
{

𝑆1{1}, 𝑆2{1}
}

, 𝜇{1} =
[

𝜇1{1}, 𝜇2{1}
]

=
[

1.3 0
]

𝑆{2} =
{

𝑆1{2}, 𝑆2{2}
}

, 𝜇{2} =
[

𝜇1{2}, 𝜇2{2}
]

=
[

1.7 0
]

𝑆{3} =
{

𝑆1{3}, 𝑆2{3}, 𝑆3{3}
}

, 𝜇{3} =
[

𝜇1{3}, 𝜇2{3}, 𝜇3{3}
]

=
[

2.1 0 0
]

𝑆{4} =
{

𝑆1{4}, 𝑆2{4}
}

, 𝜇{4} =
[

𝜇1{4}, 𝜇2{4}
]

=
[

1.9 0
]

.

Therefore, in this example machine M{3} has a single up state and two
down states, while all the other machines have a single up and a single
down state. The values provided for each nominal production rate are
expressed in material unit per time unit.

At time 𝑡8 in the simulation, the machines are assumed in the
following states:

𝑠(1, 𝑡8) =
[

1
0

]

, 𝑠(2, 𝑡8) =
[

1
0

]

, 𝑠(3, 𝑡8) =
⎡

⎢

⎢

⎣

1
0
0

⎤

⎥

⎥

⎦

, 𝑠(4, 𝑡8) =
[

0
1

]

that is machines M{1}, M{2} and M{3} are respectively in the up states
𝑆1{1}, 𝑆1{2} and 𝑆1{3}, while M{4} is in the down state 𝑆2{4}.

For reason of simplicity, the lower boundary of each buffer in the
system as been assumed equal to 0, while the upper boundary and the
current level at time 𝑡8 have been set as follows:

𝐿{1} = 0, 𝐿{2} = 0, 𝐿{3} = 0, 𝐿{4} = 0.

𝑁{1} = 8, 𝑁{2} = 10, 𝑁{3} = 15, 𝑁{4} = 15.

𝑥(1, 𝑡8) = 0, 𝑥(2, 𝑡8) = 10, 𝑥(3, 𝑡8) = 12, 𝑥(4, 𝑡8) = 5.

So at time 𝑡8, the buffer B{1} is empty, the buffer B{2} is full, and
the buffers B{3} and B{4} are partially full. Fig. 2 provides a graphical
representation of the above buffer levels at time 𝑡8.

The layout of the above system is formalized in the flow matrix 𝐹 ,
which has size 𝐵 × 𝑀 = 4 × 4. Eq. (3) defines that each entry 𝐹𝑏,𝑚
in the matrix 𝐹 , with 𝑏 = 1,… , 𝐵 and 𝑚 = 1,… ,𝑀 , is equal to 1 if
the machine M{𝑚} feeds the buffer B{𝑏}, is equal to −1 if the buffer
B{𝑏} feeds the machine M{𝑚}, and 0 if no direct flow of material exists
between M{𝑚} and B{𝑏}. According to this definition, the flow matrix
𝐹 of this specific case results:

𝐹 =

⎡

⎢

⎢

⎢

⎢

1 0 −1 0
0 1 −1 0
0 0 1 −1

⎤

⎥

⎥

⎥

⎥

.

110

⎣

0 0 −1 1
⎦

5.2. Computation of the effective production rates

By knowing the current states of the machines and the current levels
of the buffers, the effective production rates 𝜇(1, 𝑡8),… , 𝜇(4, 𝑡8) of the
machines at time 𝑡8 can be computed through the new set of equations
defined in Section 4.4. First of all, the machines which can potentially
affect at time 𝑡8 the effective production rate of their immediately
upstream or downstream machines are identified through the adjacency
matrix 𝑉 (𝑡8). According to the definition in Eq. (11), the matrix 𝑉 (𝑡8)
of this example has size 𝑀 ×𝑀 = 4 × 4, and it results:

𝑉 (𝑡8) =

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0 0
0 0 1 0
1 0 0 0
0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

.

The entry 𝑉2,3(𝑡8) in this example is equal to 1, since the buffer B{2} is
full and so the machine M{2} can be blocked or slowed down by the
machine M{3}. Also the entry 𝑉3,1(𝑡8) is equal to 1, since the buffer B{1}
is empty and so the machine M{3} can be starved or slowed down by
the machine M{1}.

However, the matrix 𝑉 (𝑡8) indicates only the local limitations of
a machine caused by its immediately upstream and downstream ma-
chines, without considering the limitations caused by more distant
machines. For this reason, the reachability matrix 𝑊 (𝑡8) is computed.
𝑊 (𝑡8) identifies which machines can be potentially affected at time 𝑡8
by any other machine anywhere in the system.

To compute 𝑊 (𝑡8) according to Eq. (13), the maximum length of
propagation of a flow interruption/slowdown 𝑀∗ must be defined.
Since 𝑀∗ does not depend on the event time 𝑡𝑘, it is defined only once
before running the simulation. In the specific system analysed in this
section, it is possible to state that 𝑀∗ = 2 even without applying the
Depth First Search algorithm used in Section 4.4. Indeed, the longest
propagation paths in the system of Fig. 2 are M{1} → M{3} → M{4}
and the opposite one (with length 2), M{1} → M{3} → M{2} and the
opposite one (with length 2), M{2} → M{3} → M{4} and the opposite
one (with length 2). Instead, all the propagation paths starting from
M{3} have length equal to 1.

Therefore, according to Eq. (13), 𝑊 (𝑡8) is defined as:

𝑊 (𝑡8) =
(

I + 𝑉 (𝑡8)
)2 = I ∨ 𝑉 (𝑡8) ∨ 𝑉 (𝑡8)2

where

𝑉 (𝑡8)2 = 𝑉 (𝑡8) ∧ 𝑉 (𝑡8)

=

⎡

⎢

⎢

⎢

⎢

⎣

4
∨

𝑚=1

(

𝑉1,𝑚(𝑡8) ∧ 𝑉𝑚,1(𝑡8)
)

…
4
∨

𝑚=1

(

𝑉1,𝑚(𝑡8) ∧ 𝑉𝑚,4(𝑡8)
)

⋮ ⋱ ⋮
4
∨

𝑚=1

(

𝑉4,𝑚(𝑡8) ∧ 𝑉𝑚,1(𝑡8)
)

…
4
∨

𝑚=1

(

𝑉4,𝑚(𝑡8) ∧ 𝑉𝑚,4(𝑡8)
)

⎤

⎥

⎥

⎥

⎥

⎦

,

and it results:

𝑊 (𝑡8) =

⎡

⎢

⎢

⎢

⎢

⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

∨

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0 0
0 0 1 0
1 0 0 0
0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

∨

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

1 0 0 0
1 1 1 0
1 0 1 0
0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

.

Looking at the matrix 𝑊 (𝑡8), since the entries 𝑊2,1(𝑡8) and 𝑊2,3(𝑡8)
are equal to 1, the effective production rate 𝜇(2, 𝑡8) of the machine
M{2} can be affected by the machine M{1} or by the machine M{3}.
Similarly, the effective production rate 𝜇(3, 𝑡8) of the machine M{3} can
be affected by the machine M{1}, since 𝑊3,1(𝑡8) = 1. Moreover, each
entry in the diagonal of 𝑊 (𝑡8), that is 𝑊1,1(𝑡8),… ,𝑊4,4(𝑡8), is equal to
1 since the effective production rate of each machine depends also on

its own state at time 𝑡8.
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According to Eq. (14), the effective production rate of each machine
results:

𝜇(1, 𝑡8) = 𝜇{1} ⋅ 𝑠(1, 𝑡8) = 1.3,

𝜇(2, 𝑡8) = min
{

𝜇{1} ⋅ 𝑠(1, 𝑡8), 𝜇{2} ⋅ 𝑠(2, 𝑡8), 𝜇{3} ⋅ 𝑠(3, 𝑡8)
}

= min
{

1.3, 1.7, 2.1
}

= 1.3,

𝜇(3, 𝑡8) = min
{

𝜇{1} ⋅ 𝑠(1, 𝑡8), 𝜇{3} ⋅ 𝑠(3, 𝑡8)
}

= min
{

1.3, 2.1
}

= 1.3,

𝜇(4, 𝑡8) = 𝜇{4} ⋅ 𝑠(4, 𝑡8) = 0.

herefore, the machines M{2} and M{3} are slowed down at the same
production rate of the machine M{1}. For each machine, the capacity
aturation ratio is computed according to Eq. (6) and it results:

(1, 𝑡8) = 1, 𝑐(2, 𝑡8) =
𝜇(2, 𝑡8)

𝜇{2} ⋅ 𝑠(2, 𝑡8)
= 1.3

1.7
= 0.76,

𝑐(3, 𝑡8) =
𝜇(3, 𝑡8)

𝜇{3} ⋅ 𝑠(3, 𝑡8)
= 1.3

2.1
= 0.62, 𝑐(4, 𝑡8) = 1.

At this point, the next event time in the simulation can be defined.
The numerical computation for this example is provided in Appendix C.

6. Numerical results

In the numerical experiments, the continuous-flow simulation model
presented in this work has been used to evaluate the production
performance of 8 cases related to 4 different system layouts: serial lines;
assembly and disassembly lines; single loop lines; multiple loop lines
with assembly and disassembly machines. Each system layout has been
simulated with both a small number of machines (5) and a large number
of machines (50) in the system, and with simulation time of 105 time
units. For each case, 5 replicates of the simulation have been run.

The simulations of all the tested cases have been carried out using
a computer with 2.5 GHz Intel core i7 processor with 8 GB RAM. The
continuous-flow simulation has been implemented in a MATLAB func-
tion (R2021b release). The results of the continuous-flow simulation
have been compared with the results of DES models with discrete flow
of parts, which is the most employed simulation method for the analysis
of manufacturing systems. The DES models have been developed in the
industrial grade MATLAB/Simulink software package (R2021b release).

In the following, the generation of the tested cases is explained.

6.1. Generation of the tested cases

The computational performance of the continuous-flow simulation
have been tested over 8 different cases, which consider 4 different
layouts of a manufacturing system. The tested cases are summarized
in Table 1, in which the columns 𝑀 and 𝐵 refer respectively to the
number of machines and buffers in the system.

In the tested cases, each machine in the system has a single up
state and a single down state. The production rate of each machine
in the up state is deterministic and it has been randomly generated
from the continuous uniform distribution 𝑈 (1, 3) [material

time ]. The time
to failure and the time to repair are exponentially distributed, with
failure rate randomly generated from the distribution 𝑈 (0.005, 0.02) and
repair rate randomly generated from 𝑈 (0.05, 0.2) [ 1

time ]. Therefore, the
efficiency of a machine in isolation can vary from 60% to 97.5%, while
the throughput of the machines in isolation varies from 0.6 to 2.925
[material

time ].
In the serial line, the material flows sequentially through all the 𝑀

machines of the system, which are partially decoupled by 𝐵 = 𝑀 − 1
finite buffers. The tested cases for the serial line layout are Case 1 and
Case 2 in Table 1. In the closed single loop systems the number of
machines 𝑀 is equal to number of buffers 𝐵, and the material flows
sequentially from the first machine M{1} to the last machine M{𝑀}
through 𝑀 − 1 buffers, and then it flows back from the last machine
M{𝑀} to the first machine M{1} through the last buffer B{𝐵}. The
tested cases for the single loop layout are Case 3 and Case 4 in Table 1.
111

b

Differently from the serial lines and the closed single loops, in a gen-
eral system with assembly and disassembly machines, the way in which
the machines and the buffers are arranged is not uniquely defined for
any system. In this work, the continuous-flow model has been tested
in the analysis of the small assembly/disassembly system shown in
Fig. 3(a), and in the analysis of the large assembly/disassembly system
shown in Fig. 3(c) (Cases 5 and 6 in Table 1). The system in Fig. 3(a)
is composed by 5 machines, with one assembly/disassembly machine
M{3}, and 4 finite buffers.

The assembly/disassembly system in Fig. 3(c) is composed at the
first stage by 16 machines and their own downstream buffers. The
second stage is composed by 8 assembly machines which combine the
flows of material from couples of buffers of the first stage. Each ma-
chine at the second stage has a downstream dedicated buffer. The flows
of material from the buffers at the second stage are then combined by
the assembly machine M{25} at the third stage. The combined flow
goes through the buffer B{25} and then is divided by the disassembly
machine M{26} in 8 different flows of material. These flows of material
go through 8 dedicated buffers and then they are processed by 8
disassembly machines, which divide each flow in two separated flows
of materials. Each one of the 16 flows of material goes through a
dedicated buffer and it is finally processed by a machine at the last
stage of the system.

In the serial lines, the closed single loops and the assembly/
disassembly systems the capacity of each buffer has been randomly
generated from the discrete uniform distribution 𝑈𝑑(2, 10).

The multiple loop systems tested in this work (Case 7 and 8 in
Table 1) are represented in Fig. 3(b) and Fig. 3(d), and they are
composed by two internal loops and by an external loop connecting
the two internal loops. Each internal loop of the system in Fig. 3(b)
is composed by an assembly machine, a disassembly machine and two
buffers. In the multiple loop system of Fig. 3(d), each internal loop is
composed by 24 machines, among which an assembly machine and a
disassembly machine, and 24 buffers.

The capacities of all the buffers in Fig. 3(b) and of the buffers in the
internal loops of Fig. 3(d) have been randomly generated from the same
discrete uniform distribution 𝑈𝑑(2, 10). The buffers B{25},B{26},B{51}
and B{52} of the external loop of the system in Fig. 3(d) have larger
capacity, with values randomly generated from the discrete uniform
distribution 𝑈𝑑(20, 40).

In any system with one or more closed loops, the quantity of
aterial flowing in each loop is constant over the time and it is called
opulation of the loop. For the tested cases with single or multiple
oops, the population of each loop has been randomly generated such
hat it saturates from 60% to 80% the overall capacity of the buffers in
he loop.

.2. Computational time and accuracy

The results of the continuous-flow simulation (CF simulation) in
he analysis of the tested cases have been compared with the results
f a discrete-flow simulation (DCF simulation) that approximates a
ontinuous material flow. To approximate a continuous flow of material
ith a discrete flow, each discrete part processed in the DCF simulation

epresents 0.1 units of continuous material.
In Table 1, the results for the tested cases described in the previous

ection are given. The column Comp Time of Table 1 provides the
omputational time of the two simulation methods. As shown in the
able, the CF simulation is from 57 to 249 times faster than the DCF

simulation. This result is related to the number of events generated in
a run by the two simulation methods. Indeed, the number of events
generated by the CF simulation is on average 150 times lower than the
number of events generated in the DCF simulation.

The columns 𝛥𝑡ℎ% and 𝛥�̄�% show the accuracy of the continuous-
low simulation in the evaluation of the throughput and the average

uffer levels of the system. The percentage difference between the CF
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Fig. 3. Layouts of the tested cases.
Table 1
Performance of the simulation methods in the analysis of continuous-flow systems.

Layout Case 𝑀 𝐵 Comp time [s] Events 𝛥𝑡ℎ% 𝛥�̄�%

CF DCF CF DCF

Serial line 1 5 4 3 185 1.4⋅104 2.2⋅106 0.64 0.82
2 50 49 44 2558 1.4⋅105 2.1⋅107 0.72 0.74

Assembly/ 3 5 4 2 202 1.5⋅104 2.2⋅106 0.02 0.59
Disassembly 4 50 49 25 2452 1.1⋅105 1.6⋅107 0.55 0.83

Single loop 5 5 5 2 204 1.4⋅104 3.5⋅106 0.17 1.42
6 50 50 46 2631 1.4⋅105 1.8⋅107 0.56 0.66

Multiple loops 7 5 7 2 453 1.2⋅104 9.5⋅105 0.04 0.06
8 50 52 45 9425 1.4⋅105 1.5⋅107 0.68 0.84
n
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imulation and the DCF simulation in the throughput analysis is on
verage 0.42%, while the percentage difference in the buffer level anal-
sis is on average 0.74%. These results show the high accuracy of the
roposed continuous-flow simulation in the analysis of manufacturing
ystems and in the evaluation of the main production performance.
ore precisely, the small difference between the CF simulation and

he DCF simulation in the evaluation of the production performance
s much more likely to be ascribed to the approximation introduced by
he DCF simulation in discretizing the continuous flow of material.

Fig. 4 shows the computational time of the continuous-flow simula-
ion for the four types of layout tested in the experimental campaign, as
he number of machines in the system changes. In all these experiments,
he simulation time has been defined equal to 105 time units. From
hese results, the computational time increases almost linearly as the
umber of machines in the system increases, and the slope of the curve
epends on the system layout. The explanation of these patterns is
elated to the computation of the reachability matrix 𝑊 (𝑡𝑘) in Eq. (13),
hich is the most time consuming computation in the whole method.

ndeed, the time to compute the power of a matrix depends on the
atrix size, which in Eq. (13) is 𝑀×𝑀 with 𝑀 the number of machines

n the system, and on the power, which in Eq. (13) is the parameter
∗ that depends on the system layout. Instead, the effects of all the

ther parameters of the system, such as the number of buffers or the
112

e

umber of states of each machine, are negligible since they do not affect
q. (13).

The continuous-flow simulation presented in this work has also
een tested in the analysis of discrete-flow systems. The tested layouts
re the same system layouts presented in Section 6.1. The production
erformance of the discrete-flow system has been evaluated by means
f a discrete-flow simulation model (DF simulation). Table 2 shows
he computational time and the accuracy of the CF simulation in the
nalysis of the discrete-flow system, with respect to the performance of
he DF simulation. From the results, the number of events generated
y the CF simulation in a simulation run is on average an order of
agnitude lower than the number of events generated by the DF

imulation. Consequently, the CF simulation is from 6 to 21 times faster
han the DF simulation.

The differences between the performance estimation of the CF sim-
lation and the DF simulation define the accuracy of the CF simulation
n the analysis of a discrete-flow system. Column 𝛥𝑡ℎ% in Table 2 shows
hat the continuous approximation of a discrete material flow does not
ave a big impact on the estimation of the throughput of a discrete-
low system, since the average percentage error on the throughput is
.45%, with a maximum error of 2.96%. On the other hand, the average
ercentage error on the average buffer level is 5.13%, with maximum
rror of 13.83% (column 𝛥�̄�% in Table 2). Nevertheless, this error on
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Table 2
Performance of the simulation methods in the analysis of discrete-flow systems.

Layout Case 𝑀 𝐵 Comp time [s] Events 𝛥𝑡ℎ% 𝛥�̄�%

CF DF CF DF

Serial line 1 5 4 3 23 1.4⋅104 2.1⋅105 0.89 5.85
2 50 49 44 276 1.4⋅105 2.0⋅106 2.39 4.55

Assembly/ 3 5 4 2 24 1.5⋅104 2.1⋅105 0.81 5.15
Disassembly 4 50 49 25 266 1.1⋅105 1.5⋅106 2.96 5.57

Single loop 5 5 5 2 27 1.4⋅104 3.5⋅105 0.92 13.83
6 50 50 46 318 1.4⋅105 1.8⋅106 1.23 3.29

Multiple loops 7 5 7 2 39 1.2⋅104 9.4⋅104 0.59 0.07
8 50 52 45 399 1.4⋅105 1.5⋅106 1.80 2.73
Table 3
Machines parameters of the industrial case.
Station Machine Cycle time [t.u.] MTTF [t.u.] MTTR [t.u.]

ST1
𝐴

5.06
1834.41 19.82

𝐵 259.02 11.04
𝐶 2234.97 37.72

ST2

𝐷

5.75

147.10 8.32
𝐸 324.31 8.64
𝐹 519.50 7.07
𝐺 851.90 3.76

ST3 𝐻 3.85 274.39 8.08
𝐼 9183.66 32.10

ST4 𝑅 3.85 4371.43 2.39

Fig. 4. The computational time of the continuous-flow simulation for different layouts
as the number of machines in the system changes.

the average buffer level is in line with the errors of the continuous-flow
analytical models proposed in the literature, and it can be reduced by
replacing the formula in Eq. (19) with a formula discretizing the level
of the buffer in the computation of the average buffer level, such as the
formula proposed in [15].

According to these results, the continuous-flow simulation allows to
analyse discrete-flow systems with general layout in much shorter time
than the DES with discrete flow of parts, without significantly affecting
the accuracy in the performance estimation.

7. Analysis of an industrial case

The proposed simulation method has been applied in an industrial
case from the manufacturing industry, with the aim to analyse and opti-
mize the production performance of a manufacturing system during the
113
reconfiguration phase. The system under analysis is a highly automated
production line of an Italian manufacturer of drawers for kitchens.
In particular, the analysed production line performs the assembly of
the drawer sides. The manufacturing company wants to automate the
loading operation of parts on pallets at the beginning of the assembly
line. The main solution that the company wants to evaluate is the
exploitation of the unloading robot at the end of the line also to perform
the loading operation of parts on pallets at the first machine. In this
way, the operator that is currently dedicated to the manual loading of
parts on pallets could be fully employed in other tasks, such as fixing
minor failures of the machines in the line.

7.1. ‘‘As is’’ configuration of the production line

The production line is composed by four stations ST1, ST2, ST3 and
ST4, which are partially decoupled by three inter-operational buffers
B{1}, B{2}, B{3} with capacities equal to 4, 4 and 7 respectively. In
the first two stations of the line, components are assembled to the
main body of the drawer side. In station ST3 additional components
are welded to the main body and an automated visual check with other
final operations are performed. In station ST4 the unloading robot 𝑅
automatically unloads the drawer sides from the pallets. In the current
configuration of the system, at the beginning of the line the main body
of the drawer sides is manually loaded on a pallet by a dedicated
operator, such that the line is almost never short of parts to process.

Stations ST1, ST2 and ST3 are composed by several machines, which
are labelled for confidentiality reasons from 𝐴 to 𝐼 plus the unloading
robot 𝑅. Machines in the same station have the same cycle time and
they are serially arranged. Fig. 5(a) shows a graphical representation
of the current layout of the production system.

Table 3 shows the cycle time, the mean time to failure (MTTF)
and the mean time to repair (MTTR) provided by the company for
each machine of the production line. For confidentiality reasons, the
numerical values of these parameters have been anonymized and they
have reported with the general unit of measurement ‘‘time units’’ (t.u.).

The blocking rule applied to each machine in the line is the Blocking
After Service (BAS). According to the BAS rule, a machine is defined
blocked when it cannot unload a processed part since the immediately
downstream portion of the line is full.

From the data provided by the company, at the moment the produc-
tion line is characterized by a steady state throughput equal to 0.156
[ drawer sides

t.u. ]. In order to apply the continuous-flow simulation method
in the evaluation of the reconfiguration actions on the production line,
the method has been validated by evaluating the throughput of the
current configuration.

For all the machines 𝐴,… , 𝐼 and the robot 𝑅 in the real system,
the machines M{𝐴},… ,M{𝐼} and M{𝑅} are defined in the simulation
model. Each machine M{𝑚} among the above machines has been
defined with a single up state 𝑆1{𝑚} and a single down state 𝑆2{𝑚}.
In the up state, each machine processes parts with nominal production
rate 𝜇

{

𝑆1{𝑚}
}

defined as the reciprocal of the machine cycle time
given in Table 3. Since for each machine of the system only the values
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Fig. 5. Reconfiguration of a production system for the assembly of drawer sides.
of the MTTF and the MTTR have been provided by the company, in the
simulation model the time to failure from the state 𝑆1{𝑚} to the state
𝑆2{𝑚} and the time to repair from 𝑆2{𝑚} to 𝑆1{𝑚} have been assumed
exponentially distributed, with failure rate 1

MTTF and repair rate 1
MTTR .

When the BAS rule is used in a production system, the working
position of each machine behaves like a small buffer of capacity equal
to 1 part. For this reason, in the continuous-flow simulation model the
buffers B{𝐴},B{𝐵},B{𝐷},B{𝐸},B{𝐹 } and B{𝐻} with capacity equal
to 1 have been added downstream of the corresponding machines, in
order to model the working positions of these machines. Therefore,
each buffer B{𝑏} among the above buffers have lower boundary 𝐿{𝑏} =
0 and upper boundary 𝑁{𝑏} = 1. Similarly, in the continuous-flow
simulation model the capacities of the buffers B{1},B{2} and B{3} have
been increased by 1 unit in order to model the working position of
their upstream machines M{𝐶},M{𝐺} and M{𝐼}. Therefore, buffers
B{1},B{2} and B{3} have lower boundaries 𝐿{1} = 0, 𝐿{2} = 0 and
𝐿{3} = 0, and upper boundaries 𝑁{1} = 5, 𝑁{2} = 5 and 𝑁{3} = 8.

By evaluating the production line with the continuous-flow simu-
lation method presented in this paper, the steady state throughput of
the system results 0.159 drawer sides

t.u. . The system has been simulated
over 5 replicates, each one with simulation time equal to 106 t.u.
The percentage error on the throughput estimation with respect to the
value provided by the company is 1.92%. This error is in line with the
level of accuracy shown by the model in Section 6.2 in the analysis of
discrete-flow systems. Therefore, the model can be considered accurate
in the evaluation of the production line under analysis, and it can be
exploited for the optimization of the system performance during the
reconfiguration phase.

7.2. Reconfiguration of the production line

By exploiting the unloading robot 𝑅 to load the main body of the
drawer side on the pallet at the beginning of the production line, the
layout of the system would change as shown in Fig. 5(b). Therefore,
the inflow of the main body of the drawer slide in the production line
would occur at station ST4 rather than at station ST1.

After the reconfiguration of the system, as soon as a finished drawer
side arrives to station ST4, the robot 𝑅 works as follows: first of all 𝑅
114
unloads the drawer side from the pallet; then 𝑅 loads a new main body
on the empty pallet. From the tests carried out by the company, the
robot 𝑅 can be set up to perform the unloading–loading cycle in 5.36
[t.u.] without affecting its reliability.

In the new system configuration, a buffer B{4} to store the main
bodies loaded on the pallets will be designed between stations ST4 and
ST1. Because of space constraints in the plant, the overall capacity of all
the buffers in the system cannot be higher than 20 parts. Considering
that the current capacities of buffers B{1},B{2} and B{3} are 4, 4 and
7 respectively, buffer B{4} can have a maximum capacity of 5 parts.
After the reconfiguration, the company would agree to a reallocation
of the total buffer capacity among the buffers in the systems, as long
as the reallocation does not requires large movements of the stations in
the plant.

As shown in Fig. 5(b), after the reconfiguration the layout of the
production line will be a closed single loop system, in which the
number of pallets in the system is constant over the time and it
represents the population of the system. The population directly affect
the performance of the closed loop system. Indeed, if too few pallets
are placed in the system, the machines will be starved for most of the
time. On the other hand, if too many pallets are placed in the system,
the machine will be blocked for most of the time. Consequently, the
number of pallets in the system is one of the parameter that must be
defined during the system reconfiguration.

The proposed continuous-flow simulation method has been applied
for the optimization of the throughput of the system with respect to
the number of pallets in the production line. In the continuous-flow
simulation model representing the reconfigured system, the same ma-
chines and buffers defined in the model of Section 7.1 are introduced.
Because of the unloading–loading cycle performed by the robot 𝑅, the
up state 𝑆1{𝑅} of the machine M{𝑅} has nominal production rate
𝜇
{

𝑆1{𝑅}
}

= 1
5.36 [

parts
t.u. ]. Furthermore, the buffer B{4} is added in the

model. The lower boundary of B{4} is 𝐿{4} = 0, while the upper
boundary takes in account also the working position of the robot 𝑅,
that is 𝑁{4} = 5 + 1 = 6.

Considering the working positions of the 10 machines in the system
and the total capacity of all the buffers, the maximum number of pallets
that can be placed in the system must be lower than 30. For this reason,
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Fig. 6. Throughput of the reconfigured production line as the number of pallets
changes.

the population of the system has been varied from 1 to 29 pallets, and
the throughput of the system for each value of the population has been
evaluated through the continuous-flow simulation.

The curve shown in Fig. 6 has been obtained by simulating 10
replicates for each value of the population, with simulation time equal
to 106 [t.u] for each replicate. Fig. 6 is in line with the findings on the
effect of the number of pallets on the throughput in closed-loop system,
e.g., [55].

The computational time of the continuous-flow simulation for the
entire curve is 1.04 h, while the time to simulate the same curve by
means of a DES model with a discrete flow of parts is 4.88 h. Both
simulation approaches have been run with the hardware and software
conditions described in Section 6.

Based on this analysis, the number of pallets to place in the system
in order to optimize the throughput is a value in the range [10, 20].

7.3. Reallocation of the buffer capacity

The throughput of the reconfigured production line can be further
increased by reallocating the total buffer capacity among the buffers of
the system. For this reason, different combinations of buffer capacities
have been analysed with the continuous-flow simulation. In particular,
the capacities of the buffer B{1},B{2},B{3} and B{4} have been varied
between 4 and 8 in order to avoid reallocation alternatives which re-
quire large movements of the stations in the plant. In each reallocation
alternative, the total buffer capacity in the system cannot change.

Fig. 7 provides the throughput of the different alternatives of buffer
capacity reallocation. The axes in Fig. 7 show the capacities of the
buffers B{1},B{2} and B{3}. For each combination of values of the
capacities of B{1},B{2} and B{3}, the capacity of the buffer B{4} is
straightforwardly defined as the difference between the total capacity
20 and the sum of the capacities of B{1},B{2} and B{3}. Each sphere
in Fig. 7 represents a reallocation alternative and the colour of the
sphere represents the throughput of the system for that combination of
buffer capacities. For each reallocation alternative, 10 replicates with
simulation time equal to 106 [t.u.] have been simulated. The overall
computational time of the continuous-flow simulation to evaluate the
35 reallocation alternatives is 1.29 h, while the time to simulate the
alternatives by means of a DES model with a discrete flow of parts is
6.38 h.

As shown in the figure, the throughput of the system increases as the
capacity of B{1} increases, and the optimal throughput is reached with
115
Fig. 7. Throughput of the system by reallocating the buffer capacities.

the combination [8, 4, 4, 4] of the buffer capacities of B{1},B{2},B{3}
and B{4}.

8. Conclusions and future developments

In this paper, a continuous-flow simulation method to evaluate
the performance of manufacturing systems with single part-type pro-
duction, general layout, assembly and disassembly machines, single
or multiple loops and general inter-event time distributions has been
presented.

The numerical results provided in the paper have shown that the us-
age of the continuous-flow simulation for the performance evaluation of
manufacturing systems brings to a significant reduction of the number
of discrete events generated in a simulation run. As main consequence,
in the tested cases the continuous-flow simulation is on average 15
times faster than DES in the evaluation of discrete-flow systems, and
110 times faster in the evaluation of continuous-flow systems.

The applicability of the proposed method has been shown in an
industrial case from the manufacturing system. In this industrial case,
the continuous-flow simulation has been exploited during the reconfig-
uration phase of a production line of drawer sides. Several alternatives
of reallocation of the total buffer capacity have been evaluated with
the proposed method, and the optimal solution has been identified.

The approach proposed in this paper can be extended in various
discussions: currently, the continuous-flow simulation technique is in-
adequate for analysing multi-product manufacturing systems due to
two primary concerns. Firstly, when buffers are shared between multi-
ple products in the system, the proposed model of the buffer level does
not consider the single quantities of different products that a shared
buffer is accommodating. Secondly and of greater significance, the
proposed method lacks a general formalization of the various dispatch-
ing policies for the selection of the next product type for processing,
particularly in systems that involve flexible machines handling multiple
products.

As future research, the continuous-flow simulation method will be
generalized for the evaluation of multi-product systems with split and
merge of material flows and with specific dispatching policies. To
reach these results, a general framework for the formalization of the
most common policy managing the material flow in the manufacturing
industry will be studied.

The definition of a control policy requires often the optimization
of one or more control parameters. Starting from the continuous-flow
simulation, two different optimization approaches will be studied.

One approach will be the formalization of the analytical equations
of the continuous-flow simulation as a linear programming problem, in
which the control variables of the problem will be the parameters of
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the control policy and the optimization function will be the production
performance of interest in the system.

When the dynamics of the system cannot be formalized as linear
constraints of an optimization problem, an alternative solution that
will be addressed is the integration in the continuous-flow simulation
of the infinitesimal perturbation analysis, for the gradient estima-
tion of the performance measures with respect to small variations
of the control parameters. Both the linear programming and the in-
finitesimal perturbation analysis will provide fast tools for the joint
simulation–optimization of manufacturing systems.

One of the next future developments of this work will be the
definition of the joint probability distribution of the buffer levels from
the event log of the continuous-flow simulation. This analysis will
support the definition of many control policies of the material flow or
of the energy consumption, which are based on the joint conditions of
several resources of the manufacturing system under analysis.

As a summary, the proposed work provides an efficient performance
evaluation method to analyse single part-type continuous-flow man-
ufacturing systems with general layout and general inter-event time
distributions. This method allows very fast simulation of systems under
general assumptions and enables determining the parameters used in
design and control of manufacturing systems efficiently.
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Appendix A. Boolean matrix operations

In the following, the Boolean operations used for the computation
of the reachability matrix 𝑊 (𝑡𝑘) in Eq. (13) are defined.

Given two square boolean matrices 𝑂 and 𝑃 of size 𝑀 × 𝑀 , each
entry 𝑄𝑖,𝑗 of the boolean sum 𝑄 = 𝑂 ∨ 𝑃 is defined as

𝑄𝑖,𝑗 = 𝑂𝑖,𝑗 ∨ 𝑃𝑖,𝑗 , ∀𝑖,∀𝑗,

each entry 𝑄𝑖,𝑗 of the boolean product 𝑄 = 𝑂 ∧ 𝑃 as

𝑄𝑖,𝑗 =
𝑀
∨

𝑚=1
(𝑂𝑖,𝑚 ∧ 𝑃𝑚,𝑗 ) = (𝑂𝑖,1 ∧ 𝑃1,𝑗 ) ∨ … ∨ (𝑂𝑖,𝑀 ∧ 𝑃𝑀,𝑗 ), ∀𝑖,∀𝑗,

and the 𝑛th power of a boolean matrix as

𝑂𝑛 = 𝑂𝑛−1 ∧ 𝑂, with 𝑛 = 2, 3,… and 𝑂1 = 𝑂.

Appendix B. Proof of Lemma 1

In the following, the proof of Lemma 1 in Section 4.4 is given.

Proof. Consider a manufacturing system with 𝑀 machines and with
maximum length of propagation of a flow interruption/slowdown equal
to 𝑀∗ ≤ 𝑀 − 1. At time 𝑡𝑘 the adjacency matrix 𝑉 (𝑡𝑘) of the system is
defined according to Definition 1 in Section 4.4, while the reachability
matrix 𝑊 (𝑡𝑘) is unknown. A directed graph 𝐺 with 𝑀 nodes is defined
such that a directed edge between each couple of nodes (𝑚,𝑚′) exists in
𝐺 if 𝑉𝑚,𝑚′ (𝑡𝑘) = 1. According to the graph theory, 𝑉 (𝑡𝑘) is the adjacency
matrix of the graph 𝐺, that defines whether pairs of nodes are adjacent
or not in 𝐺, and 𝑀∗ is the maximum distance between two nodes in 𝐺.
The transitive closure of 𝐺 is a square boolean matrix of size 𝑀 ×𝑀 ,
that defines the reachability relation of 𝐺, that is the ability to reach

′
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or not a node 𝑚 from a node 𝑚 through a sequence of adjacent nodes. i
Since the definition of the transitive closure of the graph 𝐺 is equivalent
to the definition of the reachability matrix 𝑊 (𝑡𝑘) of the manufacturing
system (Definition 3 in Section 4.4), 𝑊 (𝑡𝑘) is the transitive closure of
𝐺. According to the work in [56], the transitive closure 𝑊 (𝑡𝑘) of the
raph 𝐺 can be computed through the following boolean operations:

(𝑡𝑘) =
(

I + 𝑉 (𝑡𝑘)
)𝑀 = I ∨ 𝑉 (𝑡𝑘) ∨ 𝑉 (𝑡𝑘)2 ∨… ∨ 𝑉 (𝑡𝑘)𝑀 . (B.1)

n the work presented in [57] it has been demonstrated that, given a
raph 𝐺 with adjacency matrix 𝑉 (𝑡𝑘), the entry (𝑚,𝑚′) of the matrix
(𝑡𝑘)𝑛 is 1 if in 𝐺 it is possible to proceed from the node 𝑚 to the node
′ in exactly 𝑛 steps, and 0 otherwise. Since the maximum distance
etween two nodes in 𝐺 is 𝑀∗ ≤ 𝑀−1, no path of length 𝑛 > 𝑀∗ exists
etween any two nodes in 𝐺. Consequently, any matrix 𝑉 (𝑡𝑘)𝑛 with
> 𝑀∗ is a zero matrix which does not affect the computation of 𝑊 (𝑡𝑘)
nd it can be omitted from Eq. (B.1). Therefore, by replacing 𝑀 with
∗ in Eq. (B.1), Eq. (13) is obtained and Lemma 1 is demonstrated. □

The replacement of 𝑀 with 𝑀∗ in the computation of 𝑊 (𝑡𝑘) does
ot affect the final result of 𝑊 (𝑡𝑘), but it speeds up the time to run
he continuous-flow simulation by reducing the computational time
f Eq. (13).

ppendix C. Definition of the next event time in a specific system

In the following, the computation of the next event time 𝑡𝑘+1 and the
pdate of the system variables are provided for the numerical example
resented in Section 5.

For the definition of the next event time 𝑡𝑘+1 = 𝑡9, the inter-event
ime 𝛥𝑡8 must be computed. As defined in Eq. (5), 𝛥𝑡8 depends on the
emaining machine time of each machine and on the remaining buffer
ime of each buffer.

For each machine in the system of Fig. 2, the following time to
ransition matrices represent the remaining time before a transition
etween any couple of states:

(1, 𝑡8) =
[

+∞ 250.2
29.4 +∞

]

, 𝜏(2, 𝑡8) =
[

+∞ 144.2
17.7 +∞

]

,

(3, 𝑡8) =
⎡

⎢

⎢

⎣

+∞ 121.5 78
24.21 +∞ 38.4
7.19 83.7 +∞

⎤

⎥

⎥

⎦

, 𝜏(4, 𝑡8) =
[

+∞ 57.6
31.1 +∞

]

.

or instance, the entry 𝜏1,2(3, 𝑡8) defines that the remaining time before
he occurrence of a transition from the state 𝑆1{3} to the state 𝑆2{3} of
he machine M{3} is equal to 121.5 time units. This value is valid under
he assumptions that the machine M{3} at time 𝑡8 is in the state 𝑆1{3},
he effective production rate 𝜇(3, 𝑡8) is equal to the nominal production
ate 𝜇1{3}, and that no other events occur in the meanwhile.

According to the current states 𝑠(1, 𝑡8),… , 𝑠(4, 𝑡8) and to Eq. (7), the
emaining machine time of each machine is computed as follows:

M(1, 𝑡8) =
min

{

𝜏1,1(1, 𝑡8), 𝜏1,2(1, 𝑡8)
}

𝑐(1, 𝑡8)
=

min
{

+∞, 250.2
}

1
= 250.2,

RM(2, 𝑡8) =
min

{

𝜏1,1(2, 𝑡8), 𝜏1,2(2, 𝑡8)
}

𝑐(2, 𝑡8)
=

min
{

+∞, 144.2
}

0.76
= 189.74,

M(3, 𝑡8) =
min

{

𝜏1,1(3, 𝑡8), 𝜏1,2(3, 𝑡8), 𝜏1,3(3, 𝑡8)
}

𝑐(3, 𝑡8)

=
min

{

+∞, 121.5, 78
}

0.62
= 195.97,

RM(4, 𝑡8) =
min

{

𝜏2,1(2, 𝑡8), 𝜏2,2(2, 𝑡8)
}

𝑐(4, 𝑡8)
=

min
{

31.1,+∞
}

1
= 31.1.

herefore, the next event among the machines is the repair of the
achine M{4}.

For the definition of the next event among the buffers, the times to
ulfil and the times to deplete the buffers must be computed. Consider-
ng now the current levels 𝑥(1, 𝑡 ),… , 𝑥(4, 𝑡 ) of the buffers, the times to
8 8
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fulfil the buffers 𝛽1(1, 𝑡8),… , 𝛽1(4, 𝑡8) are computed according to Eq. (8)
as follows:

𝛽1(1, 𝑡8) = +∞,

𝛽1(2, 𝑡8) = +∞,

𝛽1(3, 𝑡8) =
𝑁{3} − 𝑥(3, 𝑡8)
𝜇(3, 𝑡8) − 𝜇(4, 𝑡8)

= 15 − 12
1.3 − 0

= 2.31,

1(4, 𝑡8) = +∞.

t time 𝑡8 in the simulation, the time to fulfil the buffer B{1} is set
equal to +∞ since the upstream and downstream machines M{1} and
M{2} have the same production rate, and so the level of the buffer is
stationary. Also the times to fulfil the buffers B{2} and B{4} are set
equal to +∞. Indeed, the buffer B{2} is already full and so the next
event in the simulation cannot be its fulfilment. Instead, considering
B{4} its level is decreasing because its downstream machine M{3}
is faster than the upstream machine M{4}, and so the buffer cannot
become full.

Similarly, the times to deplete the buffers 𝛽2(1, 𝑡8),… , 𝛽2(4, 𝑡8) are
computed according to Eq. (9) as follows:

𝛽2(1, 𝑡8) = +∞,

𝛽2(2, 𝑡8) = +∞,

𝛽2(3, 𝑡8) = +∞,

𝛽2(4, 𝑡8) =
𝑥(4, 𝑡8) − 𝐿{4}
𝜇(3, 𝑡8) − 𝜇(4, 𝑡8)

= 5 − 0
1.3 − 0

= 3.84.

he times to deplete the buffers B{1}, B{2} and B{3} are all set equal
o +∞, since the buffer B{1} is already empty, the level of B{2} is
tationary because the upstream and downstream machines have the
ame production rate, and the level of B{3} is increasing because the
pstream machine is faster than the downstream machine.

At this point, the remaining buffer time of each buffer is computed
ccording to Eq. (10).

B(1, 𝑡8) = min
{

𝛽1(1, 𝑡8), 𝛽2(1, 𝑡8)
}

= min
{

+∞,+∞
}

= +∞,

B(2, 𝑡8) = min
{

𝛽1(2, 𝑡8), 𝛽2(2, 𝑡8)
}

= min
{

+∞,+∞
}

= +∞,

B(2, 𝑡8) = min
{

𝛽1(3, 𝑡8), 𝛽2(3, 𝑡8)
}

= min
{

2.31,+∞
}

= 2.31,

RB(2, 𝑡8) = min
{

𝛽1(4, 𝑡8), 𝛽2(4, 𝑡8)
}

= min
{

+∞, 3.84
}

= 3.84.

The inter-event time 𝛥𝑡8 is now computed according to Eq. (5):

𝛥𝑡8 = min{RM(1, 𝑡8),… ,RM(4, 𝑡8),RB(1, 𝑡8),… ,RB(4, 𝑡8), 𝑇 − 𝑡8} =

= min{250.2, 189.74, 195.97, 31.1,+∞,+∞, 2.31, 3.84, 105 − 129.7}

= 2.31.

Therefore, the next event occurring in the system is the fulfilment of
the buffer B{3}, since the remaining buffer time RB(3, 𝑡8) has the lowest
value among the remaining machine times, the remaining buffer times
and the remaining simulation time. The fulfilment of the buffer B{3}
occurs at time 𝑡9:

𝑡9 = 𝑡8 + 𝛥𝑡8 = 129.7 + 2.31 = 132.01.

The clock time is instantaneously advanced from the event time 𝑡8 to
event time 𝑡9, and all the variables describing the system are updated.
Since the event at time 𝑡9 is not related to a state transition of any
machine, the current state of each machine does not change from 𝑡8 to
𝑡9, that is 𝑠(1, 𝑡8) = 𝑠(1, 𝑡9),… , 𝑠(4, 𝑡8) = 𝑠(4, 𝑡9).

The current level of each buffer is updated according to Eq. (15):

𝑥(1, 𝑡9) = 𝑥(1, 𝑡8) +
(

𝜇(1, 𝑡8) − 𝜇(3, 𝑡8)
)

⋅ 𝛥𝑡8 = 0 + (1.3 − 1.3) ⋅ 2.31 = 0,

𝑥(2, 𝑡9) = 𝑥(2, 𝑡8) +
(

𝜇(2, 𝑡8) − 𝜇(3, 𝑡8)
)

⋅ 𝛥𝑡8 = 10 + (1.3 − 1.3) ⋅ 2.31 = 10,

𝑥(3, 𝑡9) = 𝑥(3, 𝑡8) +
(

𝜇(3, 𝑡8) − 𝜇(4, 𝑡8)
)

⋅ 𝛥𝑡8 = 12 + (1.3 − 0) ⋅ 2.31 = 15,

𝑥(4, 𝑡9) = 𝑥(4, 𝑡8) +
(

𝜇(4, 𝑡8) − 𝜇(3, 𝑡8)
)

⋅ 𝛥𝑡8 = 5 + (0 − 1.3) ⋅ 2.31 = 2.

The steps to update the effective production rate of each machine
and then the capacity saturation ratio are the same steps which have
117
een performed at time 𝑡8 in Section 5.2. For this reason, they are
mitted now.

The last set of variables to update are the time to transition matrices
(1, 𝑡9),… , 𝜏(4, 𝑡9). As defined in (16), in each time to transition matrix
nly the row corresponding to the state of the machine at time 𝑡8 must
e updated. All the other rows in the matrix do not change from 𝑡8 to
9. By applying the matrix notation provided in Eq. (17), the following
ime to transition matrices are obtained:

(1, 𝑡9) = 𝜏(1, 𝑡8) − 𝛥𝑡8 ⋅ 𝑐(1, 𝑡8) ⋅
[

𝑠(1, 𝑡8), 𝑠(1, 𝑡8)
]

=

=
[

+∞ 250.2
29.4 +∞

]

− 2.31 ⋅
[

1 1
0 0

]

=
[

+∞ 247.89
29.4 +∞

]

,

𝜏(2, 𝑡9) = 𝜏(2, 𝑡8) − 𝛥𝑡8 ⋅ 𝑐(2, 𝑡8) ⋅
[

𝑠(2, 𝑡8), 𝑠(2, 𝑡8)
]

=

=
[

+∞ 144.2
17.7 +∞

]

− 1.76 ⋅
[

1 1
0 0

]

=
[

+∞ 142.44
17.7 +∞

]

,

𝜏(3, 𝑡9) = 𝜏(3, 𝑡8) − 𝛥𝑡8 ⋅ 𝑐(3, 𝑡8) ⋅
[

𝑠(3, 𝑡8), 𝑠(3, 𝑡8), 𝑠(3, 𝑡8)
]

=

=
⎡

⎢

⎢

⎣

+∞ 121.5 78
24.21 +∞ 38.4
7.19 83.7 +∞

⎤

⎥

⎥

⎦

− 1.43 ⋅
⎡

⎢

⎢

⎣

1 1 1
0 0 0
0 0 0

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

+∞ 120.07 76.57
24.21 +∞ 38.4
7.19 83.7 +∞

⎤

⎥

⎥

⎦

,

𝜏(4, 𝑡9) = 𝜏(4, 𝑡8) − 𝛥𝑡8 ⋅ 𝑐(4, 𝑡8) ⋅
[

𝑠(4, 𝑡8), 𝑠(4, 𝑡8)
]

=

=
[

+∞ 57.6
31.1 +∞

]

− 2.31 ⋅
[

0 0
1 1

]

=
[

+∞ 57.6
28.79 +∞

]

.

If the event at time 𝑡9 were a state transition, just like a transition
from the state 𝑆1{1} to the state 𝑆2{1} of M{1}, the corresponding
entry 𝜏1,2(1, 𝑡9) would have resulted equal to 0. In this case, a new
value 𝜏1,2(1, 𝑡9) would have been randomly generated according to the
distribution 𝐷1,2{1} of the time to transition from 𝑆1{1} to 𝑆2{1}.

At this point, the definition of the next event time and the update
of the system variables can be iteratively performed for 𝑡10, 𝑡11,… until
the end of the simulation.
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