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Abstract—Practical deployments of Machine-Learning(ML)-
based solutions for failure management in optical networks often
suffer from limited data availability, due to, especially, scarcity
of labelled data describing different failure scenarios. Transfer
Learning (TL) is regarded as a promising direction in cases of
data scarcity, thanks to its ability to transfer knowledge from
a Source Domain (SD) (e.g, SD could be a digital twin or
a laboratory testbed) to a Target Domain (TD) (e.g., the in-
field network). In this paper, we focus on cross-lightpath and
cross-task application of TL for failure localization and failure
detection in optical networks. We found that, depending on the
number of retrained parameters in the ML model, cross-lightpath
TL for failure localization provides satisfactory accuracy (higher
than 90%, in some cases) with limited amounts of TD data,
and is also convenient in terms of TD retraining duration with
respect to cases where TL is not used. Moreover, we found
that cross-task failure detection/localization reaches up to 12%
or 25% improvement in TD accuracy when considering failure
localization and detection as TD task, respectively.

Index Terms—Transfer learning, failure detection and local-
ization, optical networks, OSNR

I. INTRODUCTION

During lightpath lifetime, it is fundamental to guarantee
proper transmission quality and, if needed, quick lightpath
restoration to comply with the stringent availability require-
ments of 5G and beyond services supported by modern optical
networks. In most situations, when dealing with soft-failures
(that in this paper we simply refer to as failures), consisting
of gradual optical signal degradation until unacceptable qual-
ity threshold, continuous monitoring of transmission quality
parameters, such as Bit Error Rate (BER), Optical Signal
to Noise Ratio (OSNR) etc.. Machine Learning (ML) has
been already demonstrated to be an effective tool to extract
useful information from field network data to address different
failure-management tasks, such as failure detection, identifi-
cation, localization and magnitude estimation [1]. These ML-
based failure management solutions have also been applied
to different types of failures, e.g., involving filters and/or
amplifiers malfunctioning [1], [2], as well as to cyberthreats
at the optical layer [3].

However, in practical deployments, since ML-assisted op-
tical network failure management is usually modeled as a
supervised ML problem, it is often difficult to collect suffi-
cient failure labeled data for different failure conditions (e.g.,
type, location, severity, etc.) to train ML models. For this
reason, Transfer Learning (TL) is being investigated to address
data scarcity in failure management problems. TL consists

of training a ML model using data retrieved from a source
domain (SD) and applying (i.e., transferring) this knowledge
to a target domain (TD), i.e., the network domain where the
model is deployed, where a limited amount of data is available
and is used to fine-tune the original model. In the context
of failure management in optical networks, the SD can be,
e.g., an emulated digital twin, a laboratory testbed, or even a
network segment dedicated to data collection, where failures
are purposely injected with to generate a sufficiently-large
training dataset. As an example, in a previous work [4], we
have trained a failure-identification model on a SD lightpath
with certain characteristics (e.g., in terms of number of links,
number and type of devices, etc.) and adopted TL to fine-tune
the model with a limited amount of data coming from the TD
lightpath with different characteristics. In this paper we refer
to this scenario as cross-lightpath TL.

TL can also be beneficial in other scenarios where knowl-
edge transfer is performed between different tasks, i.e., dif-
ferent problems (note that in this case, SD and TD use
datasets might not be necessarily distinct). For example, a ML
classifier can be trained for failure detection, i.e., to assess
whether a lightpath is affected by a failure, representing the
SD (or source task), and then fine-tuned with a limited amount
of failure-location data to perform failure localization, that
represents the TD (or target task). In this paper we refer to
this scenario as cross-task TL. Cross-task TL may become
useful, e.g., when only part of the data is available also with
labels used for the target task (e.g., information on failure
location), while most data is labeled only with source task
labels (e.g., information on absence/presence of failure). Note
that the opposite scenario, i.e., performing TL from failure
localization to failure detection, is also possible, and it is
expected to have good transferability, as information on failure
localization also includes information on failure detection1.

A. Related Work

Different applications of TL in optical networking have
been investigated, mostly focusing on Quality of Transmis-
sion (QoT) estimation. In [5], authors train Artificial Neural
Networks (ANNs) using data from two different topologies
and reuse the models on a different topology to estimate

1Note that, even though a failure localization model can be also used, as
is, to perform failure detection, the failure localization model might not have
the same accuracy of a failure detection model. So transfer learning from
localization to detection is still meaningful.



the generalized optical-signal-to-noise-ratio (G-OSNR) for un-
established lightpaths. A similar approach has been used also
in [6], where authors estimate QoT of unestablished lightpaths
with the objective of reducing the G-SNR uncertainty and
hence the design margins. The work in [7] proposes a genetic
algorithm that optimizes the ANN architecture and the set of
weights to be transferred when applying TL to multi-domain
elastic optical networks, considering lightpaths with different
characteristics in terms of path length, modulation format and
devices conditions. The effectiveness of TL for QoT estimation
is also evaluated in [8] and compared with active learning, an
approach that addresses data scarcity by providing information
on the portions of the features space where collecting new data
is more informative to improve model performance.

Considering other optical-networking applications, TL is
used in [9] to transfer knowledge between different ML algo-
rithms, namely, Recurrent and Feed-forward Neural Networks,
to address nonlinear equalization in short-reach optical links.
Authors of [10] adopt TL for impairments mitigation in long-
haul coherent optical transmission systems with different char-
acteristics, including launch power, modulation format, symbol
rate, and fiber plants and considering different types of fibers.
Ref. [11] uses TL to predict spectrum defragmentation and
optimize resources utilization in space-division-multiplexed
elastic optical networks, leveraging knowledge acquired on a
simple source topology and applying the pre-trained model on
a larger topology where a limited amount of data is available.
To the best of our knowledge, the application of TL to failure
management in optical networks is almost unexplored. In
one of our previous work [4], we considered cross lightpaths
TL for failure identification across lightpaths with different
lengths, but no cross-lightpath TL for localization, and, more
importantly, no cross-task TL were ever considered.

B. Paper Contribution

For the first time to the best of our knowledge, we use
real OSNR data collected at lightpaths’ receiver of an optical
network testbed, and evaluate TL for failure localization across
different lightpaths, which mainly differ in their length and
number/type of traversed devices. We also evaluate the impact
of cross-task TL between failure localization and detection,
i.e., we reuse ML models pre-trained to solve failure detection
(respectively, localization) and apply TL to solve localization
(resp., detection) on the same lightpath.

The paper is organized as follows. In Sec. II, we define
the problem of ML-based failure detection and localization in
optical networks. Sec. III describes the steps constituting the
cross-task and cross-lightpaths failure detection and localiza-
tion based on TL. Finally, we discuss numerical results in Sec.
IV, and conclude the paper in Sec. V.

II. ML-BASED FAILURE DETECTION AND LOCALIZATION

A. Problem Definition

We model the failure-detection and failure-localization
problems in optical networks as two supervised classification
problems. On the one hand, failure detection is a binary
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Fig. 1: Testbed setup.

classification problem, where the two classes indicate the
presence or absence of a failure along the observed lightpath.
On the other hand, failure localization is a multi-class clas-
sification problem, where each class corresponds to a failure
location, i.e., in this study, one of the fiber links traversed by
the lightpath (also including the case with no failure along
the lightpath). Hence, failure detection can be considered
as a generalization of failure localization, where all classes
indicating a failure on a specific link correspond to a same
class (i.e., presence of failure in any link). 2

In both problems, we concentrate on a given lightpath for
which we are given the OSNR at the receiver, monitored
with sampling period of TOSNR seconds (e.g., TOSNR = 1).
Classification is performed considering OSNR “windows”
of duration W seconds, each one including a sequence of
1+W/TOSNR consecutive OSNR observations (also including
the OSNR samples at the start and end times of the window).

B. Testbed description

We consider TL-based failure detection and localization
using real data obtained on a testbed of the National Institute of
Information and Communications Technology (NICT) located
in Sendai, Japan. The testbed is shown in Fig. 1 and consists of
4 ROADMs, identified as Nodes A, B, C and D, interconnected
through optical fibers, and equipped with one pre-amplifier
and one booster (OA in the figure) at their input and output,
respectively, whose gain is set to recover from link or node
loss. Each fiber link can emulate fiber spans of up to 80 km
using a Variable Optical Attenuator (VOA) with up to 20
dB attenuation. Failure scenarios are mimicked by enforcing
an extra-attenuation of 11 dB in one of the traversed links
by means of a Wavelength Selective Switch (WSS). Figure
1 also shows the two lightpaths considered in our dataset,
namely LP1 and LP3, traversing 1 and 3 links, respectively,
both terminated at ROADM node D, where an OSNR monitor
is installed after node pre-amplifier for OSNR data collection.

2As we consider only failures occurring in fiber links (i.e., not in nodes),
failure detection and localization coincide when the observed lightpath tra-
verses only one link, although the two models are not necessarily the same.
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To perform data collection, each lightpath is set-up in the
testbed separately, i.e., no other lightpath is simultaneously
set-up in the testbed. For each lightpath, the same 100 GHz
bandwidth with central frequency 194.8 THz is used to trans-
mit a 10 Gbit/s signal using OOK modulation format.

III. TL FRAMEWORK FOR CROSS-TASK AND
CROSS-LIGHTPATH FAILURE DETECTION AND

LOCALIZATION

In this section we describe the framework used to perform
cross-task and cross-lightpath TL for failure detection and
localization. Figure 2 shows the main steps of this framework,
which are detailed in the following subsections.

A. OSNR Data Collection and Normalization

To generate the initial dataset, raw OSNR data is collected
for two lightpaths, i.e., LP1 and LP3 shown in Fig. 1.

For each lightpath, besides the normal case of operation
with no failure, we consider different failure scenarios (i.e.,
failure classes) where extra-attenuation failure is induced in
one of the links traversed by the lightpath. For each scenario,
either normal or failure, OSNR data is collected for a total
duration of 6 hours, at a sampling period of TOSNR = 1
second, so the entire dataset consists of around 36 hours of
OSNR monitoring at lightpaths receivers.

After data collection, raw OSNR data is processed and,
for each lightpath, OSNR samples are standardized to obtain
OSNR distributions with 0 mean and unit standard deviation.
This operation is performed as we are more interested in the
relative behaviour of lightpaths’ OSNR rather than its specific
absolute values, that may be very different also for lightpaths
that have similar failure characteristics, due to the possible
difference in lightpaths settings (also in non-failure states of
operation), such as span length, number of hops, wavelength,
types/number/gain of the traversed optical amplifiers, etc.

B. OSNR Window Formation and Features Extraction

To train the ML models, we further pre-process raw OSNR
to generate OSNR windows containing a sequence of OSNR
samples for a duration of W seconds. Once windows are
formed, they are treated independently one from another at
train/test phases, as our goal is to train failure detection and
localization models that can work with a single “snapshot”of
the OSNR windows. Following the approach in [1], [4], for
each OSNR window we consider the following 16 features:

• x1 − x10: the ten strongest spectral components in the
window, extracted by applying Fast Fourier Transform
(FFT) on the OSNR window;

• x11 = min: minimum OSNR value;
• x12 = max: maximum OSNR value;
• x13 = mean: mean OSNR value;
• x14 = std: OSNR standard deviation;
• x15 = p2p: peak-to-peak OSNR, i.e., p2p = max−min;
• x16 = RMS: OSNR root mean square.
We then perform features normalization to obtain features

ranging between -1 and 1 (normalization is regularly used to
avoid that specific features provide different impact on ML
algorithm training due to their different scale, and to reduce
the duration of model training).

Finally, we also assign a label to each window, that depends
on the specific lightpath scenario (i.e., presence/absence of
failure and its location), and problem considered (i.e., detec-
tion or localization). As an example, in the case of failure
localization on LP3 with 3 hops, we have 4 possible labels,
corresponding to the cases of no failure and failure at each
one of the three links traversed by the lightpath.

C. Generation of SD/TD Scenarios

We run various experiments to evaluate TL for cross-
lightpath and cross-task failure detection and localization. For
each experiment, we consider subsets of the original dataset
and generate distinct SD and TD datasets as follows:

• Cross-lightpath failure localization: here we evaluate TL
performance when a ML model is pre-trained and opti-
mized to perform failure localization on a SD lightpath
and is then fine-tuned with a limited amount of data from
the TD lightpath, where failure localization is performed.
We consider two alternatives, i.e., when we consider LP1
and LP3 as SD and TD, respectively, and vice-versa.

• Cross-task failure detection/localization: we evaluate TL
performance when the ML model is pre-trained to solve
a problem and then retrained and fine-tuned to solve an-
other problem. We consider both detection-to-localization
and localization-to-detection TL, considering LP3 in
all scenarios. Note that, differently from cross-lightpath
TL, in these cross-task TL use-cases, the number of
possible outputs in the two problems (localization and
detection) is different, so proper ML model adaptation is
necessary when fine-tuning the model, as explained later.
More specifically, since we consider a 3-hop lightpath,
we have 4 classes for failure localization (corresponding
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localization in LP3. Impact of ANN hyperparameters on
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to the cases of no failure and failure in one of the 3
links traversed by the lightpath) and 1 class for failure
detection, (representing the presence of failure along the
lightpath, regardless its location). Note that, for this TL
use-case, we do not consider LP1 data, as detection and
localization problems coincide.

D. ML Model Optimization

After SD and TD datasets have been identified, we consider
SD data only for ML model optimization. In this paper we
consider feed-forward ANNs as ML models, as they are well
recognized as practical models to apply TL. We optimize
the ANN hyperparameters (i.e., number of hidden layers,
number of hidden neurons per layer, and dropout rate) by
means of k-fold cross-validation. Moreover, we consider ML
model optimization for different values of window duration
W , ranging from 10 to 100 seconds.

Note that, given the high number of ANN hyperparameters
and values of window duration that can be used to optimize
the various ML models, we here report a sensitivity analysis
showing the impact of the number of neurons and number of
hidden layers of the ANN in model performance, expressed
in terms of classification accuracy. This analysis is shown in
Fig. 3, where we consider the problem of failure localization
in lightpath LP3 and set the window duration as W = 50
seconds. An exhaustive evaluation of all the combinations of
parameters is not the main focus of our paper.

This analysis suggests that, for the set of tested hyperparam-
eters, the most reasonable choice is to set the number of hidden
layers to 4, as it represents the model with lowest complexity
(less trainable parameters) providing the highest accuracy. In
fact, we can observe from the figure that with lower (i.e.,
3) or higher (especially 7) hidden layers, model performance
deteriorates, due to underfitting and overfitting, respectively.
On the other hand, an increasing number of neurons per layer
shows an improvement in model performance compared to
lower values, as shown in the figure, where we obtain a plateau
in accuracy with 400 neurons per layer.

E. TL-based Model Fine-Tuning

After ML model has been optimized and trained using SD
data, fine-tuning can be applied by retraining the model with
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Fig. 4: Retraining options in the TL-based model fine-tuning.

few TD data. Feed-forward ANNs, as those used in this paper,
are known as universal function approximators, i.e., they are
able to represent raw data as non-linear combinations of the
input features at the hidden layers, representing latent features,
and theoretically learn any non-linear function that maps the
input features in the output labels. For this reason, ANNs are
particularly suitable for TL, due to the fact that model weights
learned during training on SD might be sufficiently informative
also for the TD data, and so ANN model structure (i.e., the
hyperparameters) and weights can be reused in the TD. In
this context, retraining the ANN by applying backpropagation
algorithm with limited amounts of TD data starting from a
pre-trained model aims at maintaining the ability, acquired
in the SD, in representing data with latent features, i.e., the
activations of neurons at a certain hidden layer, and adjusting
the weights in the subsequent layers to generate an output that
is adapted to the TD.

We perform fine-tuning of pre-trained models in different
ways, i.e., by considering different layers in the ANN to
be retrainable with TD data. More specifically, we consider
retraining of 1) the last (output) layer, 2) the last two layers,
3) the last three layers or 4) all layers, as graphically shown
in Fig. 4. Note that, when considering cross-task TL between
failure detection and localization considering a three-hop light-
path (LP3), the last layer of the ANN (i.e., the output layer) has
to be retrained, as the SD and TD consist of two classification
problems (tasks) with different number of classes.

IV. NUMERICAL RESULTS

In this section, we discuss TL results obtained for cross-
lightpath and cross-task failure detection and localization un-
der different SD/TD scenarios. We concentrate on the impact
of an increasing number of TD samples used for retraining,
and evaluate model performance in terms of classification
accuracy and TD training duration, considering, for each case,
a fixed amount of 20% of the specific TD data as test set.
Specifically, for all cases we evaluate the impact of retraining
subsets of the ANNs with TD data, i.e., retraining only the last
one/two/three layer(s) or the entire ANN, and compare these
cases with the following benchmark scenarios:

• SD only: we train the ML model using only SD data and
then test on TD data without any fine-tuning with TD



10 100 1,000 10,000
0.2

0.4

0.6

0.8

1

# of TD samples

T
D

A
cc

ur
ac

y

No pre-train
Retrain last layer
Retrain last 2
Retrain last 3
Retrain all
SD only
TD only

(a) Localization: LP3→LP1

10 100 1,000 10,000
0.2

0.4

0.6

0.8

1

# of TD samples

(b) Localization: LP1→LP3

10 100 1,000 10,000
0.2

0.4

0.6

0.8

1

# of TD samples

(c) LP3: Detection→Localization

10 100 1,000 10,000
0.2

0.4

0.6

0.8

1

# of TD samples

(d) LP3: Localization→Detection

Fig. 5: Accuracy vs. # of TD samples used for retraining in the various TL scenarios and window size W=50 seconds. (a-b)
Cross-lightpath failure localization: (a) SD=LP3, TD=LP1; (b) SD=LP1, TD=LP3. (c-d) Cross-task failure detection/localization
for LP3: (c) SD=detection, TD=localization; (d) SD=localization, TD=detection.

data3. SD only is a lower bound on model performance.
• TD only: we perform training with all available TD data

(excluding the portion used for testing). TD only provides
an upper bound on model performance;

• No pre-train: the model is not pre-trained with SD data,
but instead it is trained from scratch with the same TD
data used in the proposed FL approach.

Moreover, in all cases, the number of SD windows used to
optimize/train the initial ML model (step 4 in Fig. 2) is around
21000, and each window has duration W=50 seconds.

A. Cross-lightpath TL

We now consider the application of TL for failure-
localization across lightpaths LP1 and LP3, shown in Fig.
1. We are interested in observing whether changing lightpath
length between SD and TD has an impact in TL performance.
For the various strategies, we show TD accuracy for increasing
number of TD samples used for retraining for the two cases
where {SD=LP3, TD=LP1} (LP3→LP1 in Fig. 5(a)) and
{SD=LP1, TD=LP3} (LP1→LP3 in Fig. 5(b)).

First, we observe that failure localization on LP3 is more
difficult compared to LP1, as intuition would suggest, due to
the fact that more failure locations must be discriminated.
In fact, higher accuracy is obtained in TD only scenario
(horizontal dashed lines), when LP3 is the TD (Fig. 5(b)),
compared to the case where LP1 is the TD (Fig. 5(a)). For
both LP3→LP1 and LP1→LP3 cases, performing TL by
retraining only the last layer (Retrain last layer) is the worst
choice in terms of accuracy, which is lower compared to other
approaches and even saturates to a maximum value (around
0.92 and 0.5 for LP3→LP1 and LP1→LP3, respectively) for

3Note that, in case the SD and TD problems have different number of
outputs (e.g., different possible failure locations as happens for lightpaths
with different number of hops), after training with SD data, the weights of
the last layer in the ANN are randomly chosen.
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higher TD samples used to retrain. This suggests that, for
cross-lightpath localization, fine-tuning weights only at the last
layer is not sufficient, as there is a strong bias from the SD
training phase, especially when transferring model knowledge
from a shorter to a longer path (as in Fig. 5(b)). Instead,
retraining two or more layers provides similar accuracy, that,
for the LP3→LP1 case, is around 90% or higher when using
100 TD data points or more, and reaches the performance of
TD only for about 5k data points used for retraining. For the
LP1→LP3, TL accuracy when retraining two or more layers is
satisfactory (i.e., higher than 80%) only after using 10k points
for retraining, due to the fact that the TD lightpath has more
candidate failure location compared to the SD lightpath.

Another interesting observation is that, for both LP3→LP1
and LP1→LP3 cases, retraining two or more layers has similar
performance than No pre-train case, suggesting that the effort
produced by TL during fine-tuning of trainable parameters is
spent to compensate the bias acquired during training with SD
data and maintained in the ANN layers that are kept unchanged
when passing from SD to TD. This result, however, does not
directly suggests that TL is a no-go option for this problem,



for a reason related to training duration with TD data. In
Fig. 6, we show training duration with TD data for the TL
cases compared to No pre-train. For a fixed amount of TD
data points used for retraining (x axis), fine-tuning (Retrain
all) or training from scratch (No pre-train) all weights in the
ANN are not scalable as they require in general much higher
training time w.r.t. retraining less layers. It is true that, when
adopting TL, an initial training is also performed on the SD,
which is not due in No pre-train case. However, it is fair
to assume that training on a SD is not an issue both from
data collection and training duration perspectives. Therefore,
TL (and in particular, for the LP3→LP1 localization under
analysis, Retrain last 2) is a good compromise between TD
accuracy, needed amount of TD data and TD training duration.

B. Cross-task TL

Moving to cross-task TL, we now show results for
detection→localization and localization→detection use cases
in Figs. 5(c)-(d), considering LP3. We observe that, similarly
to cross-lightpath cases, retraining only the last layer is not suf-
ficient in detection→localization (see Fig. 5(c)), but retraining
two or three layers outperforms the other strategies especially
for medium-low amounts of TD data (between 100 and 1000
data points), when accuracy is up to around 12% higher than
the other cases. On the other hand, retraining only the last layer
is sufficient (and even more convenient, due to the reduced
number of trainable ANN parameters, hence reduced training
duration) for localization→detection (see Fig. 5(d)). This is
due to the fact that the TD task (i.e., failure detection) is a
more general version of failure localization, where less level of
detail is needed for the classification, considering that failure
localization distinguishes between no failure and all failures
at all possible links, while failure detection only distinguishes
between no failure and failures at any link. The advantage of
Retrain last layer in this case is more evident if compared to
Retrain all and No pre-train scenarios, where accuracy is up
to 25% higher for a number of TD samples around 1000.

V. CONCLUSION

We focus on the application of TL considering cross-
lightpaths and cross-task failure detection and localization,
considering ANN models and using real OSNR traces col-
lected at lightpaths receivers on a laboratory testbed. For cross-
lightpath failure localization, we found that retraining at least
two ANN layers is necessary to have relatively high accuracy,
in the order of 90% (respectively, 80%) for the cases when
the TD lightpath is shorter (respectively, longer) than the SD
lightpath and with at least 100 (respectively, 10k) data points.
In general, retraining at least two layers outperforms other
cases (including, in particular, No pre-train, Retrain all and
Retrain last layer) in terms of accuracy, training duration or
both. For cross-task failure detection/localization, we found
that, considering failure detection as TD task allows significant
improvement in TD accuracy, also for limited amounts of TD
data points (around 100-1000) and also in cases where few
ANNs parameters are fine-tuned with TL (i.e., Retrain last

layer case), mainly due to the fact that less level of detail is
needed for failure detection, compared to failure localization.
Conversely, for detection-to-localization TL, relatively high
number of TD data (in the order of few thousands) is necessary
to have 80% or higher accuracy.

As future work, we plan to extend this study by considering
different ML algorithms, such as tree-based models. We also
aim at addressing TD data scarcity by means of synthetic data
generation leveraging few real TD data.
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