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Abstract

Semiparametric regression models have received considerable attention over the

last decades, because of their flexibility and their good finite sample performances.

Here we propose an innovative nonparametric test for the linear part of the models,

based on random sign-flipping of an appropriate transformation of the residuals, that

exploits a spectral decomposition of the residualizing matrix associated with the

nonparametric part of the model. The test can be applied to a vast class of extensively

used semiparametric regression models with roughness penalties, with nonparametric

components defined over one-dimensional, as well as over multi-dimensional domains,

including for instance models based on univariate or multivariate splines. We prove

the good asymptotic properties of the proposed test. Moreover, by means of extensive

simulation studies, we show the superiority of the proposed test with respect to

current parametric alternatives, demonstrating its excellent control of the Type I
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error, accompanied by a good power, even in challenging data scenarios, where instead

current parametric alternatives fail.

Keywords: functional data analysis, smoothing, roughness penalty, sign-flip

1 Introduction

Semiparametric regression models have a long history in statistics [see, e.g., the textbooks

Green and Silverman, 1994, Bickel et al., 1998, Ruppert et al., 2003, and references therein].

Because of their flexibility and versatility, they have been the object of an extensive and still

very active literature. In this work, we propose an e�cient (conditional) resampling-based

test [Pesarin, 2001, Hemerik and Goeman, 2018b, Chung and Romano, 2013] for the linear

component in partially linear and semiparametric regression models with roughness penal-

ties. The test can be applied to a vast class of extensively used models, with nonparametric

components defined over one-dimensional, as well as over multi-dimensional domains, in-

cluding manifold domains. This embraces for instance the highly popular semiparametric

regression models based on splines [see e.g. Heckman, 1986, Yu and Ruppert, 2002, Wand

and Ormerod, 2008, Wang, 2019, and references therein], on thin-plate splines [see, e.g.,

Wood, 2003], and on spherical splines [Wahba, 1981], as well as semiparametric models

based on recent smoothing techniques over two-dimensional (possibly irregularly-shaped or

curved) domains, such as soap film smoothing [Wood et al., 2008], bivariate-splines over

triangulations [Lai and Schumaker, 2007, Baramidze et al., 2006, Lai et al., 2009, Guillas

and Lai, 2010, Lai and Wang, 2013, Wang et al., 2020], and Spatial Regression with Partial

Di↵erential Equation regularization (SR-PDE) [see e.g., Sangalli et al., 2013, Azzimonti

et al., 2015, Ettinger et al., 2016, Wilhelm et al., 2016, Sangalli, 2021].

Various classical approaches are available to make inference in the context of semipara-

metric regressions, and di↵erent strategies have been proposed to cope with the bias induced
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by the roughness penalty. Some possibilities include undersmoothing approaches developed

for nonparametric models [see e.g. the review in Hall and Horowitz, 2013], Bayesian ap-

proaches [Wahba, 1983, Nychka, 1988, Marra and Wood, 2012] and various corrections of

Wald type test statistics, such as the sandwich estimators in Gray [1994] and Yu and Rup-

pert [2002], and the Speckman’s version in Speckman [1988] and Holland [2017]. These

approaches might nonetheless have poor performances in the finite sample scenario, due to

the e↵ects of the roughness penalty [see, e.g. Maas and Hox, 2004, Freedman, 2006]. In

particular, as also evidenced by the simulation studies reported in this work, such tests

have a poor control of Type I error.

Here we propose an innovative test for the linear part of semiparametric regression

models, based on conditional resampling of a transformation of the residuals. This test,

unlike other proposals, allows to overcome the problem of dependence in the residuals that

is particularly strong in semiparametric models. Some approaches proposed in the context

of classical regression models, such as those in Huh and Jhun [2001] and Kherad-Pajouh

and Renaud [2010], derive transformed residuals from spectral decomposition of the resid-

ualizing matrix that projects into the residual space. In the setting considered by these

authors, the conditional distribution of the test statistic can be defined on the basis of

permutations [see, e.g., Pesarin, 2001, Chung and Romano, 2013, Pauly et al., 2015, Win-

kler et al., 2014], rotations [Solari et al., 2014] or sign-flips [Hemerik et al., 2020] of such

transformed residuals. These approaches are nonetheless not valid in this context, since

the residualizing matrix is not idempotent in the case of penalized regression models. Be-

cause of this, the transformed residuals are not spherical (i.e., they are not homoscedastic

and independent) and the standard permutation, rotation or sign-flip procedures become

invalid in our context. To overcome this problem we here study a conditional sign-flip

procedure, named eigen sign-flip test, that preserves the finite sample covariance structure

of the residuals, hence ensuring asymptotically exactness of the derived test. This idea has
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been explored in Ferraccioli et al. [2021], restricted to a specific case of SR-PDE model.

The current work addresses instead the broad spectrum of highly popular semiparametric

regression models mentioned above. Moreover, we study in detail the asymptotic proper-

ties of the test. In particular, we prove the asymptotic exactness of the test and derive

similar results for interval hypothesis and confidence intervals. Some of the obtained results

leverage on the asymptotic properties of the estimator of the nonparametric part of the

model. Such properties in turn depend on conditions that are model-specific, since they

depend for instance on the dimension and geometry of the domain over which the non-

parametric term is defined, on the roughness term being considered, on the type of basis,

etc. In the present work, we hence define assumptions that are general enough to cover

a variety of semiparametric regression models, and refer the reader to other works for the

appropriate specifications of such assumptions for the specific model being considered (e.g.,

to Claeskens et al. [2009] for univariate penalized splines estimators, to Holland [2017] for

multivariate penalized splines estimators, to Xiao [2019] for general penalized splines and

to Arnone et al. [2021] for SR-PDE.)

The paper is organized as follows. In Section 2 we briefly review the semiparametric

penalized regression framework, outlining the forms of the associated discrete estimators.

In Section 3 we recall some classical parametric approaches for inference on the linear

part of a semiparametric regression model and summarize the properties of the score test

statistic in this context. In Section 4 we present the Eigen-sign flip test and describe

its theoretical and asymptotic properties. In Section 5 we compare our proposal to more

classical parametric approaches in extensive simulation studies. In Section 6 we present an

application to the study of human development in Nigeria. Finally, some discussions and

possible directions for future research are outlined in Section 7.
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2 Semiparametric regression

Let yi 2 R be the value of the variable of interest observed in correspondence of covariates

xi 2 R
q and of pi 2 ⌦ ✓ R

d
, d � 1. We consider the semiparametric model

yi = x
>
i � + f(pi) + ✏i, i = 1, . . . , n, (1)

where � 2 R
q is the vector of regression parameters, f is a real-valued smooth function on

⌦, and ✏i are i.i.d. random errors with E(✏i) = 0 and E(✏2i ) = �
2.

The interest is to estimate both the linear coe�cients � and the nonparametric compo-

nent f . However, the estimation of (�, f) in model (1) via maximum likelihood is usually

inappropriate or infeasible, due to the infinite-dimensionality of the nonparametric compo-

nent f . To avoid this problem, some type of roughness penalty can be imposed, in order

to reduce the space of possible solutions. In general, the resulting penalized likelihood

estimators for � and f are the solution of the minimization problem

argmin
�,f

nX

i=1

(yi � f(pi)� x
>
i �)

2 + �nP(f), (2)

where P(·) is some type of roughness penalty. Depending on the assumptions on the do-

main ⌦ ✓ R
d
, on the dimension d, and on the required smoothness of the function f ,

various proposals for P(f) have been considered in the literature, and di↵erent discretiza-

tion procedures have been adopted to reduce the infinite-dimensional estimation problem

(2) to a finite dimensional one. For instance, for d = 1 and ⌦ an interval of the real line,

model (1)-(2) can involve the classical and extensively used O’Sullivan splines [O’Sullivan,

1986, Heckman, 1986, Yu and Ruppert, 2002, Wand and Ormerod, 2008], whose penalty is

the integrated squared derivative of some order, and can for instance rely on B-spline bases.

When ⌦ is the real plane, it is possible to use thin-plate splines [see, e.g., Duchon, 1977,

Wahba, 1990, Wood, 2003], which involve as penalty the so-called thin-plate energy. More-

over, various recent techniques target two-dimensional bounded planar domains ⌦ ⇢ R
2,
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including: soap-film smoothing [Wood et al., 2008], that considers a penalty involving the

Laplacian of f ; bivariate-splines over triangulations [Lai and Schumaker, 2007, Guillas and

Lai, 2010, Lai and Wang, 2013], whose regularizing term may include high-order deriva-

tives; SR-PDE [Sangalli et al., 2013, Azzimonti et al., 2015], where the regularizing term

can involve general second-order partial di↵erential equations, and the estimation prob-

lem is discretized via finite element bases [Sangalli et al., 2013, Azzimonti et al., 2015] or

advanced spline bases [Wilhelm et al., 2016]. Some of these techniques also permit the

constructions of semiparametric models over spherical domains [Wahba, 1981, Baramidze

et al., 2006, Lai et al., 2009] and general surface domains [Ettinger et al., 2016, Wilhelm

et al., 2016].

2.1 Discrete estimators

The estimation of model (1) usually involves the representation of the nonparametric com-

ponent f through some type of basis expansion, depending on the penalization being con-

sidered. Let  2 R
n ⇥ R

K be the matrix of the evaluations of the K basis functions

 1, . . . , K at the n data locations p1, . . . ,pn, that is,

 =

2

6664

 1(p1) . . .  K(p1)
...

. . .
...

 1(pn) . . .  K(pn)

3

7775
.

Then, we write (f(p1), . . . , f(pn))> =  � for some vector of coe�cients � 2 R
K
.Moreover,

let P denote the K ⇥K positive semidefinite matrix representing the discretization of the

penalty P(·). Finally, set y = (y1, . . . , yn)>and denote by X 2 R
n ⇥R

q the design matrix,

whose i-th row is given by xi. The estimation problem (2) is therefore discretized as

argmin
�,�

�
(y �X� � �)>(y �X� � �) + �n�

>
P�
 
. (3)
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The solution to (3) is uniquely determined by the normal equations

X
>(y �X� � �) = 0, (4)

( > + �P )� � >(y �X�) = 0. (5)

Setting

Q = In �X(X>
X)�1

X
>
,

⇤ = In � ( > + �P )�1 >
, (6)

the explicit form of the estimators for � and � are, respectively,

�̂ = (X>⇤X)�1
X

>⇤y,

�̂ = ( >
Q + �P )�1 >

Qy, (7)

or equivalently

�̂ = (X>
X)�1

X
>(y � �̂),

�̂ = ( > + �P )�1 >(y �X�̂). (8)

3 Inference on �

In semiparametric regression, a natural question is whether the covariates X have an e↵ect

on the variable of interest. We are thus interested in the system of hypotheses

H0 : � = �0 versus H1 : � 6= �0. (9)

A standard approach to verify (9) is to use a Wald type test [see, e.g., Schervish, 2012],

based on the asymptotic distribution of �̂. The study of the asymptotic distribution of �̂, in

semiparametric regression models, has been tackled by a number of works. See for instance
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Heckman [1986], Yu and Ruppert [2002], Li and Ruppert [2008], Holland [2017], Xiao

[2019], Yu et al. [2019], Wang et al. [2020] for semiparametric models based on univariate

and bivariate splines.

The parametric Wald type test may nonetheless have poor performances in small sample

scenarios, due to the overestimation of the variance of the test statistic, induced by the

penalization. A number of corrections to Wald type test have been proposed to avoid this

issue, such as the sandwich estimators in Gray [1994] and Yu and Ruppert [2002] and the

Speckman’s version in Speckman [1988] and Holland [2017]. Nonetheless, these approaches

can only partially solve the problem, and may lead to a poor control of the Type I error,

especially when a strong temporal/spatial structure in the covariates is present, as indicated

by the simulations carried on in Section 5.

In the Section 4 we introduce an innovative nonparametric alternative for testing on

�. Such proposal is based on the score statistic. For this reason, in the remainder of

this section we review the properties of the score statistic in the context of penalized

semiparametric regression. The proposed method does not rely on the estimation of the

Fisher information matrix to define the null distribution, which is implicitly recovered by

an appropriate nonparametric resampling procedure, as described in Section 4.

3.1 Properties of the score statistic in penalized semiparametric

regression

We first study the distributional properties of the score statistic, which constitute the base

of the nonparametric test defined in Section 4. Using the normal equation (4), we can

define the classical score test statistic

X
>(y �X�0 � �). (10)
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Since � is unknown, we can use the plug-in �̂. Substituting �̂ in expression (10), we define

the test statistic T as

T = n
�1/2

X
>(y � �̂ �X�0)

= n
�1/2

X
>(y � ( > + �P )�1 >(y �X�0)�X�0)

= n
�1/2

X
>((I � ( > + �P )�1 >)y � (I � ( > + �P )�1 >)X�0)

= n
�1/2

X
>⇤(y �X�0) = n

�1/2
X

>⇤r. (11)

with r = y �X�0. We make the following assumption:

(A1) For n large enough, the matrix  > is positive definite.

Assumption (A1) is quite general; its specification depends on the basis considered. In

particular, this specification usually involves conditions on the nodes of the basis and their

position with respect to the design points p1, . . . ,pn. More specifically, it involves the type

of basis, the rate at which the number of bases K grows with n, the minimum distance

between the nodes, and the density of the design points inside the domain. For instance,

in the case of univariate penalized splines estimators, (A1) follows from Assumptions 1–

3 in Claeskens et al. [2009]. In the case of multivariate penalized splines estimators, it

follows from Assumptions 1–2 in Holland [2017]. In the case of SR-PDE, it follows from

Assumptions 3–5 in Arnone et al. [2021].

Here we consider the case of fixed designs, thus implicitly conditioning on the sample

points and the covariates. Similar results can be obtained in the random design scenario,

by introducing further assumptions on the distribution of the design points and covariates

(e.g. that the covariates are realizations of continuous processes on ⌦).

Under (A1), we can consider the Demmler and Reinsch [1975] decomposition

( > )�1/2
P ( > )�1/2 = Udiag(⇢)U>

,

9



where U is the matrix of eigenvectors, and ⇢ is the corresponding vector of eigenvalues

{⇢k}Kk=1 [see Eubank, 1999, for details]. Let us also denote A =  ( > )�1/2
U . Note

that this matrix is semi-orthogonal, i.e., A>
A = IK and AA

> =  ( > )�1 >. Following

Demmler and Reinsch [1975], we can rewrite the matrix ⇤ in (6) as

⇤ = In � A(IK + �diag(⇢))�1
A

>
.

Using this decomposition, we can now study the behaviour of the bias of the test statistic

T, in terms of the eigenvalues ⇢k.

Lemma 3.1. Assume (A1) and let ˜̃
X = A

>
X and ˜̃� = A

> �. Let also ˜̃xi be the q-

dimensional vectors corresponding to the rows of ˜̃
X, and ˜̃�i be the elements of the vector

˜̃�. Under the null hypothesis (9), the bias b� of T is

b�  n
�1/2

�max
i

(|˜̃xi ˜̃�i|)
KX

i=1

⇢i, (12)

where the inequality is considered element-wise.

Proof. Denote by ✏ the n-dimensional vector of i.i.d. residuals. Under the null hypothesis,

we have

E(T ) = n
�1/2

E(X>⇤r)

= n
�1/2

E(X>⇤(y �X�0))

= n
�1/2

X
>⇤E( � +X�0 �X�0 + ✏)

= n
�1/2

X
>⇤ � + n

�1/2
X

>⇤E(✏)

= n
�1/2

X
>⇤ � = b�,

since the term E(✏) is zero by assumption. Using the decomposition in (3.1), it follows that

⇤ = In � A(IK + �diag(⇢))�1
A

>

= AA
> � AA

> + In � A(IK + �diag(⇢))�1
A

>

= A(IK � (IK + �diag(⇢))�1)A> � AA
> + In. (13)
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Substituting (13) in b�, we obtain

b� = n
�1/2[X>(A(IK � (IK + �diag(⇢))�1)A> � AA

> + In) �]

= n
�1/2[X>

A(IK � (IK + �diag(⇢))�1)A> � �X
>
AA

> � +X
> �]

= n
�1/2[X>

A(IK � (IK + �diag(⇢))�1)A> � �X
> ( > )�1 > � +X

> �]

= n
�1/2

X
>
A(IK � (IK + �diag(⇢))�1)A> �.

Using the notation ˜̃
X = A

>
X and ˜̃� = A

> �, the bias can therefore be rewritten as

b� = n
�1/2

KX

i=1

✓
1� 1

1 + �⇢i

◆
˜̃xi ˜̃�i = n

�1/2
KX

i=1

✓
�⇢i

1 + �⇢i

◆
˜̃xi ˜̃�i, (14)

where ˜̃xi are the q-dimensional vectors corresponding to the rows of ˜̃
X, and ˜̃�i the elements

of the vector ˜̃�. Equation (14) highlights that the bias is a sum ofK contributions, weighted

by the eigenvalues ⇢k, and moderated by �. Since the function x/(1 + x) < x, for x > 0,

we can bound the bias as follows

b� = n
�1/2

KX

i=1

✓
�⇢i

1 + �⇢i

◆
˜̃xi ˜̃�i  n

�1/2
�

KX

i=1

⇢i|˜̃xi ˜̃�i|  max
i

(|˜̃xi ˜̃�i|)n�1/2
�

KX

i=1

⇢i.

The expression (14) highlights how the bias depends on the chosen penalization through

the eigenvalues ⇢k. We finally make the following assumption.

(A2) The smoothing parameter � = �n is chosen so that �
PK

i=1 ⇢i = o(1).

Thanks to Lemma 3.1, assumption (A2) implies the asymptotic unbiasedness of score statis-

tic T , since f is a continuous function on the bounded domain ⌦ and the covariates are

realizations of a continuous process on ⌦. This is a standard assumption when studying the

asymptotic properties of semiparametric and nonparametric penalized regression models.

Likewise for Assumption (A1), also Assumption (A2) needs to be specified depending on
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the penalty and basis considered. Indeed, Assumptions (A1)–(A2) are intentionally left

quite general to embrace various semiparametric models; moreover, the precise rates of

convergence are not of direct interest in this work. Theorem 1 in Claeskens et al. [2009]

gives for instance the appropriate rates for � in the case of univariate penalized splines es-

timators, Theorem 3 in Holland [2017] gives it for multivariate penalized spline estimators,

while Lemma 3 in Arnone et al. [2021] gives it for SR-PDE estimators.

We can now state the main result for the asymptotic distribution of the test statistic

T .

Theorem 3.2. Let ⌫ = �
2
X

>⇤2
X. Under the assumptions (A1)–(A2), the test statistic

T in (11) is asymptotically normal under the null hypothesis (9), with

p
n⌫

�1/2
T

·⇠ N (0, Iq).

Proof. We know that

E(T ) = n
�1/2

E(X>⇤r) = n
�1/2

X
>⇤ � + n

�1/2
X

>⇤E(✏)

= n
�1/2

b� + n
�1/2

nX

i=1

[X>⇤]iE(✏i)

where the notation [X>⇤]i is used to indicate the i-th column of the q ⇥ n matrix X
>⇤.

Under assumption (A2), it follows from (12) that the bias b� is asymptotically zero. The

expected value E(T ) is therefore asymptotically zero. For the variance, under the null

hypothesis we have

Var(T ) = Var(n�1/2
X

>⇤r) = n
�1
X

>⇤Var( � +X�0 + ✏�X�0)⇤X

= n
�1
X

>⇤Var(✏)⇤X = n
�1
�
2
X

>⇤2
X.
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Substituting the expression of ⇤ from equation (13) in the previous expression, we obtain

Var(T ) = n
�1
�
2
X

>(In � A(IK + �diag(⇢))�1
A

>)2X

= n
�1
�
2
X

>(In + A(IK + �diag(⇢))�2
A

> � 2A(IK + �diag(⇢))�1
A

>)X

= n
�1
�
2(X>

X +X
>
A(IK + �diag(⇢))�2

A
>
X � 2X>

A(IK + �diag(⇢))�1
A

>
X)

= n
�1
�
2
X

>
X + n

�1
�
2( ˜̃X>(IK + �diag(⇢))�2 ˜̃

X � 2 ˜̃
X

>(IK + �diag(⇢))�1 ˜̃
X)

= n
�1
�
2
X

>
X + n

�1
�
2 ˜̃
X

>((IK + �diag(⇢))�2 � 2(IK + �diag(⇢))�1) ˜̃X

Using the notation ˜̃
X = A

>
X and completing the square in the second term, we hence get

Var(T ) = n
�1
�
2
X

>(In � AA
>)X + n

�1
�
2 ˜̃
X

>((IK + �diag(⇢))�1 � IK)
2 ˜̃
X

= n
�1
�
2
X

>
X � n

�1
�
2
X

>
AA

>
X + n

�1
�
2 ˜̃
X

>((IK + �diag(⇢))�1 � IK)
2 ˜̃
X

= n
�1
�
2
X

>(In � AA
>)X + n

�1
�
2

KX

i=1

✓
�⇢i

1 + �⇢i

◆2

˜̃xi ˜̃x
>
i , (15)

where ˜̃xi are the q-dimensional vectors corresponding to the rows of ˜̃
X. Note that the first

term does not depend on �. As for the second term, since x
2
/(1 + x)2 < x

2, for x > 0, we

have

�
2
n
�1

KX

i=1

✓
�⇢i

1 + �⇢i

◆2

˜̃xi ˜̃x
>
i  �

2
n
�1
�
2

KX

i=1

⇢
2
i |˜̃xi ˜̃x

>
i |

 �
2max(|˜̃xi ˜̃x

>
i |)n�1

�
2

KX

i=1

⇢
2
i

 �
2max(|˜̃xi ˜̃x

>
i |)n�1

�
2

 
KX

i=1

⇢i

!2

= �
2max(|˜̃xi ˜̃x

>
i |)
 
n
�1/2

�

KX

i=1

⇢i

!2

,

where the maximum is taken element-wise. Therefore, for n large enough (since the co-

variates are realizations of a continuous process on ⌦), assumption (A2) implies that the
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second term in (15) vanishes faster than the first term. Concerning the first term in (15),

with a similar argument it is easy to check that the matrix AA
> is idempotent with rank

K. Thus, it admits the spectral decomposition AA
> = Udiag(1, . . . , 1, 0, . . . , 0)U>, with

the first K non-null eigenvalues equal to 1. The term X
>(In � AA

>)X is therefore the

sum of n�K components with bounded variance, since the covariates are realizations of a

continuous process on ⌦, thus the Feller condition is satisfied. It follows from the central

limit theorem [see, e.g., Van der Vaart, 2000] that the test statistic T is also asymptotically

normal.

4 Eigen sign-flip test for the linear component in pe-

nalized semiparametric regression models

In the classical linear regression case, under the standard assumption of i.i.d. random

noise, the score statistics can also be viewed as a sum of n contributions that have asymp-

totically zero mean, under the null hypothesis H0 (9). This information can be used to

derive the null distribution of the test statistic, without the need of a direct estimation of

the Fisher information. In the context of semiparametric regression, instead, a first naive

attempt to derive the distribution of the test statistic can be made by random permuta-

tions (or sign-flips) of the contributions of the score [Winkler et al., 2014, Hemerik et al.,

2020]. This approach, attempted in Ferraccioli [2020] for a simple type of SR-PDE model

[Sangalli et al., 2013], might nonetheless be not optimal in the semiparametric regression

setting. The reason for this lies in the fact that naive permutation does not account for

the correlation between residuals, nor for the bias of the estimates, which is inherent to

semiparametric models. To solve this issue, always considering a special case of SR-PDE

model, Ferraccioli et al. [2021] defines a new test statistic, that leverages on the spectral

decomposition of the matrix ⇤, leading to the definition of the eigen sign-flip test.
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We here defined the eigen sign-flip test on � for a general forms of penalized semi-

parametric regression models. We study the properties of the test, proving its asymptotic

distribution. A thorough discussion on the nature of the proposed test in given in Section

4.2.

Definition 1 (Eigen sign-flip test). Let us consider the singular value decomposition ⇤ =

V DV
>. Set ⇧ = diag(⇡1, . . . , ⇡n), where ⇡ = (⇡1, . . . , ⇡n) is a random vector uniformly

distributed in {�1, 1}n. Let us also define the n-dimensional vectors X̃ = D
1/2

V
>
X and

r̃ = D
1/2

V
>
r = D

1/2
V

>(y �X�0). The eigen sign-flip statistics is defined as

T⇧ = n
�1/2

X
>
V D

1/2⇧D1/2
V

>⇤(y �X�0) = n
�1/2

X̃
>⇧r̃.

Note that the observed statistic T = TI corresponds to the case where ⇡i = 1, i = 1, . . . , n.

As standard in permutational approaches, the component-wise p-values are thus computed

as the rank of TI with respect to a sample of M sign-flips ⇡, divided by M [see, e.g.,

Pesarin, 2001].

4.1 Asymptotic properties of the eigen sign-flip test

We now study the asymptotic properties of the test statistic T⇧ in Definition 1. We first

show that the asymptotic distribution of the test statistic T⇧ is the same as TI . We then

show that the eigen sign-flip test is asymptotically exact.

Theorem 4.1. Let ⌫ = �
2
X

>⇤2
X. Under the assumptions (A1)–(A2), for any given ⇧,

the distribution of T⇧ is asymptotically normal, with

p
n⌫

�1/2
T⇧

·⇠ N (0, Iq).
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Proof. For the expected value, under the null hypothesis we have

E(T⇧) = n
�1/2

E(X̃>⇧r̃)

= n
�1/2

E(X>
V⇧V >⇤(y �X�0))

= n
�1/2

X
>
V⇧V >⇤E(y �X�0)

= n
�1/2

X
>
V⇧V >⇤ �.

Following the same reasoning of the proof of Theorem 3.2, but with the quantity V⇧V >
X

in place of X, we can show that the expected value of T⇧ is asymptotically zero.

As for the variance, under the null hypothesis we have

Var(T⇧) = Var(n�1/2
X̃

>⇧r̃)

= Var(n�1/2
X

>
V⇧DV

>(y �X�0))

= n
�1
X

>
V D⇧V >Var(✏)V⇧DV

>
X

= n
�1
�
2
X

>⇤2
X = n

�1
⌫.

It follows from the central limit theorem [Van der Vaart, 2000], that the test statistic T⇧

is also asymptotically normal.

Remark 1. Note that the bias in the mean of the test statistic is intrinsic in the regular-

ization approach, and cannot be avoided in the finite sample scenario. Because of this bias,

we are only able to reach asymptotically exact results.

Remark 2. Note also that the matrix ⇧ is defined so that it commutes with D. This is

necessary to ensure that the variance of the test statistic is invariant under the action of

⇧.

We now introduce some notation before establishing the main result, that constitutes

the pivot point to prove the asymptotic control of the probability of Type I error. For

16



the sake of simplicity of exposition, we consider the results for a single covariate case in

the remainder of this section and in Section 4.3. In Section 4.4, we outline the procedure

for the general multivariate case. Let ↵ 2 [0, 1). For any a 2 R, let dae be the smallest

integer which is larger than or equal to a and let bac be the largest integer which is at

most a. We consider all the possible w = 2n sign-flips ⇧1, . . . ,⇧w, where ⇧1 = I. For a

given value of the test statistic T n
I , we hence consider all the associated sign-flipped values

T
n
I , T

n
⇧2
, . . . , T

n
⇧w

, where we use the superscript n to highlight the sample size. We denote

by T
n
(1)  . . .  T

n
(w) the corresponding sorted value. Finally, we write T

n
[1�↵] = T

n
(d1�↵ew).

Theorem 4.2. Consider the test that rejects H0 if and only if T n
I > T

n
[1�↵]. Then, under the

null hypothesis, the test is asymptotically exact and the rejection probability P(T n
I > T

n
[1�↵])

is at most ↵.

Proof. We need to show that the asymptotic distribution of the 2n-dimensional vector of

test statistics T = (T n
I , . . . , T

n
⇧w

)> is invariant under sign-flip transformations ⇧, that is

T
d
= ⇧ �T, where

d
= represent the equality in distribution and the composition stands for

⇧ �T = ⇧ � (T n
I , T

n
⇧2
, . . . , T

n
⇧w

)> = (T n
⇧I , T

n
⇧⇧2

, . . . , T
n
⇧⇧w

)>. This will prove the asymptotic

control of the Type I error through Theorem 15.2.1 in Lehmann and Romano [2008] and

Theorem 1 in Hemerik and Goeman [2018a].

Let X̃ be the diagonal n ⇥ n matrix with elements (X̃1, . . . , X̃n). The test statistic in

Definition 1 can be rewritten as

T⇧ = X̃
>⇧r̃ = 1>

n⇧X̃r̃,

where 1n is the n-dimensional unit vector. The test statistic T⇧ can hence be viewed as

sum of n contributions, where each element of X̃r̃ is sign-flipped through ⇧. Similarly, the

variance of T⇧ can be written as

Var(T⇧) = n
�1
�
21>

n X̃DX̃1n;
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see also Theorem 4.1.

To evaluate the joint distribution of the test statistics T, let us now define ⇧ as the

2n ⇥ n matrix collecting all the w = 2n vectors of sign-flip row-wise. Therefore, we can

write T = ⇧X̃r̃, and ⇧ � T = ⇧⇧X̃r̃. The joint distribution of T is multivariate normal

with variance Var(T) = �
2
n
�1
⇧X̃DX̃⇧

> and asymptotically zero mean. We now have to

show that ⇧ �T follows the same asymptotic multivariate normal distribution. First note

that the transformation ⇧ does not a↵ect the expected value, that remains asymptotically

zero. Furthermore, for the variance we have

Var(⇧ �T) = n
�1
�
2
⇧⇧X̃DX̃⇧⇧>

= n
�1
�
2
⇧⇧⇧X̃DX̃⇧

>

= n
�1
�
2
⇧X̃DX̃⇧

>
.

Thanks to Theorem 15.2.1 in Lehmann and Romano [2008] and Theorem 1 in Hemerik

and Goeman [2018a], this yields the null invariance T
d
= ⇧ �T. It follows that under H0,

P(T n
I > T

n
[1�↵])  ↵.

Remark 3. The previous result is still valid in the case when w 6= 2n, i.e., when not every

element of {1,�1}n is used once [see, e.g. Hemerik and Goeman, 2018a]. For computational

reasons, it is in fact common practice to sample uniformly from {�1, 1}n, with or without

replacement. The same holds also for the results in the next section.

4.2 On the nature of the eigen sign-flip test

A few comments on this approach may be useful to understand its nature.

In the simpler context of linear regression models, it is possible to define a residualizing

matrix that projects into the residual space. This is an orthogonal projection matrix; as
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such, it is idempotent, and all its eigenvalues are zero or one. Thanks to this, for clas-

sical linear regression models, Kherad-Pajouh and Renaud [2010] propose to pre-multiply

the residuals by the semiorthogonal matrix defined by the eigenvectors corresponding to

the non-null eigenvalues. This pre-multiplication transforms the n residuals into pseudo-

residuals, reducing their cardinality. The number of these new pseudo-residuals is equal to

the rank of the residualizing projection matrix (i.e., the number of non zeros eigenvalues,

usually equal to the number of covariates). Being the remaining eigenvalues of residualizing

matrix equal to one, the resulting pseudo-residuals are now independent and homoscedas-

tic (i.e., spherical). In particular, Kherad-Pajouh and Renaud [2010] suggest the use of a

permutation approach, while Solari et al. [2014] extend it to the more general framework

of rotations matrices.

Unfortunately, within the semiparametric regression framework, the residualizing ma-

trix ⇤ is not a projection matrix and is not idempotent; therefore, its eigenvalues do not

take values in {0, 1}. A multiplication by these eigenvalues would act as a scaling factor for

the residuals, making them independent, but not homoscedastic. For this reason, defining

⇧ as a permutation or a rotation matrix would not be a valid solution. Defining instead

⇧ as sign-flipping matrix ensures the commutative property ⇧D = D⇧, as highlighted in

Remark 2. This property is indeed crucial, as it guarantees that the variance of the test

statistics is constant over ⇧, as proved in Theorem 4.1. It is also worth to emphasize that

the test guarantees only asymptotic exactness since the penalization induces a bias in the

estimation of the mean – which vanishes with increasing n – while, for fixed n, the variance

remains constant for all the test statistics defining the null distribution. On the contrary,

the standard parametric Wald test needs asymptotic results for both the mean and the

variance, such as those obtained in Section 3.1. Similar considerations could be drawn

for a naive sign-flip score test that does not decomposes the matrix ⇤. In this case, for

finite samples, the sign-flipped test statistic would not have variance equal to observed test
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statistic. This would lead to performances that are comparable to the parametric Wald

test, as shown in Ferraccioli [2020]. This di↵erence between the eigen sign-flip test and the

other competitors is crucial in providing an adequate control of Type I error, as shown by

the simulations in Section 5.

4.3 Interval hypotheses, two-sided tests and confidence intervals

So far we have defined the eigen sign-flip test for point-wise null hypothesis. The most

common situation in practice is nonetheless to define interval null hypotheses. As for

standard approaches, we need to prove that the p-value computed under any point-wise

null hypothesis H0 : � = �0 � ✏ (8 ✏ > 0) has also Type I error probability bounded by

↵. For convenience, let us define the test statistic as a function of the tested coe�cient,

that is T⇧(�0) = n
�1/2

X
>
V⇧V >⇤(y � X�0) = n

�1/2
X

>
V⇧DV (y � X�0). We now give

two results for interval hypothesis and two sided tests, and a third result on confidence

intervals.

Corollary 4.2.1 (Interval hypotheses). Consider the hypotheses H
0
0 : � = �0 � ✏ and

H
0
1 : � > �0 � ✏, with ✏ > 0. Then for every ✏ > 0, P(T⇧(�0 � ✏) � TI(�0 � ✏)) 

P(T⇧(�0) � TI(�0)). The same is true for the opposite hypothesis: that is, ✏ < 0 and

H
0
1 : � < �0 + ✏.

Proof. We have

P(T⇧(�0 � ✏) � TI(�0 � ✏)) =

= P(T⇧(�0)� n
�1/2

X
>
V⇧DV

>
X✏ � TI(�0)� n

�1/2
X

>
DV

>
X✏) =

= P(T⇧(�0) + n
�1/2

X
>
V (I � ⇧)DV

>
X✏ � TI(�0)) =

 P(T⇧(�0) � TI(�0)).
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Note that last inequality holds since

n
�1/2

X
>
V (I � ⇧)DVX✏ = 1>

n X̃(I � ⇧)X̃1n✏ � 0 8⇧.

Note that (I�⇧) is a diagonal matrix with non-negative diagonal entries, thus it is positive

semi-definite for all ⇧. Therefore any quadratic form of it is non-negative.

Corollary 4.2.2 (Two-sided test). Consider ↵1,↵2 2 (0, 1] and such that ↵1 + ↵2 < 1.

Then, under H0 : � = �0, as n ! 1,

P
⇥
(T n

I < T
n
[↵1]) [ (T n

I > T
n
[1�↵2])

⇤
! ↵1 + ↵2.

That is, the eigen sign-flip test controls the Type I error asymptotically when testing H0 :

� = �0 against the two sided alternative H1 : � 6= �0.

Proof. Theorem 4.2 proves that P

h
T

n
I < T

n
[↵1]

i
! ↵1 and P

h
T

n
I > T

n
[1�↵2]

i
! ↵2. This,

together with the fact that P
h
(T n

I < T
n
[↵1]

) \ (T n
I > T

n
[1�↵2]

)
i
! 0 proves the corollary.

As consequence of the two lemmas above, we can also derive confidence intervals for

the parameter �.

Corollary 4.2.3 (Confidence Interval). Let ↵ 2 (0, 1]. Then the set

⇥(�) = {� : P(T⇧(�) � ()TI(�)) � ()↵}

is a one-sided confidence interval for parameter � with asymptotic coverage 1�↵. Let also

↵1,↵2 2 (0, 1] such that ↵1 + ↵2 < 1. Similarly, the set

⇥(�) = {� : (P(T⇧(�) � TI(�)) � ↵1) \ (P(T⇧(�)  TI(�))  ↵2)}

is a two-sided confidence interval with asymptotic coverage 1� (↵1 + ↵2).

Proof. The proof follows directly from Corollaries 4.2.1 and 4.2.2.

21



4.4 Testing a subset of the covariates

We now deal with the case where we have multiple covariates and we are interested in

testing a subset of the covariates. Specifically, assume X 2 R
n ⇥ R

q represents the set of

covariates of interest, with associated vector of coe�cients �, and Z 2 R
n ⇥ R

p the set of

covariates associated with the vector of nuisance coe�cients ⇣. The minimization problem

in (2) then becomes

argmin
�,f

nX

i=1

(yi � f(pi)� x
>
i � � z

>
i ⇣)

2 + �nP(f). (16)

We might be interested in testing

H0 : � = �0 versus H1 : � 6= �0,

for any value of ⇣ and �. Let us define  ⇤ = [Z| ] the n⇥ (p+K) matrix composed by the

covariates associated with the nuisance parameters and the bases for the nonparametric

part of the model, with coe�cients ✓ = (⇣,�). We can then rewrite equation (5) as

( ⇤> ⇤ + �P
⇤)✓ � >(y �X�) = 0, P

⇤ =

2

4Op⇥p Op⇥K

OK⇥p PK⇥K

3

5 ,

where O is a matrix of zeros.

Definition 1 of the eigen sign-flip test remains valid also in this case, with the only

modification of the matrix ⇤ in (6), where  is replaced by  ⇤. Moreover, the following

corollary provides the extension of Theorem 4.2 to the case where � is a vector.

Corollary 4.2.4. Consider the test that rejects H0 : � = �0 if and only if '(T n
I ) >

'(T n
[1�↵]), where '(·) is any Nonparametric Combining function [Pesarin, 2001, Section

6.2]. Then, under the null hypothesis, the test is asymptotically exact and the rejection

probability P('(T n
I ) > '(T n

[1�↵])) is at most ↵.

22



Proof. In order to extend the proof of Theorem 4.2 to the multivariate framework, we need

to rely on the Nonparametric Combination of dependent test statistics, as defined, e.g., in

Section 6.2 of Pesarin [2001]. First of all, recall that the test statistic T is a vector itself.

Moreover, Theorem 3.2 proves the asymptotic multivariate normality of T and Theorem 4.1

shows that the sign-flipped vectors of test statistics T n
I , . . . , T

n
⇧w

share the same distribution.

Therefore, the matrix T = (T n
I , . . . , T

n
⇧w

)> is equal in distribution to ⇧�T. More precisely,

T is the 2n-dimensional vector of test statistics T n
(·), i.e., each row of T is a sampling from

the multivariate test statistics T . We can therefore use any Nonparametric Combination

function Pesarin [2001] to obtain a p-value.

Among the most commonly used Nonparametric Combining functions, defined, e.g., in

Pesarin [2001], are the max-T, sum-T or Mahalanobis distance. As an illustrative example,

a p-value based on the min-p combining function [Westfall and Young, 1993] rejects the

multivariate null hypothesis if the maximum value of T is larger than the 1�↵ quantile of

the distribution of the maxima computed over the w elements of (T n
I , . . . , T

n
⇧w

).

5 Simulation studies

In this section we present two simulation studies, to investigate the finite sample perfor-

mances of the proposed test. Simulation 1, in Section 5.1, considers a semiparametric model

based on classical univariate splines [as for instance in Heckman, 1986, Wand and Ormerod,

2008]. Simulation 2, in Section 5.2, considers instead a semiparametric model based on SR-

PDE [Sangalli et al., 2013]. In these di↵erent settings, we compare the performances of

three di↵erent tests:

• Wald: a classical Wald type test based on the asymptotic distribution of �̂;

• Speck: a similar Wald type test based on the asymptotic distribution of the Speckman
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version of the estimator [Speckman, 1988], as derived in Holland [2017];

• ESF: the Eigen sign-flip score test introduced in Definition 1.

The results show the performances of the tests over 1000 simulation repetitions.

5.1 Simulation 1

In Simulation 1, we simulate from model (1), with ⌦ = [0, 1] and p1, . . . , pn randomly

sampled from a uniform distribution on ⌦, with n = 200. For the nonparametric component

of the model, we consider the test function 1 from the function gamSim in the R package

mgcv [Wood, 2015, 2017], defined as 0.2p11(10(1 � p))6 + 10(10p)3(1 � p)10. We consider

q = 1 covariate, and we generate x1, . . . , xn according to four di↵erent stochastic processes:

(a) an i.i.d. random sample from N (0, 0.12);

(b) a Gaussian random field on [0, 1] with mean zero and scale 0.01;

(c) the function
p
p+ 2 on [0, 1], with added an i.i.d. random sample from N (0, 0.12);

(d) the function
p
p+ 2 on [0, 1], with added a Gaussian random field with mean zero

and scale 0.01.

The covariates and the true f are standardized, before computing the response variable

y, so that their relative contributions to the response are comparable. We consider both

�0 = 0 and other 10 di↵erent values of �0, from 0.01 to 0.1, to check both the Type I error

and the power of the test. Finally, we add i.i.d. normal random errors ✏1, . . . , ✏n, with zero

mean and standard deviation 0.1. For each test case, the generation of the covariates and

noise is repeated 1000 times.

The model is estimated using cubic B-spline bases, with 200 equispaced internal nodes

on ⌦, using the implementation in Wand and Ormerod [2008]. The smoothing parameter
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is chosen via cross-validation. The tests are performed with nominal value 0.05. For the

proposed eigen sign-flip test, we consider 1000 random sign-flips.

Table 1: Simulation 1. Proportion of Type I error in 1000 replicates (nominal value of the

test: 0.05)

(a) (b) (c) (d)

Wald 0.057 0.260 0.054 0.262

Speck 0.023 0.089 0.023 0.089

ESF 0.051 0.038 0.045 0.042

Table 1 shows the control of Type I error and Figure 1 shows the power functions

for the three competing tests. The table and figure immediately highlight that the most

challenging scenarios are cases (b) and (d), where the covariates have been generated with

a dependence structure, sampling from a Gaussian process. The classic parametric test

(Wald) shows an extremely poor control of the Type I error in these two cases, with an

observed proportion of Type I error of over 26%, when the nominal value of the test is

5%. This behavior is possibly due to the poor estimation of the variance induced by the

regularized estimates. The Speckman variant appears more robust, partly correcting for

the misspecified variance. Nonetheless, this test is significantly under-conservative in cases

(b) and (d), with a proportion of Type I error of almost 9%, while it is over-conservative

in cases (a) and (c), where it returns a proportion of Type I error of about 2.3%. The

proposed eigen sign-flip score test, on the contrary, maintains an extremely good control

of the Type I error, under all scenarios, and it is never under-conservative. Also in the

challenging cases (b) and (d), at the cost of a slightly loss of power, it manages to keep a

proportion of Type I error very close (and just slightly inferior) to the nominal value of the

test.

We also considered the case of multiple covariates, following the simulation scheme
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Figure 1: Simulation 1. Power of the Wald test (green dotted), of its Speckman variant

(cyan dashed) and of the proposed eigen sign-flip (red solid).
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detailed above, but including simultaneously all four covariates (a), (b), (c) and (d) in the

data generation, and testing one parameter at a time, considering the other parameters

as nuisance, as detailed in Section 4.4. The same considerations as those detailed for the

simulation in Figure 1 can be drown (results non included for sake of space).

5.2 Simulation 2

In Simulation 2, we simulate from model (1), with ⌦ = [0, 1]⇥[0, 1] and p1, . . . ,pn randomly

sampled from a uniform distribution on ⌦, with n = 225. For the nonparametric component

of the model, we consider the test function 2 from the function gamSim in the R package

mgcv [Wood, 2015, 2017], defined as

0.4⇡0.3
⇣
1.2 exp

⇣
� (p1�0.2)2

0.32 � (p2�0.3)2

0.42

⌘
+ 0.8 exp

⇣
� (p1�0.7)2

0.32 � (p2�0.8)2

0.42

⌘⌘
.

We consider q = 1 covariate, and we generate x1, . . . , xn according to four di↵erent stochas-

tic processes:

(a) a Gaussian random field with zero mean and scale 0.05;

(b) a Matern random field with ⌫ = 1, � = 2 and scale 0.1;

(c) the function cos(5(p1 + p2))+ (2p1 � p1p
2
2)

2 with added a Gaussian random field with

scale 0.05;

(d) the function cos(5(p1 + p2)) + (2p1 � p1p
2
2)

2 with added a Matern random field with

⌫ = 1, � = 2 and scale 0.1.

The covariates and the true f are standardized, before computing the response variable

y, so that their relative contributions to the response are comparable. We consider both

�0 = 0 and other 10 di↵erent values of �0, from 0.01 to 0.1, to check both the Type I error

and the power of the test. Finally, we add i.i.d. normal random errors ✏1, . . . , ✏n, with zero
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mean and standard deviation 0.1. For each test case, the generation of the covariates and

noise is repeated 1000 times.

The model is estimated using SR-PDE, with linear finite elements on a mesh having 225

nodes on a regular lattice over ⌦, implemented using the package fdaPDE. The smoothing

parameter is chosen via cross-validation. The tests are performed with nominal value 0.05.

For the proposed eigen sign-flip test, we consider 1000 random sign-flips.

Table 2: Simulation 2. Proportion of Type I error in 1000 replicates (nominal value of the

test: 0.05)

(a) (b) (c) (d)

Wald 0.146 0.176 0.270 0.319

Speck 0.084 0.094 0.102 0.103

ESF 0.041 0.040 0.054 0.046

The results are presented in Table 2 and Figure 2. The classic parametric test (Wald)

has poor performances and very low control of the Type I error in all the scenarios, with

proportion of Type I error of about 15% and higher. The Speckam variant is always more

robust than the Wald, but it is often severely under-conservative, with observed proportion

of Type I error of about 10%. The proposed eigen sign-flip, on the contrary, at a loss

of some power, permits an extremely good control of the Type I error, even in the more

challenging scenarios, where the covariate has a strong spatial structure.

6 Study of human development in Nigeria

In this section we apply the proposed methodology to the analysis of human development

in Nigeria. In particular, we are interested in better understanding the di↵erence in socio-

economic and health conditions in the various states of the country. Unfortunately, data
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Figure 2: Simulation 2. Power of the Wald test (green dotted), of its Speckman variant

(cyan dashed) and of the proposed eigen sign-flip (red solid).
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at national and subnational level are often poor or not publicly available. This lack of

information and of public domain surveys hamper the e↵orts to identify and develop tar-

geted interventions in troubled areas [Jerven, 2013]. An alternative to traditional data

consists in using other sources of openly accessible data, such as data from social media,

mobile phone networks, or satellites. In particular, a popular recent approach leverages on

satellite images of luminosity at night to estimate economic activity [Chen and Nordhaus,

2011, Jean et al., 2016]. These images highlight urban areas, which typically o↵er better

provisions of basic services such as electricity, water and public health, as well as more job

opportunities, with respect to rural areas.

Here we use open satellite data (NASA Worldview Snapshots), together with demo-

graphic data, to predict human development. Specifically, as a response variable, we con-

sider the Human Development Index (HDI) (available at https://globaldatalab.org/shdi),

an aggreated index that takes into account multiple dimensions at the household and in-

dividual level in health, education and standard of living. This index is available at states

level, for the 36 states of Nigeria, and for the Federal Capital Territory. The values of

this index are shown in panel d of Figure 3. As covariates, in the parametric part of the

model, we use the population density, xPop, of each state (data from the National Bureau

of Statistics, Nigeria), shown in panel e of Figure 3, and the three satellite images shown

in the top panels of the same figure, that are

• Nightlight luminosity, xNight, obtained via the VIIRS Nighttime Imagery, that cap-

tures low-light emission sources, under varying illumination conditions (panel a);

• Short-Wave Infrared, xSWIR, that highlights bare soils, such as deserts (panel b);

• Near Infrared, xNIR, that highlights vegetation (panel c).

We are interested in identifying significant e↵ects of these covariates on human development,
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considering the model

y = f + xPop�Pop + xNight�Night + xSWIR�SWIR + xNIR�NIR + ✏.

Since the HDI, the response variable, and one of the covariate, the population density,

are available at state level, we also aggregate the other three covariates at state level,

considering their areal means. We then apply SR-PDE, considering the data located at the

capitals of each state. We use a mesh with 320 nodes and select the smoothing parameter

through generalized cross-validation (�n = 0.1). We hence perform significance tests on

each covariate, one at a time, considering the other parameters as nuisance, as described

in Section 4.4, using the eigen sign-flip procedure with 5000 random sign-flips.

Nightlight results significant (p < 0.005), with a positive impact on human development

(the estimated coe�cients is 0.29). The finding on nightlight is in line with other recent

research studies [Chen and Nordhaus, 2011, Jean et al., 2016]. The presence of urban areas,

in fact, plays a huge role in the overall wealth of the population. This of course does not

imply a causality e↵ect, since increased wealth has itself an impact on the development

of urban areas. Nightlight is nonetheless a good indicator of the socio-economic status

at local level, that does not require any o�cial statistics, as previously discussed. Short-

wave infrared seems to be slightly significant (0.05 < p < 0.1), with a negative impact on

human development (the estimated coe�cients is �0.016). The result might suggest that

the presence of deserted areas with large amounts of bare soil lead to a decrease in human

development. The more advanced states are indeed close to the ocean, in the southern part

of the country. The northern part instead, that is mostly deserted, is not very populated. It

is also worth noting that the aggregation at state level averages localized features, such as

the presence of rivers, lakes or small vegetation, possibly reducing important informations.

The third satellite covariate, near infrared, does not appear significant (p > 0.1). The

same apply for population density (p > 0.1). This is possibly due to the fact that the

distribution is highly skewed, with most of the population residing in the state of Lagos,
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Figure 3: Panels a. – d. show the covariates used: nightlight luminosity (a), Short-wave

infrared (b), Near infrared (c) satellite images, and population density (d). Panel e shows

the observed HDI. Panel f shows the HDI predicted by the SR-PDE model. Imagery from

the Worldview Snapshots application (https://wvs.earthdata.nasa.gov)
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in the south-west of the country (see panel d in Figure 3). Panel f in Figure 3 shows the

predicted MPI values, highlighting the very high explicative power of the model.

7 Discussion

This paper describes a strongly innovative and highly promising inferential approach in the

context of semiparametric regression with roughness penalties. The paper focuses on tests

for the linear part of the models. On the other hand, similar ideas can be used to develop

tests and confidence bands on the nonlinear part of the models. Moreover, the described

approach could be extended to deal with semiparametric regression with spatio-temporal

components [see, e.g. Ugarte et al., 2009, 2010, Aguilera-Morillo et al., 2017, Marra et al.,

2012, Augustin et al., 2013, Bernardi et al., 2018], further broadening the spectrum of

potential models that could benefit from our proposal. These developments will be objects

of dedicated future studies. We are confident this inferential approach will become popular

and will prove to be highly valuable in the varied contexts where semiparametric regression

is used.
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8 Additional results

In this supplementary material we include some additional results. In particular, in Section

8.1 we explore the robustness/sensitivity of the considered tests to di↵erent specifications

of the smoothing parameter. In Section 8.2 we illustrate the behavior of the tests for

di↵erent sample sizes and di↵erent number of basis functions. In Section 8.3 we explore

the case of multiple covariates. Finally, in Section 8.4 we investigates the performances of

the considered tests when data are generated from a fully parametric model.

8.1 Sensitivity to the smoothing parameter

In this section we show the sensitivity of the considered tests to di↵erent values of the

smoothing parameter �. We generate the data as in Simulation 1, case (c), in Section 5.1
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Figure 4: Simulation 1, case (c), Section 5.1 of the paper; di↵erent smoothing parameters

� = 10�8, 10�6, 10�4, 10�2. Power of Wald test (green dotted), Speckman (cyan dashed)

and the proposed eigen sign-flip (red solid).
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of the paper. We then obtain the estimates setting four di↵erent values of the smoothing

parameter (� = 10�8, 10�6, 10�4, 10�2) and perform the tests. The corresponding results,

shown in Figure 4, demonstrate a good robustness of the proposed eigen sign-flip test to

the choice of the smoothing parameter, di↵erently from the parametric alternatives, Wald

and Speckman, that are instead more sensitive, possibly due to the incorrect estimation of

the variance. In particular, when � is too small (top left panel of Figure 4), the Wald and

Speckman tests show under-conservative behavior, with poor control of the Type-I error,

while instead the proposed eigen sign-flip test maintains very good control of the Type-I

error. When � is too large (bottom right panel of the same figure), all the tests tend to

lose power, with the drop in power being more severe for Wald and Speckman tests.

8.2 Di↵erent sample sizes and number of basis functions

In this section we show the performances of the considered tests for di↵erent sample sizes

and number of basis functions. We generate the data as in Simulation 1, case (c), in

Section 5.1 of the manuscript, with di↵erent sample sizes, n = 200, 500. We then obtain

the estimates using di↵erent numbers of basis functions, K = 20, 200, and finally perform

the considered tests. The corresponding results are shown in Figure 5. The three considered

tests behave similarly. In particular, comparing the top panels in Figure 5, corresponding

to n = 200, to the bottom panels of the same figure, corresponding to n = 500, we see

a clear increase in power for all tests, as n increases, both for K = 20 and for K = 200.

Comparing the left panels in Figure 5, corresponding to K = 20 bases, to the right panels

of the same figure, corresponding to K = 200 bases, we observed a loss in power for all

methods for smaller sample sizes (n = 200 in the top panels), whilst we do not observe any

appreciable loss in power for larger sample sizes (n = 500 in the bottom panels). There is

no particular di↵erence in terms of power and Type-I error control with respect to K.
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Figure 5: Simulation 1, case (c); di↵erent sample sizes, n = 200 (top panels) and n = 500

(bottom panels), and di↵erent numbers of bases K = 20 (left panels) and K = 200 (right

panels). Power of Wald test (green dotted), Speckman (cyan dashed) and the proposed

eigen sign-flip (red solid).
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8.3 Multiple covariates

In this section we show the performances of the considered tests in the case of multiple

covariates. Specifically, we include in the model two covariates, we hence test one covariate

(corresponding to xi in Section 4.4), considering the other covariate as nuisance variable

(corresponding to zi in Section 4.4). In the top left panel of Figure 6 of this response (cor-

responding to Figure 7 of the new Supplementary Material) we show the results obtained

when generating data using (a) and (b) as covariates, and hence testing (a) as covariate of

interest (playing the role of xi in Section 4.4), while considering (b) as nuisance (playing the

role of zi in Section 4.4). In the top right panel of Figure 6, we show the results obtained

when generating data using (a) and (b) as covariates, and hence testing (b) as covariate of

interest, while considering (a) as nuisance. In the bottom left panel of Figure 6 we show the

results obtained when generating data using (c) and (d) as covariates, and hence testing

(c) as covariate of interest, while considering (d) as nuisance. In the bottom right panel of

Figure 6 we show the results obtained when generating data using (c) and (d) as covariates,

and hence testing (d) as covariate of interest, while considering (c) as nuisance. The results

are analogous to those shown in the paper. In particular, the estimation of the nuisance

parameter does not display an appreciable bias, thus not impairing the performances of the

tests.

8.4 Data generation from a fully parametric model

In this section we explore the performances of the considered tests, under the same specifi-

cations of Simulation 1, cases (a)–(d), but setting f = 0 in the data generation. Specifically,

we generate the data from a fully parametric model, but then estimate � and f , considering

a semiparametric model. The results are shown in Figure 7. All three tests display the

same power curves. In particular, the Wald and Speckman tests perform very well in all
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Figure 6: Simulation 1, multiple covariates. Top left: we include (a) and (b) as covariates

in the data generation, and then test (a) as covariate of interest (corresponding to xi in

Section 4.4), while considering (b) as nuisance (corresponding zi in Section 4.4). Top right:

we include (a) and (b) as covariates in the data generation and the test (b) as covariate of

interest, while considering (a) as nuisance. Bottom left: we include (c) and (d) as covariates

in the data generation, and then test (c) is as covariate of interest, while considering (d) as

nuisance. Bottom right: we include (c) and (d) as covariates in the data generation, and

then test (d) as covariate of interest, while considering (c) as nuisance.
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Figure 7: Simulation 1, cases (a)–(d), setting f = 0 in the data generation (fully parametric

model) and obtaining the estimates using the semiparametric model. Power of Wald test

(green dotted), Speckman (cyan dashed) and the proposed eigen sign-flip (red solid).
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cases, with a good control of type-I error, since they are not a↵ected by the nonparametric

component; this is due to the good estimation of f , close to the null function. Notice-

ably, the proposed eigen sign-flip test displays the same performances of the parametric

alternatives, without any appreciable loss in power.
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