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Abstract. The paper deals with a nonlinear evolution equation describing the dynamics of a non
homogeneous multiply hinged beam, subject to a nonlocal restoring force of displacement type. First,
a spectral analysis for the associated weighted stationary problem is performed, providing a complete
system of eigenfunctions. Then, a linear stability analysis for bi-modal solutions of the evolution problem
is carried out, with the final goal of suggesting optimal choices of the density and of the position of
the internal hinged points in order to improve the stability of the beam. The analysis exploits both
analytical and numerical methods; the main conclusion of the investigation is that non homogeneous
density functions improve the stability of the structure.

1. Introduction

We consider a nonlinear evolution problem for a multiply hinged symmetric beam made of non
homogeneous material, arising when dealing with certain simplified suspension bridge models recently
proposed in [17], see also [4] for the simply hinged case. The corresponding stationary equation reads
as a multi-point problem for a fourth-order ODE (see, e.g., [18] and references therein). As far as we
are aware, no evolution problem has been studied in this setting besides the ones treated in [17], for
a constant density beam. The main goal of this paper is to suggest both density distributions and
positions of the hinged points (i.e., of the piers) in order to maximize the stability of the beam in
a proper sense: intuitively, a beam is as stabler as higher are the energies associated to those pure
oscillations for which a relevant energy transfer, towards another mode of oscillation, takes place, see
Section 3.1. Therefore, we first develop the spectral analysis of the related weighted eigenvalue problem
and then we take advantage of the obtained information to formalize this intuitive idea by performing
a linear stability analysis.

More precisely, we deal with the nonlinear equation

(1) p(x)utt + uxxxx + ‖u‖2L2
p(I) p(x)u = 0,

where t > 0 is the time variable, x ∈ I = [−π, π] represents the position along the beam and p = p(x) is
the non constant density function. The choice of the nonlinear term ‖u‖2L2

p(I) :=
∫
I pu

2 dx is extensively

explained in [17, Chapter 3], where for p ≡ 1 it is shown that a nonlinearity of this kind is the most
suitable in order to describe the energy transfers between modes in models for real structures. Equation
(1) is complemented with suitable initial data and hinged boundary conditions (see Section 2). After
providing a complete system of eigenfunctions for the related weighted eigenvalue problem (Proposition
2.4), we investigate the energy transfer between modes by proceeding with an analysis of bi-modal
solutions of (1); such solutions have only two active Fourier components, one embodying the prevailing
mode - namely an initially “large” oscillation - and the other one representing the residual mode, i.e., an
oscillation which is tiny at the beginning and acquires energy as time evolves. In fact, the abrupt energy
exchange phenomenon is a behaviour that can be observed in real structures (as suspension bridges)
and turns to be dangerous for their safety; for more details, we refer to [19] and to [17, Chapter 4],
where the results obtained for homogeneous beams are shown to be in line with those obtained for
more realistic models having two degrees of freedom (as the so-called “fish-bone” model proposed in
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[8]). We also point out that the reduction to a finite number of modes is usual in classical engineering
literature, since the energy concentrated on high modes is unrealistically large for tiny oscillations.
With these preliminaries, the stability analysis is carried out by linearizing the 2× 2 system of ODEs
describing the time evolution of the coefficients of the active Fourier components around the solution
for which the coefficient of the residual mode is identically equal to 0. This leads to analyze the stability
regions for a suitable Hill equation (see eq. (14)) obtaining, in dependence on the density and on the
positions of the piers, an energy threshold of instability beyond which linear instability appears. The
explicit expression of such a threshold (see formula (15)) depends increasingly on the ratio between the
eigenvalues corresponding to the active modes; we thus choose to restrict our attention to the set of
densities determined by solving a maximization problem for the ratio of the eigenvalues that we relate
to the lowest energy threshold of instability. A theoretical explanation of the importance of having
large ratios of eigenvalues to gain stability in Hamiltonian systems was already given in [9], within the
classical stability theory of Mathieu equations; see also [5] and [6] for the same issue when dealing with
plate models.

In the final part of our study, we compute numerically the above mentioned energy thresholds for
beams having different densities and different positions of the hinged points; the collected data allow
us to compare the performances of such beams and to formulate precise suggestions on how to improve
their stability (Sections 4 and 5). As the main conclusion of our analysis, we infer that

a non homogeneous beam is stabler than a homogeneous one,

as we observe in Section 5.3.
The paper is organized as follows. In Section 2, we frame the nonlinear evolution model and the

associated stationary eigenvalue problem in a proper variational setting, establishing a well-posedness
result for the former and a spectral theorem, together with a regularity result for the eigenfunctions, for
the latter. Section 3 explains in details the linear stability analysis which will be performed, explicitly
determining the critical energy threshold for bi-modal solutions; since such an expression depends
increasingly on the ratio of the involved eigenvalues, we then show that the maximization problem for
the ratio of two eigenvalues, with respect to the density, always has a solution, given by a suitable
bang-bang density, i.e., a stepwise function. In Section 4, we take the simplest example of such a kind
of density, a two-step one, determining more explicitly the eigenvalues of the corresponding stationary
eigenvalue problem and then providing a first numerical study about the optimal position of the piers
at fixed density. Section 5 is then dedicated to more general numerical experiments taking into account
the possibility of having bang-bang densities with an arbitrary number of jumps; we draw therein our
conclusions about the optimal combination “position of the piers-density” in terms of stability (Section
5.3). The final section of the article (Section 6) collects all the proofs of the statements given along the
paper.

2. Setting of the problem

2.1. The nonlinear evolution model. We consider a model for a multiply hinged beam divided
in three adjacent spans (segments): the main (middle) span and two side spans separated by piers.
Without loss of generality, we normalize the total length to 2π and we denote by I := (−π, π) the
segment corresponding to the beam. We assume that the beam is hinged at the extremal points ±π
and in correspondence of two further symmetric points ±aπ, where a ∈ (0, 1) is a real parameter
determining the relative measure of the side spans with respect to the main span (compare with [18]).
Furthermore, we assume that the beam is non homogeneous and we denote its density function by
p = p(x). More precisely, for 0 < α < 1 < β given, we deal with the following class of densities:

(2) Pα,β :=

{
p ∈ L∞(I) :

∫
I
p dx = 2π, α 6 p 6 β and p(x) = p(−x) a.e. in I

}
.

The integral condition in (2) represents the preservation of the total mass, which is useful in order to
compare the results for different weights. The numbers α and β represent the “limit values” for the
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density we want to employ to build the beam, while the symmetry requirement on p means that we
focus on designs which are symmetric with respect to the middle of the beam.

In the following, we denote by ‖ · ‖q the norm in the Lebesgue space Lq(I) (1 6 q 6 ∞) and with
(·, ·) the scalar product of L2(I). Given p ∈ Pα,β, we also endow the space L2 with the weighted
scalar product (u, v)p := (p u, v), for all u, v ∈ L2(I). Let us emphasize that the corresponding norm
‖u‖2L2

p(I) = (u, u)p is equivalent to the L2-norm but, for the sake of clarity, we maintain the different

notations. Finally, by assuming that the Young modulus of the beam is constant, the total energy of
the beam reads:

E(u) =
1

2

∫
I
p(x)u2

t dx+
1

2

∫
I
u2
xx dx+

1

4

(∫
I
p(x)u2 dx

)2

,

see e.g. [26, Example VI]. Namely, we add to the kinetic and to the bending energy a nonlocal term
which models a beam whose displacement behaves superquadratically and nonlocally; in other words,
when the beam is displaced from its equilibrium position in some point, we assume that this increases,
in a way proportional to the density, the resistance to further displacements in all the other points.
Then, by proceeding formally, the resulting evolution problem is

(3)


p(x)utt + uxxxx + ‖u‖2L2

p(I) p(x)u = 0 x ∈ I , t > 0

u(x, 0) = g(x) , ut(x, 0) = h(x) x ∈ I ,
u(±π, t) = u′′(±π, t) = 0 t > 0 ,

u(±aπ, t) = 0 t > 0 .

We refer to [17] for the treatment of problem (3) when p ≡ 1 and for an exhaustive explanation of
the fact that the linear stability analysis for the nonlinear model (3) allows to recover several crucial
features of the behaviour of real structures such as bridges. This motivates the applicative interest of
the study we are going to perform.

Problem (3) is written in strong form but, in general, there is not enough regularity for this formu-
lation. To make precise what we mean by solutions of (3), we introduce the space

V (I) := {u ∈ H2 ∩H1
0 (I) : u(±aπ) = 0} .

Notice that V (I) embeds into C1(I), therefore the conditions u(±π) = u(±aπ) = 0 can be meant
pointwise; moreover, V (I) is a Hilbert space when endowed with the scalar product of H2 ∩H1

0 (I)

(u, v)V := (u′′, v′′) (with associated norm ‖u‖2V = (u, u)V ).

We denote by V ′(I) the dual space of V (I) and with 〈·, ·〉V the corresponding duality pairing. With
these preliminaries, we can formalize the concept of weak solution of (3).

Definition 2.1. Let T > 0, g ∈ V (I) and h ∈ L2(I). We say that u ∈ C0([0, T ];V (I))∩C1([0, T ];L2
p(I))

such that

‖u(x, t)− g(x)‖V (I) → 0 and ‖ut(x, t)− h(x)‖L2
p(I) → 0 as t→ 0+

is a weak solution to (3) if it satisfies the equation

(4)

∫ T

0
(ut(x, s), ϕ(x))p χ

′(s) ds =

∫ T

0

{
(uxx(x, s), ϕxx(x)) + ‖u(s)‖2L2

p(I) (u(x, s), ϕ(x))p

}
χ(s)ds

for all ϕ ∈ V (I) and all χ ∈ D(0, T ).

Remark 2.2. It is readily seen from (4) that put admits distributional derivative in the t variable and
that pu ∈ C2([0, T ];V ′(I)), hence (4) may be rewritten as

〈p(x)utt, ϕ(x)〉V + (uxx, ϕxx(x)) + (‖u‖2L2
p(I) u, ϕ(x))p = 0 ∀ϕ ∈ V (I) ,∀ t > 0 .

Existence and uniqueness for weak solutions of (3) is given in the following result.
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Theorem 2.3. Let T > 0 (including T = ∞), g ∈ V (I) and h ∈ L2(I). Problem (3) admits a unique
(weak) solution u ∈ C0([0, T ];V (I)) ∩ C1([0, T ];L2

p(I)). Furthermore, pu ∈ C2([0, T ];V ′(I)) and u
satisfies

(5)
1

2
‖ut(t)‖2L2

p(I) +
1

2
‖uxx(t)‖2L2(I) +

1

4
‖u(t)‖4L2

p(I) =
1

2
‖h‖2L2

p(I) +
1

2
‖gxx‖2L2(I) +

1

4
‖g‖4L2

p(I) ,

for all t > 0.

2.2. The oscillating modes of the multiply hinged beam. The linear stability analysis we plan
to perform on problem (3) is strictly related to the fundamental modes of oscillation of the multiply
hinged non homogeneous beam, i.e., to the eigenfunctions of the weighted eigenvalue problem:

(6)


e′′′′(x) = λ p(x)e(x) x ∈ I := (−π, π)

e(±π) = e′′(±π) = 0

e(±aπ) = 0 .

We say that e = eλ solves (6) in weak sense if e ∈ V (I) and

(7)

∫
I
e′′v′′ dx = λ

∫
I
p(x) ev dx ∀v ∈ V (I).

We characterize the solutions of (6) as follows.

Proposition 2.4. Let p ∈ Pα,β. Then all the eigenvalues of (6) are simple and can be represented
by means of an increasing and divergent sequence λj(p) (j ∈ N+). Furthermore, the corresponding
eigenfunctions ej = eλj form a complete system in L2

p(I) and in V (I).

About the regularity of the eigenfunctions, we let I− := (−π,−aπ), I0 := (−aπ, aπ) and I+ := (aπ, π),
so that I = I− ∪ I0 ∪ I+, and we prove the following.

Proposition 2.5. Let p ∈ Pα,β. If e = eλ ∈ V (I) satisfies (7), then it solves (6) a.e. in I. Furthermore,
writing

(8) e(x) =


e−(x) x ∈ I−
e0(x) x ∈ I0

e+(x) x ∈ I+ ,

it holds

e ∈ C2(I), e− ∈ C3(I−), e0 ∈ C3(I0), e+ ∈ C3(I+).

Remark 2.6. If p ∈ C0(I−), we obtain e− ∈ C4(I−); similarly, if p ∈ C0(I0) (resp., p ∈ C0(I+)),
then e0 ∈ C4(I0) (resp., e+ ∈ C4(I+)). Anyway, if p ∈ C0(I) we do not obtain more than e ∈ C2(I),
see [22].

3. The linear stability analysis

In this section, we proceed with the linear stability analysis for bi-modal solutions of (3).

3.1. The critical energy thresholds. We start by characterizing the uni-modal solutions of (3),
having the form

(9) uλ(x, t) = Wλ(t)eλ(x),

where {eλ}λ is the complete system of eigenfunctions provided by Proposition 2.4; from now on, we
assume that each eλ is normalized in L2

p(I). To simplify our analysis, we restrict our attention to the
case of potential initial conditions, namely we will assume henceforth that the function h appearing in
(3) is identically zero; such a choice is not restrictive and does not affect the results (see for instance
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[17, Chapter 3] for an explanation). For a fixed eigenvalue λ of (6), we assume that g(x) = ζeλ(x);
inserting (9) into (3) and taking the L2-scalar product with eλ, we then obtain the Cauchy problem

(10) Ẅλ(t) + λWλ(t) +Wλ(t)3 = 0, Wλ(0) = ζ, Ẇλ(0) = 0,

where the differential equation is of Duffing type. It is well-known that all the solutions of such a
Cauchy problem can be expressed in terms of Jacobi functions and are periodic, with period given by

T = T (ζ) =
4

b

∫ π/2

0

dϕ√
1− γ2 sin2 ϕ

,

where b =
√
λ+ ζ2 and γ = ζ

b

√
1
2 . We call uλ defined in (9) a λ-nonlinear-mode of (3). We then

consider bi-modal solutions of (3) - in the sense of Definition 2.1 - having the form

(11) u(x, t) = w(t)eλ(x) + z(t)eν(x),

where eλ and eν are two different eigenfunctions of (6), with associated eigenvalues respectively given
by λ and ν. Incidentally, we notice that a solution of (3) will indeed have this form if the initial data g
and h are concentrated on such two modes. Inserting (11) into (3), we obtain the nonlinear differential
system

(12)

 ẅ(t) + λw(t) + (w(t)2 + z(t)2)w(t) = 0

z̈(t) + νz(t) + (w(t)2 + z(t)2)z(t) = 0,

which we consider together with the initial conditions

(13) w(0) = ζ > 0, ẇ(0) = 0, z(0) = z0 � ζ, ż(0) = 0.

We are thus choosing eλ as the prevailing mode and eν as the residual mode, in the sense explained
in the Introduction. If z0 = 0, then the solution of (12)-(13) is given by the couple (W̄ζ,λ, 0), where
W̄ζ,λ is the T -periodic solution of (10); of course, here no energy transfer between the two modes is
observed, since z remains constantly equal to 0. We then consider small perturbations of this situation,
wondering if (W̄ζ,λ, 0) is linearly stable as a solution of (12) when |z0| > 0 is small. More formally, we
say that:

Definition 3.1. The λ-nonlinear mode is linearly stable (unstable) with respect to the ν-nonlinear-
mode if ξ ≡ 0 is a stable (unstable) solution of the linear Hill equation

(14) ξ̈(t) + (ν + W̄ζ,λ(t)2)ξ(t) = 0.

The analysis of the stability for (14) was done in details in [17], showing that it is equivalent to the
study of the stability of an equation of the kind

ξ̈(t) +
(ν
λ

+ Ψλ(t)2
)
ξ(t) = 0,

with Ψλ T -periodic, which turns out to be completely characterized. We can then use [17, Proposition
3.4], which in our framework reads as follows.

Proposition 3.2. Let λ 6= ν be two eigenvalues of (6). The λ-nonlinear-mode of amplitude ζ is linearly
stable with respect to the ν-nonlinear-mode if and only if

either λ > ν and ζ > 0 or λ < ν and ζ 6
√

2(ν − λ).

From Proposition 3.2 we finally derive our critical energy thresholds of instability. Consider the
solution of (3) having the form (11); by Proposition 3.2, the critical amplitude of instability is then
defined as

D(λ, ν) =
√

2(ν − λ),
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namely the initial amplitude w(0) which leads to enter the region of linear instability. The critical
energy of instability is then defined as the (constant) energy of the solution of (10) when ζ = D(λ, ν)
in (13):

(15) E(λ, ν) :=
λD(λ, ν)2

2
+
D(λ, ν)4

4
=
(ν
λ
− 1
)
λ ν

(recall that we start with zero kinetic datum). By (15) we immediately see that a crucial parameter of
stability for (14) is the ratio between the eigenvalues corresponding to the active modes eλ and eν ; in
the next section, we analytically study this quantity on varying of p.

3.2. Maximizing the ratio of two eigenvalues. The results of Section 3.1 suggest that a possible
way to prevent the energy transfer from a lower to a higher mode is to look for density functions which
increase the energy threshold (15); since this can be done by increasing the ratios of eigenvalues, it
appears natural to study the maximum problem

(16) Rν,λ = Rν,λ(a) = sup
p∈Pα,β

ν(p)

λ(p)
(ν > λ eigenvalues of (6)).

For the vibrating string, a similar problem was studied in [23], without the integral constraint on p, and
in [3], assuming α = 0; in both cases, the authors proved that the maximum of the ratio is achieved by a
weight of bang-bang type, namely a piecewise constant function, symmetric with respect to the middle
of the string and getting the maximum value there. See also [6], where partial results were obtained for
the same maximum problem for partially hinged plates. Broadly speaking, problem (16) can be related
to the well known composite membrane and composite plate problems, i.e., the problems of building
a body of prescribed shape and mass out of given materials, in such a way that the first frequency of
the resulting membrane (or plate) is as small as possible, see e.g. [1, 7, 10, 11, 12, 14, 15, 24] and the
monograph [20]. Coming back to problem (16), we first notice the following:

Proposition 3.3. Let ν > λ be eigenvalues of (6); then, problem (16) admits a solution.

Now we turn to a possible characterization of maximizers of (16). In this framework, a central role
is played by the function

(17) g(p, x) = gν,λ(p, x) :=
ν(p)

λ(p)

(
e2
λ(x)− e2

ν(x)
)

for ν > λ , p ∈ Pα,β and x ∈ I ,

where eλ and eν denote the eigenfunctions associated, respectively, with λ(p) and ν(p). Denoting by
χD the characteristic function of a set D ⊂ I and setting Dc = I \D, we prove:

Theorem 3.4. Let ν > λ be eigenvalues of (6) and let p̂ = p̂(ν, λ) denote a maximizer of (16). Then
there exists t̂ = t̂(ν, λ) ∈ R such that the set

Î = Î(ν, λ) :=

{
x ∈ I : g(p̂, x) > t̂

}
satisfies

|Î| = |I| 1− α
β − α

.

Furthermore, set At̂ :=
{
x ∈ I : g(p̂, x) = t̂

}
, two situations may occur:

(i) if |At̂| = 0, then

p̂(x) = βχ
Î
(x) + αχ

Îc
(x) for a.e. x ∈ I ;

(ii) if |At̂| > 0, then

p̂(x) = β for a.e. x ∈ Î \At̂ and p̂(x) = α for a.e. x ∈ Îc \At̂ .
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Figure 1. The graphs of gλ2,λ1(1, x) (namely, for p ≡ 1), with a = 0.5 (left) and a = 0.1 (right).

Theorem 3.4 relates the best location of the materials within the beam, in the sense explained at the
beginning of Section 3.2, to the level sets of the function g. In general, it is not easy to study analytically
this function; by means of the numerical method outlined in Section 5, we have plot the graph of g for
several choices of a and p and we have always found that its level sets have zero measures, therefore
|At̂| = 0, see e.g. Figure 1. However, we do not have an analytic proof of this fact or, equivalently, of
the fact that (ii) does not occur.

We highlight some properties of the function g in the following proposition, which shows that more
information can be desumed when dealing with eigenfunctions eλ and eν having different parity.

Proposition 3.5. Let g be as in (17). It holds

g(p,±π) = g′(p,±π) = 0 and g(p,±aπ) = g′(p,±aπ) = 0 .

Furthermore, if eλ is even (resp., odd) and eν is odd (resp., even), then

g(p, 0) > 0 , g′(p, 0) = 0 and g′′(p, 0) < 0 , (resp., g(p, 0) < 0 , g′(p, 0) = 0 and g′′(p, 0) > 0),

i.e., g has a local maximum (resp., minimum) at x = 0.

Referring to formula (15), it is clear that the most dangerous situation in terms of stability occurs
when λ and ν are as close as possible, i.e., when λ and ν are consecutive eigenvalues; we conjecture
that this necessarily implies that the associated eigenfunctions eλ and eν have different parity, whence
Proposition 3.5 applies. In order to reach a theoretical proof of this fact, one should probably exploit
some general properties of the eigenvalues or, in some particular cases (as the one of piecewise constant
densities), one could try to proceed “by hand” as in [18]. In any case, there is a strong numerical
evidence supporting this conjecture (see Sections 4 and 5, in particular Figure 3).

Remark 3.6. The qualitative properties of the function g defined in (17) vary according to the weight,
to the chosen eigenvalues and to the values of the parameters a, α and β; thus, it seems difficult to
analytically deduce general information about g. Under the assumptions of Proposition 3.5, if we also
know that for the chosen weight p the eigenfunction eλ has a global maximum at x = 0, then

g(p, x) 6
ν(p)

λ(p)
e2
λ(x) 6

ν(p)

λ(p)
e2
λ(0) = g(p, 0) for all x ∈ I ,

hence g(p, x) has a global maximum at x = 0, see Figure 1 on the left. However, there may also be cases
in which the maximum at 0 is only local (Figure 1 on the right) or, exchanging the parity of eλ and eν ,
the critical point of g at x = 0 is a minimum. Anyway, if the weight p is the maximizer provided by
Theorem 3.4, i.e., p = p̂, the shape of g(p̂, x) suggests where one should place the heavier and the lighter
material along the beam. In Section 5, we will actually proceed iteratively, computing the function
g for several different weights, in order to provide suggestions about possible optimal locations of the
materials in terms of stability.
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4. Two-step piecewise constant densities

Neglecting case (ii) which never occurs in our numerics, Theorem 3.4 states that the maximizers for
the ratio of two eigenvalues are piecewise constant densities; in this section, we thus start by considering
such a kind of weights, focusing for the moment on the simpler case of a density taking only two values
and having exactly two symmetric jumps. We will see that this allows a quite explicit characterization
of the instability regions. We will always denote by α the density of the lighter material and by β the
density of the heavier one (being, as in the previous sections, α < 1 < β).

4.1. Explicit computation of the eigenvalues. Let α, β be fixed with α < 1 < β and let p ∈ Pα,β
be such that, for every x ∈ I, it holds p(x) = α or p(x) = β. Assuming that p has only two symmetric
discontinuities, the mass constraint on p implies that such jumps will occur at the points x = ±ρπ,
where ρ is defined by

(18) ρ :=
1− α
β − α

, if p(0) = β, or ρ :=
β − 1

β − α
, if p(0) = α.

With such a definition of ρ, we are thus considering a density p having the form

(19) p(x) = βχ[−ρπ,ρπ](x) + αχ(0,π)\[−ρπ,ρπ](x), if p(0) = β,

or

(20) p(x) = αχ[−ρπ,ρπ](x) + βχ(0,π)\[−ρπ,ρπ](x), if p(0) = α.

We now determine explicitly the eigenvalues of problem (6) for these simplified cases; by the parity of
p, we can reason only on the right-half [0, π] of the beam, which is divided into the three subintervals
I1, I2, I3 represented in Figure 2.

0 ρπ aπ π
β α α

I1 I2 I3

0 ρπaπ π
ββ α

I2I1 I3

0 ρπ aπ π
α β β

I1 I2 I3

0 ρπaπ π
αα β

I2I1 I3

Figure 2. A visual description of an inhomogeneous half-beam with constant densities
α < β and a pier placed at the point aπ, a < 1, according to whether, on the one hand,
the denser (top) or the lighter (bottom) material is placed in the middle of the beam
and, on the other hand, a > ρ (left) or a < ρ (right).

We first observe that, proceeding as in the proof of Proposition 2.5, we are here able to state that
the eigenfunctions ek belong to C4(Il), l = 1, 2, 3, and they glue with C3 regularity in correspondence
of ±ρπ and with C2 regularity in correspondence of the piers (unless ρ = a, in which case they simply
glue with C2 regularity in correspondence of the piers). Consequently, we can seek the eigenfunctions
of (6) in the form

(21) eλ(x) =


A1 cos(λx) +B1 sin(λx) + C1 cosh(λx) +D1 sinh(λx) x ∈ I1

A2 cos(λx) +B2 sin(λx) + C2 cosh(λx) +D2 sinh(λx) x ∈ I2

A3 cos(λx) +B3 sin(λx) + C3 cosh(λx) +D3 sinh(λx) x ∈ I3,

imposing that they are strong solutions of the differential equation in (6) on Il, l = 1, 2, 3, and that the
gluings at the endpoints of I1, I2, I3 fulfill the described regularity. Of course, the expression of eλ in
(21) is then extended by even or odd symmetry to the whole I. This procedure leads to the following
result.
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Proposition 4.1. Let α, β be fixed, with α < 1 < β, and let p be as in (19) or in (20), with ρ defined
as in (18). Moreover, let  σ = α1/4 and τ = β1/4 if p(0) = β

σ = β1/4 and τ = α1/4 if p(0) = α,

and set

δ =
τ

σ
.

Then, the eigenvalues of (6) are given by λ = µ4, where µ is implicitly determined as follows:

- for even eigenfunctions,

• if ρ = a, µ is a solution of

δ cos[µπσ(1− ρ)] sinh[µπσ(1− ρ)] = sin[µπσ(1− ρ)](δ cosh[µπσ(1− ρ)]− sinh[µπσ(1− ρ)](tan(µπτρ) + tanh[µπτρ]));

• if ρ > a, µ is a solution of dete,+(µ) = 0, where dete,+ is the determinant associated with the
linear system

� cos2(µτaπ) sinh(µτaπ)X1 + [cosh(µτaπ) + sin(µτaπ) cos(µτaπ) sinh(µτaπ)]X2+

cos(µτaπ) sinh(µτaπ) cosh(µτaπ)X3 + cos(µτaπ) cosh2(µτaπ)X4 = 0

� cos(µτaπ)X1 + sin(µτaπ)X2 + cosh(µτaπ)X3 + sinh(µτaπ)X4 = 0

� (1− δ2)[cos(µτρπ) cosh(µσ(ρ− 1)π) + δ sin(µτρπ) sinh(µσ(ρ− 1)π)]X1+

(1− δ2)[sin(µτρπ) cosh(µσ(ρ− 1)π)− δ cos(µτρπ) sinh(µσ(ρ− 1)π)]X2+

(1 + δ2)[cosh(µτρπ) cosh(µσ(ρ− 1)π)− δ sinh(µτρπ) sinh(µσ(ρ− 1)π)]X3+

(1 + δ2)[sinh(µτρπ) cosh(µσ(ρ− 1)π)− δ cosh(µτρπ) sinh(µσ(ρ− 1)π)]X4 = 0

� (1 + δ2)[cos(µτρπ) cos(µσ(ρ− 1)π) + δ sin(µτρπ) sin(µσ(ρ− 1)π)]X1+

(1 + δ2)[sin(µτρπ) cos(µσ(ρ− 1)π)− δ cos(µτρπ) sin(µσ(ρ− 1)π)]X2+

(1− δ2)[cosh(µτρπ) cos(µσ(ρ− 1)π)− δ sinh(µτρπ) sin(µσ(ρ− 1)π)]X3+

(1− δ2)[sinh(µτρπ) cos(µσ(ρ− 1)π)− δ cosh(µτρπ) sin(µσ(ρ− 1)π)]X4 = 0;

• if ρ < a, µ is a solution of dete,−(µ) = 0, where dete,− is the determinant associated with the
linear system

� cos(µσaπ)X1 + sin(µσaπ)X2 + cosh(µσaπ)X3 + sinh(µσaπ)X4 = 0

�{cos(µσaπ) cos[µσ(a− 1)π] sinh[µσ(a− 1)π]− cos(µσaπ) cosh[µσ(a− 1)π] sin[µσ(a− 1)π]+

sin(µσaπ) sin[µσ(a− 1)π] sinh[µσ(a− 1)π]}X1 + {sin(µσaπ) cos[µσ(a− 1)π] sinh[µσ(a− 1)π]−

sin(µσaπ) cosh[µσ(a− 1)π] sin[µσ(a− 1)π]− cos(µσaπ) sin[µσ(a− 1)π] sinh[µσ(a− 1)π]}X2−

sinh(µσaπ) sin[µσ(a− 1)π] sinh[µσ(a− 1)π]X3 − cosh(µσaπ) sin[µσ(a− 1)π] sinh[µσ(a− 1)π]X4 = 0

� (1− δ2)[sin(µσρπ) cosh(µτρπ) + δ cos(µσρπ) sinh(µτρπ)]X1−

(1− δ2)[cos(µσρπ) cosh(µτρπ)− δ sin(µσρπ) sinh(µτρπ)]X2+

(1 + δ2)[sinh(µσρπ) cosh(µτρπ)− δ cosh(µσρπ) sinh(µτρπ)]X3+

(1 + δ2)[cosh(µσρπ) cosh(µτρπ)− δ sinh(µσρπ) sinh(µτρπ)]X4 = 0

� (1 + δ2)[sin(µσρπ) cos(µτρπ)− δ cos(µσρπ) sin(µτρπ)]X1−

(1 + δ2)[cos(µσρπ) cos(µτρπ) + δ sin(µσρπ) sin(µτρπ)]X2+

(1− δ2)[sinh(µσρπ) cos(µτρπ) + δ cosh(µσρπ) sin(µτρπ)]X3+

(1− δ2)[cosh(µσρπ) cos(µτρπ) + δ sinh(µσρπ) sin(µτρπ)]X4 = 0;

- for odd eigenfunctions,
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• if ρ = a, µ is a solution of

δ cosh[µπσ(1− ρ)] sin[µπσ(1− ρ)] = sinh[µπσ(1− ρ)](δ cos[µπσ(1− ρ)]− sin[µπσ(1− ρ)](cotan(µπτρ) + cotanh[µπτρ]));

• if ρ > a, µ is a solution of deto,+(µ) = 0, where deto,+ is the determinant associated with the
linear system

� [sinh(µτaπ)− sin(µτaπ) cos(µτaπ) cosh(µτaπ)]X1 − sin2(µτaπ) cosh(µτaπ)X2−

sin(µτaπ) sinh2(µτaπ)X3 − sin(µτaπ) sinh(µτaπ) cosh(µτaπ)X4 = 0

� cos(µτaπ)X1 + sin(µτaπ)X2 + cosh(µτaπ)X3 + sinh(µτaπ)X4 = 0

� (1− δ2)[cos(µτρπ) cosh(µσ(ρ− 1)π) + δ sin(µτρπ) sinh(µσ(ρ− 1)π)]X1+

(1− δ2)[sin(µτρπ) cosh(µσ(ρ− 1)π)− δ cos(µτρπ) sinh(µσ(ρ− 1)π)]X2+

(1 + δ2)[cosh(µτρπ) cosh(µσ(ρ− 1)π)− δ sinh(µτρπ) sinh(µσ(ρ− 1)π)]X3+

(1 + δ2)[sinh(µτρπ) cosh(µσ(ρ− 1)π)− δ cosh(µτρπ) sinh(µσ(ρ− 1)π)]X4 = 0

� (1 + δ2)[cos(µτρπ) cos(µσ(ρ− 1)π) + δ sin(µτρπ) sin(µσ(ρ− 1)π)]X1+

(1 + δ2)[sin(µτρπ) cos(µσ(ρ− 1)π)− δ cos(µτρπ) sin(µσ(ρ− 1)π)]X2+

(1− δ2)[cosh(µτρπ) cos(µσ(ρ− 1)π)− δ sinh(µτρπ) sin(µσ(ρ− 1)π)]X3+

(1− δ2)[sinh(µτρπ) cos(µσ(ρ− 1)π)− δ cosh(µτρπ) sin(µσ(ρ− 1)π)]X4 = 0;

• if ρ < a, µ is a solution of deto,−(µ) = 0, where deto,− is the determinant associated with the
linear system

� cos(µσaπ)X1 + sin(µσaπ)X2 + cosh(µσaπ)X3 + sinh(µσaπ)X4 = 0

�{cos(µσaπ) cos[µσ(a− 1)π] sinh[µσ(a− 1)π]− cos(µσaπ) cosh[µσ(a− 1)π] sin[µσ(a− 1)π]+

sin(µσaπ) sin[µσ(a− 1)π] sinh[µσ(a− 1)π]}X1 + {sin(µσaπ) cos[µσ(a− 1)π] sinh[µσ(a− 1)π]−

sin(µσaπ) cosh[µσ(a− 1)π] sin[µσ(a− 1)π]− cos(µσaπ) sin[µσ(a− 1)π] sinh[µσ(a− 1)π]}X2−

sinh(µσaπ) sin[µσ(a− 1)π] sinh[µσ(a− 1)π]X3 − cosh(µσaπ) sin[µσ(a− 1)π] sinh[µσ(a− 1)π]X4 = 0

� (1− δ2)[sin(µσρπ) sinh(µτρπ) + δ cos(µσρπ) cosh(µτρπ)]X1−

(1− δ2)[cos(µσρπ) sinh(µτρπ)− δ sin(µσρπ) cosh(µτρπ)]X2+

(1 + δ2)[sinh(µσρπ) sinh(µτρπ)− δ cosh(µσρπ) cosh(µτρπ)]X3+

(1 + δ2)[cosh(µσρπ) sinh(µτρπ)− δ sinh(µσρπ) cosh(µτρπ)]X4 = 0

� (1 + δ2)[− sin(µσρπ) sin(µτρπ)− δ cos(µσρπ) cos(µτρπ)]X1+

(1 + δ2)[cos(µσρπ) sin(µτρπ)− δ sin(µσρπ) cos(µτρπ)]X2+

(1− δ2)[− sinh(µσρπ) sin(µτρπ) + δ cosh(µσρπ) cos(µτρπ)]X3+

(1− δ2)[− cosh(µσρπ) sin(µτρπ) + δ sinh(µσρπ) cos(µτρπ)]X4 = 0.

The proof is essentially a matter of explicit computations: one starts from the 10× 10 linear system
satisfied by the coefficients Al, Bl, Cl, Dl appearing in (21) (l = 1, 2, 3), obtained taking into account
the parity of the eigenfunction, imposing the internal-boundary conditions in (6) and requiring the
regularity stated in Proposition 2.5. By direct computations, such a system is simplified until it takes
the form appearing in Proposition 4.1; further simplifications appear heavy to perform, as well as
explicitly writing the deriving determinant. We omit further details, as well as the explicit expression
of the eigenfunctions, which appears cumbersome; yet, the simplification to a 4 × 4 linear system is
already enough to proceed with some experimental analyses without being affected by the possible
numerical drawbacks appearing for a 10× 10 matrix.

4.2. Stability analysis: numerical results. We proceed as explained in Section 3.1. We fix two
eigenvalues λ < ν of (6) and we consider the solutions of (3) of the form (11) starting with potential
initial data, measuring their instability through the notion of critical energy threshold given in (15). As
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already remarked, formula (15) suggests that the most dangerous situation in terms of stability occurs
for λ = λj and ν = λj+1, for some positive integer j, i.e. λ and ν consecutive eigenvalues. Furthermore,
since twelve modes are more than enough to approximate the motion of real bridges and of beams
having similar structural responses, we restrict our attention to the first twelve modes (see, [17, Section
4.3] for a detailed explanation). Actually, the following maximum problem naturally arises: we fix the
two-step density distribution p and we define, for every a ∈ (0, 1), the corresponding energy threshold
of linear instability as

(22) E(a) := min
16j611

E
(
λj(a), λj+1(a)

)
,

where E is as given in (15); on varying a ∈ (0, 1), we can then determine the best placement of the piers
at fixed density, namely the one maximizing E(a). We then numerically compute the energy threshold
of instability on varying p and a.

From the point of view of the applications, it is reasonable to assume that α ∈ Σ1 := {5/6, 2/3, 1/2, 1/3}
and β ∈ Σ2 := {3/2, 2, 5/2, 3}; to give a rough idea, if p ≡ 1 is taken as corresponding to a beam made
of reinforced concrete, we consider densities ranging from light materials such as some kinds of wood,
to heavy materials such as steel (common materials in civil constructions). As for the choice of a, we
take a ∈ A := {0.10, 0.20, 0.30, 0.35, 0.40, 0.45, . . . , 0.65, 0.70, 0.80, 0.90}; namely, we generally move a
with a step of 0.1, but when taking into account “physical values” of a, that is, in a neighborhood of
the “physical range”

(23)
1

2
6 a 6

2

3
,

corresponding to the most frequent configurations in real structures [27], we refine the step in order to
have a more complete overview. We then study the problem

(24) E∗ := max
a∈A
E(a) ,

in dependence on the chosen densities (thus, E∗ = E∗(α, β)). In Table 1, we take into account the case
of heavier density in the middle of the beam (p(0) = β), reporting the critical energy of instability E∗,
together with the corresponding ratio R of eigenvalues achieving the minimum in (22), the optimal value
a = aopt achieving the maximum in (24) and the value of ρ; in Table 2, we report the same data in the
case of lighter density in the middle the beam (p(0) = α). In bold characters, we indicate the situations
in which, in correspondence of the optimal configuration, the pier has to be reinforced, that is, around
the pier we find the heavier material (i.e., a < ρ in Table 1 and a > ρ in Table 2). Incidentally, notice
that the critical energy thresholds E∗ are always of the order of 102, and for this reason we choose to
report them using the normalized scientific notation (i.e., writing the value of E∗/102).

α ↓ β → 3/2 2 5/2 3

E∗/102 R aopt ρ E∗/102 R aopt ρ E∗/102 R aopt ρ E∗/102 R aopt ρ

5/6 2.15 λ2/λ1 0.50 0.25 2.76 λ2/λ1 0.50 0.14 3.04 λ2/λ1 0.50 0.10 2.93 λ3/λ2 0.50 0.08

2/3 2.30 λ2/λ1 0.45 0.40 2.37 λ2/λ1 0.45 0.25 2.57 λ2/λ1 0.50 0.18 3.22 λ2/λ1 0.50 0.14

1/2 2.85 λ2/λ1 0.45 0.50 2.67 λ3/λ2 0.40 0.33 2.60 λ3/λ2 0.40 0.25 2.87 λ2/λ1 0.45 0.20

1/3 3.41 λ2/λ1 0.40 0.57 3.77 λ2/λ1 0.40 0.40 3.20 λ3/λ2 0.35 0.31 3.25 λ3/λ2 0.35 0.25

Table 1. Parameters of linear instability in the case of heavier density in the middle
of the beam (p(0) = β).

Taking into account that, in the homogeneous case α = β = 1, the critical energy threshold (22) is
equal to 2.17 · 102 [17, Table 3.9], reached by the ratio λ2/λ1, based the critical energy thresholds E∗
collected in Tables 1 and 2 we infer the following conclusions:

a) a non homogeneous beam is in general more stable than a homogeneous one, i.e., the critical energy
thresholds are in general larger in the former case;
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α ↓ β → 3/2 2 5/2 3

E∗/102 R aopt ρ E∗/102 R aopt ρ E∗/102 R aopt ρ E∗/102 R aopt ρ

5/6 2.12 λ2/λ1 0.55 0.75 2.36 λ2/λ1 0.55 0.86 2.60 λ3/λ2 0.50 0.90 2.92 λ2/λ1 0.50 0.92

2/3 2.19 λ3/λ2 0.55 0.60 2.07 λ2/λ1 0.60 0.75 2.58 λ3/λ2 0.55 0.82 3.11 λ2/λ1 0.55 0.86

1/2 3.06 λ2/λ1 0.60 0.50 2.64 λ2/λ1 0.60 0.67 2.61 λ3/λ2 0.60 0.75 2.93 λ2/λ1 0.60 0.80

1/3 3.31 λ2/λ1 0.60 0.43 4.40 λ2/λ1 0.65 0.60 3.89 λ2/λ1 0.65 0.69 3.70 λ2/λ1 0.65 0.75

Table 2. Parameters of linear instability in the case of lighter density in the middle of
the beam (p(0) = α).

b) the optimal position of the piers ranges between a = 0.35 and a = 0.50 in the case p(0) = β and
between a = 0.55 and a = 0.65 in the case p(0) = α;

c) fixing β, on decreasing of α the optimal position of the piers moves towards the middle of the beam if
p(0) = β and towards the endpoints if p(0) = α, and the corresponding energy thresholds generally
become larger;

d) in general, it is better to have p(x) = α for x ≈ aπ, i.e., around the pier there should be the lighter
material, with some exceptions if α is sufficiently small;

e) if α is sufficiently small (i.e., α = 1/3 and α = 1/2), the beam tends to be stabler if p(0) = α, rather
than if p(0) = β;

f) the ratio of eigenvalues which is responsible for the critical energy threshold (i.e., the one corre-
sponding to the eigenvalues achieving the minimum in (22)) is generally R = λ2/λ1, up to some
cases in which it is R = λ3/λ2 (see the comments at the end of the section);

g) both for p as in (19) and for p as in (20), the best pairing of materials is α = 1/3 and β = 2, namely

max
(α,β)∈Σ1×Σ2

E∗(α, β) = E∗(1/3, 2) .

In Figure 3, for some choices of α and β we depict the eigenvalue curves implicitly defined, in the
(a, µ)-plane, by the equalities dete,±(µ) = 0 and deto,±(µ) = 0 (µ(a) = λ1/4(a), see Proposition 4.1),
the blue ones corresponding to even eigenfunctions and the orange ones to odd eigenfunctions. The
qualitative properties of the eigenvalue curves are indeed important in the stability analysis; it seems
that, the higher is β, the faster such curves change monotonicity (displaying faster oscillations between
different critical points) for a small. Comparing with [18, Figure 9], where the same picture is shown
for α = 1 = β, it seems that, for fixed α, the curves are “compressed towards a = 0” and “stretched
towards a = 1” on growing of β. These deformations possibly make couples of consecutive eigenvalue

curves other than {µ = λ
1/4
1 (a), µ = λ

1/4
2 (a)} very close (for a belonging to a certain range); the ratio

between the corresponding eigenvalues may then turn to be small enough to become the one responsible
for the loss of stability. With reference to the above observation f), the right picture in Figure 3 shows
a case in which the second and the third eigenvalue curves have this behavior for a = aopt (red line),
and indeed the ratio of eigenvalues corresponding to the instability threshold is here λ3/λ2, see Table 1.
Incidentally, notice that Figure 3 brings a strong evidence of the fact that odd and even eigenfunctions
alternate, as claimed after Proposition 3.5.

5. Numerical results for more general densities and conclusions

In this section we repeat the stability analysis of Section 4.2 taking into account the possibility of
having bang-bang densities with an arbitrary number of jumps; this is done by computing numerically
the critical energy thresholds and optimizing with respect to the number of jumps, the position of the
piers and the densities of the materials.

5.1. Numerical computation of the eigenvalues. We first recall that the eigenvalues and the
corresponding eigenfunctions of (6) with p ≡ 1 are explicitly known from [18, Theorem 6]. We normalize
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Figure 3. The eigenvalue curves given by Proposition 4.1 in the (a, λ1/4)-plane, for
α = 1/3 and β = 5/2 (left) and α = 1/3 and β = 3 (right), in the case p(0) = β; the
green vertical line corresponds to a = ρ, the red vertical line corresponds to a = aopt.

such eigenfunctions in L2 and, according to their parity, we denote them by ηej (x) (even) and ηoj (x)

(odd), with corresponding eigenvalues Λej and Λoj , respectively.

Next, since {ηej , ηoj}j is a complete system (both in L2 and in V ), for fixed a ∈ (0, 1) and p ∈ Pα,β
we expand the eigenfunctions of (6) with respect to such a basis; due to the parity of p, also the
eigenfunctions of (6) are either even or odd, hence we can expand them as follows:

(25) eλe(x, p) =
∞∑
i=1

aiη
e
i (x) (even) or eλo(x, p) =

∞∑
i=1

biη
o
i (x) (odd).

We truncate the expressions in (25) at a certain order N and we insert them into (7); testing with
v = ηej (x) or v = ηoj (x), we get the following two linear systems in the unknown ai and bi:

ajΛ
e
j = λej

N∑
i=1

ai
[ ∫

I p(x)ηei (x)ηej (x) dx
]

bjΛ
o
j = λoj

N∑
i=1

bi
[ ∫

I p(x)ηoi (x)ηoj (x) dx
]
,

j = 1, . . . , N.

The eigenvalues λej and λoj of (6) are then determined numerically by imposing that the determinants
associated with the above systems vanish. In our numerical scheme, we choose N = 14; we make this
choice in order to be able to properly approximate the eigenvalues of (6) through this procedure, for
a general p. Indeed, comparing with Proposition 4.1, truncating the series at N = 14 allows us to
re-obtain the first twelve eigenvalues of (6) (six even and six odd) for the two-step case (i.e., p as in
(19) or in (20)) with a good level of accuracy.

5.2. Stability analysis. For a ∈ (0, 1) and 0 < α < 1 < β fixed, we start by optimizing with respect
to the density; namely, we consider the problem

(26) E∗ = E∗(a, α, β) := max
p∈P
E(p),

where E is, as usual, the instability energy threshold:

(27) E(p) := min
16j611

E
(
λj(p), λj+1(p)

)
,

E is as given in (15) and P is a suitable subset of Pα,β, defined according to what proved in Theorem
3.4. More precisely, we set:

P := {p(i)
1 , p

(i)
2 , p

(i)
3 }06i610,

where we take p
(0)
1 ≡ 1 and p

(0)
2 , p

(0)
3 equal, respectively, to the weights in (19) and (20). Then, for i > 1

and ` = 1, 2, 3, the weights p(i) = p
(i)
` are determined iteratively as follows:
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(1) for i > 0 we numerically compute the eigenvalues of (6) with p = p(i) and we set

E(i) := min
16j611

E
(
λj(p

(i)), λj+1(p(i))
)

and

g(x, p(i)) =
λk+1(p(i))

λk(p(i))
[u2
k(x, p

(i))− u2
k+1(x, p(i))],

where k = k(i) is the index achieving the above minimum, i.e. E
(
λk(p

(i)), λk+1(p(i))
)

= E(i);

(2) we find t(i) ∈ Im
(
g(x, p(i))

)
such that

I(i) = |g(x, p(i)) > t(i)| = |I| 1− α
β − α

;

(3) we define p(i+1)(x) := βχI(i)(x) + αχI\I(i)(x) ∈ Pα,β.

Intuitively, we proceed by subsequent approximations by trying, at each step, to approach a density
maximizing the “dangerous” ratio of eigenvalues, the one corresponding to the instability threshold
(27). We stop the algorithm at i = 10 since, after 10 iterations, the weights seem to become recurrent,

independently of the choice of p0 = p
(0)
` in the above classes.

By computing the eigenvalues of (6) as explained in Section 5.1, we solve problem (26) numerically
and we collect the obtained results in Tables 3-5 for different choices of α, β and a. More precisely, for
a belonging to the set A = {0.1, 0.2, 0.3, 0.35, 0.4, 0.45, . . . , 0.65, 0.7, 0.8, 0.9} defined in Section 4.2 and
for selected couples (α, β) ∈ Σ1 × Σ2 (see again Section 4.2), in Tables 3 and 4 we report the value
of E∗ defined in (26) and the graph of the corresponding maximizer p∗ (clearly, p∗ = p∗(x, a, α, β)),
together with the number N∗ of discontinuities of p∗ for x > 0 (by symmetry, this number is the same
for x < 0). We show in details the results for the choices (α, β) = (1/2, 3/2), (α, β) = (1/2, 2) (Table
3) and (α, β) = (1/3, 3/2), (α, β) = (1/3, 3) (Table 4), in order not to overload the contents; for other
couples (α, β) ∈ Σ1 × Σ2, the results appear similar (see also Table 5 and Figure 4). We also notice
that in Tables 3 and 4 the critical energy thresholds (recall definition (27)) are always attained in
correspondence of the ratio of the first two eigenvalues (λ2/λ1), except for few cases in which they are
attained by λ3/λ2, pointed out in the tables through the symbol †.

By taking the maximum of E∗ with respect to a, we then obtain the solution of the problem

max
a∈A
E∗(a, α, β) = E∗(aopt, α, β),

where aopt = aopt(α, β) denotes the corresponding maximizer. In Table 5, we give an overview of the
optimal position aopt of the piers for all the densities (α, β) ∈ Σ1 ×Σ2, reporting the associated energy
threshold of instability E∗ (together with the corresponding ratio of eigenvalues R) and the number
N∗ of discontinuities of the optimal weight, which allows to reconstruct the qualitative shape of the
optimal density p∗.

From Tables 3-5 we draw the following conclusions:

a) comparing with the homogeneous case p ≡ 1 [17, Table 3.9], for every a the non homogeneity gives
rise, in general, to higher energy thresholds of instability;

b) for fixed a in the “physical range” (23), with few exceptions (for α close to 1), the optimal density
p∗ has 4 jumps for x > 0, hence it is not of the kind examined in Section 4;

c) on the contrary, if the pier is placed next to the center of the beam (a < 0.30) or next to the
endpoints (a > 0.70) and β is sufficiently large, then the optimal density is two-step; in the former
case, the beam is reinforced in the middle, while in the latter it is reinforced next to the endpoints;

d) in most cases, the heavier material has to be located around the piers, with very few exceptions,
always for a outside the range (23);

e) the discontinuities of p∗ are located a little before and a little after the piers, and a little before
reaching the endpoints (namely, the reinforces around the pier and around the endpoints take place
along small lengths);
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f) in most cases, we have
aopt = 0.50 ,

namely the optimal position of the piers is mostly the one for which the length of the central span
is twice the length of the lateral spans (a fact also observed, e.g., in [16, 17]). More in general, the
best performances are always obtained for a ∈ {0.50, 0.55}.

Finally, a “visual” summary of all the results is provided in Figure 4, where we plot the values of
E∗ = E∗(a, α, β) versus a, for (α, β) ∈ Σ1 × Σ2. The picture confirms that the best location of piers is
at a = 0.50; furthermore, we infer that

max
(a,α,β)∈A×Σ1×Σ2

E∗(a, α, β) = E∗(0.50, 1/3, 3) .
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a α = 1/2, β = 3/2 α = 1/2, β = 2

E∗/102 N∗ p∗(x) E∗/102 N∗ p∗(x)

0.10
4.27

102
2

6.50

102
1

0.20
1.48

10
2

2.25

10
1

0.30
9.05

10
2 1.16 1

0.35 1.47† 2 1.30† 3

0.40 2.37† 2 2.67† 1

0.45 3.84† 4 4.33† 4

0.50 4.54 4 5.66 4

0.55 3.98 4 4.65 4

0.60 3.06 1 3.12 4

0.65 2.12 1 2.38 1

0.70 1.27 4 1.67 1

0.80
5.35

10
2

7.05

10
1

0.90
2.42

10
2

2.87

10
1

Table 3. For different values of α, β and a, the numerical values of the critical energy
threshold in (26), the graph of the corresponding piecewise constant maximizer p∗(x)
and the number N∗ of its discontinuities for x > 0.
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a α = 1/3, β = 3/2 α = 1/3, β = 3

E∗/102 N∗ p∗(x) E∗/102 N∗ p∗(x)

0.10
6.11

102
2

1.66

10
1

0.20
2.38

10
2

6.76

10
1

0.30 1.59 2 1.65† 1

0.35 2.49† 2 3.25† 1

0.40 4.66 2 5.53† 4

0.45 4.79† 4 8.38† 4

0.50 4.73† 4 1.22 · 10 4

0.55 5.06 4 9.59 4

0.60 4.42 4 6.31 4

0.65 3.41 2 4.03 4

0.70 2.16 2 3.34 1

0.80
7.99

10
2 1.68 1

0.90
3.26

10
2

7.37

10
1

Table 4. For different values of α, β and a, the numerical values of the critical energy
threshold in (26), the graph of the corresponding piecewise constant maximizer p∗(x)
and the number N∗ of its discontinuities for x > 0.
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α ↓ β → 3/2 2 5/2 3

E∗/102 R N∗ aopt E∗/102 R N∗ aopt E∗/102 R N∗ aopt E∗/102 R N∗ aopt

5/6 2.70 λ2/λ1 4 0.50 2.76 λ2/λ1 1 0.50 3.04 λ2/λ1 1 0.50 2.93 λ3/λ2 1 0.50

2/3 3.64 λ2/λ1 4 0.50 3.84 λ2/λ1 4 0.50 3.83 λ2/λ1 4 0.50 3.73 λ2/λ1 4 0.50

1/2 4.54 λ2/λ1 4 0.50 5.66 λ2/λ1 4 0.50 6.07 λ2/λ1 4 0.50 6.13 λ2/λ1 4 0.50

1/3 5.06 λ2/λ1 4 0.55 8.39 λ2/λ1 4 0.50 1.08·10 λ2/λ1 4 0.50 1.22·10 λ2/λ1 4 0.50

Table 5. The optimal position aopt of the intermediate piers with respect to different
α and β. R is the ratio of eigenvalues corresponding to the critical energy threshold E∗
and N∗ is the number of discontinuity points of the optimal weight p∗ for x > 0. In
bold the situations with reinforced piers.

Figure 4. E∗ versus a with respect to different α and β. The numbers along the
curves stand for the numbers N∗ of discontinuities of the corresponding p∗(x) for x > 0.

5.3. Summary and conclusions. The stability analysis provided in [17, Chapter 3] in the case of a
homogeneous beam (p ≡ 1) suggested an optimal position of the piers, given by a = 0.5. We have here
performed a similar stability analysis for a non homogeneous beam made of two different materials; as
a first outcome (Claim a) at the end of Section 4 and Claim a) at the end of Section 5.2), it turns out
that
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introducing different densities along the beam reinforces the structure,

namely provides a stabler beam. We are then motivated to search an optimal combination “position of
the piers-density” which increases as much as possible the energy thresholds of instability, maintaining
however the ratio between the densities of the materials coherent with the one of two realistic building
materials. Moreover, from the point of view of the applications, the number of jumps between the two
materials along the beam has to be controlled, in order to make the building of the beam feasible. We
have then proceeded as follows:

1) in Section 4, we have constrained the total number of jumps to two; in this case, the eigenvalues
are obtainable explicitly. We have found the best a for each fixed density in a certain range and
then we have maximized the obtained threshold as a function of the considered densities;

2) in Section 5, for fixed a, we have looked for densities maximizing the ratio of “dangerous” couples
of eigenvalues, accordingly obtaining optimal densities which, in general, have - at least in the
physical range (23) - more than two total jumps. For each a, we have then checked whether
such densities give rise to higher critical energy thresholds with respect to those obtained for
two-step densities; finally, we have maximized the obtained instability thresholds with respect
to a, finding the optimal combination “position of the piers-density” among those considered.

We have observed the following:

1) in the first case, the optimal position of the piers always ranges between 0.35 and 0.65 and
the best combination “position of the piers-density” is given by a = 0.65 and α = 1/3, β = 2,
with lighter density in the middle of the beam and both the piers and the endpoints of the beam
reinforced ;

2) in the second case, the highest thresholds are obtained in a similar range for a (0.40-0.60),
with densities having more than two total jumps, for which the heavier material is in general
present around the piers and at the endpoints of the beam. The optimal combination “position
of the piers-density” is here given by a = 0.50 and α = 1/3, β = 3. This choice reaches the
highest observed energy threshold in our experiments, and is thus optimal among the considered
ones. Just to give a rough idea, normalizing the density of reinforced concrete to 1, the two
corresponding materials could be, for instance, wood and steel.

We then conclude that

the physical range (23) contains the optimal choices of the position of the piers,
both for two-step densities and for general ones;

however,

in the physical range (23) it is generally better to choose densities with more than two
total jumps, with α and β sufficiently different one from the other.

Moreover, in correspondence of the optimal choice of a,

the denser material has always to be present around the piers
and next to the endpoints of the beam.

These results may be the starting point for further investigations involving physical models for real
structures like bridges (see, e.g. [8] and [19]), with the aim of testing the effectiveness of the above
conclusions in preventing possible failures.

6. Proofs

In the following, we denote by N+ = {1, 2, 3, . . .} the set of positive integers.

6.1. Proof of Theorem 2.3. Let {ej}j∈N+ be the set of eigenfunctions of (6), with corresponding

eigenvalues λj . We observe that {ej}j is a complete system, both in V (I) and in L2
p(I); we normalize

each ej in such a way that ‖ej‖2L2
p(I) = 1 for all j ∈ N+. Then, for a given n ∈ N+, we define

un(x, t) =

n∑
j=1

cj(t)ej(x) ,
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where the coefficients cj ∈ C2([0,+∞)) satisfy the system of ODE’s

(28) c̈j(t) + λjcj(t) +

( n∑
k=1

c2
k(t)

)
cj(t) = 0

for t > 0 and j = 1, ..., n. Moreover, writing the expansions of the initial data as

g(x) =
∞∑
j=1

gjej(x) in V (I), h(x) =
∞∑
j=1

hjej(x) in L2
p(I),

we set

(29) cj(0) = gj , ċj(0) = hj , for every 1 6 j 6 n.

The existence of a unique local solution to (28)-(29) in some maximal interval of continuation [0, τn),
τn > 0, follows from standard theory of ODE’s. Then, for each j = 1, . . . , n we multiply equation (28)
by ċj(t) and we sum the so obtained equations, getting

d

d t

[
1

2

n∑
j=1

(ċj(t))
2 +

1

2

n∑
j=1

λj c
2
j (t) +

1

4

( n∑
j=1

c2
j (t)
)2]

= 0 .

Integrating this equality on (0, t) and recalling the definition of un, we conclude that

(30) 2‖u̇n(t)‖2L2
p(I) + 2‖unxx(t)‖22 + ‖un(t)‖4L2

p(I) = 2‖hn‖2L2
p(I) + 2‖gnxx‖22 + ‖gn‖4L2

p(I) 6 C

for any t ∈ [0, τn) and every n > 1, where the constant C is independent of n and t. Hence, un is
globally defined in R+ for every n > 1 and the sequence {un}n is uniformly bounded in the space
C0([0, T ];V (I)) ∩ C1([0, T ];L2

p(I)), for all finite T > 0. We now show that {un}n admits a strongly
convergent subsequence in the same spaces.

The estimate (30) shows that {un}n is bounded and equicontinuous in C0([0, T ];L2
p(I)). By the Ascoli-

Arzelà Theorem we then conclude that, up to a subsequence, un → u strongly in C0([0, T ];L2
p(I)).

Next, for every n > m > 1, we set un,m := un−um, gn,m := gn−gm and hn,m := hn−hm. Repeating
the computations which yield (30) for um and subtracting the obtained inequality from (30), for all
t ∈ [0, T ], we get

2‖u̇n,m(t)‖2L2
p(I) + 2‖un,mxx (t)‖22 = −

(
‖un(t)‖2L2

p(I) + ‖um(t)‖2L2
p(I)

)(
‖un(t)‖2L2

p(I) − ‖u
m(t)‖2L2

p(I)

)
+ 2‖hn,m‖2L2

p(I) + 2‖gn,mxx ‖22 +
(
‖gn‖2L2

p(I) + ‖gm‖2L2
p(I)

)(
‖gn‖2L2

p(I) − ‖g
m‖2L2

p(I)

)
→ 0 as n,m→∞,

so that {un}n is a Cauchy sequence in the space C0([0, T ];V (I))∩C1([0, T ];L2
p(I)). In turn this yields

un → u in C0([0, T ];V (I)) ∩ C1([0, T ];L2
p(I)) as n→ +∞ .

We now show that u satisfies equation (4). We rewrite (28) as

(31)

∫ T

0

{
− ċj(s)χ′(s) + λjcj(s)χ(s) +

( n∑
k=1

c2
k(t)

)
cj(s)χ(s)

}
ds = 0,

for all χ ∈ D(0, T ). Moreover, for fixed ϕ ∈ V (I) we denote by ϕn(x) =
∑n

j=0 djej(x) the orthogonal

projection of ϕ onto Xn := span{ej(x)}nj=1. Multiplying (31) by dj and summing with respect to
j = 1, ...n, we obtain∫ T

0

{
− (unt (s), ϕn(x)χ′(s))p + (unxx(s), ϕnxx(x)χ(s)) + ‖un‖2L2

p(I) (un(s), ϕn(x)χ(s))p

}
ds = 0

for all ϕ ∈ V (I) and χ ∈ D(0, T ). By letting n → +∞ in the above equation, we conclude that u
satisfies (4). The verification of the initial conditions follows by noticing that un(x, 0) → u(x, 0) in
V (I) and unt (x, 0) → ut(x, 0) in L2

p(I). The proof of the existence part is complete, once we observe
that all the above results hold for any T > 0.
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For the uniqueness proof, we first show that (5) holds for any solution to (4) (and not only for the
limit solution obtained above). Indeed, let u ∈ C0([0, T ];V (I)) ∩ C1(([0, T ];L2

p(I)) satisfy (4); we may

write its expansion as u(x, t) =
∑∞

j=1 cj(t)ej(x), which converges in V (I) and in L2
p(I). By testing (4)

with φ(x) = ej(x), we readily get that each coefficient cj satisfies the equation

c̈j(s) + λjcj(s) + ‖u(s)‖2L2
p(I) cj(s) = 0 .

Multiplying this equality by ċj(t) and summing the obtained equations with respect to j = 1, . . . , n, we
get

d

d t

(
‖u̇n(t)‖2L2

p(I) + ‖unxx(t)‖22 + 2

∫ t

0
‖u(s)‖2L2

p(I) (un(s), unt (s))p ds

)
= 0

and, passing to the limit, we obtain

‖u̇(t)‖2L2
p(I) + ‖uxx(t)‖22 + 2

∫ t

0
‖u(s)‖2L2

p(I) (u(s), ut(s))p ds = ‖h‖2L2
p(I) + ‖gxx‖22 .

Finally, (5) follows from the fact that∫ t

0
‖u(s)‖2L2

p(I) (u(s), ut(s))p ds =
1

4
(‖u(t)‖4L2

p(I) − ‖u(0)‖4L2
p(I)),

which can be proved by noticing that ‖un(s)‖2L2
p(I) (un(s), unt (s))p = 1

4
d
d t‖u

n(s)‖4L2
p(I) and letting n →

+∞.
We are now ready to complete the proof of the uniqueness. We adapt to our framework the idea of

[21, Theorem 11]. Let v1 and v2 be two solutions of (4); we set u = v1 − v2 and

u(x, t) =

∫ t

0
u(x, τ) dτ, w(x, t, σ) = −

∫ σ

t
u(x, τ) dτ,

for all t, σ ∈ [0, T ]. Then w(x, t, σ) = u(x, t) − u(x, σ) and wt(x, t, σ) = u(x, t). From Remark 2.2, u
satisfies

〈p(x)utt, ϕ(x)〉V + (uxx, ϕxx(x)) + (‖u‖2L2
p(I)u, ϕ(x))p = 0 ∀ϕ ∈ V (I), ∀t > 0.

Since w(x, t, T ) ∈ C1([0, T ];V (I)), we may write the above identity with ϕ = w as test function; then,
integrating with respect to time, we obtain∫ T

0
(ut(x, s), u(x, s))p ds−

∫ T

0
(wtxx(x, s, T ), wxx(x, s, T )) ds

=

∫ T

0

((
‖v1(s)‖2L2

p(I) v1(x, s)− ‖v2(s)‖2L2
p(I) v2(x, s)

)
, w(x, s, T )

)
p
ds

(notice that, in order to write the first summand in this way, we have performed an integration by
parts relying on the fact that ut(x, 0) = 0 and w(x, T, T ) = 0). By noticing that (ut(s), u(s))p =
1
2
d
d s‖u(s)‖2L2

p(I), (wtxx(s, T ), wxx(s, T )) = 1
2
d
d s‖wxx(s, T )‖2L2(I) and wxx(x, 0, T ) = uxx(x, T ), we thus

deduce that

1

2
‖u(x, T )‖2L2

p(I) +
1

2
‖uxx(x, T )‖2L2(I)

6 sup
s∈[0,T ]

‖v1(s)‖2L2
p(I)

∫ T

0
(u(x, s), w(x, s, T ))p ds

+ sup
s∈[0,T ]

‖v2(s)‖L∞(I)

[
‖v1(s)‖L∞(I) + ‖v2(s)‖L∞(I)

] ∫ T

0
(u(x, s), w(x, s, T ))p ds

6 C
∫ T

0

(
‖u(x, s)‖L2

p(I) ‖u(x, s)‖L2
p(I) + ‖u(x, s)‖L2

p(I) ‖u(x, T )‖L2
p(I)

)
ds ,
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for some C > 0, where we have exploited (4), Hölder and Minkowski inequalities and the fact that
w(x, s, T ) = u(x, s) − u(x, T ). Finally, from Young inequality and the continuous embedding V (I) ⊂
L2
p(I) we conclude that

‖u(x, T )‖2L2
p(I) + ‖uxx(x, T )‖2L2(I) 6 K

∫ T

0
‖u(x, s)‖2L2

p(I) + ‖uxx(x, s)‖2L2(I) ds

for some K > 0. Therefore, by Gronwall lemma we conclude that u ≡ 0, which is the thesis.

6.2. Proof of Proposition 2.4. For h ∈ N+, we denote respectively by λh(p) and eh(x) the h-th
eigenvalue and the h-th eigenfunction of (6). We recall the following variational representation of
eigenvalues for every h ∈ N+, see e.g. [13, 20]:

(32) λh(p) = inf
Wh⊂V

dimWh=h

sup
v∈Wh\{0}

‖v‖2V
‖√pv‖22

.

When h = 1, (32) includes the well known characterization of the first eigenvalue

λ1(p) = inf
v∈V \{0}

‖v‖2V
‖√pv‖22

.

First, we prove the following lemma.

Lemma 6.1. Let e be a weak solution of (6) which satisfies

(33)

{
e′(−π) = 0

e′′′(−π) = A > 0
or

{
e′(−π) = A > 0

e′′′(−π) = 0 .

Then e(x) > 0 for all x ∈ (−π,−aπ].

Proof. We expand on the idea of [25, Lemma 2.2]. Since, by Proposition 2.5, e ∈ H4(I) ∩ C3(I−) and
solves (6) almost everywhere, for x ∈ I− we may write

e′′′(x)− e′′′(−π) = λ

∫ x

−π
p(t)e(t) dt,

so that

(34) e′′(x) = e′′′(−π)(x+ π) + λ

∫ x

−π
(x− t)p(t)e(t) dt.

Assume that the first case in (33) occurs. By contradiction, suppose that there exists x0 ∈ (−π,−aπ]
such that e(x0) = 0; since e′′′(−π) > 0, we infer e(x)→ 0+ as x→ −π+ and by the continuity of e we
then get e(x) > 0 for x ∈ (−π, x0). By (34), this implies e′′(x) > 0 for x ∈ (−π, x0] and also e′(x) > 0
for x ∈ (−π, x0], being e′(−π) = 0. Therefore we obtain

0 = e(−π) < e(x) < e(x0) ∀x ∈ (−π, x0),

getting the contradiction e(x0) > 0 and, in turn, the thesis. The same contradiction occurs if the second
case in (33) occurs. �

Proof of Proposition 2.4 completed. The fact that the eigenvalues of (6) form a divergent
sequence λj(p) (j ∈ N+) and that the corresponding eigenfunctions ej form a complete system in V
follows from the standard spectral theory of self-adjoint operators. It remains to show the simplicity
of the eigenvalues. By contradiction, let us suppose that e1 and e2 are two linearly independent
eigenfunctions corresponding to the same eigenvalue λ. Then, w(x) = c1e1(x) + c2e2(x) (c1, c2 ∈ R)
is an eigenfunction associated with the eigenvalue λ, solving (6). Now we fix c1, c2 ∈ R so that
w′(−π) = 0 and w′′′(−π) = A > 0. From Lemma 6.1, we obtain w(x) > 0 for all x ∈ (−π,−aπ], in
particular w(−aπ) > 0; this is a contradiction since w is a solution of (6) and hence w(−aπ) = 0.
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Remark 6.2. As a direct consequence of Lemma 6.1, we infer that all the eigenfunctions satisfy
e′j(±π) 6= 0 and e′′′j (±π) 6= 0. Indeed, if it were e′j(−π) = 0 (resp., e′′′j (−π) = 0), then up to a change

of sign the first (resp., the second) condition in (33) would be satisfied. This would necessarily imply
e′′′j (−π) = 0 (resp., e′j(−π) = 0), otherwise by Lemma 6.1 it would be ej(−aπ) 6= 0, which is not the
case. But the uniqueness would then yield ej ≡ 0, a contradiction.

6.3. Proof of Proposition 2.5. We follow the lines of the proof of [22, Lemma 2.2]. Since e ∈ V (I) ⊂
H2(I), we have that e ∈ C1(I), due to the compact embedding H2(I) ⊂⊂ C1(I). Testing (7) with a
fixed function v2 ∈ C∞c (I0), we obtain

(35)

∫
I0

e′′0v
′′
2 dx = λ

∫
I0

p e0v2 dx ∀v2 ∈ C∞c (I0),

where e0 is defined in (8) (we omit to write the x-dependences). We rewrite (35) as

(36)

∫
I0

T (x)v′′2(x) dx = 0 ∀v2 ∈ C∞c (I0),

with T (x) = e′′0(x)− λ
∫ x
ξ

∫ t
ξ p(τ)e0(τ) dτ dt. If we consider the equality (36) in distributional sense, we

get

〈T ′′, v2〉 = 0 ∀v2 ∈ C∞c (I0),

where T ′′ is the second derivative of T (x) in sense of the distributions. Hence,

(37) T (x) = c0x+ c1 for a.e. x ∈ I0 (c0, c1 ∈ R).

Next we introduce the function F : I0 × R→ R through

F (x, s) := s− λ
∫ x

ξ

∫ t

ξ
p(τ)e0(τ) dτ dt− c0x− c1;

we observe that, for every x ∈ I0, there exists a unique s such that F (x, s) = 0. Being e0 ∈ C1(I0)
and p ∈ L∞(I0) we have that F ∈ C1(I0 × R); hence, by the Implicit Function Theorem we deduce
the existence of a function s = s(x) ∈ C1(I0) such that F (x, s(x)) = 0. From the definition of T (x) we
observe that (37) can be written as F (x, e′′0(x)) = 0 for a.e. x ∈ I0, implying that s(x) = e′′0(x) for a.e.
x ∈ I0. By the continuity of s, arguing as in [22, Lemma 2.2] we have s(x) = e′′0(x) for every x ∈ I0

and, being s ∈ C1(I0), we conclude that e0 ∈ C3(I0). From F (x, e′′0(x)) = 0 we then have that

(38) e′′′0 (x) = λ

∫ x

ξ
p(t)e0(t) dt+ c0.

Since pe0 ∈ L∞(I0) ⊂ L1(I0), from the Fundamental Theorem of Integral Calculus we deduce that

e′′′′0 (x) = λp(x)e0(x) for a.e. x ∈ I0.

This argument yields the same conclusion on e−(x) and e+(x), if we consider respectively v1 ∈ C∞c (I−)
and v3 ∈ C∞c (I+) as test functions in (7); thus, (6) is satisfied for almost every x ∈ I.

We now conclude the proof by showing that e ∈ C2(I). From (7)-(8) we get∫
I−

e′′−v
′′ dx+

∫
I0

e′′0v
′′ dx+

∫
I+

e′′+v
′′ dx = λ

∫
I
p ev dx ∀v ∈ V (I).

Hence, integrating twice by parts (recall that e′′′0 is absolutely continuous by (38)), we obtain

[e′′−(−aπ)− e′′0(−aπ)]v′(−aπ) + [e′′0(aπ)− e′′+(aπ)]v′(aπ)

+

∫
I−

[
e′′′′− − λ pe−

]
v dx+

∫
I0

[
e′′′′0 − λ pe0

]
v dx+

∫
I+

[
e′′′′+ − λ pe+

]
v dx = 0 ∀v ∈ V (I),

giving

[e′′−(−aπ)− e′′0(−aπ)]v′(−aπ) + [e′′0(aπ)− e′′+(aπ)]v′(aπ) = 0 ∀v ∈ V (I).

This implies e′′−(−aπ) = e′′0(−aπ), e′′0(aπ) = e′′+(aπ) and, in turn, e ∈ C2(I).
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6.4. Proof of Proposition 3.3. The proof of Proposition 3.3 follows by combining the three lemmas
that we state here below. Preliminarily, for h ∈ N+ we introduce the orthogonal projection of u ∈ V (I)
onto the space generated by the first (h− 1) eigenfunctions e1, . . . , eh−1 of problem (6), with respect to
the p-weighted scalar product:

Ph−1(p)u :=
h−1∑
i=1

(p u, ei)L2 ei .

If h = 1, we assume P0(p)u = 0. We then recall the Auchmuty’s principle (see [2] for the proof in a
general setting):

Lemma 6.3. Let p ∈ Pα,β, h ∈ N+ and λh(p) the h−th eigenvalue of (6), then

− 1

2λh(p)
= inf

u∈V (I)
Ah(p, u) where Ah(p, u) :=

1

2
‖u‖2V − ‖

√
p
[
u− Ph−1(p)u

]
‖2 .

Furthermore, the minimum is achieved at a h-th eigenfunction normalized according to

‖eh‖2V = ‖√p eh‖2 =
1

λh(p)

The second lemma states a compactness property for the considered set of densities Pα,β.

Lemma 6.4. The set Pα,β is compact for the weak* topology of L∞(I).

Proof. First, we prove that Pα,β is a strongly closed set in L2(I). To this end, let {pm}m ⊂ Pα,β be a
converging sequence in L2(I), and denote by q its L2-limit; then pm → q also in L1(I) for m → +∞
and, up to a subsequence (still denoted by pm), we have that pm → q almost everywhere in I. Hence,
α 6 q(x) 6 β for almost every x ∈ I; moreover,

∫
I pm v dx →

∫
I q v dx for every v ∈ L2(I), implying,

for the choice v ≡ 1, that 2π = |I| =
∫
I q dx. Thus, q ∈ Pα,β and Pα,β is strongly closed in L2(I).

Let now {pm}m ⊂ Pα,β; since ‖pm‖∞ 6 β by the definition of Pα,β, there exist p ∈ L∞(I) and a
subsequence {pmk}k for which

pmk
∗
⇀ p in L∞(I) as k →∞ .

Moreover, we have ‖pmk‖22 6 β2|I| so that, passing to a further subsequence, we infer that pmkj ⇀ q in

L2(I) as j →∞, for a suitable q ∈ L2(I). Therefore, for every v ∈ L2(I) ⊂ L1(I) it holds∫
I
pmkj v dx→

∫
I
q v dx as j →∞

and, since pmk
∗
⇀ p in L∞(I) yields

∫
I pmkj v dx→

∫
I p v dx ∀v ∈ L

1(I), we conclude that p = q almost

everywhere in I. Finally, it is easy to check that Pα,β is a convex set; since strongly closed convex
spaces are weakly closed, we readily infer that q ∈ Pα,β and hence p ∈ Pα,β. The proof is complete. �

Finally, we prove the continuity of the eigenvalues with respect to the weight p.

Lemma 6.5. Let h ∈ N+ and let λh(p) be the h-th eigenvalue of (6). The map λh : Pα,β → R defined
by p 7→ λh(p) is continuous with respect to the weak* convergence.

Proof. Let {pm}m ⊂ Pα,β be a sequence which converges, in the weak* topology of L∞(I), to a suitable
p ∈ L∞(I), i.e.,

pm
∗
⇀ p for m→∞;

by Lemma 6.4, we know that p ∈ Pα,β.
We associate with pm the h-th eigenvalue λh(pm) of (6) and the corresponding eigenfunction eh(pm),

normalized in such a way that ‖eh(pm)‖L2
pm

(I) = 1. By (6), this implies that λh(pm) = ‖eh(pm)‖2V (I);

moreover, by (2) and (32), we have

(39) λh(p) 6
λh(1)

α
∀p ∈ Pα,β,
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where λh(1) is the h-th eigenvalue of (6) with p ≡ 1. From (39) it then follows that λh(pm) =
‖eh(pm)‖2V (I) 6 λh(1)/α, so that {eh(pm)}m is bounded in V (I). Therefore, we can extract a subse-

quence, which we still label by m, such that, at the same time,

λh(pm)→ λh in R as m→∞

eh(pm) ⇀ eh in V (I) as m→∞.

Moreover, due to the compact embedding V (I) ↪→ L2(I), we have that eh(pm) strongly converges to eh
in L2(I) as m→∞. Taking into account that, for every v ∈ V (I), it holds∣∣∣∣ ∫

I
(pm eh(pm)− p eh) v dx

∣∣∣∣ 6 ‖pmv‖2‖eh(pm)− eh‖2 +

∣∣∣∣ ∫
I
pm ehv dx−

∫
I
p ehv dx

∣∣∣∣→ 0

(since ehv ∈ V (I) ⊂ L1), this implies that

(40)

∫
I
pm eh(pm) v dx→

∫
I
p eh v dx as m→∞, for every v ∈ V (I).

Consequently, for every v ∈ V (I) we obtain

0 =
(
eh(pm), v

)
V
− λh(pm)

(
pm eh(pm), v

)
L2 →

(
eh, v

)
V
− λh

(
p eh, v

)
L2 as m→∞ ,(41)

inferring that λh is an eigenvalue of (6) for p = p and eh is a corresponding eigenfunction.
So far, we know that {λh}h is a subset of the set of the eigenvalues of (6) with p = p. Moreover,

arguing as for (40) we obtain

(42) δhr =

∫
I
pmeh(pm)er(pm) dx→

∫
I
peher dx for every h, r ∈ N+,

which implies that the λh’s are all distinct. Therefore, by Proposition 2.4, {λh}h is a strictly increasing
sequence, which then tends, for h → +∞, to some λ ∈ R ∪ {+∞}, with λ 6= λh for every h. We
now show that λ = +∞. By (42), it holds ‖eh‖L2

p
= 1 for every h and so ‖eh‖2V (I) = λh. Assume by

contradiction that λ ∈ R; then, the sequence {eh}h is bounded in V (I), and hence it converges weakly
to some ē ∈ V (I), up to subsequences. Consequently, eh → ē strongly in L2

p(I), so that ‖ē‖L2
p

= 1.

Passing to the limit in the right-hand side of (41), one then obtains that e is an eigenfunction of (6)
for p = p, with corresponding eigenvalue λ. Since eigenfunctions associated with different eigenvalues
are orthogonal, we have

0 = λh

∫
I
pehe dx→ λ

∫
I
pe2 dx = λ as h→∞,

which is impossible since λh is an increasing sequence of positive numbers. Hence, λh → +∞ for
h→ +∞.

Finally, we want to prove that λh = λh(p) for every h ∈ N+; to this end, we show that problem (6)
with p = p has no eigenvalues other than {λh}h. If by contradiction this were not true, there would
exist another eigenfunction e, associated with another eigenvalue λ, such that

(
p e, eh

)
L2(I)

= 0 for all

h ∈ N+. We normalize e so that ‖
√
p e‖2 = 1/λ; applying Lemma 6.3 we would have

(43) − 1

2λh(pm)
6 Ah(pm, e) =

1

2
‖e‖2V − ‖

√
pm
[
e− Ph−1(pm)e

]
‖2 →

1

2
‖e‖2V − ‖

√
p e‖2 = − 1

2λ
,

where the convergence comes from the fact that

Ph−1(pm)e =

h−1∑
i=1

(
pme, ei(pm)

)
L2 ei(pm)→

h−1∑
i=1

(
p e, ei

)
L2 ei = 0.

Therefore, by (43), letting m→∞, we would obtain

λ > λh(pm)→ λh ∀h ∈ N+,
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giving a contradiction since λh → +∞ for h→∞. Hence, the set of the eigenvalues of (6) with p = p
coincides with {λh}h, and its order is induced by the inequality λ1(pm) < λ2(pm) < λ3(pm) < . . . (valid
for every m), which passes to the limit. We conclude that λh = λh(p), implying the thesis.

�

Proof of Proposition 3.3 completed. Let us consider the function F : (0,+∞) × (0,+∞) → R
defined by F (t, s) :=

t

s
, continuous on its domain. By Lemma 6.5, the maps p 7→ ν(p) and p 7→ λ(p)

are continuous on Pα,β with respect to the weak* convergence; moreover, ν(p) > λ(p) > 0, so that
also F (ν(p), λ(p)) is continuous on Pα,β with respect to the same topology. Finally, the existence of a

maximum (or a minimum) of F (ν(p), λ(p)) = ν(p)
λ(p) on Pα,β follows from the compactness of the set Pα,β

with respect to the weak* topology of L∞, proved in Lemma 6.4.

6.5. Proof of Theorem 3.4. We follows the lines of the proof of [3, Theorem 3]. We say that a
function δp is an admissible variation of p ∈ Pα,β if p + δp ∈ Pα,β. Then, by computing the first

variation of the functional

(
ν

λ

)
(p) with respect to an admissible variation of p ∈ Pα,β, see e.g. [3,

Theorems 1,2], we readily get that

δ

(
ν

λ

)
(p) =

∫
I
g(p, x) δp(x) dx,

where g(p, x) is as defined in (17).

Next, for p ∈ Pα,β and t ∈ R, we consider the sets

Sp(t) := {x ∈ I : g(p, x) > t} and Tp(t) := {x ∈ I : g(p, x) > t}.

and the function
Ip(t) := β|Sp(t)|+ α|Scp(t)| = (β − α)|Sp(t)|+ α|I|,

where Scp(t) = I \ Sp(t). Clearly, g(p, ·) ∈ C0(I); if t′ is a number less than the minimum of g(p, ·) and

t′′ is a number greater than its maximum we get, respectively, Sp(t
′) = I and Sp(t

′′) = ∅. Therefore,

Ip(t
′) = β|I| > Ip(t) > α|I| = Ip(t

′′) ∀t ∈ [t′, t′′].

We observe that Sp(t) is a decreasing set function, implying that also the function Ip(t) is decreasing;
thus, Ip(t) may have only jump discontinuities and there exists t0 = t0(p) such that either Ip(t0) = |I| or

Ip(t
−
0 ) > |I| > Ip(t

+
0 ). In this latter case we have |Ap(t0) := {x ∈ I : g(p, x) = t0}| > 0, Tp(t0) ⊂ Sp(t0)

and
Ip(t

−
0 ) = β|Sp(t0)|+ α|Scp(t0)| and Ip(t

+
0 ) = β|Tp(t0)|+ α|T cp (t0)| .

For θ ∈ I, we then define

Sθ := Tp(t0) ∪
(
[−π, θ] ∩Ap(t0)

)
and I(θ) := β|Sθ|+ α|Scθ| .

The map I 3 θ 7→ I(θ) is continuous and I(−π) = Ip(t
+
0 ) and I(π) = Ip(t

−
0 ). Hence, there exists

θ0 = θ0(p) > −π such that I(θ0) = |I|, i.e. there exists a set Sθ0 such that

β|Sθ0 |+ α|Scθ0 | = |I| with Tp(t0) ⊆ Sθ0 ⊂ Sp(t0).

Let p̂ be a maximizer of (16). We set t̂ := t0(p̂), θ̂ := θ0(p̂), Î := S
θ̂

and we introduce the weight:

p
θ̂
(x) := βχ

Î
(x) + αχ

I\Î(x) .

Clearly, p
θ̂
∈ Pα,β and we may consider the variation of

(
ν

λ

)
(p̂) with respect to the admissible variation

δp̂ = p
θ̂
− p̂, namely:

δ

(
ν

λ

)
(p̂) =

∫
Î
g(p̂, x) δp(x) dx+

∫
I\Î

g(p̂, x) δp(x) dx.
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By p̂ ∈ Pα,β and the definition of Î we have

δ

(
ν

λ

)
(p̂) > t0

[ ∫
Î
[β − p̂(x)] dx+

∫
I\Î

[α− p̂(x)] dx

]
= t0

[ ∫
I
p
θ̂
(x) dx−

∫
I
p̂(x) dx

]
= 0.

The inequality above becomes strict if β > p̂ or α < p̂ on a set of positive measure J ⊂ I such that

J \ Ât̂ 6= ∅ where At̂ := Ap̂(t0). In this case, we get δ

(
ν

λ

)
(p̂) > 0, contradicting the fact that p̂ is a

maximizer.

6.6. Proof of Proposition 3.5. The first part of the statement follows from the fact that both g(p, x)
and

g′(p, x) = 2
ν(p)

λ(p)

(
eλ(x)e′λ(x)− eν(x)e′ν(x)

)
vanish for x = ±π and for x = ±aπ, since all the eigenfunctions vanish therein.

We now prove the second part of the statement, for which we assume that the two eigenfunctions eλ
and eν have different parity. Let eλ be even; then, we know that e′λ(0) = e′′′λ (0) = 0. We claim that, up
to a change of sign, eλ(0) > 0 and e′′λ(0) < 0. To prove this, assume by contradiction that eλ(0) = 0; it
follows that either e′′λ(0) > 0 or e′′λ(0) < 0 (otherwise eλ ≡ 0). Arguing as in the proof of Lemma 6.1, in
the first case we get eλ(aπ) > 0, while in the second case we obtain eλ(aπ) < 0; in any case, we reach
a contradiction. Hence, we may assume eλ(0) > 0. Now, if it were e′′λ(0) > 0, arguing once more as in
the proof of Lemma 6.1 we would infer eλ(aπ) > 0, a contradiction. Hence, we also have e′′λ(0) < 0 and
the claim is completely proved. Since eν(0) = 0, we have

g(p, 0) =
ν(p)

λ(p)
e2
λ(0) > 0, g′(p, 0) = 2

ν(p)

λ(p)

(
eλ(0)e′λ(0)− eν(0)e′ν(0)

)
= 0,

and, thanks to the claim that we have just proved,

g′′(p, 0) = 2
ν(p)

λ(p)

(
eλ(0)e′′λ(0)− (e′ν(0))2

)
6 2

ν(p)

λ(p)
eλ(0)e′′λ(0) < 0 .

It follows that g has a local maximum point at x = 0.
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