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ABSTRACT: Life-cycle reliability assessment of deteriorating systems may involve the modeling of 
complex stochastic processes, further propagating uncertainties and exacerbating computational efforts. 
This paper discusses a novel simulation-based framework to estimate the time-variant failure 
probabilities based on Importance Sampling (IS) with Stationary Proposal (SP) distribution. IS 
methodologies allow to improve computational efficiency and estimate accuracy of simulation-based 
failure probabilities. The proposed methodology extends adaptive numerical approaches traditionally 
developed for time-invariant problems, in which the Kullback–Leibler Cross-Entropy is minimized to 
find a near-optimal simulation density from a chosen family of parametric distributions. The proposed 
framework is applied to typical reliability problems extended to account for a life-cycle perspective and 
time-variant seismic risk of deteriorating bridge networks. 

1. INTRODUCTION 
Monte Carlo simulation (MCS) is a viable tool to 
solve large-scale reliability and risk analysis 
problems.  Its feasibility can be limited in practice 
when intensive numerical analyses are required to 
estimate small probabilities over complex failure 
domains, such as seismic risk analysis of 
infrastructure networks (Messore et al. 2021). 
Life-cycle assessment of deteriorating systems 
may also involve the modeling of complex 
stochastic processes, further exacerbating the 
computational effort (Yang et al. 2017). 
Incorporating aging effects and cumulative 
damage into standard computational procedures is 
an open issue in reliability assessment of stand-
alone structures and seismic vulnerability of 
large-scale systems (Silva et al. 2019, Capacci and 
Biondini 2022a). 
In this paper, a novel simulation-based framework 
for life-cycle structural reliability and risk 
assessment is proposed based on Importance 
Sampling with Stationary Proposal distribution 
(SP-IS). This is a variance reduction technique 
formulated to improve the trade-off between 

computational efficiency and estimate accuracy. 
Random variables and stochastic processes are 
efficiently sampled from a time-invariant 
distribution, whilst the reliability estimates are 
defined by weighting each failed sample based on 
its evolving likelihood of occurrence over the 
target lifetime. The proposed numerical approach 
relies on the selection of a near-optimal 
simulation density adaptively identified by 
minimizing the Kullback–Leibler (KL) Cross-
Entropy (CE), which is a measure of the 
discrepancy between a target sampling function 
and a parametric density distribution of a 
preselected family (Rubinstein 1981). The 
proposed CE-based framework is numerically 
investigated for typical structural reliability 
problems extended to a life-cycle perspective. The 
methodology is then applied to estimate time-
variant risk metrics, such as the mean annual rate 
of target resilience exceedance, for a small-scale 
deteriorating bridge network. Estimate accuracy 
and computational effort are investigated in 
comparison with traditional simulation 
approaches. 
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2. STATIONARY PROPOSAL 
IMPORTANCE SAMPLING (SP-IS) 

2.1. Time-variant failure probability 
In life-cycle structural reliability and risk 
assessment, the effects of uncertainties are time-
variant due to mechanical and deterioration 
processes. The evolution in time of structural 
capacity and demand are related to stochastic 
processes X(t) generated based on the structural 
model (e.g., material properties, geometry, 
loadings, among others), as well as on 
deterioration indices describing the degradation in 
time of the structure. 

Simulation methods are intended to 
numerically estimate the probability of event 
occurrence based on the formulation of a 
multidimensional integral, such as the 
mathematical expectation of the failure indicator 
function I in terms of a set of Random Variables 
(RVs) X characterized by the time-variant joint 
Probability Density Function (PDF) fX(x): 

 𝑃𝑃𝑓𝑓(𝑡𝑡) = 𝐸𝐸𝑓𝑓𝐗𝐗(𝑡𝑡)[𝐼𝐼(𝐱𝐱)] = ∫ 𝐼𝐼(𝐱𝐱) ⋅ 𝑓𝑓𝐗𝐗(𝑡𝑡)(𝐱𝐱)𝑑𝑑𝐱𝐱𝐱𝐱  (1) 

The indicator I is a Heaviside step function equal 
to 1 in the failure domain described by {g(x)≤0}, 
where g(x) is the limit state function, and equal to 
0 in the safe domain. 

2.2. Importance sampling estimate 
The aim of Importance Sampling (IS) is to 
improve the accuracy of reliability estimates by 
reformulating the failure probability in terms of an 
alternative sampling distribution ψ(x), also 
referred to as proposal or sampling distribution: 

 𝑃𝑃𝑓𝑓(𝑡𝑡) = ∫ 𝐼𝐼(𝐱𝐱) ⋅ 𝑓𝑓𝐗𝐗(𝑡𝑡)(𝐱𝐱|𝑡𝑡) ⋅ 𝜓𝜓(𝐱𝐱)
𝜓𝜓(𝐱𝐱)𝑑𝑑𝐱𝐱𝐱𝐱  (2) 

The IS reformulation of the failure probability 
relies on the IS weighting coefficient W defined as 
the ratio between the actual time-variant PDF fX(t) 
and the sampling time-invariant PDF ψ: 

 𝑊𝑊(𝐱𝐱|𝑡𝑡) = 𝑓𝑓𝐗𝐗(𝑡𝑡)(𝐱𝐱)

𝜓𝜓(𝐱𝐱)  (3) 

The time-variant IS failure probability 
corresponds to the mathematical expectation in 

terms of the sampling PDF of the product between  
indicator function I and coefficients W: 

 𝑃𝑃𝑓𝑓(𝑡𝑡) = 𝐸𝐸𝜓𝜓[𝐼𝐼(𝐱𝐱) ⋅ 𝑊𝑊(𝐱𝐱|𝑡𝑡)] (4) 

The failure probability can also be formulated 
based on the multidimensional integral as follows: 

 𝑃𝑃𝑓𝑓(𝑡𝑡) = ∫ 𝐼𝐼(𝐱𝐱) ⋅ 𝑊𝑊(𝐱𝐱|𝑡𝑡) ⋅ 𝜓𝜓(𝐱𝐱)𝑑𝑑𝐱𝐱𝐱𝐱  (5) 

The IS failure probability estimator is the 
weighted sample mean of the indicator function 
with sample size N: 

 𝑝𝑝𝐼𝐼𝐼𝐼(𝑡𝑡) = 1
𝑁𝑁
∑ 𝐼𝐼𝑖𝑖 ⋅ 𝑤𝑤𝑖𝑖(𝑡𝑡)𝑁𝑁
𝑖𝑖=1  (6) 

The weighting coefficient is the sample time-
variant coefficient wi(t)=W(xi|t) evaluated for the 
i-th simulated set of basic RVs xi at time t. The 
variance of the IS estimator is evaluated as 
follows (Capacci and Biondini 2021): 

𝜎𝜎𝐼𝐼𝐼𝐼2 (𝑡𝑡) ≈ 1
𝑁𝑁−1

�1
𝑁𝑁

 ∑ [𝐼𝐼𝑖𝑖 ⋅ 𝑤𝑤𝑖𝑖
2(𝑡𝑡)]𝑁𝑁

𝑖𝑖=1 − 𝑝𝑝𝐼𝐼𝐼𝐼2 (𝑡𝑡)� (7) 

In traditional MCS, samples generation is 
based on a distribution progressively evolving 
within the sample space over the system lifetime, 
requiring one simulation per observation time t. 
On the other hand, SP-IS involves a single 
simulation to estimate probabilities at different 
times t by suitably weighting each failed sample. 
The choice of the sampling density ψ is a key issue 
in the SP-IS framework to effectively improve the 
trade-off between accuracy and sample size. 

3. CROSS-ENTROPY-BASED OPTIMAL 
DISTRIBUTION (CE-SP-IS) 

3.1. Kullback-Leibler (KL) cross-entropy (CE) 
minimization 

Minimizing the IS estimate variance effectively 
improves the simulation performance. The aim of 
methodologies based on Cross-Entropy (CE) is to 
formulate a near-optimal simulation density from 
a chosen family of parametric distributions. The 
Kullback-Leibler Cross-Entropy (KL-CE) 
measures the discrepancy between a prescribed 
distribution and the absolute best sampling 
density (Rubinstein 1981). The KL-CE between 
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the best possible density p* and a prescribed 
proposal PDF ψ with parameters v is expressed as: 

 𝐷𝐷𝐾𝐾𝐾𝐾 = ∫ 𝑝𝑝∗(𝐱𝐱) ⋅ ln 𝑝𝑝∗(𝐱𝐱)𝑑𝑑𝐱𝐱𝐱𝐱 − 

 −∫ 𝑝𝑝∗(𝐱𝐱) ⋅ ln𝜓𝜓(𝐱𝐱,𝐯𝐯)𝑑𝑑𝐱𝐱𝐱𝐱  (8) 

The proposal parameters v minimizing the 
cross-entropy are obtained by formulating an 
optimization problem that maximizes the second 
term in DKL (i.e., the only term where v appears): 

argmin𝐯𝐯 𝐷𝐷𝐾𝐾𝐾𝐾 =  

 = argmax𝐯𝐯 ∫
𝐼𝐼(𝐱𝐱)⋅𝑓𝑓𝐗𝐗(𝐱𝐱)

𝑃𝑃𝑓𝑓
⋅ ln𝜓𝜓(𝐱𝐱,𝐯𝐯)𝑑𝑑𝐱𝐱𝐱𝐱  (9) 

where p* corresponds to the density of the random 
RVs censored based on the indicator function I(x) 
and normalized by the target failure probability Pf. 

The optimization problem is solved by 
decoupling the target parameters v of the near-
optimal distribution from the iteratively updated 
parameters w of the sampling density. The basic 
RVs distribution fX(x) in the integrand function of 
Equation (9) is accommodated by exploiting the 
definition of IS analytically defined as 
W(x,w)=fX(x)/ψ(x,w) in order to introduce an 
alternative distribution ψ(x,w) of the same family 
of ψ(x,v): 

argmin𝐯𝐯 𝐷𝐷𝐾𝐾𝐾𝐾 =  
 = argmax𝐯𝐯 ∫

𝐼𝐼(𝐱𝐱)⋅𝑊𝑊(𝐱𝐱,𝐰𝐰)⋅𝜓𝜓(𝐱𝐱,𝐰𝐰)
𝑃𝑃𝑓𝑓

ln𝜓𝜓(𝐱𝐱, 𝐯𝐯)𝑑𝑑𝐱𝐱𝐱𝐱 =

 = argmax𝐯𝐯 𝐸𝐸𝜓𝜓(𝐱𝐱,𝐰𝐰) �
𝐼𝐼(𝐱𝐱)⋅𝑤𝑤(𝐱𝐱,𝐰𝐰)

𝑃𝑃𝑓𝑓
ln𝜓𝜓(𝐱𝐱,𝐯𝐯)� (10) 

The statistical parameters in w are iteratively 
updated by estimating the expectation based on 
the generation of N samples of the basic RVs xi 
from the sampling distribution ψ(x,w). Assuming 
Pf≈pIS, the optimization problem can be 
formulated as: 

argmin𝐯𝐯 𝐷𝐷𝐾𝐾𝐾𝐾 ≈  

≈ argmax𝐯𝐯
1
𝑁𝑁
∑ �𝐼𝐼𝑖𝑖⋅𝑤𝑤𝑖𝑖(𝐰𝐰)

𝑝𝑝𝐼𝐼𝐼𝐼
ln𝜓𝜓𝑖𝑖(𝐯𝐯)�𝑁𝑁

𝑖𝑖=1  (11) 

where wi(w)=w(xi,w) and lnψi(v)=lnψ(xi,v). 
When the function is concave and differentiable 

with respect to v, the near-optimal density can be 
obtained by setting the gradient to zero: 

 1
𝑁𝑁
∑ 𝑤𝑤�𝑖𝑖(𝐰𝐰) ⋅ [∇𝐯𝐯 ln𝜓𝜓𝑖𝑖(𝐯𝐯)]𝑁𝑁
𝑖𝑖=1 = 0 (12) 

with the i-th weight 𝑤𝑤�𝑖𝑖 defined as follows: 

 𝑤𝑤�𝑖𝑖(𝐰𝐰) = 𝐼𝐼𝑖𝑖⋅𝑤𝑤𝑖𝑖(𝐰𝐰)
𝑝𝑝𝐼𝐼𝐼𝐼

 (13) 

3.2. CE-SP-IS optimal densities 
In the SP-IS approach, the best possible density 
p*(x) can be defined over the time horizon of the 
life-cycle reliability analysis at nt discrete times t: 

 𝑝𝑝∗(𝐱𝐱) = 1
𝑛𝑛𝑡𝑡
�∑

𝐼𝐼(𝐱𝐱)⋅𝑓𝑓𝐗𝐗(𝑡𝑡𝑧𝑧)(𝐱𝐱|𝑡𝑡𝑧𝑧)

𝑃𝑃𝑓𝑓(𝑡𝑡𝑧𝑧)
𝑛𝑛𝑡𝑡
𝑧𝑧=1 � (14) 

The same rationale can be applied to define the 
optimal densities considering ns limit state 
functions and np parametric hazard scenarios:  

 𝑝𝑝∗(𝐱𝐱) = 1
𝑛𝑛𝑠𝑠
�∑ 𝐼𝐼(𝐱𝐱|𝑠𝑠)⋅𝑓𝑓𝐗𝐗(𝐱𝐱)

𝑃𝑃𝑓𝑓(𝑠𝑠)
𝑛𝑛𝑠𝑠
𝑠𝑠=1 � (15) 

 𝑝𝑝∗(𝐱𝐱) = 1
𝑛𝑛𝑝𝑝
�∑

𝐼𝐼(𝐱𝐱)⋅𝑓𝑓𝐗𝐗(𝑝𝑝)(𝐱𝐱|𝑝𝑝)

𝑃𝑃𝑓𝑓(ℎ)
𝑛𝑛𝑝𝑝
𝑝𝑝=1 � (16) 

The formulation of the best density can 
account for nc combinations of the nt time instants 
for ns limit states and np hazard scenarios: 

 𝑝𝑝∗(𝐱𝐱) = 1
𝑛𝑛𝑐𝑐
�∑ 𝐼𝐼(𝐱𝐱|𝑐𝑐)⋅𝑓𝑓𝐗𝐗(𝑐𝑐)(𝐱𝐱|𝑐𝑐)

𝑃𝑃𝑓𝑓(𝑐𝑐)
𝑛𝑛𝑐𝑐
𝑐𝑐=1 � (17) 

Substituting this density into Equation (8) leads to 
the same solving system in Equation (12) and the 
updating coefficients 𝑤𝑤�𝑖𝑖 are arranged as follows: 

 𝑤𝑤�𝑖𝑖(𝐰𝐰) = 1
𝑛𝑛𝑐𝑐
∑ 𝐼𝐼𝑖𝑖(𝑠𝑠)⋅𝑤𝑤𝑖𝑖(𝐰𝐰|𝑡𝑡𝑧𝑧,𝑝𝑝)

𝑝𝑝𝐼𝐼𝐼𝐼(𝑐𝑐)
𝑛𝑛𝑐𝑐
𝑐𝑐=1  (18) 

where pIS(c) is the failure probability estimate for 
the c-th combination of time tz, scenario h and 
limit state s. Indicator functions Ii are independent 
from time and hazard scenario, whilst weighting 
coefficients wi do not depend on the limit state. 

3.3. Updating rules for Gaussian Mixture (GM) 
Among all families of parametric distributions, 
Gaussian Mixtures (GMs) can efficiently map the 
most significant regions in the failure domain. 
The proposal distribution ψ(x,v) is composed by 
K Gaussian variates: 
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  𝜓𝜓(𝐱𝐱,𝐯𝐯) = ∑ 𝜋𝜋𝑘𝑘 ⋅ 𝑁𝑁(𝐱𝐱|𝛍𝛍𝑘𝑘,𝚺𝚺𝑘𝑘)𝐾𝐾
𝑘𝑘=1  (19) 

where N(x|μk,Σk) is the k-th joint normal PDF with 
weighting probability πk, mean vector μk, 
covariance matrix Σk,. 

Substituting the IS density in Equation 12, 
the CE minimization problem is reformulated 
with exponential densities and explicit updating 
rules for w can be adopted to iteratively solve it 
(Rubinstein and Kroese 2004). At the (m+1)-th 
iteration and for the k-th Gaussian density in the 
mixture model, the updating rules are: 

  𝜋𝜋𝑘𝑘
(𝑚𝑚+1) =

∑ 𝑤𝑤�𝑖𝑖𝑁𝑁
𝑖𝑖=1 ⋅𝛾𝛾𝑖𝑖𝑖𝑖

(𝑚𝑚)

∑ 𝑤𝑤�𝑖𝑖𝑁𝑁
𝑖𝑖=1

 (20) 

  𝛍𝛍𝑘𝑘
(𝑚𝑚+1) =

∑ 𝑤𝑤�𝑖𝑖𝑁𝑁
𝑗𝑗=1 ⋅𝛾𝛾𝑖𝑖𝑖𝑖

(𝑚𝑚)⋅𝐱𝐱𝑖𝑖
∑ 𝑤𝑤�𝑗𝑗⋅𝛾𝛾𝑖𝑖𝑖𝑖

(𝑚𝑚)𝑁𝑁
𝑗𝑗=1

 (21) 

  𝚺𝚺𝑘𝑘
(𝑚𝑚+1) =

∑ 𝑤𝑤�𝑖𝑖⋅𝛾𝛾𝑖𝑖𝑖𝑖
(𝑚𝑚)⋅�𝐱𝐱𝑖𝑖−𝛍𝛍𝑘𝑘

(𝑚𝑚)�⋅�𝐱𝐱𝑗𝑗−𝛍𝛍𝑘𝑘
(𝑚𝑚)�

T𝑁𝑁
𝑖𝑖=1

∑ 𝑤𝑤�𝑖𝑖⋅𝛾𝛾𝑖𝑖𝑖𝑖
(𝑚𝑚)𝑁𝑁

𝑖𝑖=1
 (22) 

where the parameter γik is the i-th sample 
responsibility of the k-th marginal Gaussian, 
representing the assignment of each sample to the 
k-th density (Kurtz and Song 2013): 

  𝛾𝛾𝑖𝑖𝑖𝑖
(𝑚𝑚) = 𝜓𝜓𝑘𝑘(𝐱𝐱𝑖𝑖)

𝜓𝜓(𝐱𝐱𝑖𝑖)
=

𝜋𝜋𝑘𝑘
(𝑚𝑚)⋅𝑁𝑁�𝐱𝐱𝑖𝑖|𝛍𝛍𝑘𝑘

(𝑚𝑚),𝚺𝚺𝑘𝑘
(𝑚𝑚)�

∑ 𝜋𝜋𝑘𝑘
(𝑚𝑚)⋅𝑁𝑁�𝐱𝐱𝑖𝑖|𝛍𝛍𝑘𝑘

(𝑚𝑚),𝚺𝚺𝑘𝑘
(𝑚𝑚)�𝐾𝐾

𝑘𝑘=1
 (23) 

The CE optimization problem is also equivalent to 
the Maximum Likelihood Estimate of the mixture 
parameters and the GM parameters update can be 
further refined via expectation-maximization 
algorithms (Geyer et al. 2019). 

4. BASIC NUMERICAL APPLICATION 
The presented approach is firstly applied to a basic 
example of time-variant reliability analysis 
inspired by a traditional reliability problem with 
multiple design points associated with a parabolic 
limit state function (Der Kiureghian and 
Dakessian 1998): 

  𝑔𝑔(𝐗𝐗) = 𝑏𝑏 − 𝑋𝑋2 − 𝜅𝜅(𝑋𝑋1 − 𝑒𝑒)2 (24) 
The statistical parameters of X are assumed to 
vary over the normalized time τ. In pristine 
conditions (i.e., τ=0), the basic RVs X are 
standard normal and statistically independent. 

The deterioration process is described by np=3 
combinations of quadratic variation of the mean 
value of X1 and a linear increase of the standard 
deviation of X2: 

 𝜇𝜇1(𝑡𝑡) = 𝜒𝜒1 ⋅ 𝜏𝜏2 (25) 

  𝜎𝜎2(𝑡𝑡) = 1 + 𝜒𝜒2 ⋅ 𝜏𝜏 (26) 
The damage scenarios are characterized by the 
evolution of (1) only μ1 with χ1=3, (2) only σ2 with 
χ2=1, and (3) both μ1 and σ2 with χ1=3 and χ2=1. 

The optimal proposal density is identified 
considering multiple time instants nt, limit states 
ns and parametric hazard scenarios np. Reliability 
is assessed for nt=21 normalized time instants 
(i.e., from 0.00 to 1.00 every 0.05). The ns=6  
parabolic limit state functions shown in Figure 1 
are characterized by null eccentricity (e=0) and 
vertices b=8.0 (thick lines) and b=5.0 (thin lines). 
Dotted, dashed, and continuous lines refer to 
curvatures κ=0.00, 0.05, and 0.10, respectively. 
The number of reliability problems to be solved is 
nc=nt·ns·np=378. 

Figure 1 also shows the contour plots of the 
initial GM model constituted by nk=10 binormal 
densities each with probability πk=1/nk. To 
efficiently map the sample space, the mean 
vectors μk (square markers) are randomly 
simulated from a normal uncorrelated bivariate 
distribution centered at the space origin and with 
standard deviation σ=3. Also, the covariance 
matrices Σk are initialized with null correlation 
and standard deviations σk=3. The initial phase of 
the near-optimal GM density comprises of four 
rounds niter=4 of pre-sampling with Npre=5000 
samples. Given the descriptors collected in Table 
1, the final simulation is carried out on 
Nfinal=80000 samples, for a total number of 
niter·Npre+Nfinal=105 samples. Figure 2 shows the 
limit state functions (black opaque lines) and the 
samples (grayscale dots) generated by the final 
GM proposal density (white contour plot).  

Figure 3 presents the estimated time-variant 
reliability indices β ranging from 1.4 to 8.0. The 
estimates CoV in Figure 4 show accurate results 
for all reliability problems, with average and 
maximum values respectively 2.1% and 4.7%. 
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Figure 1: Limit states and initial GM densities. 

 
Figure 2: CE-SP-IS density and simulated samples.

Table 1: Statistical parameters calibrated by CE-SP-IS for each bivariate density in the GM. 
vk k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 
μ1 +0.478 –6.672 +3.502 –1.857 +7.706 –1.306 +3.674 +3.859 –0.355 +4.270 
μ2 +6.352 +3.448 +3.790 +5.048 +4.127 +7.122 +4.033 +3.902 +6.140 +4.580 
σ1 1.400 1.429 2.165 1.720 1.269 1.459 1.900 1.902 1.321 1.833 
σ2 1.229 1.274 1.334 1.066 1.174 1.193 1.287 1.300 1.192 1.433 
ρ12 –0.255 +0.425 –0.710 +0.542 –0.537 +0.543 –0.788 –0.798 +0.154 –0.710 
π 0.200 0.147 0.003 0.070 0.031 0.120 0.041 0.033 0.210 0.145 

 

   
 (a) (b) (c) 
Figure 3: Reliability indices for all limit states with time-variant (a) μ1, (b) σ2, (c) both μ1 and σ2. 

 
 (a) (b) (c) 
Figure 4: Failure probability CoV for all limit states with time-variant (a) μ1, (b) σ2, (c) both μ1 and σ2. 

5. LIFE-CYCLE SEISMIC RISK OF AN 
AGING BRIDGE NETWORK 

5.1. Case study 
The road infrastructure network with nb=3 aging 
bridges shown in Figure 5 is considered (Capacci 
and Biondini 2022b). The network is composed 
by three nodes originating and attracting daily 

road users' trips connected by main highways, 
each one with an aging vulnerable bridge, as well 
as secondary detour roads. Life-cycle seismic risk 
analysis is carried out based on probabilistic 
seismic hazard assessment, time-variant bridge 
fragility curves, and network performance metrics 
based on the concept of infrastructure resilience 
(Capacci et al. 2022). 
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Figure 5: Investigated bridge network. 

5.2. Probabilistic seismic hazard 
Major seismic events are equally likely to occur 
throughout the area source represented in Figure 
5. The epicenter location Xe={X,Y}e is described 
by a bivariate uncorrelated uniform distribution. 
The recurrence of earthquakes with severe 
macroseismic intensity is expressed based on the 
Gutenberg-Richter distribution in terms of 
moment magnitude Mw: 

 𝐹𝐹𝑀𝑀𝑤𝑤(𝑚𝑚) = 1−10−𝑏𝑏(𝑚𝑚−𝑚𝑚min)

1−10−𝑏𝑏(𝑚𝑚max−𝑚𝑚min) (27) 

with parameters collected in Figure 5. 
The Peak Ground Acceleration (PGA) is 

herein selected as seismic intensity measure at the 
b-th bridge site Ib [g] and it is defined based on a 
joint lognormal model. The median seismic 
intensity Ib,m is generally defined conditional to 
source-to-site distance Reb=||Xe–Xb|| and moment 
magnitude Mw. Uncertainties in ground motion 
intensities are accounted by the within-event joint 
standard normal correlated variate 𝜀𝜀𝑊𝑊𝑏𝑏  and the 
between-event single standard normal variate 𝜀𝜀𝐵𝐵: 

 ln 𝐼𝐼𝑏𝑏 = ln 𝐼𝐼𝑏𝑏,𝑚𝑚 + 𝜎𝜎𝑊𝑊𝜀𝜀𝑊𝑊𝑏𝑏 + 𝜎𝜎𝐵𝐵𝜀𝜀𝐵𝐵 (28) 

where 𝜎𝜎𝑊𝑊  and 𝜎𝜎𝐵𝐵  are the within- and between-
event standard deviations, respectively. Median 
intensity and statistical parameters of the 
attenuation law are selected from the prediction 
model proposed in Bindi et al. (2011) with soil of 
type C based on Eurocode 8 classification and 

normal faulting. Finally, the within-event 
correlation is assumed to depend on the relative 
distance 𝑟𝑟𝑏𝑏ℎ𝑏𝑏𝑘𝑘 between h-th and k-th bridges: 

 𝜌𝜌𝑏𝑏ℎ𝑏𝑏𝑘𝑘 =  exp �−
𝑟𝑟𝑏𝑏ℎ𝑏𝑏𝑘𝑘
10

� (29) 

5.3. Time-variant bridge fragility 
The definition of bridge seismic capacities 𝐼𝐼𝑏̅𝑏 
relies on the concept of fragility curves, which 
represent the failure probability conditional to the 
seismic intensity at the bridge site. The life-cycle 
seismic fragility of the three spatially-distributed 
vulnerable aging bridges in the network is 
described by statistically independent time-
variant lognormal models. In the investigated case 
study, it is assumed that the median seismic 
capacity 𝚤𝚤𝑏̅𝑏,𝑚𝑚  deteriorates in time due to 
environmental aging. The degradation law is: 

 𝚤𝚤𝑏̅𝑏,𝑚𝑚(𝑡𝑡) = 𝚤𝚤𝑏̅𝑏,𝑚𝑚0 − 𝑘𝑘𝑏𝑏 ⋅ 𝑡𝑡2 (30) 

Respectively for bridges B1–B2–B3, the pristine 
median capacities 𝚤𝚤𝑏̅𝑏,𝑚𝑚0  are 0.7–0.8–0.9g and 
decay rate parameters kb are 15–18–25×10-5 
g/years2. The standard deviation of the logarithm 
of the seismic capacity is ζ=0.60 for all bridges. 

5.4. Network resilience 
Traffic flows fOD in the network are generated by 
daily trips of road users from Origin nodes O to 
Destination nodes D. Travel times tOD are 
assigned by shortest path analysis based on the 
network topology. Seismic events may lead to 
bridge closure due to structural collapse, affecting 
the network performance and increasing the road 
users’ Total Travel Time TTT: 

 𝑇𝑇𝑇𝑇𝑇𝑇 = ∑ ∑ 𝑓𝑓𝑂𝑂𝑂𝑂 ⋅ 𝑡𝑡𝑂𝑂𝑂𝑂𝐷𝐷𝑂𝑂 (𝐒𝐒) (31) 

where the Boolean random vector S represents the 
undamaged and fully operational bridge state 
Sb=0 and the collapsed and fully closed condition 
Sb=1. Daily traffic demands fOD are modeled as 
statistically independent symmetric triangular 
distributions over the range 𝑓𝑓𝑂𝑂𝑂𝑂𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ±  1500 
cars/hour. Traffic demands are perfectly 
correlated over the same OD pair (e.g., f12=f21). 
Figure 5 collects all information regarding road 
lengths, speed limits and traffic flow modes. 

B1

B2

B3

y [km]

x [km]

10

15

18

10 15 2018

3

2

1

MAIN HIGHWAY
SECONDARY ROAD

18 km

20 km

6000 ± 3000 cars/h 8000 ± 3000 cars/h
15 km

m min

= 1.242b
𝜈𝜈 m = 0.05

m max = 5.5
= 4.3

v highway = 110 km
v detour   =   70 km

7000 ± 3000 cars/h
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Repair activities allow releasing traffic 
restrictions when the bridge load-bearing capacity 
is restored.  Resilience is expressed as the integral 
mean of the functionality profile from the time of 
earthquake occurrence t0 to a fixed horizon time th 
(Capacci et al. 2020): 

 𝑅𝑅 = 1
𝑡𝑡ℎ−𝑡𝑡0

∫ 𝑄𝑄(𝑡𝑡; 𝐒𝐒)𝑑𝑑𝑑𝑑𝑡𝑡ℎ
𝑡𝑡0

 (32) 

where the functionality Q is given by the ratio 
between the TTT in unrestricted conditions (i.e., 
S=0) and the TTT given the bridge damage 
combination. Uniform RVs between 230 and 330 
are assumed to characterize the probabilistic 
model for the recovery times Tr,b for each bridge. 
Further insight on the resilience model is reported 
in Capacci and Biondini (2021, 2022b). 

Finally, life-cycle seismic risk is quantified 
based on the mean annual rate of exceedance of a 
prescribed resilience target r: 

 𝜈𝜈𝑟𝑟(𝑟𝑟, 𝑡𝑡) = 𝑣𝑣𝑚𝑚 ⋅ 𝑃𝑃[𝑅𝑅(𝑡𝑡) ≤ 𝑟𝑟] (33) 
where νm is the earthquake occurrence mean 
annual rate. The numerical estimate of the 
resilience measure R involves 16 basic RVs: 
bivariate epicenter location Xe, moment 
magnitude Mw, within-event variates 𝜀𝜀𝑊𝑊𝑏𝑏 , 
between-event variate εB, seismic capacities 𝐼𝐼𝑏̅𝑏 , 
OD traffic flows fOD, recovery times Tr,b. 

5.5. CE-SP-IS life-cycle seismic risk estimates 
The CE-SP-IS method is applied to estimate the 
resilience CDF at r=60% to 80% every 5% (i.e., 
ns=5) from pristine conditions up to 50 years of 
lifetime every two years (i.e., nt=26). The total 
number of combinations is nc=nt·ns=130. 

The procedure is initialized by selecting a 
single Gaussian density as sampling distribution 
with standard parameters (i.e., null mean vector 
and diagonal unitary covariance matrix). Since 
most variables are not normally distributed, 
samples of the basic RVs are simulated in such 
space ui (i.e., simulation space) and then 
transformed into their actual space xi (i.e., 
analysis space) to compute the indicator functions 
Ii. Weighting coefficients wi are computed in the 
simulation space to retrieve the failure probability 

estimates pIS and the weights 𝑤𝑤�𝑖𝑖 involved in the 
updating rules. 

Figure 6 shows the CE-SP-IS numerical 
estimates of the mean annual rate of failure to 
meet the resilience target. Results are obtained 
with five rounds niter=5 of pre-sampling with 
Npre=50000 and final simulation with 
Nfinal=750000, for a total of 106 samples of the 
basic RVs. The comparison with traditional MCS 
evaluated every 10 years is carried out with 
comparable sample sizes. The actual 
computational cost of MCS should account for the 
number of observation time instants nt=6. Thus, 
the sample size for MCS simulation is set to 
N=166,667. The MCS estimate for r=60% in 
pristine conditions (i.e., t0=0) is not reported since 
all samples are on the safe domain. 

 
Figure 6: Life-cycle seismic risk estimates. 

The estimates CoV in Figure 7 indicate how 
CE-SP-IS outperforms MCS for almost all 
investigated combinations of time instant and 
resilience target. The maximum CoV is 3.4% for 
r=60% in pristine conditions. All CE-SP-IS 
estimates have comparable accuracies with 
average CoV=2.2%. 

 
Figure 7: CoV of Life-cycle seismic risk estimates. 
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6. CONCLUSIONS 
The paper presented a novel computational 
framework to efficiently estimate time-variant 
structural reliability and life-cycle seismic risk of 
bridge networks based on Stationary Proposal 
Importance Sampling (SP-IS). The adaptive 
technique is used to establish near-optimal 
sampling Gaussian mixture densities by 
minimizing the Kullback–Leibler Cross-Entropy 
(KL-CE) with respect to the best importance 
sampling density for a combination of reliability 
problems involving different limit state functions 
and distributions of basic random variables. The 
potentialities of the proposed efficient sampling 
method would emerge when time-consuming 
analyses are required to assess the limit state 
functions. Potentially fruitful fields of application 
regard the development of parametric analyses on 
the basic random variables such as reliability-
based design optimization within a life-cycle 
framework. A major drawback of the IS 
methodology is the tendency to produce 
inefficient probability estimates when large set 
and wide range of variables are involved in the 
sampling procedure. Further research should be 
devoted to address the feasibility limitations of 
CE-SP-IS approaches in large-scale problems 
with complex deterioration patterns. 
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