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Traditionally, speech analysis has always relied on a set of very informative features like (Mel) spectrogram or Mel Fre-
quency Cepstral Coefficients (MFCC) to solve many different problems and build incredible speech powered applications
(Jurafsky and Martin, 2009). In this sense, speech analysis distinguished itself from other areas, like computer vision,
where deep learning has become a pervasive framework. However, recently, deep learning models for the extraction of
acoustic features have allowed improving significantly the state of the art in many speech-related applications, like Auto-
matic Speech Recognition (ASR) (Baevski et al., 2020; Radford et al., 2022), speaker identification (Wan et al., 2018), or
speech emotion recognition (Scotti et al., 2020). Basically, these models are deep neural networks trained in an unsuper-
vised or self-supervised (Aytar et al., 2016; Hershey et al., 2017; Baevski et al., 2020) way on large collections of acoustic
data (not necessarily speech). Starting from the features computed by these deep neural network models, we can build
classification and regression models to solve speech analysis-related problems with improved results.

With our work, we focus the analysis on the cross-lingual transferability of these deep learning features for speech
analysis. The idea is to understand whether and how well a classification model trained on deep acoustic features in a
source language works in a new target language. The problem we are dealing with is thus a domain adaptation problem
(Redko et al., 2019). We selected Parkinson’s disease recognition as the use case of our experiments: the goal is to train a
binary classifier that discriminates from speech between healthy patients and patients affected by Parkinson’s disease.

We used two data sets for our experiments: one in English and one in Telugu, the latter served as an under-resourced
language example. We experimented using both languages first as the source domain data and as the target domain data in
two sets of experiments. The English data set is the Mobile Device Voice Recordings at King’s College London (MDVR-
KCL) from both early and advanced Parkinson’s disease patients and healthy controls (Jaeger et al., 2019). It contains
both spontaneous and read audio clips from both Parkinson’s disease patients and healthy patients, respectively it contains
266 clips of healthy persons and 199 clips of persons affected by Parkison’s disease. The Telugu data set, instead, is a
private collection of audio clips from Parkinson’s disease patients (81 clips); we combined it with samples taken from
the Telugu split of Open SLR (He et al., 2020), a data set for speech recognition (we subsampled 200 clips from it). The
latter language motivated our work; in fact, the scarcity of data for some problems or languages usually forces us to adapt
solutions from different domains.

Building a classifier to recognise Parkinson’s disease from the speech is not a new problem. This task has already
been addressed using machine learning-based techniques (Williamson et al., 2015; Karan et al., 2020; Rahman et al., 2021;
Kurada and Kurada, 2020; Toye and Kompalli, 2021). Usually, these approaches involve the extraction of acoustic and
prosodic features (mainly MFCC, Jitter, Shimmer, and Pitch), which allows the building of very discriminative models. In
some cases, these features are further processed through dimensionality reduction transformations to keep only the most
relevant components of the vectors encoding the audio clips to classify.

Very recent results already explored the role of deep learning features to learn a classifier for this Parkinson’s disease
detection problem (Kurada and Kurada, 2020), reaching more than 80% recognition accuracy on the same English data set
we considered and outperforming the other considered classifiers based on acoustic features. Other works started focusing
on building classifiers for other languages (Toye and Kompalli, 2021): their results showed that acoustic and prosodic
features could be used to build high-performing classifiers (reaching more than 90% recognition accuracy) on English and
Italian. However, none of these previous works analysed the effects of directly transferring trained classification models
for Parkison’s disease recognition across languages (usually models are trained from scratch in the new language, which
isn’t always possible due to data availability problems) or the effects of applying domain adaptation on these classifiers to
see how it affects the performances in the target language, without explicit retraining. With this work, we are interested
in experimenting with classification models to tackle these two analyses.

The classification pipeline we propose is completely based on data-driven techniques. The first step we apply is
denoising through RNNoise (Valin, 2018), a deep neural network for voice enhancement and noise suppression. We
process the denoised audio directly with one of the selected deep features models, which yields a sequence of feature
vectors. Each sequence vector covers a specific time window of the input signal. Since the final classification step of
machine learning models expect information to be encoded into a single vector, we tested different approaches to convert
the sequence of feature vectors into a single vector: flattening (or unrolling), Global Average Pooling (GAP) (Lin et al.,
2014), and Global Max Pooling (GMP) (Lin et al., 2014). Finally, we used a Feed Forward Neural Network to perform
the classification task from the extracted feature vectors.

As premised, we considered also a technique for unsupervised domain adaptation, Deep CORAL (Sun and Saenko,
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2016), as an alternative path of our pipeline. We re-trained the classification network adding the Deep CORAL objective
on the covariance of the final projections before classification for adaptation. We considered this adaptation step to
understand how robust the classifier is with and without explicit adaptation.

In our work, we considered three different models for computing deep acoustic features: Wav2Vec (Baevski et al.,
2020), VGGish (Hershey et al., 2017), and SoundNet (Aytar et al., 2016). The former was specifically designed for speech
analysis problems and is used as input for state-of-the-art ASR models. The other two instead are actually mode generic
models though for acoustic analysis not necessarily aimed at speech. VGGish was trained on a large audio classification
data set containing many labels. SoundNet, on the other hand, was trained to predict from the audio track of video clips the
pseudo labels generated from object recognition and scene recognition using a neural network that processed the images
of the video clips. Additionally, we trained some classification models using traditional acoustic and prosodic features.
We selected the set of features from recent works on the same problem and data set (Toye and Kompalli, 2021).

The results on individual languages we obtained are in line with previous works. Even with few samples, with Telugu,
we got > 90% accuracy with some feature and pooling configurations. In English, we reached > 90% accuracy as well.
We achieved these results using either traditional or deep features, showing that for this kind of speech classification
problems, transferring deep features is not necessary to achieve the best results. Concerning cross-lingual results, we
noticed that in some cases, without explicit adaptation, many classifiers still achieve reasonable results (≥ 70% accuracy)
when applied to the other (target) language. From the results of domain adaptation, we noticed that when the zero-
shot behaviour of the unadapted classifier produced low scores on the target language, adaptation helped improve the
performances, lowering the scores on the source language though. The results of adaptation are mixed, and a more
extensive analysis of these techniques is necessary to understand how to achieve the best from these approaches. As for
now re-training and zero-shot model transfer seem to be the most effective solutions. For completeness and reproducibility,
we share the reference to the repository with the source code1.
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