
1

Vol.:(0123456789)

Scientific Reports |        (2024) 14:20298  | https://doi.org/10.1038/s41598-024-71240-6

www.nature.com/scientificreports

The molecular basis 
of the anticancer effect of statins
Giovanni Buccioli 1,4, Carolina Testa 1,4, Emanuela Jacchetti 1, Pietro Pinoli 2, Stephana Carelli 3, 
Stefano Ceri 2* & Manuela T. Raimondi 1*

Statins, widely used cardiovascular drugs that lower cholesterol by inhibiting HMG-CoA reductase, 
have been increasingly recognized for their potential anticancer properties. This study elucidates 
the underlying mechanism, revealing that statins exploit Synthetic Lethality, a principle where 
the co-occurrence of two non-lethal events leads to cell death. Our computational analysis of 
approximately 37,000 SL pairs identified statins as potential drugs targeting genes involved in SL pairs 
with metastatic genes. In vitro validation on various cancer cell lines confirmed the anticancer efficacy 
of statins. This data-driven drug repurposing strategy provides a molecular basis for the anticancer 
effects of statins, offering translational opportunities in oncology.
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Cancer is an astonishingly complex disease and continues to challenge medical research and therapeutic strate-
gies, with 1,918,030 new cases and 609,360 cancer related deaths in 20221. In spite of the considerable progresses 
achieved in cancer research, traditional treatments are still accompanied by well-known side effects and various 
drawbacks. For instance, surgery and radiotherapy, beyond their positive effects, often inadvertently accelerate 
tumor growth and invasion due to the body’s inflammatory response and the variable cellular susceptibility to 
radiation2,3. Meanwhile, chemotherapy, while effective in reducing primary tumor volume4, is frequently under-
mined by the emergence of resistance mutations in cancer cells5. This resistance often leads to the progression 
of tumors with the development of more aggressive phenotype6.

Metastatic tumors, due to their diffuse localization and acquired resistance to cytostatic and cytotoxic agents, 
are particularly challenging to treat. Despite the availability of over 200 approved anti-cancer drugs, none have 
proven effective in inhibiting or treating cancer metastasis7, underscoring the urgent need for innovative thera-
peutic regimens. In this scenario, immunotherapy has emerged as a promising approach, leveraging the body’s 
immune system to target cancer cells8. However, its efficacy in treating solid tumors has been limited due to 
their inherent complexity9. Furthermore, recent studies have identified instances of secondary malignant tumors 
following therapy with CAR-T cells10.

The newly emerging therapeutic approach based on Synthetic Lethality (SL) could offer an encouraging 
solution11. It hinges on the simultaneous suppression of two genes, leading to cellular lethality, while the inhibi-
tion of each gene in isolation remains a non-lethal event12. It thus selectively targets cancer cells with specific 
mutations, sparing healthy cells and reducing toxicity11. This approach could be particularly potent for metastatic 
tumors, which tend to harbor more genetic mutations13, thereby potentially exerting anti-metastatic effects. 
SL therapy, therefore, holds the promise of providing a more effective, personalized treatment with a possible 
limitation of side effects14.

SL therapeutics, despite their promise, have encountered obstacles in clinical translation15. The challenges 
are twofold: not only is the laboratory-identification of robust SL gene pairs from the myriad possible combina-
tions in a mammalian cell a complex task15, but the subsequent formulation and testing of a drug that effectively 
targets these identified genes also requires significant research investment16. Drug repositioning, the practice of 
repurposing existing drugs for new therapeutic applications, emerges as a promising strategy in the challenging 
landscape of drug development17. It offers reduced development timelines and financial burdens compared to 
traditional drug development17. Drug repurposing can be experimental-driven, often arising serendipitously18, or 
data-driven, a hypothesis-driven approach that uses big data to identify drugs against targets19. The latter trans-
forms system biology data into predictions of druggable targets, ideally providing an FDA-approved compound 
with potential modulatory functions19. This approach requires accurate computational pipelines and algorithms 
for data integration and has been facilitated by the accumulation of high-throughput data and advances in 
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computational and data sciences. In these circumstances, thanks to computer-aided approaches, it is possible 
to turn non-targeted (old) therapies into personalized treatments by selecting better responders’ patients20. 
Currently, there are approximately 2500 drugs that have received approval from the FDA21. Regrettably, a mere 
three drugs have been repurposed for cancer treatment: the Bacillus Calmette-Guerin vaccine for superficial 
bladder cancer, thalidomide for multiple myeloma, and propranolol for infantile hemangioma22. Furthermore, 
in the current scientific landscape, there is a stark absence of research that utilizes SL for the repositioning of 
drugs with anti-metastatic. This glaring omission not only underscores the urgency for innovative research but 
also highlights the potential for a paradigm shift in the treatment of metastatic diseases. The exploration of this 
uncharted territory could potentially herald a new era in cancer therapy, revolutionizing both the therapeutic 
approach and transforming patient outcomes.

Our research, integrating both experimental and computational studies, is aimed at developing a compre-
hensive approach to investigate repurposable drugs for the treatment of metastatic solid tumors, leveraging the 
concept of SL. This is achieved through the creation of integrated databases and computational analysis of diverse 
datasets, with the goal of identifying the most promising candidates for experimental validation. Among the 
top candidates, we selected Simvastatin and Lovastatin, members of the statin family, due to their widespread 
prescription23 and retrospective meta-analyses24,25 highlighting their antitumor effect. Our work represents a 
pioneering effort in integrating computational and experimental approaches to investigate repurposable drugs 
with anti-metastatic effect on metastatic solid tumors, leveraging the potential of SL, and ultimately demonstrat-
ing the antitumor therapeutic principle of statins.

Method
Data collection and integration
Our research is anchored in a dynamic computational framework that seamlessly integrates genes, drugs, and 
cancer types. This is not a static structure, but a vibrant network that intertwines five distinct categories of rela-
tionships, creating a holistic view of the complex interplay between these entities. We begin by exploring the 
associations between the metastatic phenotype of cancer and their corresponding gene conditions, with a par-
ticular focus on genes that, when deleted, are associated with metastases. This foundational knowledge guides us 
to the next phase: the identification of Synthetic Lethal (SL) gene pairs. Here, we search for pairs where one gene’s 
deletion is linked to a metastatic phenotype, while the other is not, thereby revealing potential genetic vulner-
abilities in cancer cells. This understanding allows us to identify drugs that target these genes, opening the door 
to the development of effective treatments for specific cancer types. We place a special emphasis on repurposable 
drugs, those already approved for other indications, as this strategy can significantly accelerate the introduction 
of new treatments into clinical practice. These repurposable drugs, having undergone extensive testing, provide 
us with a wealth of safety and efficacy data, saving valuable time and resources in the drug development process. 
Finally, we explore the potential for synergy between these repurposable drugs and chemotherapeutic agents. 
The combination of two drugs can yield a comprehensive cytostatic and antimetastatic effect, halting the growth 
of cancer cells and preventing their spread to other parts of the body.

DataBases

1.	 cBioPortal26 has been employed for the identification of gene mutations implicated in metastases. Specifically, 
it has been done within the context of a pan-cancer metastatic solid tumor study27. This comprehensive study 
encompasses whole-exome and -transcriptome sequencing of 500 adult patients with metastatic solid tumors 
and primary normal pairs of diverse lineage and biopsy sites. Within this rich dataset, genes are validated 
as oncogenes through comparison with data from OncoKB28, helping the study to provide valuable insights 
into the gene’s expression status in metastatic scenarios. A modest increase in the tumor mutation burden 
was observed when metastatic cancers were contrasted with primary ones. This observation underscores 
the notion that the complete mutation spectra are likely to be formulated either preceding or during the 
advancement of primary cancer29.

2.	 SynLethDB30 houses all SL pairs discovered to date, collated through various investigative techniques. The 
database is a rich amalgamation of diverse sources, incorporating experimental data from biochemical 
assays, literature-derived information, publicly available datasets, computational predictions, and knowledge 
extracted from textual sources.

3.	 PanDrugs31 serves as a robust engine for prioritizing anticancer drug treatments based on individual multi-
omics data. It is a culmination of data from an impressive 23 primary sources, resulting in a vast repository 
of 74,087 drug-target associations involving 4642 genes and 14,659 unique compounds. It provides com-
prehensive information on both the drug and the drug’s target gene; it also details the status of the drugs, 
including those in clinical trial, approved as antitumor, and approved for non-antitumor therapy.

4.	 DrugComb32 is a comprehensive drug sensitivity data repository and analysis portal. As an open-access, 
community-driven data portal, it accumulates, standardizes, and harmonizes the results of drug combination 
screening studies conducted across a diverse array of cancer cell lines. This database was selected to identify 
potential synergistic pairs composed of chemotherapeutic and repositioned drug.

Scores
Our selection of best candidates was guided by scores integrated into the aforementioned databases: 



3

Vol.:(0123456789)

Scientific Reports |        (2024) 14:20298  | https://doi.org/10.1038/s41598-024-71240-6

www.nature.com/scientificreports/

1.	 Synthetic Lethality Score (SLScore)30 from SynLethDB provides a detailed and quantitative view of synthetic 
lethality interactions, facilitating the discovery of potentially effective pharmacological targets for cancer 
treatment. A higher SLScore indicates a higher likelihood that the gene pair would be lethal if both genes are 
inactivated. This score is derived based on the annotated experimental methods from the evidence sources.

2.	 The Gene Score (GScore)31 from PanDrugs, ranging from 0 to 1, evaluates the biological relevance of the gene. 
It considers factors such as its essentiality, vulnerability, relevance in cancer, biological impact, frequency 
in genetic variation databases, and clinical implications. The GScore is updated regularly to incorporate the 
latest research findings, ensuring its relevance and accuracy.

3.	 The Drug Score (DScore)31 from PanDrug, spanning from −1 to 1, gauges the suitability of the drug based on 
factors such as drug-cancer type indications, clinical status, gene-drug relationships, support from curated 
databases, and collective gene impact.

4.	 The Zero Interaction Potency (ZIP) synergy score32, a key metric in DrugComb, provides a quantification of 
the degree to which the combined influence of two drugs exceeds the aggregate of their independent effects, 
under the presumption of non-interaction.

These scores are not opinion-based but are derived from robust methodologies, ensuring their reliability and 
consistency over time. They are continuously updated and refined as new data becomes available, ensuring that 
our candidates is always based on the most current and reliable information. In this way, the underlying meth-
odologies and principles guiding the calculation of these scores remain consistent, ensuring their reliability and 
validity over time. This approach allows us to strike a balance between adaptability and consistency, ensuring 
that our research is both responsive to new developments and grounded in solid, reliable methods.

Pipeline
Building on the goal of finding a repurposable therapy that leverages the concept of SL, the inception of our study 
involved the identification of oncogenes that were deleted in metastatic conditions, achieved by querying the pan-
cancer metastatic solid tumor study via cBioPortal. The gene selection was predicated on two specific criteria: a 
deleted expressive state in the metastatic phenotype and an oncogenic classification. The former was inferred from 
the “Variant Type” information, specifically the “DEL” term, indicative of deleted genes. The latter was facilitated 
by an integrated dataset with OncoKB in the study; the genes initially identified were cross-referenced with this 
dataset, selecting those that yielded a positive response to the “Is Cancer Gene (OncoKB)” query.

This curated gene pool of deleted oncogenes in metastases was subsequently cross-referenced with SL pairs 
within the SynLethDB database. To refine the selection process and mitigate the computational load, we consid-
ered only those pairs within the fourth quantile or above, revealing pairs with an SLScore exceeding 0.5. Notably, 
only one gene from each SL pair was required to be part of the previously curated pool.

The list of counterpart genes, corresponding to non-mutated genes, was then sought in PanDrugs to identify 
potential drug targets. Furthermore, we conducted an exhaustive screening of the database to identify phar-
maceutical agents suitable for repurposing. Since our objective was to develop a comprehensive therapy that 
combines a repurposed anti-metastatic drug with a conventional chemotherapy, a first selection was performed 
by excluding chemotherapeutics as indicated by the “Therapy” entry. Hence, to finally identify repurposable 
drugs, we utilized the information obtained from PanDrugs in “Status Description”: drugs that presented the 
term “Cancer Clinical Trials and approved for other pathologies” were considered repurposable.

Among the drugs identified, a further selection was made to identify synergistic combinations with a con-
ventional chemotherapeutic. This research is of considerable importance as the combination with a chemo-
therapeutic protocol could potentially fast-track its implementation in a clinical setting. This was accomplished 
via DrugComb, identifying previously discarded chemotherapeutics in combination with repurposable drugs 
exhibiting a ZIP score exceeding 0.

In our quest to identify the most promising candidates, we employed a tripartite scoring system encompassing 
drug, synthetic lethality, and gene scores, in according with other example in literature12. An initial filtering was 
conducted using a common principle for identifying the threshold of all scores, namely the 80% of the cumula-
tive percentage, a widely accepted benchmark rooted in the Pareto principle or the 80/20 rule33. The calculation 
of cumulative percentages provides valuable insights into score distribution, trend identification, and impact 
evaluation, highlighting the relative positioning of specific score points. The preliminary thresholds for selecting 
the scores corresponding to cumulative percentages above 80% were identified independently for each curve, 
specifically at 0.3 for the Drug Score (DScore), 0.2 for Synthetic Lethality pairs (SLScore), and 0.1 for the Gene 
Score (GScore) (Fig. 1a). Through this filtering process, the number of candidates is reduced by 35%. However, 
given the extensive pool of remaining candidates even after the initial filtering, a secondary, more stringent 
filtering was deemed necessary. This involved identifying significant thresholds based on each specific score’s 
probability distribution. The probability distribution of scores is a tool in statistics and data analysis, offering 
valuable insights into variable understanding, hypothesis testing, and outcome prediction. Taking as a starting 
point the three scores highlighted by the cumulative percentages filtering, we identified and set the second thresh-
old nearby the first significant peaks after the previous minimum scores, representing the highest likelihood of 
encountering candidates meeting our filtering criteria. The area under the probability density function curve 
between two points corresponds to the probability of the variable falling within that score interval. Consequently, 
the final thresholds were determined to be DScore > 0.35, SLScore > 0.5, and GScore > 0.35, effectively narrowing 
down the pool of potential candidates (Fig. 1b). This rigorous, two-tiered approach ensures a comprehensive and 
precise identification of the most promising candidates. In the process of calculating the minimum scores, we 
made a conscious decision to leverage the full potential of the databases, hence, in the case of SynLethDB, we did 
not restrict it to the fourth quartile. This was primarily because such a limitation would not have facilitated an 
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accurate distribution of probabilities and cumulative percentages. In line with this, the limit determined based 
on the SLScore was found to be equivalent to the score pinpointed at the fourth quartile.

Cell cultures and reagents
Cell lines, culture, and reagents
The MDA-MB-231 and HeLa cell (ATCC, US), a breast adenocarcinoma cell line and a cervical cancer respec-
tively, were maintained in Dulbecco’s Modified Eagle Medium (DMEM, Euroclone, Italy). The HCC1937 (CLS, 
Germany), a breast ductal carcinoma cell line, and OVPA8 (DSMZ, Germany), a high-grade serous ovarian 
adenocarcinoma, were cultured in RPMI 1640 medium (Euroclone, Italy). Both media were supplemented 
with 10% fetal bovine serum (FBS, Euroclone, Italy), 1% l-glutamine (Euroclone, Italy), and 1% penicillin-
streptomycin (Euroclone, Italy). All cell lines were incubated at 37 ◦ C in a humidified atmosphere containing 5% 
CO2 . Table 1 provides a comprehensive catalogue and elucidation of the cell lines, specifically focusing on their 
respective states of gene expression of interest. Lovastatin (Mevinolin, MedChemExpress, US) and Simvastatin 
(MK733, MedChemExpress, US), members of the lipophilic group of statins, were prepared as drug solutions 
in Dimethyl sulfoxide (DMSO, PanReac AppliChem, Italy) and stored at −80

◦C.

Cell viability assay
To assess the efficacy of the drugs on cancer cell lines with various mutations, we designed experiments to draw 
viability curves and determine the Half-maximal inhibitory concentration (IC50) for each drug on each cell line. 
The Cell Counting Kit-8 (CCK8, Prodotti Gianni, Italy) assay, a reliable method for gauging cellular metabolic 
activity as a proxy for cell viability, was employed. Initially, 2000 cells per well were seeded in 96-well plates and 
incubated overnight in 100 µL of medium. Subsequently, cells were exposed to a gradient of drug concentrations 
for 72 h, ranging from 0.01 to 40 µM for Simvastatin, and 1 pM to 100 µM for Lovastatin. Notably, the volume 
of drug diluted in DMSO added to the cell culture was consistently kept below 0.05% in each experiment to 
minimize its potential influence on the cellular response to the drugs. After 72 h, the CCK8 was introduced at 
a 1:10 dilution in standard culture medium, and incubated for 1–3 h at 37 ◦ C, until the solution turned orange. 
Absorbance at 450 nm was then measured using a Tecan (Infinite M200PRO, Switzerland) microplate reader.

(a) (b)

Fig. 1.   (a) Cumulative distribution curve of the three scores extracted for all possible drugs independently; 
lines represent the drug score (red), the SL score (green), and the gene score (blue). An 80% threshold has been 
set to identify the initial minimum significant threshold of scores for candidate filtering, according to Pareto 
principle. By intersecting the curves and the 80% cutoff, preliminary thresholds were identified at DScore > 0.3, 
SLScore > 0.2, GScore > 0.1 (b) Probability distribution curves for the three scores are delineated; lines signify 
the drug score (red), the SL score (green), and the gene score (blue). The probability distribution of scores is a 
tool in statistics and data analysis, offering valuable insights into variable understanding, hypothesis testing, and 
outcome prediction. The area under the probability density function curve between two points corresponds to 
the probability that the variable falls within that interval of score. The score corresponding to the first notable 
peak beyond the minimum threshold, determined by the individual score corresponding to a cumulative 
percent greater than 80%, is chosen for each score. Consequently, the final thresholds were determined to be 
DScore > 0.35, SLScore > 0.5, and GScore > 0.35.

Table 1.   Overview of the cell types utilized in the experimental validation and their corresponding gene 
expression related to the pharmacological test of Simvastatin and Lovastatin (wt: Wild-Type, mut: Mutated).

MDA-MB-231 HeLa HCC1937 OVPA8

BRCA1-wt BRCA1-wt BRCA1-mut BRCA1-mut

KRAS-mut KRAS-wt KRAS-wt KRAS-wt
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Statistical analysis
Cell viability data to determine the IC50 were analyzed using GraphPad Prism (Version 9.5.1). The data under-
went normalization, with cells treated solely with DMSO established as the benchmark for 100% viability, and 
wells containing only medium and CCK8 designated as the 0% reference point. The concentrations were con-
verted into logarithmic form to facilitate the construction of the viability curve. This was accomplished by 
generating a non-linear regression curve that provided an optimal fit with the data, thereby enabling a robust 
analysis of cell viability across varying drug concentrations. For the appraisal of the congruence between the 
regression curves and the empirical data, only those instances where the R2 values greater than 0.8 were factored 
into the analysis. Each experimental procedure was executed with a baseline of four replicates. The outcomes are 
articulated as mean values, augmented by their respective standard deviations.

Results
Data‑driven identification of the best repurposable candidates
The comprehensive framework of our study, as illustrated in Fig. 2, encapsulates the methodology employed to 
discover repurposable drugs that inhibit genes forming Synthetic Lethality (SL) pairs with deleted metastatic 
genes, followed by subsequent in vitro validation. Oncogenes associated with metastasis were curated from 

Fig. 2.   Graphical scheme of the three stages of our research approach: (i) Data Collection and Processing: 
Three types of entities (genes, drugs, and cancer types) are gathered and scrutinized from databases to 
explore the landscape of anti-metastatic repurposable drugs via SL. The dataset encompasses five types of 
relationships (metastatic gene, SL gene pair, drug–gene relationship, relationships between drugs and their 
approved indications, and synergistic drug combination), providing the computational groundwork for drug 
repositioning. (ii) Data Filtering: The dataset is sorted based on GScore, DScore, and SLScore values. The 
most promising candidates are pinpointed through cumulative percentages and alignment with the density 
distribution. Optimal scores are identified as GScore > 0.35, SLScore > 0.5, and DScore > 0.35. Within the 
pool of best candidates, a focused search was conducted to identify those with repurposable potential. (iii) 
Identification and Validation: Among the best repurposable candidates, statins have demonstrated antitumor 
activity in accordance with retrospective meta-analyses. The in vitro experimental validation is carried out with 
cell lines presenting necessary mutations for susceptibility and wild type cell lines as a negative control.
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cBioPortal, resulting in a refined subset of 472 genes. We then sought SL partners of these genes within the Syn-
LethDB database, distilling our initial pool of 36,746 pairs down to a final selection of 3695 pairs above the fourth 
quantile, extrapolating 2118 targetable non-mutated genes. The subsequent phase involved identifying agents 
that can target these selected non-mutated genes, using associations found within PanDrugs. Our investigation 
uncovered 2594 pharmaceutical compounds that target these genes. We focused on non-chemotherapeutic 
agents, resulting in a selection of 1888 compounds. Out of these, 230 were repurposable drugs (Fig. 3a). Thus, 
12.2%, of the drugs under investigation are currently approved for therapies not related to cancer (Fig. 3b). 
However, these drugs exhibit potential for repurposing in oncological treatments that leverage the concept of SL.

We further analysed all potential candidates within our dataset, categorizing them based on their respective 
GScore, DScore, and SLScore values. Consequently, out of initial candidates, 219 exhibited more compelling char-
acteristics (listed in Supplementary Table 1), and of these, 97 were repurposable (Fig. 4a, listed in Supplementary 
Table 2). Notably, our analysis identified approximately 44.3% of the top candidates as potentially repurposable 

Fig. 3.   Collection and processing of candidates to identify the repurposable drugs usable for the anticancer 
Synthetic Lethality approach. (a) The three-dimensional representation provides insight into the targeting 
of non-mutated genes in a Synthetic Lethality association with a deleted metastatic gene. The green triangles 
signify all the discerned drugs that target non-deleted genes in an SL pair with deleted metastatic genes, and are 
non-chemotherapeutic, totaling 1888. Among these, 230 candidates are repurposable (red dot). (b) The pie chart 
provides a visual representation of the distribution of the 1888 drugs we identified, grouped according to their 
status. Specifically, 44.8% of these drugs are already approved for cancer treatment, 43.0% are in clinical trial 
phase, while 12.2% encompass commercially available drugs that are used for non-cancer related treatments but 
have potential for repurposing in cancer therapy.

(a) (b)

Fig. 4.   Graphical description of the filtering process applied during the identification of best candidates. (a) 
Through the implementation of statistically determined scoring thresholds (DScore > 0.35, SLScore > 0.5, 
GScore > 0.35), we have identified a subset of candidates exhibiting superior promise. This has resulted in a 
pool of 219 best candidates, represented by blue triangles. Within this pool, the number of repurposable drugs 
is further refined to 97, distinctly visualized as red dots. (b) Among the 219 best candidates, 55.7% have already 
received approval for use in cancer treatment, while 44.3% are commercially available drugs currently used for 
non-cancer treatments but show potential for repurposing in cancer therapy.



7

Vol.:(0123456789)

Scientific Reports |        (2024) 14:20298  | https://doi.org/10.1038/s41598-024-71240-6

www.nature.com/scientificreports/

pharmaceuticals (Fig. 4b). This highlights the untapped potential within the existing pharmacopeia and signals 
a paradigm shift towards repurposing existing compounds for novel therapeutic applications.

Among the repurposable pharmaceutical agents that exploit the SL principle, we made thoughtful selections 
for subsequent experimental validation of data-driven results. Statins emerged as the most compelling options 
due to the presence in literature of retrospective meta-analyses and experiments that demonstrate their antitumor 
activity without being able to explain the therapeutic principle beyond this activity24,34–37. Statins target genes 
HDAC2 and HMGCR which form SL pairs with BRCA1 and KRAS respectively (Table 2). Among the statin 
family identified through computational analysis, we chose Simvastatin and Lovastatine as the most clinically 
relevant candidates for experimental testing.

As an extension to our primary focus, we also conducted an inquiry to identify chemotherapeutic agents that 
could synergize with statins. This inquiry is deemed essential, as the integration with a chemotherapeutic agent 
could potentially facilitate the rapid deployment of the repurposable drug identified here in a clinical setting. 
From a pool of 4691 potential synergistic drug pairs, we discovered 565 couples consisting of chemotherapeutic 
agents paired with repurposed drugs. Notably, statins are paired with the chemotherapy Temozolomide, an oral 
alkylating agent.

In vitro validation of Simvastatin and Lovastatin as anticancer agents
Statins are widely utilized in the management of cholesterol levels and cardiovascular diseases38; they have 
emerged from our computational analysis as a prime candidate for experimental validation. This selection is 
underscored by retrospective meta-analyses on large patient cohorts that have revealed an unexpected antitumor 
potential of statins24,39. We speculated that cell lines possessing Synthetic Lethality (SL) pair mutations with genes 
susceptible to statins, may possess a heightened sensitivity to this drug (Table 3). On the other hand, cell lines 
devoid of these mutations are anticipated to exhibit resistance to drug treatment.

To validate this hypothesis, we performed drug tests to determine the half-maximal inhibitory concentra-
tion (IC50) of Simvastatin and Lovastatin for several cell lines (MDA-MB-231, HCC1937, OVPA8 and HeLa; 
Table 1). Cell lines harboring mutations susceptible to Simvastatin demonstrated a significant drug response 
with dosages varying in the range of tens of µM (from 0.01 to 40 µM) (Fig. 5). On the other hand, the same cell 
lines show greater sensitity to Lovastatin, in the order of some nM (Fig. 6). Specifically, the IC50 for Simvastatin 
and Lovastatin were respectively equal to 2.108 µM and 9.5 nM for MDA-MB-231 breast cancer-derived cells, 
20.94 µM and 8.7 µM for HCC1937 breast cancer cells, 8 µM and 522 nM for OVPA8 ovarian cancer cell line. In 
contrast, coherently with our hypothesis, HeLa cells, which do not carry mutations in the SL genes defined here, 

Table 2.   The two tables show the computational findings pertaining to the (a) HDAC2 and (b) HMGCR 
genes, and their corresponding Synthetic Lethality pairments with deleted metastatic genes, which are 
inhibited by drugs of the statin family (Atorvastatin, Lovastatin, Simvastatin, Pravastatin). The SL pairs that we 
selected for experimental validation are highlighted in bold.

Mutated gene Target gene

(a)

 BRAF HDAC2

 BRCA1 HDAC2

 SMARC4 HDAC2

 VHL HDAC2

(b)

 ATM HMGCR​

 CDK12 HMGCR​

 ERBB3 HMGCR​

 FGFR4 HMGCR​

 KRAS HMGCR​

 PRKDC HMGCR​

Table 3.   Sensitivity to Simvastatin and Lovastatin of cell lines harboring genes that are mutated and 
in Synthetic Lethality pairs. The table reports the specific mutated genes for each cell lines treated with 
Simvastatin or Lovastatin, along with the corresponding IC50 values identified.

Cancer type Cell line Mutated gene Target gene Simvastatin IC50 (µM) Lovastatin IC50 (nM)

Breast MDA-MB-231 KRAS HMGCR​ 2.108 9.5

Breast HCC1937 BRCA1 HDAC2 20.94 8700

Ovarian OVPA8 BRCA1 HDAC2 8 522

Cervix HeLa – – No effect No effect
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did not exhibit any susceptibility to either drug, although the drugs may have a cytotoxic effect at exposure times 
longer than 72 h and/or at higher concentrations. Thus, the experimental data validated our hypothesis, firmly 
establishing statins as antitumor agents, of which the activity is unequivocally due to the phenomenon of SL.

Discussion
Computational methodologies are progressively being embraced in the scientific community as a valuable adjunct 
to traditional experimental procedures, with the objective of expediting discovery processes and unveiling novel 
targets40. Several groups have embarked on computational explorations to pinpoint gene pairs demonstrating 
Synthetic Lethality (SL)12,41, with a subset harnessing the potential of machine learning to uncover new SL 
couples42. Simultaneously, others have delved into databases in pursuit of drugs amenable to repurposing19. Yet, 
no one has proposed a data-driven approach akin to ours, where we have identified repurposable drugs that 
target genes exhibiting SL when coupled with deleted metastatic genes. This strategy may lead to new antimeta-
static therapeutic approach, surpassing the limitations of conventional treatments. Moreover, SL aligns well with 
personalized medicine, allowing for treatments to be tailor-made based on each patient’s individual mutation 
profile, resulting in a highly effective therapy with a reduced risk of toxicity14. Furthermore, repurposed drugs 
offer potential savings in terms of time and money, and they have a higher likelihood of obtaining regulatory 
approval17. Through this computational approach, we discovered that 12.2% of all identified drugs could poten-
tially be repurposed. Although this proportion might appear modest, it does not encompass all potential drugs 
that have yet to be reevaluated for alternative therapeutic applications. To ensure the validity and precision of our 
computational results, we imposed stringent thresholds, leading to a refined selection of 219 potential drug candi-
dates. Remarkably, our analysis revealed that approximately 44.3% of these top candidates could be considered for 
pharmaceutical repurposing. Moreover, integrating various databases, we achieved results absent in the literature 
to date, such as the explanation of the antitumor activity of hydrophobic statins beyond their classical function 
in cholesterol biosynthesis. Reviews of the existing literature on statin experimentation reveals a multitude of 
secondary and pleiotropic effects identified by various researchers35–37. However, the elucidation of a definitive 
therapeutic principle within these studies remains elusive. Despite this, retrospective meta-analyses have cor-
roborated their effectiveness in preventing and treating both breast and ovarian metastatic tumors24,25,39,43,44. In 
this work, we interpret the anticancer mechanism of action of statins with SL analysis. Among the statins identi-
fied computationally, Simvastatin and Lovastatin were selected for experimental validation (Fig. 7). One of the 
genes targeted by statins is HMGCR, responsible for the inhibition of mevalonate pathway and prenylation45. Our 
computational analysis underscores how statins-induced inhibition of protein prenylation acts synergistically 
with other cancer-related genetic alterations, primarily KRAS, leading to SL. In the MDA-MB-231 cancer cell 

(a) (b)

(c) (d)

Fig. 5.   Validation of the Synthetic Lethality hypothesis with Simvastatin. Half-maximal inhibitory 
concentration (IC50) is determined for different cancer cell lines, after 72 h of treatment with Simvastatin. 
(a) The MDA-MB-231 cell line, harboring a mutated KRAS gene that forms an SL pair with HMGCR, 
demonstrated an IC50 value of 2.108 µM, R2 = 0.9554. (b) The HCC1937 cell line, harboring a mutated BRCA1 
gene that forms an SL pair with HDAC2, demonstrated an IC50 value of 20.94 µM, R2 = 0.8715. (c) The OVPA8 
cell line, harboring a mutated BRCA1 gene that forms an SL pair with HDAC2, demonstrated an IC50 value 
of 8 µM, R2 = 0.8427. (d) The HeLa cell line, devoid of mutations that form SL pairs with the target genes of 
Simvastatin, remains unaffected across all tested Simvastatin concentrations.
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line, already characterized by KRAS mutations, a heightened susceptibility and subsequent mortality is observed 
in response to both Lovastatin or Simvastatin treatments. On the other hand, the HeLa cell line, which lacks 
mutations able to couple in SL pairs with the target genes of Simvastatin and Lovastatin, exhibits no changes 
across all examined drug concentrations. This underscores the antitumor efficacy of statins only in mutated cells. 
Intriguingly, the computational results have unveiled an unexpected interaction between BRCA1 and HDAC2, 
offering a novel perspective on the potential anticancer mechanism of statins. Specifically, statins induces SL in 
cancer cells with BRCA1 mutations when coupled with the inhibition of HDAC2, a histone deacetylase involved 
in epigenetic regulation46. BRCA1, a tumor suppressor gene implicated in DNA repair processes47, is frequently 
mutated in various cancers, particularly breast and ovarian cancers48. The connection between BRCA1 and 
HDAC2 suggests a delicate balance in maintaining genomic integrity. Consequently, statins, by targeting HDAC2 
in BRCA1-deficient cells, exacerbate the underlying genomic instability, resulting in SL. Pharmacological assays 
of Simvastatin and Lovastatin, conducted in vitro on the HCC1937 and OVPA8 cell lines, which are character-
ized by a BRCA1 deletion, revealed a pronounced drug sensitivity. This observation further corroborates the 
computational findings previously obtained.

In the realm of breast cancer research, the mutation frequency of the BRCA1 gene exhibits a broad spectrum, 
ranging from 1.8 to 36.9%, contingent upon the specific tumor subtype under consideration49. A noteworthy 
observation is the elevated mutation rate of up to 15.4% in triple-negative breast cancer, a scenario that is often 
concomitant with an aggressive tumor stage49. In a parallel context, ovarian cancer patients demonstrate a similar 
proportion (15.4%) of BRCA1 mutations50. The mutation landscape of the KRAS gene, on the other hand, is 
characterized by a considerable degree of variability, influenced by factors such as the primary tumor site and its 
stage51. In colon cancer, for instance, the mutation frequency averages at 39.3%, with a pronounced escalation 
to 76.6% in the case of metastatic solid tumors51. A stark contrast is observed in triple-negative breast cancer, 
where a substantial 65% are found to harbor a KRAS mutation52. In light of the findings, it can be inferred that the 
patient population poised to benefit from statin therapy is substantial. This is particularly pertinent for patients 
grappling with metastatic tumors, who are often confronted with a paucity of efficacious therapeutic options 
and survival timelines that starkly contrast with the pace of research advancements.

In a correspondence to the editors of the British Journal of Clinical Pharmacology, Björkhem-Bergman et al.53 
expressed concerns regarding the high concentrations of statins observed in vitro for cancer treatment, argu-
ing that these levels are not negligible in a clinical setting. However, it is important to note that their literature 
review primarily focused on the pleiotropic effects of statins, which necessitate high concentration of the drugs. 
Our findings suggest that the IC50 values we obtained are compatible with clinical applications, especially in 
the case of Lovastatin, which exhibits lower effective concentrations. Jisng et al.54 conducted tests on various 

(a) (b)

(c) (d)

Fig. 6.   Lovastatin validation of the Synthetic Lethality hypothesis. Half-maximal inhibitory concentration 
(IC50) is determined for different cancer cell lines, after 72 h of treatment with Lovastatin. (a) The 
MDA-MB-231 cell line, harboring a mutated KRAS gene that forms an SL pair with HMGCR, demonstrated 
an IC50 value of 9.5 nM, R2 = 0.8. (b) The HCC1937 cell line, harboring a mutated BRCA1 gene that forms an 
SL pair with HDAC2, demonstrated an IC50 value of 8.7 µM, R2 = 0.82. (c) The OVPA8 cell line, harboring a 
mutated BRCA1 gene that forms an SL pair with HDAC2, demonstrated an IC50 value of 522 nM, R2 = 0.78. (d) 
The HeLa cell line, devoid of mutations that form SL pairs with the target genes of Lovastain, remains unaffected 
across all tested Lovastatin concentrations.
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statins across several cell lines, and reported in vitro IC50 values between 0.2 and 70 µM in breast cancer cell 
line. When converted into standard doses, these values approximatein the order of milligrams. In clinical set-
tings, the maximum dosage of Lovastatin in conventional applications is of 80 mg55, whereas for Simvastatin is 
of 40 mg56. Hence, the dosages of statins tested for treating specific tumors are of the same order of magnitude 
as those currently used in conventional anti-cholesterol therapy. In conclusion, the exploitation of SL allows for 
a highly specific, targeted cancer therapy. This approach not only reduces the required dosage while maintain-
ing therapeutic efficacy but also repurposes a drug already in widespread clinical use, thereby cutting down on 
development time and costs.

Conclusion
In our study, we employed a comprehensive data analysis approach to identify the most promising drug candi-
dates that target non-mutated genes involved in Synthetic Lethality (SL) pairs with deleted metastatic genes. This 
analysis highlighted the BRCA1–HDAC2 and KRAS–HMGCR pairs, offering valuable insights into potential 
vulnerabilities in cancer cells that could be exploited by Simvastatin and Lovastatin. These findings open new 
avenues for personalized treatment strategies, particularly for patients with BRCA1-mutated or KRAS-mutated 
cancers. To further substantiate our findings, future work will involve testing additional cell lines and employing 
vectors as negative and/or positive controls. An intriguing prospect would be to examine the computationally 
identified synergy between statins and temozolomide, with the aim of developing a cytotoxic and anti-metastatic 
therapy that could be swiftly introduced into clinical practice. The potential of our approach lies in its ability 
to expedite the drug development process by repurposing already approved drugs, thereby reducing associated 
costs and risks. This strategy not only enhances the efficiency of precision oncology but also holds promise for 
improving patient outcomes.

Data availability
The datasets and the code used and/or analysed during the current study available from the corresponding author 
on reasonable request. The data that support the findings of this study are provided within the supplementary 

Fig. 7.   Simvastatin and Lovastatin, selected from our data-driven analysis and substantiated by retrospective 
meta-analyses and extensive current prescriptions data, have demonstrated their antitumor activity rooted 
in Synthetic Lethality through experimental validation. This compelling evidence irrefutably establishes its 
therapeutic principle of statins, marking a significant stride in the realm of personalized medicine based on 
data-driven repurposed drugs.
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information files. The databases used and/or analysed during the study are available on the corresponding web 
page (the corresponding link is present in the manuscript).
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