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SYMMETRIC SOLUTIONS FOR A 2D CRITICAL DIRAC EQUATION

WILLIAM BORRELLI

Abstract. In this paper we show the existence of infinitely many symmetric solutions
for a cubic Dirac equation in two dimensions, which appears as effective model in systems
related to honeycomb structures. Such equation is critical for the Sobolev embedding
and solutions are found by variational methods. Moreover, we also prove smoothness and
exponential decay at infinity.

Keywords: nonlinear Dirac equations, critical point theory, existence results, critical nonlinearity, hon-
eycomb structure.
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1. Introduction

1.1. Motivation and main results. This paper is devoted to the study of solutions of
the following nonlinear massive Dirac equations

(D+mσ3 − ω)ψ = |ψ|2ψ on R
2 , (1)

where ω ∈ (−m,m) is a frequency in the spectral gap of the Dirac operator D+mσ3, with
m > 0, and the nonlinearity is Sobolev-critical.

Equation (1) appears in the effective description of wave propagation in two-dimensional
systems with the symmetries of a honeycomb lattice, under suitable assumptions. More pre-
cisely, If V ∈ C∞(R2,R) possesses the symmetries of a honeycomb lattice, the Schrödinger
operator

H = −∆+V (x) , x ∈ R
2 , (2)

exhibit generically conical intersections (the so-called Dirac points) in its dispersion bands,
as proved in [18]. The massless (i.e., m = 0) Dirac operator then appears as an effective
operator describing, the dynamics of wave packets spectrally concentrated around those
conical points [20]. A mass term appears in the effective equation, when a perturbation
breaking parity is added, as shown in [18, Appendix]. Moreover, considering stationary
solutions of the nonlinear Schrödinger equation

i∂tu = Hu+ |u|2u ,
with frequency corresponding to the conical crossing (at least formally) leads to an effective
cubic nonlinearity of the form

(
(β1|ψ2|2 + 2β2|ψ1|2)ψ2

(β1|ψ1|2 + 2β2|ψ2|2)ψ1

)
, with ψ = (ψ1, ψ2)

T , (3)

as first computed in [19], where the parameters β1, β2 > 0 depend on the potential V in
(2). In this paper we focus on the effective equation (1) with a pure power nonlinearity,
corresponding to the choice of parameters β1 = 1, β2 = 1/2, as it clearly leads to the same
analytical difficulties as the general case. We mention the paper [5], where the validity of
the effective cubic equation is addressed. Moreover, existence and qualitative properties
of stationary solutions to the effective massless cubic Dirac equation have been studied in
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[8, 9]. Concerning the massive case (1), the existence of a solution of a particular symmetric
form has been established in [7] by dynamical systems arguments. In this paper we prove
the existence of infinitely many (distinct) symmetric solutions, using variational methods,
crucially exploiting the classification for the limit massless equation obtained in [9] (see
Section 2).

Critical Dirac equations have been studied in connection with problem from conformal
spin geometry, for which we refer the reader to [2, 3, 4, 6, 21, 22, 23, 29, 33] and references
therein. We also mention that the case of coupled systems involving the Dirac operator
and critical nonlinearities have also been recently studied in the literature, see [10, 30].
From the point of view of analysis, those equation are conformally covariant or involve
conformally covariant nonlinear terms, so that one has to deal with the associated loss
of compactness, looking for a solution by variational methods. The required compactness
analysis for our case is performed in Section 4. The variational approach to nonlinear Dirac
equations has been introduced in [17] and has been subsequently widely employed, see for
instance [6, 14, 15, 23].

In this paper we focus on the existence of symmetric solutions to (1) of the following
form

ψ(x) =

(
ψ1(x)
ψ2(x)

)
=

(
v(r)eiSθ

iu(r)ei(S+1)θ

)
, x ∈ R

2 , S ∈ Z , (4)

where (r, θ) ∈ (0,∞) × S
1 are polar coordinates in R

2, and u, v are real-valued functions.

Remark 1.1. Functions of the above form are the counterpart for the Dirac operator, of
radial solutions for the Laplace equation. Indeed, while the laplacian commutes with rota-
tions, this is not the case for the Dirac operator. More details about this property and its
physical meaning can be found, for instace, in [35] and references therein.

Theorem 1.2. Let S ∈ Z, S 6= 0 and take ω ∈ (−m,m), with m > 0. Then equation (1)
admits a non-trivial solution ψ ∈ C∞(R2,C2) of the form (4). Such solution vanishes at

the origin, i.e. ψ(0) = 0, and it is exponentially localized, namely

|ψ(r, θ)| 6 Ce−
√

m−ω
2

r r > 0, θ ∈ S
1 ,

for some constant C > 0.

Remark 1.3. The solutions given by the above Theorem and that found in [7] (for S = 0)
have the same exponential decay rate, but we do not know if such estimate is optimal.
However, by [13, Corollary 1.8] one easily sees that solutions cannot decay at infinity faster
than a gaussian. Indeed, in two dimensions such result holds in particular for Dirac equa-
tions of the form (D+mσ3)ψ +Wψ = ωψ, where W ∈ L∞

loc(R
2,C2 × C

2), and in our case
it suffices to consider the scalar potential W := |ψ|2.

In [7] solutions of the form (4) with S = 0 were found by dynamical systems method,
while in this paper we deal with S 6= 0 using variational methods. We remark that our
proof relies on the localization properties of the solutions of the limit equation (9) of the
form (4). Those functions corresponds to the blow-up profiles appearing in the variational
procedure, and have been classified in [9]. For S = 0, it turns out they are not square
integrable, which prevents the application of the variational methods employed for S 6= 0,
while in this case solutions have a stronger decay at infinity.

1.2. Outline of the paper. The paper is organized as follows. In Section 1 we state the
main result of the paper and give an introduction to the problem under study. Section 2
contains some preliminary notions used in the sequel, while in Section 3 we explain how
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to reformulate the problem in an equivalent way, using duality arguments. As explained
through the paper, this approach allows to simplify the proof of the main results. The
required compactness analysis is performed in Section 4. Finally, we give the proof of the
main Theorem in Section 5, which is divided into three different steps, for the convenience
of the reader.

Acknowledgements. The author is grateful to B. Cassano for bringing to his attention
some results contained in [13].

The author is member of GNAMPA as part of INdAM and is supported by Centro di
Ricerca Matematica Ennio de Giorgi.

2. Preliminaries

In this section we present some basic notions and recall results useful in the sequel.

2.1. The operator. The Dirac operator is a first order differential operator formally de-
fined in two dimensions as

Dm = D +mσ3 := −iσ · ∇+mσ3 (5)

The constant m > 0 is referred to as the ‘mass’, as it usually represents such quantity in
applications. In the above formula we use the notation σ · ∇ := σ1∂1 +σ2∂2 and the σk are
the Pauli matrices

σ1 :=

(
0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

)
. (6)

The operator Dm is a self-adjoint operator on L2(R2,C2), with domain H1(R2,C2) and

form-domain H1/2(R2,C2).
Moreover, since in Fourier domain p = (p1, p2) the Dirac operator becomes the multipli-

cation operator by the matrix

D̂m(p) =

(
m p1 − ip2

p1 + ip2 m

)

then the spectrum is given by

Spec(Dm) = (−∞,−m] ∪ [m,+∞) (7)

where the gap is due to the mass term. The reader can find of the above mentioned results
in [35].

2.2. The functional. Equation (1) can be regarded as the Euler-Lagrange equation for
the functional

Lω(ψ) =
1

2

∫

R2

〈(D+mσ3 − ω)ψ,ψ〉 dx − 1

4

∫

R2

|ψ|4 dx , (8)

defined for ψ ∈ H1/2(R2,C2).
The above functional is strongly indefinite, that is, it is unbounded both from above and

below, even modulo finite dimensional subspaces. This is due to the unboundedness of the
spectrum (7). This constitutes a difficulty for the application of variational methods, but
several techniques have been introduced to deal with such situations (see for instance [34]
or [16]). The principal difficulty in the application of variational methods to the search of
critical points of (8) is given by the fact that we have to deal with the Sobolev embedding

H
1

2 (R2,C2) →֒ L4(R2,C2) ,
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whose compactness is prevented by the invariance by translation and scaling. The latter,
in particular, implies that the embedding is not even locally compact and gives rise to the
so called bubbling phenomenon. This means that Palais-Smale sequences for the functional
Lω can concentrate peaking around some points in R

2, preventing strong convergence in L4

and thus in H1/2. This phenomenon is common to variational problems involving Sobolev
critical nonlinearities. We refer to [26, 27] for a general account on this kind of problems,
in the framework of Concentration-Compactness theory and to [23], where the blow-up
analysis has been carried out for a critical Dirac equation on a compact spin manifold. A
similar result holds in our case, as explained in Section 4.

In the sequel we will consider critical points of the functional restricted to the susbpace
ES ⊆ H1/2(R2,C2) of spinors of the form (4), see Section 5. Such ansatz breaks the
invariance by translation and partially simplifies the compactness analysis giving the origin
as the only possibile blow-up point for Palais-Smale sequences.

2.3. The limit equation. The blow-up profiles (the so-called bubbles) appearing in Palais-

Smale sequences for Lω are given by rescaled solutions Ψ ∈ H̊1/2(R2,C2) of the equation

DΨ = |Ψ|2Ψ , (9)

which can be considered as the the limit equation with respect to scaling. Indeed, at least
formally, one can realize that considering the scaling

ϕ 7→ ϕδ := δ−1ϕ(δ−2·) (10)

and letting δ → 0. Equation (9) is the Euler-Lagrange equation for the functional

L0(ϕ) =
1

2

∫

R2

〈D ϕ,ϕ〉 dx − 1

4

∫

R2

|ϕ|4 dx , (11)

which then is invariant by translation and scaling. More precisely, both terms in (11) are

individually invariant by scaling, that is, given ϕ ∈ H̊1/2(R2,C2), there holds
∫

R2

〈D ϕδ, ϕδ〉 dx =

∫

R2

〈D ϕ,ϕ〉 dx ,
∫

R2

|ϕδ|4 dx =

∫

R2

|ϕ|4 dx . (12)

Moreover, as proved in [23, Section 4], those terms are invariant with respect to a con-
formal change of metric.

Given S ∈ Z, solutions to (9) of the form (4) have been classified in [9]. They are given,
up scaling (10) and sign change, by

Ψ(r, θ) =

(
v(r)eiSθ

iu(r)ei(S+1)θ

)
, (13)

with

u(r) = σ
√

2|2S + 1| rS

r2S+1 + r−(2S+1)
, v(r) = τ

√
2|2S + 1| r−S−1

r2S+1 + r−(2S+1)
, (14)

where σ, τ ∈ {−1, 1} and σ = τ if S > 0 and σ = −τ if S < 0.
Those solutions being critical points of (11), a straightforward computation gives

β(S) := L0(Ψ) =
1

4

∫

R2

|Ψ|4 dx = |2S + 1|π . (15)

As explained in Section 4 the above energy value is the threshold for the appearance of the
blow-up profiles in the Palais-Smale sequences for the functional Lω, see (8).

We add that, more generally, solutions of the form (4) to the limit equation with the
nonlinearity (3) have also been characterized in [9]. Moreover, ground state solutions to
the higher dimensional analogue of (9) have been recently classified in [11].
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3. The dual action

Following the idea of [23], we employ duality techniques, exploiting the convexity of
the nonlinear term in (8). This allows to study an equivalent problem involving a dual

functional, whose critical points ( and, more generally, whose Palais-Smale sequences) are
in one-to-one correspondence with those of the original functional. In particular, we also
exploit the fact that the dual functional has a mountain pass geometry.

Let

Dm,ω := (D+mσ3 − ω).

The following isomorphisms hold

Dm,ω : H
1

2 (R2,C2) −→ H− 1

2 (R2,C2) (16)

and
Dm,ω : W 1,4/3(R2,C2) −→ L4/3(R2,C2) . (17)

Let Aω and Bω be the inverse operators, respectively, that is

Aω := (Dm,ω)
−1 : H− 1

2 (R2,C2) −→ H
1

2 (R2,C2) (18)

and

Bω := (Dm,ω)
−1 : L4/3(R2,C2) −→W 1,4/3(R2,C2). (19)

We denote by

i : H
1

2 (R2,C2) −→ L4(R2,C2) (20)

and

j :W 1,4/3(R2,C2) −→ H
1

2 (R2,C2) (21)

the Sobolev embeddings.
Consider the following sequences of maps

Kω : L4/3(R2,C2) H− 1

2 (R2,C2) H
1

2 (R2,C2) L4(R2,C2)i∗ Aω i (22)

and

L4/3(R2,C2) W 1,4/3(R2,C2) H
1

2 (R2,C2),
Bω j

(23)

where i∗ : L4/3(R2,C2) → H− 1

2 (R2,C2) is the adjoint of i. Then we have

Aω ◦ i∗ = j ◦Bω, (24)

and since D is self-adjoint we also have

K∗
ω = Kω . (25)

The functional Lω is then defined as

Lω(ψ) =
1

2
〈Dm,ω ψ,ψ〉

H− 1
2×H

1
2

−H(i(ψ))

for ψ ∈ H
1

2 , where 〈·, ·〉
H− 1

2×H
1
2

is the duality pairing betweenH− 1

2 (R2,C2) andH
1

2 (R2,C2)

and H is the functional on L4(R2,C2) defined by

H(ψ) =
1

4

∫

R2

|ψ|4 dx

The differential of the functional Lω then reads as

dLω(ψ) = Dm,ω ψ − i∗dH(i(ψ)) ∈ H− 1

2 (R2,C2) . (26)

for ψ ∈ H
1

2 (R2,C2).
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The Legendre transform (see [31]) H∗ of H is the functional on L4/3(R2,C2) defined by

H∗(ϕ) = max{〈ψ,ϕ〉L4×L4/3 −H(ψ) : ψ ∈ L4(R2,C2)}

=
1

2+

∫

R2

|ϕ|4 dx.
(27)

We see that dH∗ is the inverse of dH, that is

dH ◦ dH∗ = 1L4/3 , dH∗ ◦ dH = 1L4 . (28)

Then the dual functional L∗
ω is defined as

L∗
ω(ϕ) = H∗(ϕ) − 1

2
〈Kωϕ,ϕ〉L4×L4/3

=
3

4

∫

R2

|ϕ|4/3 dx− 1

2

∫

R2

〈Kωϕ,ϕ〉 dx ,
(29)

for ϕ ∈ L4/3(R2,C2). It is not hard to see that L∗
ω is of class C1.

A relevant property of the dual functional L∗
ω is that its critical points and Palais-Smale

sequences are in one-to-one correspondence with the ones of Lω.
Lemma 3.1. There is a one-to-one correspondence between the critical points of Lω in

H
1

2 (R2,C2) and the critical points of L∗
ω in L4/3(R2,C2).

Proof. Let ψ ∈ H
1

2 be a critical point of Lω. Then by (26), we have Dm,ω ψ = i∗dH(i(ψ)).

Define ϕ := dH(i(ψ)) ∈ L4/3, so that Dm,ω ψ = i∗ϕ. This implies that ψ = Aω ◦ i∗(ϕ) and
i(ψ) = i ◦ Aω ◦ i∗(ϕ) = Kω. (30)

On the other hand, by (28) we have

i(ψ) = dH∗(ϕ). (31)

Combining (30) and (31) we obtain

dL∗
ω(ϕ) = dH∗(ϕ)−Kω(ϕ) = 0.

and then ϕ is a critical point of L∗
ω.

Conversely, suppose ϕ ∈ L4/3 is a critical point of L∗
ω and define ψ = Aω ◦ i∗(ϕ) ∈ H

1

2 .
Since ϕ is a critical point, we have dH∗(ϕ)−Kω(ϕ) = 0. This and (28) imply that

ϕ = dH ◦Kω(ϕ) = dH ◦ i ◦ Aω ◦ i∗(ϕ) = dH(i(ψ)). (32)

Then we have i∗(ϕ) = i∗ ◦ dH(i(ψ)) and dLω(ψ) = Dm,ω ψ = i∗ ◦ dH(i(ψ)), that is ψ is a
critical point of Lω. This concludes the proof. �

Moreover, there also exists a one-to-one correspondence between Palais-Smale sequences
for Lω and L∗

ω. We refer the reader to [23, Section 3 ]

4. Compactness analysis

In this section we analyze the compactness properties of the functional Lω, restricted to
the subspace ES . As explained in the previous section, the same results hold for the dual
functional L∗

ω. The arguments employed rely on Concentration-Compactness theory, for
which the reader can refer to [26, 28] for a general exposition and to [32] for the case of
fractional Sobolev spaces needed in the sequel.

Let (ψn)n∈N ⊆ H1/2(R2,C2) be a Palais-Smale sequence for Lω at level c > 0, that is

Lω(ψn) → c , dLω (ψn) H−1/2

−−−−→ 0 , (33)

as n→ ∞. It is not hard to see that ψn is bounded.
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Lemma 4.1. Any Palais-Smale for Lω is bounded.

Proof. There holds

(D+mσ3 − ω)ψn = |ψn|2ψn + o(1) , in H− 1

2 (R2,C2) ,

and thus
ψn = (D+mσ3 − ω)−1(|ψn|2ψn) + o(1) , in H

1

2 (R2,C2) . (34)

From this we get
‖ψn‖H1/2 . ‖|ψn|2ψn‖H−1/2 + o(1) ,

and by the Sobolev embedding H
1

2 (R2,C2) →֒ L4(R2,C2), there holds L
4

3 (R2,C2) =

(L4(R2,C2))∗ →֒ H− 1

2 (R2,C2), and then

‖|ψn|2ψn‖H−1/2 . ‖|ψn|2ψn‖L4/3 = ‖ψn‖3L4 .

Moreover, by (33) we deduce that

1

4

∫

R2

|ψn|4 dx = Lω(ψn)−
1

2
〈dLω(ψn), ψn〉H−1/2×H1/2

6 C + ‖ψn‖H1/2 ,

and then, combining the above observations we find

‖ψn‖H1/2 6 C‖ψn‖3L4 6 C(1 + ‖ψn‖H1/2)3/4 ,

and the claim follows. �

Then, up to subsequences, we have

ψn ⇀ ψ∞ , weakly in H1/2(R2,C2) , (35)

and

ψn → ψ∞ , strongly in Lploc(R
2,C2), for 2 6 p < 4 , (36)

ψn ⇀ ψ∞ , weakly in L4(R2,C2) , (37)

as n→ ∞.
The strong H1/2-convergence of Palais-Smale sequences is a priori prevented by the

invariance by translation of the functional, and by the presence of a critical nonlinearity.
More precisely, we need to prove strong convergence in the L4 norm.

Proposition 4.2. Assume

ψn → ψ∞ , strongly in L4(R2,C2) , (38)

then

ψn → ψ∞ , strongly in H1/2(R2,C2) . (39)

Proof. We claim that

|ψn|2ψn → |ψ∞|2ψ∞ , strongly in L4/3(R2,C2) . (40)

Preliminarily, observe that, up to subsequences,

|ψn|2 → |ψ∞|2 , strongly in L2(R2,C4). (41)

Indeed, the sequence is bounded in L2 as ‖|ψn|2‖L2 = ‖ψn‖2L4 6 C, uniformly in n ∈ N.

Then |ψn|2 ⇀ |ψ∞|2, weakly in L2. Moreover, ‖|ψn|2‖L2 = ‖ψn‖2L4 → ‖ψ∞‖2L4 = ‖|ψ∞|2‖L2 ,

by (38), and the L2 strong convergence follows.
There holds

‖|ψn|2ψn − |ψ∞|2ψ∞‖L4/3 6 ‖|ψn|2ψn − |ψn|2ψ∞‖L4/3 + ‖|ψn|2ψ∞ − |ψ∞|2ψ∞‖L4/3
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The Hölder inequality and (38) give

‖|ψn|2ψn − |ψn|2ψ∞‖4/3
L4/3 =

∫

R2

||ψn|2ψn − |ψn|2ψ∞| 43 dx

6

(∫

R2

|ψn|4 dx
) 2

3

(∫

R2

|ψn − ψ∞|4 dx
) 1

3

6 C

(∫

R2

|ψn − ψ∞|4 dx
) 1

3

= o(1) .

(42)

Similarly, by Hölder and (41) we get

‖|ψn|2ψ∞ − |ψ∞|2ψ∞‖L4/3 =

∫

R2

||ψn|2ψ∞ − |ψ∞|2ψ∞| 43 dx

6

(∫

R2

||ψn|2 − |ψ∞|2|2 dx
) 2

3

(∫

R2

|ψ∞|4 dx
) 1

3

= o(1) .

(43)

This proves (40) and thus (39) follows, by (34). �

Proposition 4.3. The spinor ψ∞ ∈ H1/2(R2,C2) is a weak solution to (1).

Proof. Take ϕ ∈ C∞
c (R2,C2). Since ψn is a Palais-Smale sequence for Lω, we get

o(1) = 〈dLω(ψn), ϕ〉
H− 1

2 ×H
1
2

=

∫

R2

〈ψn,D ϕ〉 dx +

∫

R2

〈(mσ3 − ω)ψn, ϕ〉 dx −
∫

R2

|ψn|2〈ψn, ϕ〉 dx .
(44)

By (36) we easily get that the first, second and third terms on the right-hand side of (44)
converge to

∫
R2〈ψ∞,D ϕ〉 dx,

∫
R2〈(mσ3 − ω)ψ∞, ϕ〉 dx,

∫
R2 |ψ∞|2〈ψ∞, ϕ〉 dx, respectively, as

n→ ∞. �

Choose S ∈ Z, S 6= 0 and consider a Palais-Smale sequence (ψn)n for Lω restricted to
the subspace ES of symmetric spinors of the form (4). This ansatz breaks the invariance
by translations and allows to prove that the only possible concentration point is given by
the origin, as shown in the following

Lemma 4.4. There exists ν > 0 such that

|ψn|4 dx ∗
⇀ |ψ∞|4 dx+ νδ0 , in M(R2) , (45)

where δ0 is the delta measure concentrated at the origin.

Proof. By [32, Theorem 5] there exists a (at most countable) set of distinct points xj ∈ R
2

and of numbers νj > 0, j ∈ J , such that

|ψn|4 dx ∗
⇀ |ψ∞|4 dx+

∑

j∈J
νjδxj , in M(R2) , (46)

where the δxj are delta measures at xj . We claim that |J | = 1 and the only concentration
point is x = 0. Indeed, observe that spinors of the form (4) are invariant by the following
S
1-action. Given θ ∈ [0, 2π), there holds

Rθ(ψ(r, ϕ)) :=

(
e−iSθ

0 e−i(S+1)θ

)(
v(r)eiS(ϕ+θ)

iu(r)ei(S+1)(ϕ+θ)

)
= ψ(r, ϕ) . (47)

Then, given a point xj 6= 0 in (46), by (47) Rθxj 6= xj is also a concentration point, Rθ
being the counterclockwise rotation of angle θ in R

2. But this contradicts the fact that J
must be at most countable, and (45) follows. �
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Remark 4.5. Observe that if ν = 0 in (45), by reflexivity we get strong convergence ψn →
ψ∞ in L4(R2,C2), as in that case we have weak L4 convergence and convergence of the
norm, i.e. ‖ψn‖L4 → ‖ψ∞‖L4 , as n→ ∞.

However, again by (45), for any ε > 0 there holds

ψn → ψ∞ , strongly in L4(R2 \Bε,C2) . (48)

Combining this fact with (36) we can prove strong L2-convergence.

Proposition 4.6. There holds

ψn → ψ∞ , strongly in L2(R2,C2) , (49)

as n→ ∞.

Proof. By (36), we only need to prove that strong convergence holds in L2(R2 \ BR,C2),
for any R > 0, exploiting (48).

To this aim, recall that being a Palais-Smale sequence ψn verifies

Dm,ω ψn = |ψn|2ψn + o(1) , in H− 1

2 (R2,C2) . (50)

Fix R > 0 and take a smooth function f ∈ C∞(R2) with supp f ⊆ R
2 \BR, 0 6 f 6 1 and

f ≡ 1 on R
2 \B2R. Observe that

f Dm,ω = Dm,ω f + [f,Dm,ω] ,

where the commutator [f,Dm,ω] = −iσ · ∇f is supported on B2R \ BR. Then by (50) we
get

Dm,ω(fψn) = −[f,Dm,ω]ψn + f |ψn|2ψn + o(1) , in H− 1

2 (R2,C2) .

Similarly, since ψ∞ is a weak solution to (1) there holds

Dm,ω(fψ∞) = −[f,Dm,ω]ψ∞ + f |ψ∞|2ψ∞ , in H− 1

2 (R2,C2) .

Arguing as for (40), one gets f |ψn|2ψn → f |ψ∞|2ψ∞ strongly in L
4

3 , as n → ∞. As
remarked, the commutator [f,Dm,ω] has compact support and so by (36) we also get

[f,Dm,ω]ψn → [f,Dm,ω]ψ∞ strongly in L
4

3 , as n → ∞. Then, inverting Dm,ω in the above
equations we finally get fψn → fψ∞ strongly in L2 and the claim follows. �

The result in (45) can be rephrased in terms of a profile decomposition (see [32, Theorem
4]). If ν > 0 in (45), then there holds

ψn = ψ∞ +
√
λnΨ(λn(· − xn)) + rn , (51)

where xn ∈ R
2, xn → 0 and λn → ∞. Here Ψ is a bubble as in (14) and rn = o(1) in

H̊
1

2 (R2,C2). The rescaled profile Ψ is peaking at the origin, preventing strong L4 conver-
gence. The next result shows that it also carries part of the ‘energy’ of the Palais-Smale
sequence.

Lemma 4.7. Set ϕn := ψn − ψ∞. There holds

Lω(ψn) = Lω(ψ∞) + L0(ϕn) + o(1) , as n→ ∞, (52)

where L0(ϕ) =
1
2

∫
R2〈D ϕ,ϕ〉 dx − 1

4

∫
R2 |ϕ|4 dx, see Section 2.
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Proof. Recalling that ψn = ϕn + ψ∞, we have

Lω(ψn) =
1

2

∫

R2

〈D(ϕn + ψ∞), ϕn + ψ∞〉 dx+
1

2

∫

R2

〈(mσ3 − ω)(ϕn + ψ∞), ϕn + ψ∞〉 dx

+
1

4

∫

R2

|ϕn + ψ∞|4 dx ,
(53)

and then by (35), (36) and (49) we find

Lω(ψn) =
∫

R2

〈D ϕn, ϕn〉 + 〈D ψ∞, ψ∞〉 dx+
1

2

∫

R2

〈(mσ3 − ω)ψ∞, ψ∞〉 dx

− 1

4

∫

R2

|ϕn + ψ∞|4 dx+ o(1) ,

(54)

as n→ ∞. Moreover, by the Brezis-Lieb lemma [12] there holds
∫

R2

|ϕn + ψ∞|4 dx =

∫

R2

|ϕn|4 dx+

∫

R2

|ψ∞|4 dx+ o(1) , as n→ ∞,

and combining it with (53) we get (52). �

We are now in a position to give the following compactness result.

Lemma 4.8. Let (ψn)n ∈ ES be a Palais-Smale sequence for Lω at level c > 0, i.e.

limn→∞ Lω(ψn) = c. If

c < β(S) := (2S + 1)π , (55)

then (ψn)n is compact in H
1

2 (R2,C2).

Proof. We argue by contradiction, assuming (55) holds and ψn is not compact in H
1

2 . Then
ψn 6→ ψ∞, where ψ∞ is its weak limit (see (35)). Then by Prop. 4.2, ψn 6→ ψ∞ in strong
sense in L4, so that ν > 0 in (45).

Combining the profile decomposition (51) and (52) we get

Lω(ψn) = Lω(ψ∞) + L0(
√
λnΨ(λn(· − xn)) + rn) + o(1) .

Since ψ∞ is a weak solution to (1), there holds Lω(ψ∞) = 1
4

∫
R2 |ψ∞|4 dx > 0. Recall

that the two terms in L0 are invariant by translations and scaling (see (12)), and then
L0(

√
λnΨ(λn(· − xn)) = L0(Ψ). We thus find

L0(
√
λnΨ(λn(· − xn)) + rn) =

1

2

∫

R2

〈DΨ,Ψ〉 dx+
1

2

∫

R2

〈D rn, rn〉 dx

− 1

4

∫

R2

|
√
λnΨ(λn(· − xn)) + rn|4 dx+ o(1) ,

(56)

using the fact that rn = o(1) in H
1

2 . Moreover, by the Brezis-Lieb lemma [12] we get

1

4

∫

R2

|
√
λnΨ(λn(· − xn)) + rn|4 dx =

1

4

∫

R2

|Ψ|4 dx+
1

4

∫

R2

|rn|4 dx+ o(1)

=
1

4

∫

R2

|Ψ|4 dx+ o(1) .

(57)

Then, by the above observations and using (15) we conclude that

lim inf
n→∞

Lω(ψn) > lim
n→∞

[L0(Ψ) + L0(rn) + o(1)] = β(S) ,

contradicting the assumption (55). �
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5. Proof of Theorem 1.2

In this section we give the proof of the main Theorem (1.2). For the convenience of
the reader we divide the proof into different steps, so that it will be achieved combining
Proposition 5.3, 5.6 and 5.9.

5.1. Existence of solutions. The results of Section 3 show that finding a critical point of
Lω is equivalent to the same problem for the dual functional L∗

ω. This allows us to exploit
the fact that the latter possesses a mountain pass geometry (see e.g. [34]).

Lemma 5.1. There exists ρ > 0 such that

inf{L∗
ω(ϕ) : ϕ ∈ L4/3(R2,C2), ‖ϕ‖L4/3 = ρ} > 0 . (58)

Moreover, given ϕ ∈ L4/3(R2,C2) such that
∫
R2〈ϕ,Aωϕ〉 > 0, there holds

lim
t→+∞

L∗
ω(tϕ) = −∞ . (59)

Proof. Recall that L∗
ω(ϕ) =

3
4

∫
R2 |ϕ|

4

3 dx− 1
2

∫
R2〈ϕ,Aωϕ〉 dx so that by the Sobolev embed-

ding
∣∣∣∣
∫

R2

〈ϕ,Aωϕ〉 dx
∣∣∣∣ 6 ‖ϕ‖

L
4
3
‖Aωϕ‖L4

6 ‖ϕ‖
L

4
3
‖Aωϕ‖W 1,4/3 6 ‖ϕ‖2

L
4
3

so that (58) follows for ρ := ‖ϕ‖L43 small. Moreover, (59) easily follows since for a fixed

ϕ ∈ L4/3(R2,C2) with
∫
R2〈ϕ,Aωϕ〉 > 0, there holds

L∗
ω(tϕ) =

3

4
t
4

3

∫

R2

|ϕ| 43 dx− 1

2
t2
∫

R2

〈ϕ,Aωϕ〉 dx , t > 0 .

�

The mountain pass level for L∗
ω is defined as

cω := inf

{
max
t>0

L∗
ω(tϕ) : ϕ ∈ L4/3(R2,C2),

∫

R2

〈ϕ,Aωϕ〉 dx > 0

}
. (60)

It can be easily shown that

cω := inf

{
1

4

(
∫
R2 |ϕ|4/3 dx)3

(
∫
R2 Re〈ϕ,Aωϕ〉 dx)2

: ϕ ∈ L4/2(R2,C2),

∫

R2

〈ϕ,Aωϕ〉 dx > 0

}
.

Set

J(ϕ) :=
1

4

(
∫
R2 |ϕ|4/3 dx)3

(
∫
R2 Re〈ϕ,Aωϕ〉 dx)2

. (61)

According to the compactness analysis described in Section 4, we need to find a suitable
test spinor ϕ̃ ∈ L4/3(R2,C2) such that

J(ϕ̃) < β ,

where β is the lower bound for the energy of the bubbles. This allows to recover compactness
of Palais-Smale sequences and to get the existence of a critical point of Lω.

In what follows we fix S ∈ Z \ {0} and consider spinors of the form (4), accordingly. We
assume S > 0, as the case S < 0 follows by the same arguments. In this case the bubbles
are given by (14), so that the threshold energy becomes β(S) = (2S + 1)π, see (15).
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Lemma 5.2. There exists a spinor ϕ̃ ∈ L4/3(R2,C4) of the form (4) such that

J(ϕ̃) < β(S) = (2S + 1)π (62)

Proof. Consider the bubble Ψ in (14). Given ε > 0 define

ψε(x) := θ(x)Ψ(x/ε) , x ∈ R
2 , (63)

where θ ∈ C∞
c (R2), 0 6 θ 6 1, is a cutoff function supported in B2(0), with η ≡ 1 on B1(0).

Define

ϕε(x) := D ψε(x) , x ∈ R
2 . (64)

Our aim is to show that we can choose ϕ̃ = ϕε, for suitable 0 < ε≪ 1.
Step 1: estimate of the numerator. Recalling that DΨ = |Ψ|2Ψ, we have

|ϕε|2 = |ε−1θDΨ(x/ε) − i(σ · ∇θ)Ψ(x/ε)|2

= ε−2θ2|Ψ(x/ε)|6 + |∇θ|2|Ψ(x/ε)|2

+ 2ε−1θ|Ψ(x/ε)|2 Re〈Ψ(x/ε), (−iσ · ∇θ)Ψ(x/ε)〉︸ ︷︷ ︸
=0

,
(65)

where the last term vanishes as the matrix −iσ · ∇θ is skew-hermitian.
On B2(0) we have

|ϕε|2 6 ε−2|Ψ(x/ε)|6 + |∇θ|2|Ψ(x/ε)|2

6 ε−2|Ψ(x/ε)|6
(
1 + ε2|∇θ|2|Ψ(x/ε)|−4

)
.

The elementay inequality (1 + t)
2

3 6 1 + t
2

3 , t > 0, gives on B2(0)

|ϕε|
4

3 6 ε−
4

3 |Ψ(x/ε)|4
(
1 + ε

4

3 |∇θ|2|Ψ(x/ε)|− 8

3

)

= ε−
4

3 |Ψ(x/ε)|4 + |∇θ|2|Ψ(x/ε)| 43

Observing that ϕε is supported on B2(0) and supp∇θ ⊆ B2(0) \B1(0) we find
∫

R2

|ϕε|
4

3 dx 6 ε−
4

3

∫

B2(0)
|Ψ(x/ε)|4 dx+ C

∫

B2\B1

|Ψ(x/ε)| 43

= ε
2

3

∫

B 2
ε

|Ψ|4 dx+ Cε2
∫

B 2
ε
\B 1

ε

|Ψ| 43 dx
︸ ︷︷ ︸

=oε(1)

,

as Ψ ∈ L 4

3 for S 6= 0, see (14). Then there holds
∫

R2

|ϕε|
4

3 dx 6 ε
2

3

∫

B 2
ε

|Ψ|4 dx+ oε(1) = 4(2S + 1)πε
2

3 + o(ε2) .

by (15), so that (∫

R2

|ϕε|
4

3 dx

)3

6 43(2S + 1)3π3ε2 + o(ε
10

3 ) . (66)

Step 1: estimate of the denominator. Recall that Aω = (D+mσ3 − ω)−1 and let ηε be
defined setting

Aωϕε = ψε + ηε , (67)

so that

ηε = Aω(ω −mσ3)ψε . (68)
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There holds
∫

R2

Re〈ϕε, Aωϕε〉 dx =

∫

R2

Re〈ϕε, ψε〉 dx+

∫

R2

Re〈ϕε, ηε〉 dx . (69)

By (64), we have
∫

R2

Re〈ϕε, ψε〉 dx =

∫

R2

θ2Re〈ε−1 DΨ(x/ε),Ψ(x/ε)〉 dx

+

∫

R2

θRe〈−i(σ · ∇θ)Ψ(x/ε),Ψ(x/ε)〉︸ ︷︷ ︸
=0

dx ,

the matrix −i(σ · ∇θ) being skew-hermitian. Then we find, by the definition of θ,
∫

R2

Re〈ϕε, ψε〉 dx =

∫

R2

ε−1θ2|Ψ(x/ε)|4 dx >

∫

B1

ε−1|Ψ(x/ε)|4 dx .

Observe that

ε−1

∫

B1

|Ψ(x/ε)|4 dx = ε

∫

B 1
ε

|Ψ|4 dx = ε

∫

R2

|Ψ|4 dx− ε

∫

R2\B 1
ε

|Ψ|4 dx

By (14) we deduce that |Ψ|4 ∼ r−4(S+1) as r → ∞, so that passing to polar coordinates we
find ∫

R2\B 1
ε

|Ψ|4 dx .

∫ ∞

1

ε

r−4S−3 dr = O(ε4S+2) ,

and then we get
∫

R2

Re〈ϕε, ψε〉 dx > ε

∫

R2

|Ψ(x/ε)|4 dx+O(ε4S+3) = 4(2S + 1)επ +O(ε4S+3) . (70)

We now turn to the second term on the right-hand side of (69). By (68) and (67) we find
∫

R2

Re〈ϕε, ηε〉 dx =

∫

R2

Re〈Aωϕε, (ω −mσ3)ψε〉 dx

=

∫

R2

〈ψε, (ω −mσ3)ψε〉〉 dx +

∫

R2

〈ηε, (ω −mσ3)ψε〉 dx .

Observe that suppψε ⊆ B2, so that elliptic estimates for the Dirac operator (see (68)) and
the Sobolev embedding give

∣∣∣∣
∫

R2

〈ηε, (ω −mσ3)ψε〉 dx
∣∣∣∣ =

∣∣∣∣
∫

B2

〈ηε, (ω −mσ3)ψε〉 dx
∣∣∣∣ 6 C‖ηε‖

L
4
3 (B2)

‖ψε‖L4(B2)

6 C‖ηε‖
W 1, 5

4 (B2)
‖ψε‖L4(B2) 6 C‖ψε‖L4(B2)‖ψε‖L 5

4 (B2)
.

Since ψε(x) := θ(x)Ψ(x/ε)

‖ψε‖L4(B2)‖ψε‖L 5
4 (B2)

6 ε
21

10 ‖Ψ‖L4‖Ψ‖
L

5
4

,

so that ∣∣∣∣
∫

R2

〈ηε, (ω −mσ3)ψε〉 dx
∣∣∣∣ = o(ε2) .
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Moreover, there holds

∫

R2

〈ψε, (ω −mσ3)ψε〉〉 dx = ε2
∫

R2

〈Ψ, (ω −mσ3)Ψ〉〉 dx−O


ε2

∫

R2\B 1
ε

|Ψ|2 dx




= ε2
∫

R2

〈Ψ, (ω −mσ3)Ψ〉〉 dx+ o(ε2) ,

as Ψ ∈ L2 (see (14)). Combining the above observation and (70) we get
∫

R2

Re〈ϕε, Aωϕε〉 dx > 4ε(2S + 1)π + ε2
∫

R2

〈Ψ, (ω −mσ3)Ψ〉〉 dx + o(ε3) ,

and then
(∫

R2

Re〈ϕε, Aωϕε〉 dx
)2

> 42ε2(2S+1)2π2+ε325(2S+1)2π2
∫

R2

〈Ψ, (ω−mσ3)Ψ〉〉 dx+o(ε3)
(71)

Assume

M :=

∫

R2

〈Ψ, (ω −mσ3)Ψ〉〉 dx > 0 . (72)

Then, by (66) and (71) we find

J(ϕε) 6
1

4

43(2S + 1)3π3ε2 + o(ε
10

3 )

42(2S + 1)2π2ε2 + 25(2S + 1)2π2Mε3 + o(ε3)
= (2S + 1)π

1 + o(ε
4

3 )

1 + 2εM + o(ε)

< (2S + 1)π ,

for ε > 0 small, thus proving (62).

Suppose now M < 0 (see (72)). In this case we modify the test spinor (64) and set

ϕε := θ(x)σ3Ψ(x/ε) ,

where σ3 is the third Pauli matrix, see (6). Observe that σ3 is hermitian, unitary and
anti-commutes with D, that is

D σ3 = −σ3 D ,

so that D(σ3Ψ) = −|Ψ|2σ3Ψ, where Ψ is one of the bubbles in (14). It is not hard to see
that (66) still holds. Concerning the denominator in (61), observe that

∫

R2

Re〈ϕε, ψε〉 dx = −
∫

R2

ε−1θ2|Ψ(x/ε)|4 dx = −ε2
∫

R2

|Ψ|4 dx+O


ε2

∫

R2\B 1
ε

|Ψ|4 dx




= −ε2
∫

R2

|Ψ|4 dx+ o(ε2) ,

as Ψ ∈ L2. Moreover, we still have∫

R2

〈ψε, (ω −mσ3)ψε〉〉 dx = ε2
∫

R2

〈Ψ, (ω −mσ3)Ψ〉〉 dx
︸ ︷︷ ︸

=M<0

+o(ε2) ,

and (∫

R2

Re〈ϕε, Aωϕε〉 dx
)2

= 42ε2(2S + 1)2π2 − 25(2S + 1)2π2Mε3 + o(ε3) ,

so that, similarly to the previous case, we get

J(ϕε) 6 (2S + 1)π
1 + o(ε

4

3 )

1− 2εM + o(ε)
< (2S + 1)π ,
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for ε > 0 small, as now M < 0. �

Proposition 5.3. Let S ∈ Z, S 6= 0. Then the functional Lω has a non-trivial critical

point in the subspace ES ⊆ H1/2(R2,C2) of spinors of the form (4). Such spinor is a weak

solution to (1).

Proof. Let c be the minimax level of the dual functional L∗
ω defined in (60). By Lemma

5.2 there holds c < β(S), so that Lemma 4.8 and a standard deformation argument (see,
for instance, [34, Theorem 3.4]) give the existence of a critical point for L∗

ω. Moreover, by
Lemma 3.1 this corresponds to a critical point of Lω, which in turn is a weak solution to
(1) as the latter is the Euler-Lagrange equation of the functional. �

5.2. Regularity. Since the nonlinearity in (1) is Sobolev-critical, regularity does not follow
by standard arguments and one needs a more refined bootstrap argument, as in [9]. To our
knowledge, the basic idea behind that proof can be traced back to [24].

Observe that

(D+mσ3 − ω)(D+mσ3 + ω) =

(
−∆+m2 − ω2 0

0 −∆+m2 − ω2

)
.

Lemma 5.4. Fix p > 1. Let ψ ∈ Lp(R2,C2) be a distributional solution to

(D+mσ3 − ω)ψ = 0 , m > 0, ω ∈ (−m,m) . (73)

Then ψ ≡ 0.

Proof. Let ψ ∈ Lp(Rn,CN ) be a distributional solution to (73), i.e.,
∫

R2

〈ψ, (D+mσ3 − ω)χ〉 dx = 0 , ∀χ ∈ C∞
c (R2,C2) . (74)

Then ψ is also a distributional solution to (−∆+µ2)ψ = 0, with µ2 = m2 − ω2, as
∫

R2

〈ψ, (−∆+µ2)χ〉 dx =

∫

R2

〈ψ, (D+mσ3−ω) [(D+mσ3 + ω)χ]︸ ︷︷ ︸
∈C∞

c (R2,C2)

〉 dx = 0 , ∀χ ∈ C∞
c (R2,C2) .

Then the claim follows by [25, Lemma 9.11]. �

We use the above lemma to rewrite (1) as an integral equation. The Green’s function Γ
of the Dirac operator D is given by

Γ(x− y) = (Dx+mσ3 + ω)G(x− y) , x, y ∈ R
2, x 6= y , (75)

where G(x− y) is the Green’s function of the operator (−∆+µ2), with µ2 = m2−ω2. One
easily checks that this function satisfies for each fixed y ∈ R

2 the equation

(Dx+mσ3 + ω)Γ(x− y) = δ(x− y)I2 in R
2
x (76)

in the sense of distributions. The function G(x− y) is given by

G(x− y) =
1

2π
K0(µ|x− y|) , x, y ∈ R

2, x 6= y ,

with K0 denoting the inverse Fourier transform of (|ξ|2 + µ2)−1 , i.e., the modified Bessel
function of second kind of order 0 [1, Section 9.6]. Then one sees that

Γ(x) ∼ |x|−1 , as x→ 0 (77)

and

|Γ(x)| ∼ |K ′
0(x)| ∼

√
π

2x
e−x , as |x| → ∞ , (78)
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so that it belongs to the weak -L2 space,

Γ ∈ L2,∞(R2,C2) . (79)

Lemma 5.5. If ψ ∈ L4(R2,C2) solves (1) in the sense of distributions, then

ψ = Γ ∗ (|ψ|2ψ) . (80)

Proof. Since ψ ∈ L4, |ψ|2ψ ∈ L
4

3 and therefore, by the weak Young inequality,

ψ̃ := Γ ∗ (|ψ|2ψ)

satisfies

ψ̃ ∈ L4(R2,C2) ,

as Γ ∈ L2,∞. Moreover, it is easy to see that

(D+mσ3 − ω)ψ̃ = |ψ|2ψ in R
2

in the sense of distributions. This implies that

(D+mσ3 − ω)(ψ − ψ̃) = 0 in R
2

in the sense of distributions and therefore, by Lemma 5.4, ψ − ψ̃ ≡ 0, as claimed. �

Proposition 5.6. Any distributional solution ψ ∈ L4(R2,C2) to (1) is smooth.

Proof. Notice that the nonlinearity in (1) is smooth, so that we only need to show that
ψ ∈ L∞(R2,C2). Then smoothness follows by standard elliptic regularity theory.

We first prove that

ψ ∈ Lr(R2,C2) , for all 4 6 r <∞. (81)

We claim that there exists C > 0 such that for all M > 0 there holds

SM := sup

{∣∣∣∣
∫

R2

〈ψ,ϕ〉 dx
∣∣∣∣ : ‖ϕ‖r′ 6 1 , ‖ϕ‖4/3 6M

}
6 C , (82)

so that

sup

{∣∣∣∣
∫

R2

〈ψ,ϕ〉 dx
∣∣∣∣ : ‖ϕ‖r′ 6 1 , ϕ ∈ L4/3

}
6 C ,

and by density and duality, u ∈ Lr.
Fix M > 0 and let ε > 0 to be determined later. Notice that for any 0 < δ 6 µ

fε := |ψ|21{δ6|ψ|6µ}

is bounded and supported on a set of finite measure. We have

‖|ψ|2 − fε‖22 =

∫

{|ψ|<δ}∪{|ψ|>µ}
|ψ|4dx < ε

for suitable δ, µ > 0, since ψ ∈ L4. Set gε := |ψ|2 − fε and consider ϕ ∈ Lr
′ ∩ L4/3 such

that ‖v‖r′ 6 1 and ‖v‖4/3 6M .
Then (80) gives

∫

R2

〈ψ,ϕ〉 dx =

∫

R2

〈(Γ ∗ (fεψ)), ϕ〉 dx +

∫

R2

〈(Γ ∗ (gεψ)), ϕ〉 dx .
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Fubini’s theorem allows to rewrite the second integral on the right-hand side :∫

R2

〈Γ ∗ (gεψ), ϕ〉 dx =

∫

R2

dx 〈
∫

R2

Γ(x− y)(gε(y)ψ(y))dy, ϕ(x)〉

=

∫

R2

dy

∫

R2

dx〈gε(y)ψ(y),Γ(x − y)ϕ(x)〉

=

∫

R2

〈gεψ,Γ ∗ ϕ〉 dy .

(83)

Arguing similarly, recalling that ψ = Γ ∗ (|ψ|2ψ), we the last integral can be rewritten so
that ∫

R2

〈ψ,ϕ〉 dx =

∫

R2

〈Γ ∗ (fεψ), ϕ〉 dx +

∫

R2

〈ψ,χε〉 dx , (84)

where
χε := |ψ|2Γ ∗ (gε(Γ ∗ ϕ)) . (85)

Define s := 2r
2+r . Then we can now estimate the first integral in (84) using the Hölder and

Young inequalities∣∣∣∣
∫

R2

〈Γ ∗ (fεu), ϕ〉 dx
∣∣∣∣ 6 ‖Γ ∗ (fεψ)‖r‖ϕ‖r′ 6 ‖Γ‖2,∞‖fεψ‖s‖ϕ‖r′

6 ‖G‖3,∞‖fε‖ 4s
4−s

‖u‖6‖ϕ‖r′ 6 Cε .
(86)

Notice that the constant Cε does not depend on M, but only on ε, r, ψ.
The second integral on the right-hand side of (84) can be bounded as follows. By (85)

and Hölder and Young inequalities, we get

‖χε‖r′ 6 ‖|ψ|2‖2‖Γ ∗ (gε(Γ ∗ ϕ))‖s′ 6 ‖|ψ|2‖2‖Γ‖2,∞‖gε(Γ ∗ ϕ)‖r′
6 ‖|ψ|2‖2‖Γ‖2,∞‖gε‖2‖Γ ∗ ϕ‖s′ 6 ‖|ψ|2‖2‖Γ‖22,∞‖gε‖2‖ϕ‖r′
6 C ′‖gε‖2‖ϕ‖r′ ,

(87)

the constant C ′ > 0 depending on ψ. Similarly, we get

‖χε‖4/3 6 ‖|ψ|2‖2‖Γ ∗ (gε(Γ ∗ ϕ))‖4 6 ‖|ψ|2‖2‖Γ‖2,∞‖gε(Γ ∗ ϕ)‖4/3
6 ‖|ψ|2‖2‖Γ‖3,∞‖gε‖2‖(G ∗ ϕ)‖4 6 ‖|ψ|2‖2‖Γ‖22,∞‖gε‖2‖ϕ‖4/3
6 C ′‖gε‖2‖ϕ‖4/3 .

(88)

Estimates (87) and (88) give
∣∣∣∣
∫

R2

〈ψ,χε〉 dx
∣∣∣∣ 6 C ′‖gε‖3/2SM 6 C ′εSM ,

by (82). Choosing ε = (2C ′)−1 and taking into account (86) we obtain
∣∣∣∣
∫

R2

〈ψ,ϕ〉 dx
∣∣∣∣ 6 C ′′ +

1

2
SM ,

where C ′′ equals the constant Cε for ε = (2C ′)−1. Taking the supremum over all ϕ we have

SM 6 C ′′ +
1

2
SM =⇒ SM 6 2C ′′ ,

thus proving (81). Recall that by (80), we have

ψ(x) =

∫

R2

Γ(x− y)|ψ(y)|2ψ(y)dy ,

and since we can write Γ as the sum of a function in Lp and one in Lq, for some 1 < p <
3 < q, by the Hölder inequality we get ψ ∈ L∞. �
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5.3. Exponential decay of solutions. We conclude the proof of Theorem (1.2) showing
that the solutions to (1) found in Section (5.1) have exponential decay at infinity. Let
ψ ∈ L4(R2,C2) be a distributional solution to (1), then by Proposition 5.6 such solution
is also smooth. Moreover, the proof of such result shows that ψ ∈ Lp for all p ∈ [4,∞]
so that, using the properties of the Green function Γ in (75) we can also prove that ψ is
Hölder continuous.

Lemma 5.7. Let ψ ∈ L4(R2,C2) be a distributional solution to (1). Then ψ ∈ C0,α for

some α ∈ (0, 1)

Proof. Let x, z ∈ R
2 with x 6= z. Then by (80) we get

|ψ(x) − ψ(z)| =
∣∣∣∣
∫

R2

(Γ(x− y)− Γ(z − y))|ψ(y)|2ψ(y) dy
∣∣∣∣

Take r = |x− z|, and split the above integral as follows
∣∣∣∣∣

∫

B2r(x)
(Γ(x− y)− Γ(z − y))|ψ(y)|2ψ(y) dy

∣∣∣∣∣

+

∣∣∣∣∣

∫

R2\B2r(x)
(Γ(x− y)− Γ(z − y))|ψ(y)|2ψ(y) dy

∣∣∣∣∣ =: I + II .

(89)

By the choice of the radius r we see that B2r(x) ⊆ B3r(z) so that the first term can be
estimated as

I 6

∫

B2r(x)
|Γ(x− y)||ψ(y)|2ψ(y) dy +

∫

B3r(z)
|Γ(z − y)||ψ(y)|2ψ(y) dy . (90)

Then, since ψ ∈ Ls for all s ∈ [4,∞] and using (77) we get
∫

B2r(x)
|Γ(x− y)||ψ(y)|2ψ(y) dy 6 C

∫

B2r(x)
|x− y|−1|ψ(y)| dy

6 C‖ψ‖Lp

(∫

B2r(x)
|x− y|−

p
p−1 dy

) p−1

p

6 C‖ψ‖Lp

(∫

B2r(0)
|w|−

p
p−1 dw

) p−1

p

6 C‖ψ‖Lpr
p−2

p−1 ,

where we have used the Hölder inequality with p > 4 . The other integral in (90) can be
estimated similarly, and thus

I 6 C‖ψ‖Lpr
p−2

p−1 , p > 4 . (91)

We now turn to the second integral in (89). Observe that if y ∈ R
2 \ B2r(x), then y 6= x

and y 6= z so that we can apply the mean value theorem and get the existence of a point
wy on the segment between y − x and z − y so that

|Γ(x− y)− Γ(z − y)| 6 |∇Γ(wy)||x− z| .
By (78) we see that

|∇Γ(wy)| 6 C|y − x|−2 , y ∈ R
2 \B2r(x) ,
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and then, arguing as for (91), we can estimate

II 6 Cr

∫

R2\B2r(x)
|x− y|−2|ψ(y)| dy

6 Cr‖ψ‖Lq

(∫

R2\B2r(0)
|w|−2 dw

) q−1

q

6 C‖ψ‖Lqr3−2 q
q−1 ,

(92)

where q > 4. Then the claim follows combining (91) and (92), by the arbitrariness of
p, q > 4. �

The above result implies, in particular, that ψ is uniformly continuous and thus tends to
zero at infinity.

Lemma 5.8. Let ψ ∈ Lp(R2,C2) ∩ C0,α(R2,C2) for some p > 1, 0 < α < 1. Then

lim
|x|→∞

ψ(x) = 0 . (93)

Proof. Suppose (93) does not hold. Thus there exist ε > 0 and a sequence of points
(xn)n ⊆ R

2, with limn→∞ |xn| = ∞, such that

|ψ(xn)| > ε , ∀n ∈ N .

By uniform continuity there exists δ > 0 such that

|ψ(x)| > ε

2
, if |x− xn| < δ,

so that ∫

|x−xn|<δ
|ψ|p dx >

εpδ

2p
, ∀n ∈ N ,

contradicting the fact that ψ ∈ Lp. �

Assume that ψ is a smooth solution to (1) of the form (4). Plugging such ansatz into (1)
we get the following system for (u, v):





u′ +
S + 1

r
u = (u2 + v2)v − (m− ω)v

v′ − S

r
v = −(u2 + v2)u− (m+ ω)u

(94)

where the u′ := du
dr , v

′ := dv
dr .

Proposition 5.9. Let ψ ∈ L4(R2,C2) ∩ C∞(R2,C2) be a solution to (1) of the form (4).
Then there holds ψ(0) = 0 and

|ψ(r, θ)|2 = u2(r) + v2(r) 6 Ce−
√
m−ωr , r > 0, θ ∈ S

1 , (95)

for some constant C > 0.

Proof. Define f := u2 + v2. Observe that the singular terms in (94) and the smoothness
of ψ imply that u(0) = v(0) = 0, i.e, ψ(0) = 0. Moreover, observe that by Lemma 5.7 and
(93) we know that

lim
r→∞

u2(r) + v2(r) = 0 . (96)

By a direct calculation, we get

f ′ = −S + 1

r
u2 +

S

r
v2 − 2muv ,
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and

(uv)′ = −uv
r

+ (v2 − u2)(u2 + v2)− (m− ω)v2 − (m+ ω)u2 .

Then a straightforward computation gives

f ′′(r) = 2m(m− ω)v2(r) + 2m(m+ ω)u2(r) + V (r)(u2(r) + v2(r)) , (97)

where limr→∞ V (r) = 0 by (96). Given 0 < ε < 2m(m − ω), take Rε > 0 such that
V (r) > −ε for all r > Rε. Then the function

g(r) := f(r)− f(Rε)e
−
√

2m(m−ω)−ε(r−Rε) , r > Rε ,

verifies g(Rε) = 0, limr→∞ g(r) = 0 and

g′′(r) > (2m(m− ω)− ε)g(r) , r > Rε .

Then the maximum principle gives g(r) 6 0, for all r > Rε, so that we find

f(r) 6 f(Rε)e
−
√

2m(m−ω)−ε(r−Rε) , for r > Rε .

By continuity, we conclude that there exists a constant Cε > 0 such that

f(r) 6 Cεe
−(
√

2m(m−ω)−ε)r , for r > 0. (98)

Equation (97) can be rewritten as

−f ′′(r) + k2f(r) = G(r) , r > 0 ,

where k2 = 2m(m − ω) and G(r) = −V (r)[(1 + 4mω)u2(r) + v2(r)] for which a decay
estimate analogous to (98) holds. Recall that f(0) = 0, that is, f verifies Dirichlet boundary
conditions, so that applying the Green’s function one finds

f(r) = − 1

2k

∫ ∞

0
G(ρ)

(
e−k|r−ρ| + e−k|r+ρ|

)
dρ .

Then (95) easily follows. �
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