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Abstract

We consider a strongly nonlinear differential equation of the following
general type

(Φ(a(t, x(t))x′(t)))′ = f(t, x(t), x′(t)), a.e. on [0, T ]

where f is a Carathédory function, Φ is a strictly increasing homeomor-
phism (the Φ-Laplacian operator) and the function a is continuous and non-
negative. We assume that a(t, x) is bounded from below by a non-negative
function h(t), independent of x and such that 1/h ∈ Lp(0, T ) for some p > 1,
and we require a weak growth condition of Wintner-Nagumo type. Under
these assumptions, we prove existence results for the Dirichlet problem as-
sociated to the above equation, as well as for different boundary conditions.
Our approach combines fixed point techniques and the upper/lower solutions
method.

1 Introduction

Recently many papers have been devoted to the study of boundary value problems
(BVPs for short) associated to nonlinear ODEs involving the so-called Φ-Laplace
operator (see, e.g., [5, 3, 4, 9]). Namely, ODEs of the type

(
Φ(x′)

)′
= f(t, x, x′), (1.1)

where f is a Carathédory function and Φ : R → R is a strictly increasing homeo-
morphism such that Φ(0) = 0.

The class of Φ-Laplacian operators includes as a special case the classical r-
Laplacian Φ(y) := y|y|r−2, with r > 1. Such operators arise in some models,
e.g. in non-Newtonian fluid theory, diffusion of flows in porous media, nonlinear
elasticity and theory of capillary surfaces. Other models (for example reaction-dif-
fusion equations with non-constant diffusivity and porous media equations) lead
to consider mixed differential operators, that is, differential equations of the type

(
a(x)Φ(x′)

)′
= f(t, x, x′), (1.2)

where a is a continuous positive function (see, e.g., [8]). Furthermore, several
papers have been devoted to the case of singular or non-surjective operators (see
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[1, 6, 10]). Usually, these existence results stem from a combination of fixed
point techniques with the upper and lower solutions method. In this context,
an important tool to get a priori bounds for the derivatives of the solutions is a
Nagumo-type growth condition on the function f . Let us observe that, when in the
differential operator is present the nonlinear term a, some assumptions are required
on the differential operator Φ, which in general is assumed to be homogeneous, or
having at most linear growth at infinity.

More recently, in collaboration with Cristina Marcelli, we considered two dif-
ferent generalizations of equation (1.2). In the paper [15], it is investigated the
case in which the function a may depend also on t. More precisely, the authors
obtain existence results for general boundary value problems associated with the
equation

(
a(t, x(t))Φ(x′(t))

)′
= f(t, x(t), x′(t)), a.e. on I := [0, T ]

where a continuous and positive, and assuming a weak form of Wintner-Nagumo
growth condition. Namely,

∣∣f(t, x, y)
∣∣ ≤ ψ

(
a(t, x) |Φ(y)|

)
·
(
ℓ(t) + ν(t) |y|

s−1

s

)
, (1.3)

where ν ∈ Ls(I) (for some s > 1), ℓ ∈ L1(I) and ψ : (0,∞) → (0,∞) is a
measurable function such that 1/ψ ∈ L1

loc(0,∞) and

∫
∞

1

ds

ψ(s)
= ∞.

This assumption is weaker than other Nagumo-type conditions previously consi-
dered, and allows to consider a very general operator Φ, which can be only strictly
increasing, not necessarily homogeneous, nor having polynomial growth. Let us
also observe that the same equation

(
a(t, x)Φ(x′)

)′
= f(t, x, x′)

was studied in [13, 14] to obtain heteroclinic solutions on the real line.
On the other hand, in [7] possibly singular equations are considered, including a

non-autonomous differential operator which has an explicit dependence on t inside
Φ. Namely (

Φ
(
k(t)x′(t)

))′

= f(t, x(t), x′(t)), a.e. on I (1.4)

where the function k is allowed to vanish in a set having null measure, so that
equation (1.4) can become singular. [7] assumed 1/k ∈ Lp(I) and look for solutions
in the space W 1,p(I), rather than C1(I,R). According our knowledge, very few
papers have been devoted to this type of equations, and just for a restricted class
of nonlinearities f (see [11, 12]).

In this paper we tackle a further generalization of equation (1.4), allowing also
a dependence on x inside Φ. More in detail, we consider the BVP





(
Φ
(
a(t, x(t))x′(t)

))′

= f(t, x(t), x′(t)), a.e. on I,

x(0) = ν1, x(T ) = ν2.
(1.5)
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where ν1, ν2 ∈ R, Φ : R → R is a strictly increasing homeomorphism, f is a
Carathéodory function and a : I ×R → R is a continuous non-negative function
satisfying the following estimate from below:

a(t, x) ≥ h(t) for every t ∈ I and every x ∈ R, (1.6)

where h ∈ C(I,R) is non-negative and such that 1/h ∈ Lp(I) for some p > 1.
Notice that, differently to other papers quoted above, here we do not require
the positivity of the function a, and thus the equation in (1.5) may be singular.
Consequently, as in [7], we look for solutions in W 1,1(I).

For example, estimate (1.6) is verified when a(t, x) has a simpler structure of
a product or of a sum, as in the following special cases:

(⋆) if a(t, x) = h(t) · b(x), where h is continuous, non-negative and such that
1/h ∈ Lp(I), and b is continuous and such that infR b > 0;

(⋆) if a(t, x) = h(t) + b(x), where h is continuous, non-negative and such that
1/h ∈ Lp(I), and b is continuous and non-negative.

Our main result, Theorem 3.5 below, yields the existence of a solution of the
Dirichlet problem (1.5) assuming a weak Wintner-Nagumo condition, similar to
the one in (1.3). Theorem 3.5 extends in a natural way the main result in [7], in
the case when a(t, x) = k(t) does not depend on x. The proof is obtained by the
method of lower/upper solutions, combined with a fixed point technique applied to
an auxiliary functional Dirichlet problem (see Section 2). In Section 3 we provide
some illustrating examples in which our main result can be applied.

Finally, in Section 4 we consider different BVPs, such as the periodic problem,
Neumann-type problem and Sturm-Liouville-type problem, and with classical tech-
niques we derive existence results.

2 The abstract setting

Let T > 0 be fixed and let I := [0, T ]. Moreover, let ν1, ν2 ∈ R. Throughout this
section, we shall be concerned with BVPs of the type





(
Φ
(
Ax(t)x

′(t)
))′

= Fx(t), a.e. on I,

x(0) = ν1, x(T ) = ν2,
(2.1)

where Φ, A and F satisfy the following structural assumptions:

(H1) Φ : R → R is a strictly increasing homeomorphism;

(H2) A : W 1,p(I) ⊆ C(I,R) → C(I,R) is continuous wrt the uniform topology of
C(I,R); moreover, there exist h1, h2 ∈ C(I,R) such that

(H2)1 h1, h2 ≥ 0 on I and there exists p > 1 such that

1/h1, 1/h2 ∈ Lp(I);

(H2)2 h1(t) ≤ Ax(t) ≤ h2(t) for every x ∈W 1,p(I) and every t ∈ I;
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(H3) F : W 1,p(I) → L1(I) is continuous (with respect to the usual norms) and
there exists a non-negative function ψ ∈ L1(I) such that

|Fx(t)| ≤ ψ(t) for every x ∈ W 1,p(I) and a.e. t ∈ I. (2.2)

Remark 2.1. We point out that, as a consequence of assumptions (H2)1 and
(H2)2, for every x ∈ W 1,p(I) we have Ax ≥ h1 ≥ 0 and

∫ T

0

1

h2(t)
dt ≤

∫ T

0

1

Ax(t)
dt ≤

∫ T

0

1

h1(t)
dt.

Since 1/h1, 1/h2 ∈ Lp(I), then the same is true of 1/Ax (for any x ∈W 1,p(I)).

In the sequel, we shall indicate by F the integral operator associated with F , that
is, the operator F : W 1,p(I) → C(I,R) defined by

Fx(t) :=

∫ t

0

Fx(s) ds.

Remark 2.2. We observe, for future reference, that F is continuous from W 1,p(I)
to C(I,R): this follows from the continuity of F and from the estimate (holding
true for every x, y ∈W 1,p(I))

sup
t∈I

|Fx(t)− Fy(t)| ≤ ‖Fx − Fy‖L1. (2.3)

Furthermore, assumption (2.2) gives

sup
t∈I

|Fx(t)| ≤ ‖ψ‖L1, for every x ∈W 1,p(I). (2.4)

Definition 2.3. We say that a continuous function x ∈ C(I,R) is a solution of
the boundary value problem (2.1) if it satisfies the following properties:

(1) x ∈W 1,p(I) and t 7→ Φ
(
Ax(t)x

′(t)
)
∈ W 1,1(I);

(2)
(
Φ
(
Ax(t)x

′(t)
))′

= Fx(t) for a.e. t ∈ I;

(3) x(0) = ν1 and x(T ) = ν2.

Remark 2.4. We point out that, if x ∈ W 1,p(I) is a solution of (2.1), by condition
(1) in Definition 2.3 (and the fact that Φ is a homeomorphism, see assumption
(H1)), there exists a unique Ax ∈ C(I,R) such that

Ax(t) = Ax(t)x
′(t) for a.e. t ∈ I.

We shall use this fact in the next Section 3.

The main result of this section is the following existence result.

Theorem 2.5. Under the structural assumptions (H1), (H2) and (H3), the boun-
dary value problem (2.1) admits at least one solution x ∈W 1,p(I).

The proof of Theorem 2.5 requires some preliminary facts.
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Lemma 2.6. For every x ∈ W 1,p(I), there exists a unique ξx ∈ R such that

∫ T

0

1

Ax(t)
Φ−1

(
ξx + Fx(t)

)
dt = ν2 − ν1. (2.5)

Furthermore, there exists a universal constant c0 > 0 such that

|ξx| ≤ c0 for every x ∈ W 1,p(I). (2.6)

Proof. Let x ∈ W 1,p(I) be fixed and let

fx : R −→ R, fx(ξ) :=

∫ T

0

1

Ax(t)
Φ−1

(
ξ + Fx(t)

)
dt.

Since Fx is continuous on I (see Remark 2.2) and since, by assumptions, Φ is con-
tinuous on the whole of R, an application of Lebesgue’s Dominated Convergence
Theorem shows that fx ∈ C(R,R) (see also Remark 2.1); moreover, since Φ is
increasing, the same is true of fx and, by (2.4), we have

Φ−1(ξ − ‖ψ‖L1) ·

(∫ T

0

1

Ax(t)
dt

)
≤ fx(ξ) ≤

≤ Φ−1(ξ + ‖ψ‖L1) ·

(∫ T

0

1

Ax(t)
dt

)
.

(2.7)

From this, we deduce that fx(ξ) → ±∞ as ξ → ±∞; thus, by Bolzano’s Theorem
(and the monotonicity of fx), there exists a unique ξx ∈ R s.t.

fx(ξx) =

∫ T

0

1

Ax(t)
Φ−1

(
ξx + Fx(t)

)
dt = ν2 − ν1.

We now turn to prove estimate (2.6). To this end we observe that, by (2.5) and
the Mean Value Theorem, there exists t∗ = t∗x ∈ I such that

Φ−1(ξx + Fx(t
∗)) ·

(∫ T

0

1

Ax(t)
dt

)
= ν2 − ν1;

as a consequence, we obtain

ξx + Fx(t
∗) = Φ

(
(ν2 − ν1) ·

(∫ T

0

1

Ax(t)
dt

)−1)
.

Now, by crucially exploiting Remark 2.1, we see that
∣∣∣∣(ν2 − ν1) ·

(∫ T

0

1

Ax(t)
dt

)−1∣∣∣∣ ≤ |ν2 − ν1| ·

(∫ T

0

1

h2(t)
dt

)−1

=: ρ,

for every x ∈W 1,p(I); setting M := sup[−ρ,ρ] |Φ|, we get (see also (2.4))

|ξx| ≤ |ξx + Fx(t
∗)|+ |Fx(t

∗)|

≤

∣∣∣∣Φ
(
(ν2 − ν1) ·

(∫ T

0

1

Ax(t)
dt

)−1)∣∣∣∣+ sup
t∈I

|Fx(t)|

≤M + ‖ψ‖L1 =: c0.

Since c0 > 0 does not depend on x, this gives the desired (2.6).
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We now consider the operator P :W 1,p(I) →W 1,p(I) defined by

Px(t) := ν1 +

∫ t

0

1

Ax(s)
Φ−1

(
ξx + Fx(s)

)
ds, (2.8)

where ξx is as in Lemma 2.6. We note that P is well-defined, in the sense that
Px ∈W 1,p(I) for every x ∈ W 1,p(I): indeed, assumption (H2)2 and (2.4) give

∣∣∣∣
1

Ax(s)
Φ−1

(
ξx + Fx(s)

)∣∣∣∣ ≤
1

h1(t)
Φ−1

(
ξx + ‖ψ‖L1

)
;

thus, since 1/h1 ∈ Lp(I), we conclude that Px ∈ W 1,p(I), as claimed. Furthermo-
re, it is not difficult to see that the solutions of (2.1) (according to Definition 2.3)
are precisely the fixed points (in W 1,p(I)) of P.

In view of this fact, we can prove Theorem 2.5 by showing that P possesses
at least one fixed point in W 1,p(I); in its turn, the existence of a fixed point of P
follows from Schauder’s Fixed Point Theorem if we are able to demonstrate that
P enjoys the following properties:

• P is bounded in W 1,p(I);

• P is continuous from W 1,p(I) into itself;

• P is compact.

These facts are proved in the next lemmas.

Lemma 2.7. The operator P defined in (2.8) is bounded in W 1,p(I), that is,
there exists a universal constant c1 > 0 such that

‖Px‖W 1,p ≤ c1 for every x ∈W 1,p(I).

Proof. For every x ∈W 1,p(I), by combining (2.4) and (2.6), we have

|ξx + Fx(s)| ≤ c0 + ‖ψ‖L1 =: η, for every s ∈ I;

thus, if we set M̂ = max[−η,η] |Φ
−1|, we obtain (see assumption (H2)2)

∣∣∣∣
1

Ax(s)
Φ−1

(
ξx + Fx(s)

)∣∣∣∣ ≤
M

h1(s)
for every s ∈ I, (2.9)

and the estimate holds for every x ∈W 1,p(I). With such an estimate at hand, we
can easily prove the boundedness of P: indeed, by (2.9) we have

‖P′

x‖Lp =

(∫ T

0

∣∣∣∣
1

Ax(s)
Φ−1

(
ξx + Fx(s)

)∣∣∣∣
p

ds

)1/p

≤M ‖1/h1‖Lp

for every x ∈W 1,p(I); moreover, one has

‖Px‖Lp ≤

{∫ T

0

(
|ν1|+

∫ t

0

∣∣∣∣
1

Ax(s)
Φ−1

(
ξx + Fx(s)

)∣∣∣∣ds
)p

dt

}1/p

≤ T 1/p
(
|ν1|+M ‖1/h1‖L1

)
,

6



and again the estimate holds for every x ∈W 1,p(I). Summing up, if we introduce
the constant (which does not depend on x)

c1 := T 1/p (|ν1|+M ‖1/h1‖L1) +M ‖1/h1‖Lp > 0,

we conclude that, for every x ∈ W 1,p(I), one has

‖Px‖W 1,p = ‖Px‖Lp + ‖P′

x‖Lp ≤ c1.

This ends the proof.

Remark 2.8. It is contained in the proof of Lemma 2.7 the following fact, which
we shall repeatedly use in the sequel: there exists a constant M > 0 such that, for
every x ∈W 1,p(I),

max
t∈I

∣∣∣Φ−1
(
ξx + Fx(t)

)∣∣∣ ≤M. (2.10)

We also highlight that, since the injection W 1,p(I) ⊆ C(I,R) is continuous, the
boundedness of P in W 1,p(I) implies the boundedness of P in C(I,R): more
precisely, there exists a real c′1 > 0 such that

sup
t∈I

|Px(t)| ≤ c
′

1, for every x ∈W 1,p(I). (2.11)

We now turn to prove the continuity of P.

Lemma 2.9. The operator P defined in (2.8) is continuous on W 1,p(I).

Proof. Let x0 ∈ W 1,p(I) be fixed and let {xn}n∈N ⊆ W 1,p(I) be a sequence
converging to x0 as n→ ∞. We need to prove that Pxn

→ Px0
as n→ ∞.

To this end, we arbitrarily choose a sub-sequence {xnk
}k∈N of {xn}n∈N and

we show that there exists a further sub-sequence {xnkj
}j∈N such that

lim
j→∞

Pxnkj

= Px0
in W 1,p(I).

First of all, by (2.6), the sequence {ξxnk
}k∈N is bounded in R; thus, there exist

an increasing sequence {kj}j∈N ⊆ N and a real ξ0 ∈ R such that

ξj := ξxnkj

→ ξ0 as j → ∞.

Moreover, since F is continuous from W 1,p(I) to C(I,R) (see Remark 2.2), we
have Fj := Fxnkj

→ Fx0
uniformly on I as j → ∞. Finally, since A is continuous

wrt the uniform topology of C(I,R) (by (H2)), one has

Aj := Axnkj

→ Ax0
uniformly on I as j → ∞.

Gathering together all these facts (and reminding that Φ ∈ C(R,R)), we get

lim
j→∞

1

Aj(t)
Φ−1

(
ξj + Fj(t)

)

=
1

Ax0
(t)

Φ−1
(
ξ0 + Fx0

(t)
)

for a.e. t ∈ I.

(2.12)
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From this, owing to estimate (2.10) and Remark 2.1, we infer that

lim
j→∞

∫ t

0

1

Aj(s)
Φ−1

(
ξj + Fj(s)

)
ds

=

∫ t

0

1

Ax0
(s)

Φ−1
(
ξ0 + Fx0

(s)
)
ds for every t ∈ I.

(2.13)

In particular, since we know from Lemma 2.6 that

∫ T

0

1

Aj(s)
Φ−1

(
ξj + Fj(s)

)
ds = ν2 − ν1 for every j ∈ N,

identity (2.13) implies that

∫ T

0

1

Ax0
(s)

Φ−1
(
ξ0 + Fx0

(s)
)
ds = ν2 − ν1;

thus, by the uniqueness property of ξx in Lemma 2.6, we get ξ0 = ξx0
. As a

consequence, by exploiting the very definition of P (see (2.8)), identity (2.13)
allows us to conclude that Pxnkj

→ Px0
point-wise on I as j → ∞.

To complete the proof of the lemma, we need to show that the sequence Pxnkj

actually converges to Px0
in W 1,p(I) as j → ∞. To this end we first observe that,

by exploiting estimate (2.10), for almost every t ∈ I one has

∣∣∣∣
1

Aj(t)
Φ−1

(
ξj + Fj(t)

)
−

1

Ax0
(t)

Φ−1
(
ξx0

+ Fx0
(t)

)∣∣∣∣
p

≤ 2p
Mp

hp1(t)
;

as a consequence, since 1/h1 ∈ Lp(I) (by assumption (H2)), a standard application
of Lebesgue’s Dominated Convergence Theorem gives (see also (2.12))

lim
j→∞

‖P′

xnkj

− P′

x0
‖pLp

= lim
j→∞

∫ T

0

∣∣∣∣
1

Aj(t)
Φ−1

(
ξj + Fj(t)

)
−

1

Ax0
(t)

Φ−1
(
ξx0

+ Fx0
(t)

)∣∣∣∣
p

dt = 0.

On the other hand, since P is bounded in C(I,R) (see Remark 2.8), one has

|Pxnkj

(t)− Px0
(t)|p ≤ 2p c′1 for every t ∈ I;

thus, again by Lebesgue’s Dominated Convergence Theorem, we get

lim
j→∞

‖Pxnkj

− Px0
‖pLp

= lim
j→∞

∫ T

0

|Pxnkj

(t)− Px0
(t)|p dt = 0.

Gathering together these facts, we conclude that ‖Pxnkj

−Px0
‖W 1,p → 0 as j → ∞,

and this finally completes the demonstration of the lemma.

Finally, we prove that P is compact.

Lemma 2.10. The operator P defined in (2.8) is compact on W 1,p(I).
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Proof. Let {xn}n∈N ⊆ W 1,p(I) be bounded. We need to prove that the sequence
{Pxn

}n∈N possesses a sub-sequence which is convergent (in the W 1,p-norm) to
some function y0 ∈W 1,p(I).

Fist of all, since {ξxn
}n∈R is bounded in R (see (2.6)), there exist a real ξ0 and

a sub-sequence of {xn}n∈N, denoted again by {xn}n∈N, such that

lim
n→∞

ξxn
= ξ0 and |ξ0| ≤ c0. (2.14)

Moreover, since {xn}n∈N is bounded in W 1,p(I) and p > 1, there exist a suitable
function x0 ∈W 1,p(I) and another sub-sequence of {xn}n∈N, which we still denote
by {xn}n∈N, such that xn → x0 uniformly on I as n→ ∞.

As a consequence, since the operator A is continuous with respect to the uni-
form topology of C(I,R) (by assumption (H2)), we have

Axn
→ Ax0

uniformly on I as j → ∞. (2.15)

We now observe that, by assumption (H3), we have the estimate

Fxn
(t) ≤ ψ(t), holding true for a.e. t ∈ I and every n ∈ N;

thus, {Fxn
}n∈N is bounded and equi-integrable in L1. Owing to the Dunford-

Pettis Theorem, we infer the existence of a function g ∈ L1(I) and of another
sub-sequence of {xn}n∈N, denoted once again by {xn}n∈N, such that

(⋆) lim
n→∞

∫ T

0

Fxn
(s) v(s) ds =

∫ T

0

g(s) v(s) ds for every v ∈ L∞(I);

(⋆) ‖g‖L1 ≤ ‖ψ‖L1.

Choosing v as the indicator function of [0, t] (with t ∈ I), we get

Fxn
(t) → G(t) :=

∫ t

0

g(s) ds for every t ∈ I

and sup
t∈I

|G(t)| ≤ ‖ψ‖L1.

(2.16)

Gathering together (2.14), (2.15) and (2.16), we deduce that

lim
n→∞

1

Axn
(t)

Φ−1
(
ξxn

+ Fxn
(t)

)

=
1

Ax0
(t)

Φ−1
(
ξ0 + G(t)

)
for a.e. t ∈ I.

(2.17)

From this, owing to (2.14), (2.16) and Remark 2.1, we conclude that
∣∣∣∣

1

Ax0
(t)

Φ−1
(
ξ0 + G(t)

)∣∣∣∣ ≤
M

h1(t)
∈ Lp(I) for a.e. t ∈ I (2.18)

and that, for every t ∈ I, one has

lim
n→∞

Pxn
(t) = lim

n→∞

{
ν1 +

∫ t

0

1

A(xn)(s)
Φ−1

(
ξxn

+ Fxn
(s)

)}

= ν1 +

∫ t

0

1

Ax0
(s)

Φ−1
(
ξ0 + G(s)

)
=: y0(t) for every t ∈ I.
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To complete the proof of the lemma, we need to show that the sequence {Pxn
}n

actually converges to y0 in W 1,p(I) as n→ ∞.
On the one hand, by using estimate (2.18) and by arguing exactly as in the

proof of Lemma 2.9, we easily recognize that

lim
n→∞

‖P′

xn
− y′0‖

p
Lp =

= lim
n→∞

∫ T

0

∣∣∣∣
1

Axn
(t)

Φ−1
(
ξxn

+ Fxn
(t)

)
−

1

Ax0
(t)

Φ−1
(
ξ0 + G(t)

)∣∣∣∣
p

dt = 0.

On the other hand, since Pxn
→ y0 point-wise on I, from (2.11) we get

|y0(t)| ≤ c
′

1 for every t ∈ I;

hence, by arguing once again as in the proof of Lemma 2.9, we conclude that

lim
n→∞

‖Pxn
− y0‖

p
Lp

= lim
n→∞

∫ T

0

|Pxn
(t)− y0(t)|

p dt = 0.

Summing up, Pxn
→ y0 in W 1,p(I) as n→ ∞, and the proof is complete.

Gathering Lemmas 2.7, 2.9 and 2.10, we can prove Theorem 2.5.

of Theorem 2.5. We have already pointed out that a function x ∈ W 1,p(I) is a
solution of the boundary value problem (2.1) if and only if x is a fixed point of
the operator P defined in (2.8). On the other hand, since P is bounded, continuous
and compact on the Banach space W 1,p(I), the Schauder Fixed Point Theorem
ensures the existence of (at least) one x ∈W 1,p(I) such that Px = x, and thus the
problem (2.1) possesses at least one solution.

3 The Dirichlet problem for singular ODEs

In this section, we exploit the existence result in Theorem 2.5 in order to prove
the solvability of boundary value problems of the following type





(
Φ
(
a(t, x(t))x′(t)

))′

= f(t, x(t), x′(t)), a.e. on I,

x(0) = ν1, x(T ) = ν2.
(3.1)

As in Section 2, I = [0, T ] (for some real T > 0) and ν1, ν2 ∈ R; furthermore, the
functions Φ, a and f satisfy the following structural assumptions:

(A1) Φ : R → R is a strictly increasing homeomorphism;

(A2) a ∈ C(I ×R,R) and there exists h ∈ C(I,R) such that

(A2)1 h ≥ 0 on I and there exists p > 1 such that

1/h ∈ Lp(I);
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(A2)2 a(t, x) ≥ h(t) for every t ∈ I and every x ∈ R;

(A3) f : I ×R
2 → R is a Carathéodory function, that is,

(∗) the map t 7→ f(t, x, y) is measurable on I, for every (x, y) ∈ R
2;

(∗) the map (x, y) 7→ f(t, x, y) is continuous on R
2, for a.e. t ∈ I.

Remark 3.1. As in Section 2 we point out that, as a consequence of (A2)1-(A2)2,
for every (t, x) ∈ I ×R one has a(t, x) ≥ h(t) ≥ 0 and

0 ≤

∫ T

0

1

a(t, x(t))
dt ≤

∫ T

0

1

h(t)
dt,

for any measurable function x : I → R. Hence, t 7→ a(t, x(t)) ∈ Lp(I).

We now give the definition of solution of the problem (3.1).

Definition 3.2. We say that a continuous function x ∈ C(I,R) is a solution of
the Dirichlet problem (3.1) if it satisfies the following properties:

(1) x ∈W 1,1(I) and t 7→ Φ
(
a(t, x(t))x′(t)

)
∈W 1,1(I);

(2)
(
Φ
(
a(t, x(t))x′(t)

))′

= f(t, x(t), x′(t)) for almost every t ∈ I;

(3) x(0) = ν1 and x(T ) = ν2.

If x fulfills only (1) and (2), we say that x is a solution of the ODE

(
Φ
(
a(t, x(t))x′(t)

))′

= f(t, x(t), x′(t)). (3.2)

In order to clearly state the main result of this section, we also need to introduce
the definition of upper/lower solution of the equation in (3.1).

Definition 3.3. We say that a continuous function α ∈ C(I,R) is a lower [re-
spectively upper] solution of the differential equation (3.2) if

(1) α ∈W 1,1(I) and t 7→ Φ
(
a(t, α(t))α′(t)

)
∈W 1,1(I);

(2)
(
Φ
(
a(t, α(t))α′(t)

))′

≥ [≤] f(t, α(t), α′(t)) for almost every t ∈ I.

Remark 3.4. If x ∈W 1,1(I) is a solution of the problem (3.1), we denote by Ax

the unique continuous function on I such that (see also Remark 2.4)

Ax(t) = a(t, x(t))x′(t) for a.e. t ∈ I.

Notice that, as a consequence of condition (1) in Definition 3.2 (and again of the
fact that Φ is a homeomorphism, see (H1)), such a function exists.

Analogously, if α ∈ W 1,1(I) is a lower/upper solution of (3.2), we denote by
Aα the unique continuous function on I such that

Aα(t) = a(t, α(t))α′(t) for a.e. t ∈ I.

The existence of such a function follows from (1) in Definition 3.3.
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We are ready to state our main existence result.

Theorem 3.5. Let us assume that, together with the structural assumptions (A1)-
to-(A3), the following additional hypotheses are satisfied:

(A1’) there exists a pair of lower and upper solutions α, β ∈ W 1,1(I) of the diffe-
rential equation (3.2) such that α(t) ≤ β(t) for every t ∈ I;

(A2’) for every R > 0 and every non-negative function γ ∈ Lp(I) there exists a
non-negative function h = hR,γ ∈ Lp(I) such that

|f(t, x, y(t))| ≤ hR,γ(t) (3.3)

for a.e. t ∈ I, every x ∈ R with |x| ≤ R and every function y ∈ Lp(I)
satisfying |y(t)| ≤ γ(t) a.e. on I.

(A3’) there exist a constant H > 0, a non-negative function µ ∈ Lq(I) (for some
1 < q ≤ ∞), a non-negative function l ∈ L1(I) and a non-negative measu-
rable function ψ : (0,∞) → (0,∞) such that

(⋆) 1/ψ ∈ L1
loc(0,∞) and

∫
∞

1

1

ψ(t)
dt = ∞; (3.4)

(⋆) |f(t, x, y)| ≤ ψ
(
|Φ(a(t, x) y)|

)
·
(
l(t) + µ(t) |y|

q−1

q

)
; (3.5)

for a.e. t ∈ I, every x ∈ [α(t), β(t)] and every y ∈ R with |y| ≥ H.

Then, for every ν1 ∈ [α(0), β(0)] and every ν2 ∈ [α(T ), β(T )], the (singular)
Dirichlet problem (3.1) possesses a solution x ∈ W 1,p(I) ⊆ W 1,1(I) (where p > 1
as is assumption (A2)), further satisfying

α(t) ≤ x(t) ≤ β(t) for every t ∈ I. (3.6)

Furthermore, if M > 0 is any real number such that supI |α|, supI |β| ≤ M , it is
possible to find a real LM > 0, only depending on M , such that

max
t∈I

∣∣x(t)
∣∣ ≤M and max

t∈I

∣∣Ax(t)
∣∣ ≤ LM . (3.7)

The main idea behind the proof of Theorem 3.5 is to think of the Dirichlet
problem (3.1) as a particular case of an abstract BVPs of the form (2.1), and then
to apply the existence result contained in Theorem 2.5.

Unfortunately, we cannot directly apply our Theorem 2.5 to the problem (3.1):
in fact, in general, we cannot expect the (well-defined) functional

W 1,p(I) ∋ x 7→ Fx := f(t, x(t), x′(t)) ∈ L1(I)

to satisfy assumption (H3) (or, more precisely, estimate (2.2)).
Thus, following an approach similar to that exploited by [10, 15], we introduce

a suitable truncated version of problem (3.1), to which Theorem 3.5 can apply.
To this end, to simplify the notation, we first fix some relevant constants we shall
need for the proof of Theorem 3.5; henceforth, we suppose that all the assumption
in the statement of Theorem 3.5 are satisfied.
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Let M > 0 be any real number such that supI |α|, supI |β| ≤M and let H > 0 be
the constant appearing in assumption (A3’); moreover, we define

a0 := max
{
a(t, x) : (t, x) ∈ I × [−M,M ]

}
(3.8)

We choose a real N > 0 such that

N > max

{
H,

2M

T

}
· a0 and

Φ(N) · Φ(−N) < 0 (with Φ(N) > 0);

(3.9)

accordingly, we fix LM > 0 in such a way that (see (3.4))

min

{∫ Φ(LM )

Φ(N)

1

ψ(s)
ds,

∫
−Φ(−LM )

−Φ(−N)

1

ψ(s)
ds

}
> ‖l‖L1 + ‖µ‖Lq (2M)

q−1

q . (3.10)

Notice that LM depends on M (and also on l and µ), but not on α, β nor on ν1
and ν2. Introducing the functions

γ0 := LM/h ∈ Lp(I) and γ̂ := γ0 + |α′|+ |β′| ∈ L1(I),

we then consider the following truncating operators:

T :W 1,1(I) −→W 1,1(I), T(x)(t) :=





α(t), if x(t) < α(t);

x(t), if x(t) ∈ [α(t), β(t)];

β(t), if x(t) > β(t);

D : L1(I) −→ L1(I), D(z)(t) :=





−γ̂(t), if z(t) < −γ̂(t);

z(t), if |z(t)| ≤ γ̂(t);

γ̂(t), if z(t) > γ̂(t).

We also consider the truncated function f∗ : I ×R
2 → R defined by

f∗(t, x, y) :=





f
(
t, β(t), β′(t)

)
+ arctan

(
x− β(t)

)
, if x > β(t);

f(t, x, y), if x ∈ [α(t), β(t)];

f
(
t, α(t), α′(t)

)
+ arctan

(
x− α(t)

)
, if x < α(t).

By means of the function f∗ and of the operators T and D, we are finally in a
position to introduce a “truncated version” of the Dirichlet problem (3.1):





(
Φ
(
a
(
t,T(x)(t)

)
x′(t)

))′

= f∗

(
t, x(t),D

(
T(x)′(t)

))
, a.e. on I,

x(0) = ν1, x(T ) = ν2.

(3.11)

The next proposition shows that the “abstract” existence result in Theorem 2.5
does apply to the “truncated” Dirichlet problem (3.11).

Proposition 3.6. Let the above assumptions and notation apply. Then, there
exists (at least) one solution x ∈W 1,p(I) of the Dirichlet problem (3.11).
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Proof. We consider the operators A and F defined as follows:

A :W 1,p(I) −→ C(I,R), Ax(t) := a
(
t,T(x)(t)

)
,

F :W 1,p(I) −→ L1(I), Fx(t) := f∗

(
t, x(t),D

(
T(x)′(t)

))

By means of these operators, the problem (3.11) can be re-written as





(
Φ
(
Ax(t)x

′(t)
))′

= Fx(t), a.e. on I,

x(0) = ν1, x(T ) = ν2.

We claim that A and F satisfy assumptions (H2) and (H3) in Theorem 2.5.
First of all, since T is continuous with respect to the uniform topology of

C(I,R) (as is very easy to see) and since, by the choice of M , we have

−M ≤ α(t) ≤ T(x)(t) ≤ β(t) ≤M for every t ∈ I,

the uniform continuity of a on I × [−M,M ] implies that A is continuous from
W 1,p(I) (as a subspace of C(I,R)) to C(I,R). Moreover, by (3.8) one has

Ax(t) = a
(
t,T(x)(t)

)
≤ a0 for every x ∈ W 1,p(I) and every t ∈ I.

Finally, by assumption (A2), there exists h ∈ C(I,R) such that

(⋆) h ≥ 0 and 1/h ∈ Lp(I);

(⋆) Ax(t) ≥ h(t) for every x ∈ W 1,p(I) and every t ∈ I.

Thus, the operator A satisfies (H2) in Theorem 2.5 (with h2(t) ≡ a0).

As for the functional F , by arguing exactly as in [7, Theorem 3.1], one can
recognize that it is continuous from W 1,p(I) to L1(I) and that

|Fx(t)| ≤ Θ(t) := hM,γ̂(t) +
π

2

for every x ∈W 1,p(I) and almost every t ∈ I (here, hM,γ̂ is the function appearing
in assumption (A2’) and corresponding to M and γ̂ = γ0 + |α′| + |β′|). Since,
obviously, Θ ∈ L1(I), we conclude that F satisfies (H3) in Theorem 2.5.

Gathering together all these facts, we are allowed to apply Theorem 2.5 to
problem (3.11), which therefore admits a solution x ∈ W 1,p(I).

We now turn to prove that any solution of (3.11) actually solves (3.1).

Proposition 3.7. Let the above assumptions and notation do apply, and let x ∈
W 1,p(I) be any solution of the truncated problem (3.11).

Then the following facts hold:

(i) α(t) ≤ x(t) ≤ β(t) for every t ∈ I;

(ii) supI |x| ≤M ;

(iii)
∣∣Ax(t)

∣∣ ≤ LM for every t ∈ I;

(iv) |x′(t)| ≤ LM/h(t) = γ0(t) for a.e. t ∈ I.
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Proof. Let x ∈ W 1,p(I) be any solution of (3.11). According to Remark 2.4, we
denote by Ax the unique continuous function on I such that

Ax(t) = A(x(t))x′(t) = a
(
x,T(x)(t)

)
x′(t) for a.e. t ∈ I.

Once we have proved that x(t) ∈ [α(t), β(t)] for all t ∈ I, we shall obtain

Ax(t) = a(t, x(t))x′(t) for a.e. t ∈ I.

Let us then turn to prove statements (i)-to-(iii).

(i) Let us assume, by contradiction, that x(t) /∈ [α(t), β(t)] for some t ∈ I;
moreover, to fix ideas, let us suppose that x(t) < α(t).

Since, by assumptions, ν1 = x(0) ≥ α(0) and ν2 = x(T ) ≥ α(T ), it is possible
to find suitable points t1, t2, θ ∈ I, with t1 < θ < t2, such that

(a) x(θ) − α(θ) = min
t∈I

(
x(t) − α(t)

)
< 0;

(b) x(t1)− α(t1) = x(t2)− α(t2) = 0 and x < α on (t1, t2).

In particular, from (b) we infer that T(x) ≡ α on (t1, t2) and that

f∗

(
t, x(t),D

(
T(x)′(t)

))
= f(t, α(t), α′(t)) + arctan

(
x(t)− α(t)

)

< f(t, α(t), α′(t)), for a.e. t ∈ (t1, t2).

As a consequence, since x solves the Dirichlet problem (3.11) and α is a lower
solution of the ODE (3.2), for almost every t ∈ (t1, t2) we obtain

(
Φ
(
Ax(t)

))′

=

(
Φ
(
a
(
t,T(x)(t)

)
x′(t)

))′

= f∗

(
t, x(t),D

(
T(x)′(t)

))
< f(t, α(t), α′(t))

≤

(
Φ
(
a
(
t, α(t)

)
α′(t)

))′

=
(
Φ
(
Aα(t)

))′

.

(3.12)

We now introduce the subsets I1, I2 of I defined as follows:

I1 := {t ∈ (t1, θ) : x
′(t) < α′(t)} and I2 := {t ∈ (θ, t2) : x

′(t) > α′(t)}.

Since x < α on (t1, t2), it is readily seen that both I1 and I2 must have positive
measure; thus, it is possible to find τ1 ∈ I1 and τ2 ∈ I2 such that

(⋆) 0 < h1(τi) ≤ a(τi, α(τi)) for i = 1, 2;

(⋆) Aα(τi) = a(τi, α(τi))α
′(τi) for i = 1, 2 (see Remark 3.4);

(⋆) Ax(τi) = a(τi,T(x)(τi))x
′(τi) = a(τi, α(τi))x

′(τi) for i = 1, 2.

From this, by integrating both sides of inequality (3.12) on [τ1, θ], we get

Φ
(
Ax(θ)

)
− Φ

(
a
(
τ1, α(τ1)

)
x′(τ1)

)
≤ Φ

(
Aα(θ)

)
− Φ

(
a
(
τ1, α(τ1)

)
α′(τ1)

)
;

hence, by the choice of τ1 and the fact that Φ is strictly increasing, one has

Φ
(
Ax(θ)

)
− Φ

(
Aα(θ)

)
< 0. (3.13)
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On the other hand, if we integrate both sides of (3.12) on [θ, τ2] we get

Φ
(
a
(
τ2, α(τ2)

)
x′(τ2)

)
− Φ

(
Ax(θ)

)
≤ Φ

(
a
(
τ2, α(τ2)

)
α′(τ2)

)
− Φ

(
Aα(θ)

)

and thus, by the choice of τ2 and again the monotonicity of Φ, we obtain

Φ
(
Ax(θ)

)
− Φ

(
Aα(θ)

)
> 0,

This is clearly in contradiction with (3.13), hence x ≥ α on I. By arguing analo-
gously one can prove that x ≤ β on I, and statement (i) is established.

(ii) By statement (i) and the choice of M , we immediately get

−M ≤ α(t) ≤ x(t) ≤ β(t) ≤M for every t ∈ I.

(iii) We split the proof of this statement into two steps.

Step I: We begin by showing that, if N > 0 is as in (3.9), then

min
t∈I

∣∣Ax(t)
∣∣ ≤ N. (3.14)

We argue again by contradiction and, to fix ideas, we assume that

Ax(t) = a
(
t, x(t)

)
x′(t) > N for a.e. t ∈ I. (3.15)

By integrating both sides of this inequality on [0, T ], we get

∫ T

0

Ax(t) dt =

∫ T

0

a(t, x(t))x′(t) dt > NT ;

from this, by statement (ii), (3.8) and the choice of N in (3.9), we obtain (notice
that, by (3.15), we have x′(t) > 0 a.e. on I)

NT <

∫ T

0

a(t, x(t))x′(t) dt ≤ a0 ·

∫ T

0

x′(t) dt

= (ν2 − ν1) · a0 = |ν2 − ν1| · a0 ≤ (2M) · a0 < NT.

This is clearly a contradiction, hence Ax ≤ N on I. By arguing analogously one
can also prove that Ax ≥ −N on I, and (3.14) is established.

Step II: We now turn to prove statement (iii). To this end, arguing once again
by contradiction, we assume that there exists t ∈ I such that

∣∣Ax(t)
∣∣ > LM ;

moreover, to fix ideas, we suppose that Ax(t) > LM .

Since, by definition, LM > N , from Step I and Remark 3.4 we infer the exis-
tence of two points t1, t2 ∈ I, with t1 < t2, such that (for example)

(∗) Ax(t1) = N and Ax(t2) = LM ;

(∗∗) 0 < N < Ax(t) < LM for every t ∈ (t1, t2);
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from this, by statement (ii), (3.8) and the choice of N (see (3.9)), we obtain

0 < H <
N

a0
< x′(t) <

LM

h(t)
= γ0(t) ≤ γ̂(t) for a.e. t ∈ (t1, t2). (3.16)

Now, by definition of D, we deduce from (3.16) that D(x′) = x′ a.e. on (t1, t2);
moreover, by statement (i) and the definition of f∗, we have

f∗

(
t, x(t),D

(
T(x)′(t)

))
= f(t, x(t), x′(t)) for a.e. t ∈ (t1, t2).

As a consequence, since x(t) ∈ [α(t), β(t)] for every t ∈ I (by statement (i)) and
since x′(t) > H > 0 for a.e. t ∈ (t1, t2) (again by (3.16)), we are entitled to apply
estimate (3.5), which gives (remind that x solves (3.11) and see (∗∗))

∣∣∣∣
(
Φ
(
Ax(t)

))′
∣∣∣∣ =

∣∣∣∣
(
Φ
(
a(t, x(t))x′(t)

))′
∣∣∣∣ =

∣∣f(t, x(t), x′(t))
∣∣

≤ ψ
(
|Φ(a(t, x(t))x′(t))|

)
·
(
l(t) + µ(t) (x′(t))

q−1

q

)

= ψ
(∣∣Φ

(
Ax(t)

)∣∣
)
·
(
l(t) + µ(t) (x′(t))

q−1

q

)

(since, by (∗∗) and (3.9), we have Φ(Ax(t)) > Φ(N) > 0)

= ψ
(
Φ
(
Ax(t)

))
·
(
l(t) + µ(t) (x′(t))

q−1

q

) (
a.e. on (t1, t2)

)
.

In particular, by exploiting this inequality, we obtain

∫ Φ(LM )

Φ(N)

1

ψ(s)
ds =

∫ Φ(Ax(t2))

Φ(Ax(t1))

1

ψ(s)
ds

≤

∫ t1

t0

(
Φ
(
Ax(t)

))′

ψ
(
Φ
(
Ax(t)

)) dt ≤
∫ t1

t0

(
l(t) + µ(t) (x′(t))

q−1

q

)
dt

(
by Hölder’s inequality

)

≤ ‖l‖L1 + ‖µ‖Lq ·

(∫ t1

t0

x′(t) dt

) q−1

q

≤ ‖l‖L1 + ‖µ‖Lq ·
(
x(t1)− x(t0)

) q−1

q

(
by statement (ii)

)

≤ ‖l‖L1 + ‖µ‖Lq · (2M)
q−1

q .

This is in contradiction with the choice of LM (see (3.10)), hence Ax ≤ LM on I.
Analogously, one can prove that Ax ≥ −LM on I and statement (iii) is completely
proved.

(iv) From statement (iii) and assumption (A2) we immediately infer that

|x′(t)| ≤
LM

a(t, x(t))
≤
LM

h(t)
= γ0(t) for almost every t ∈ I,

and the proof is finally complete.
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By combining Propositions 3.6 and 3.7, we can prove Theorem 3.5.

Proof (of Theorem 3.5). First of all, by Proposition 3.6, there exists (at least) one
solution x ∈ W 1,p(I) of the “truncated” Dirichlet problem (3.11); moreover, by
statements (i) and (iii) of Proposition 3.7 (and the very definitions of the operators
T and D), for almost every t ∈ I we obtain

(
Φ
(
a
(
t, x(t)

)
x′(t)

))′

=

(
Φ
(
a
(
t,T(x)(t)

)
x′(t)

))′

= f∗

(
t, x(t),D

(
T(x)′(t)

))
= f(t, x(t), x′(t)).

Thus, x is actually a solution of the Dirichlet problem (3.1). To complete the
demonstration of the theorem, we show that x satisfies (3.6) and (3.7).

As for (3.6), it is precisely statement (i) of Proposition 3.7; estimate (3.7),
instead, follows from statements (ii) and (iii) of the same proposition.

Some examples. We close the section with a few illustrating examples, in which
we consider a generic function a(t, x) satisfying assumption (A2). We explicitly
point out that (A2) is verified, e.g., in the following special cases:

(1.) when a(t, x) has a product structure

a(t, x) = h(t) · b(x),

where h : I → R is a continuous non-negative function on I such that 1/h is
in Lp(I) (for some p > 1) and b ∈ C(R) is such that infR b > 0;

(2.) when a(t, x) is a sum
a(t, x) = h(t) + b(x),

where h : I → R is a continuous non-negative function on I such that 1/h is
in Lp(I) (for some p > 1) and b ∈ C(R,R) is non-negative.

In the next Example 3.8, the growth of the right-hand side f with respect the
variable y is linear, and this allows the choice ψ ≡ 1 in the Wintner-Nagumo
condition (3.5). Thus, condition (3.5) does not require any relation among the
differential operator Φ, the function a appearing inside Φ, and f .

Example 3.8. Let us consider the Dirichlet problem





(
Φ
(
a(t, x(t))x′(t)

))′

= σ(t)(x(t) + ρ(t)) + g(x(t))x′(t)

x(0) = ν1, x(T ) = ν2,
(3.17)

where ϕ, a, σ, ρ and g satisfy the following assumptions:

(⋆) Φ : R → R is a generic strictly increasing homeomorphism;

(⋆) a ∈ C(I ×R,R) satisfies assumption (A2);

(⋆) σ ∈ L1(I) and σ ≥ 0 a.e. on I;

(⋆) ρ ∈ C(I) and g ∈ C(R,R) are generic.

18



We aim to show that our Theorem 3.5 can be applied to problem (3.17). To this
end, we consider the function f defined as follows:

f : I ×R
2 → R, f(t, x, y) := σ(t)(x + ρ(t)) + g(x)y.

Obviously, f is a Carathéodory function; moreover, it is very easy to recognize
that f satisfies assumption (A2)’. Indeed, let R > 0 be arbitrarily fixed and let γ
be a non-negative function in L1(I); setting

MR := max
[−R,R]

|g|,

we then have
∣∣f(t, x, y(t))

∣∣ ≤ σ(t)
(
R+ |ρ(t)|

)
+MR · γ(t) =: hR,γ(t),

for every x ∈ R with |x| ≤ R and every y ∈ L1(I) satisfying |y(t)| ≤ γ(t) for almost
every t ∈ I. Since the function hR,γ is non-negative and belongs to ∈ L1(I) (by
the assumptions on σ, ρ and γ), we conclude that f fulfills (3.3) in assumption
(A2)’, as claimed.

We now observe that, setting N := maxI |ρ|, the constant functions

α(t) := −N β(t) := N
(
for t ∈ I

are, respectively, a lower and a upper solution of (3.2) such that α ≤ β on I;
hence, assumption (A1)’ is satisfied. Furthermore, since we have

|f(t, x, y)| ≤ (2N)σ(t) +
(

max
x∈[−N,N ]

|g(x)|
)
· |y|

for every t ∈ I, every |x| ≤ N and every y ∈ R, we conclude that f also satisfies
assumption (A3)’ with the choice (here, MN := max[−N,N ] |g|)

H := 1, ψ ≡ 1, l(t) := 2N σ(t), µ(t) :=MN and q = ∞.

We are then entitled to apply Theorem 3.5, which ensures that there exists (at
least) one solution of problem (3.17) for every fixed ν1, ν2 ∈ [−N,N ].

In the next Example 3.9 we provide an application of Theorem 3.5 for a rather
general right-hand side, with possible superlinear g rowth wrt u′.

Example 3.9. Let us consider the following Dirichlet problem




(
Φr

(
a(t, x(t))x′(t)

))′

= σ(t) · g(x(t)) · |x′(t)|δ

u(0) = ν1, u(T ) = ν2,
(3.18)

where Φr, a, σ, g and the exponent δ satisfy the following assumptions:

(⋆) Φr : R → R is the standard r-Laplacian, that is,

Φr(ξ) := |ξ|r−2 · ξ
(
for a suitable r > 1

)
;

(⋆) a ∈ C(I ×R,R) satisfies assumption (A2), that is,

• h ≥ 0 on I and 1/h ∈ Lp(I) (for some p > 1);

• a(t, x) ≥ h(t) for every t ∈ I and every x ∈ R.
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(⋆) σ ∈ Lτ (I) for a suitable τ > 1 satisfying the relation

1

τ
+
r − 1

p
< 1; (3.19)

(⋆) g ∈ C(R,R) is a generic function;

(⋆) δ is a positive real constant satisfying the relation

δ ≤ 1−
1

τ
+ (r − 1)

(
1−

1

p

)
. (3.20)

We aim to show that our Theorem 3.5 can be applied to problem (3.9). To this
end, we consider the function f defined as follows:

f : I ×R
2 → R, f(t, x, y) := σ(t) · g(x) · |y|δ.

Obviously, f is a Carathéodory function; moreover, it is not difficult to recognize
that f satisfies assumption (A2)’. Indeed, let R > 0 be arbitrarily fixed and let γ
be a non-negative function in L1(I); setting

MR := max
[−R,R]

|g|,

we then have ∣∣f(t, x, y(t))
∣∣ ≤MR · |σ(t)| · (γ(t))δ =: hR,γ(t)

for every |x| ≤ R and every y ∈ L1(I) such that |y(t)| ≤ γ(t) a.e. on I. Now, by
combining (3.19) with (3.20) we readily see that

δ <

(
1−

1

τ

)
p; (3.21)

from this, by Hölder’s inequality (and the assumptions on σ and γ), we infer that
hR,γ (which is non-negative on I) belongs to L1(I), whence f satisfies (A2)’. In
order to prove that also assumptions (A1)’ and (A3)’ are satisfied we first notice
that, if N > 0 is arbitrary, the constant functions

α(t) := −N β(t) := N
(
for t ∈ I

are, respectively, a lower and a upper solution of (3.2) such that α ≤ β on I;
hence, assumption (A1)’ is fulfilled. Moreover, by (3.20) we have

δ ≤ (r − 1) +
q − 1

q
, where q :=

τ p

p+ τ (r − 1)
> 1.

From this, setting MN := max[−N,N ] |g|, we obtain

∣∣f(t, x, y)
∣∣ ≤MN · |σ(t)| · |y|δ ≤MN · |σ(t)| · |y|r−1 · |y|

q−1

q

=
∣∣Φ(a(t, x)y)

∣∣ ·
(
MN · |σ(t)|

(a(t, x))r−1

)
|y|

q−1

q

(
since a(t, x) ≥ h(t) for every (t, x) ∈ I ×R

)

≤
∣∣Φ(a(t, x)y)

∣∣ ·
(
MN · |σ(t)|

(h(t))r−1

)
|y|

q−1

q
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for a.e. t ∈ I, every x ∈ R with |x| ≤ N and every y ∈ R satisfying |y| ≥ 1. Thus,
if we are able to prove that

t 7→
|σ(t)|

(h(t))r−1
∈ Lq(I), (3.22)

we can conclude that f satisfies assumption (A3)’ with the choice

H := 1, ψ(s) := s, l(t) := 0, µ(t) :=
MN · |σ(t)|

(h(t))r−1

and q as above. On the other hand, the needed (3.22) is an easy consequence of
Hölder’s inequality, assumption (3.19) and of the fact that 1/h ∈ Lp(I).

We are then entitled to apply Theorem 3.5, which ensures the existence of (at
least) one solution of the Dirichlet problem (3.18) for every ν1 ν2 ∈ R.

4 General nonlinear boundary conditions

The main aim of this last section is to prove the solvability of general boundary
value problems associated with the (possibly singular) differential equation

(
Φ
(
a(t, x(t))x′(t)

))′

= f(t, x(t), x′(t)), a.e. on I. (4.1)

(here, Φ, a and f satisfy the assumptions (A1)-to-(A3) introduced in Section 3).
As a particular case, we shall obtain existence results for periodic BVPs and for
Sturm-Liouville-type problems (associated with (4.1)).

To be more precise, taking for fixed all the notation introduced so far, we aim
to study the following general BVPs (associated with (4.1)):





(
Φ
(
a(t, x(t))x′(t)

))′

= f(t, x(t), x′(t)), a.e. on I,

g(x(0), x(T ),Ax(0),Ax(T )) = 0,

x(T ) = ρ(x(0)).

(4.2)

Here, w : R → R and g : R4 → R satisfy the following general assumptions:

(G1) ρ ∈ C(R,R) and is increasing on R;

(G2) g ∈ C(R4,R) and, for every fixed u, v ∈ R, it holds that

(G2)1 g(u, v, ·, z) is increasing for every fixed z ∈ R;

(G2)2 g(u, v, w, ·) is decreasing for every fixed w ∈ R.

We now state one of the main existence results of this section.

Theorem 4.1. Let us assume that all the hypotheses of Theorem 3.5 are satisfied,
and that g and h fulfill the assumptions (G1)-(G2) introduced above. Moreover, if
α, β ∈W 1,p(I) are as in assumption (A1’), we suppose that




g(α(0), α(T ),Aα(0),Aα(T )) ≥ 0,

α(T ) = ρ(α(0))




g(β(0), β(T ),Aβ(0),Aβ(T )) ≤ 0,

β(T ) = ρ(β(0)).

(4.3)
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Finally, let us assume that the function a satisfies the following condition:

a(0, x) 6= 0 and a(T, x) 6= 0 for every x ∈ R.

Then the problem (4.2) possesses one solution x ∈ W 1,p(I) such that

α(t) ≤ x(t) ≤ β(t) for every t ∈ I. (4.4)

Furthermore, if M > 0 is any real number such that supI |α|, supI |β| ≤ M and
LM > 0 is as in Theorem 3.5 (see (3.10)), one has

max
t∈I

∣∣x(t)
∣∣ ≤M and max

t∈I

∣∣Ax(t)
∣∣ ≤ LM . (4.5)

The basic idea behind the proof of Theorem 4.1, inspired by the work of [3]
and already exploited by [15], is to think of the boundary value problem (4.2) as
a “superposition” of Dirichlet problems to which our existence result in Theorem
3.5 apply. Following this approach, we first establish a compactness-type result
for the solutions of the ODE (4.1).

Proposition 4.2. For every n ∈ N, let xn ∈W 1,p(I) be a solution of

(
Φ
(
a(t, x(t))x′(t)

))′

= f(t, x(t), x′(t)), a.e. on I. (4.6)

We assume that, together with (A1)-to-(A3), f satisfies assumption (A2′) of Theo-
rem 3.5; moreover, we suppose that there exist M,L > 0 such that

sup
I

|xn| ≤M and sup
I

|Axn
| ≤ L for every n ∈ N. (4.7)

It is then possible to find a sub-sequence {xnk
}k∈N of {xn}n∈N and a solution

x0 ∈W 1,p(I) of the equation (4.1) with the following properties:

(1) xnk
(t) → x0(t) for every t ∈ I as n→ ∞;

(2) Axnk
(t) → Ax0

(t) for every t ∈ I as n→ ∞.

Proof. For every natural n, we set zn :=
(
Φ(Axn

)
)′

. Since xn is a solution of (4.6),
by (4.7) and the fact that f satisfies (A2′), we have (see also (3.3))

∣∣zn(t)
∣∣ =

∣∣f(t, xn(t), x′n(t))
∣∣ ≤ hM,γ(t) for a.e. t ∈ I, (4.8)

where, hM,γ ∈ Lp(I) is the function appearing in assumption (A2′) and correspon-
ding to M and γ = L/h. Moreover, again by (4.7), one has

|x′n(t)| ≤
L

h(t)
= γ(t) for a.e. t ∈ I. (4.9)

As a consequence, both {zn}n and {x′n}n are uniformly integrable in L1(I). Then,
by Dunford-Pettis Theorem (see, e.g., [2]), there exist v, w ∈ L1(I) such that, up
to a sub-sequence, x′n ⇀ v and zn ⇀ w in L1(I) as n→ ∞.

Now, since the sequence {xn(0)}n is bounded in R (again by (4.7)), we can
assume that xn(0) converges to some ν0 ∈ R as n→ ∞; from this, reminding that
x′n ⇀ v in L1(I), we get

xn(t) = xn(0) +

∫ t

0

x′n(s) ds −→
n→∞

ν0 +

∫ t

0

v(s) ds =: x0(t) ∀ t ∈ I. (4.10)
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Notice that, by its very definition, x0 satisfies the following properties:

(a) x0 is absolutely continuous on I and x′0 = v ∈ L1(I);

(b) supI |x0| ≤M (this follows also from (4.7)) .

Thus, to complete the demonstration, we need to prove that x0 is a solution of the
equation (4.6) and that Axn

→ Ax0
point-wise on I as n→ ∞.

First of all, since also the sequence {Axn
(0)}n is bounded in R (again by (4.7)),

we can suppose that Axn
(0) → ν′0 as n→ ∞ for some ν′0 ∈ R; thus, since zn ⇀ w

in L1(I), we have

Φ
(
Axn

(t)
)
= Φ

(
Axn

(0)
)
+

∫ t

0

z′n(s) ds −→
n→∞

Φ(ν′0) +

∫ t

0

w(s) ds.

As a consequence, by the continuity of Φ−1, we obtain

Axn
(t) −→

n→∞

Φ−1

(
Φ(ν′0) +

∫ t

0

w(s) ds

)
=: U(t) for every t ∈ I. (4.11)

Notice that, by definition, U ∈ C(I,R) and it satisfies

(a)1 Φ ◦ U is absolutely continuous on I and (Φ ◦ U)′ = w ∈ L1(I);

(b)1 supI |U| ≤ L (this follows also from (4.7)) .

Now, since a is continuous on I×R, we derive from (4.10) that a(t, xn(t)) converges
to a(t, x0(t)) for every t ∈ I as n → ∞; thus, the above (4.11) (together with the
fact that a(t, x) ≥ h(t) > 0 for a.e. t ∈ I) gives

x′n(t) −→
n→∞

1

a(t, x0(t))
U(t) for a.e. t ∈ I. (4.12)

Taking into account (4.9) and the fact that 1/h ∈ Lp(I) (see assumption (A2)), it
is easy to recognize that

x′n →
U

a(·, x0(·))
also in L1(I);

on the other hand, since we already know that x′n ⇀ v in L1(I) as n → ∞, we
necessarily have

v(t) =
1

a(t, x0(t))
U(t) a.e. on I. (4.13)

From this, by reminding that v = x′0 (see (a)), we infer that

(⋆) x′0 = v ∈ Lp(I), whence x0 ∈W 1,p(I) (as |U/a(·, x0(·))| ≤ L/h);

(⋆) a(t, x0)x
′

0 = U a.e. on I;

(⋆) Φ ◦
(
a(t, x0)x

′

0

)
= Φ ◦ U ∈W 1,1(I) and (see (a)1)

(
Φ(a(t, x0)x

′

0)
)′

= w.

We now turn to prove that x0 solves the ODE (4.6). To this end we observe that,
by (4.12) and (4.13), we have x′n(t) → v(t) = x′0(t) for a.e. t ∈ I; as a consequence,
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since xn is a solution of (4.6) for every n and f is a Carathéodory function (see
(A3)), we obtain (remind that xn → x0 point-wise on I)

zn =
(
Φ
(
Axn

))′

= f(t, xn(t), x
′

n(t)) −→
n→∞

f(t, x0(t), x
′

0(t)) for a.e. t ∈ I.

On the other hand, by (4.8), we have that zn → f(t, x0(t), x
′

0(t) also in L1(I);
since we already know that zn ⇀ w in L1(I), we conclude that

(
Φ(a(t, x0(t))x

′

0(t))
)′

= w(t) = f(t, x0(t), x
′

0(t)) for a.e. t ∈ I,

that is, x0 is a solution of (4.6). Finally, since U is a continuous function on I
such that U = a(t, x0)x

′

0 a.e. on I, we have U = Ax on I and, by (4.11),

Axn
(t) −→

n→∞

Ax(t) for every t ∈ I.

This ends the proof.

We also need the following technical lemma.

Lemma 4.3. Let α, β ∈ W 1,p(I) be, respectively, a lower and a upper solution of
the equation (4.1) such that α ≤ β. Moreover, let us assume that

a(0, x) 6= 0 and a(T, x) 6= 0 for every x ∈ R.

Then the following facts hold true:

(i) if α(0) = β(0), then Aα(0) ≤ Aβ(0);

(ii) if α(T ) = β(T ), then Aα(T ) ≥ Aβ(T ).

Proof. We only prove statement (i), since (ii) is analogous.

First of all, since both a(0, α(0)) and a(0, β(0)) are different from 0 (by assum-
ption), it is possible to find δ > 0 such that, for a.e. t ∈ [0, δ], we have

α′(t) =
Aα(t)

a(t, α(t))
=: u1(t) and β′(t) =

Aβ(t)

a(t, β(t))
=: u2(t)

moreover, both u1 and u2 are continuous on [0, δ]. Let us now assume, by con-
tradiction, that Aα(0) > Aβ(0). Since, by assumption, α(0) = β(0) (and a is
non-negative on I ×R), there exists δ′ < δ such that

α′(t) = u1(t) > u2(t) = β′(t) for a.e. t ∈ [0, δ′];

thus, by integrating this inequality on [0, δ′], we get

α(t) = α(0) +

∫ t

0

α′(s) ds = β(0) +

∫ t

0

α′(s) ds

> β(0) +

∫ t

0

β′(s) ds = β(t) (for every t ∈ [0, δ′],

which contradicts the fact that α ≤ β on I. This ends the proof.

We can now prove Theorem 4.1.
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Proof (of Theorem 4.1). Let ν ∈ [α(0), β(0)] be fixed. Since, by assumption, ρ is
increasing on R and α, β satisfy (4.3), we have ρ(ν) ∈ [α(T ), β(T )]; as a conse-
quence, by the existence result in Theorem 3.5, the Dirichlet problem

(Dν)





(
Φ
(
a(t, x(t))x′(t)

))′

= f(t, x(t), x′(t)), a.e. on I,

x(0) = ν, x(T ) = ρ(ν)

admits one solution xν such that α ≤ xν ≤ β on I. Moreover, if M > 0 is such
that supI |α|, supI |β| ≤M and LM > 0 is as in Theorem 3.5, we have

(∗) sup
t∈I

|xν(t)| ≤M and sup
t∈I

|Axν
(t)| ≤ LM .

We then consider the following set:

V :=
{
ν ∈ [α(0), β(0)] : ∃ a solution xν ∈ W 1,p(I) of (Dν) s.t.α ≤ xν ≤ β,

xν satisfies (∗) and g(xν(0), xν(T ),Axν
(0),Axν

(T )) ≥ 0
}
.

Claim I: We have ν := α(0) ∈ V . In fact, by Theorem 3.5, there exists a
solution xν ∈W 1,p(I) of (Dν) such that

α ≤ xν ≤ β on I,

and satisfying (∗); in particular, we have

xν(0) = ν = α(0).

From this, by applying Lemma 4.3 with xν in place of β (notice that, xν being a
solution of (Dν), it is also a upper solution of (4.1)), we get

Aα(0) ≤ Axν
(0).

Analogously, since we have (remind that α satisfies (4.3))

xν(T ) = ρ(ν) = ρ(α(0)) = α(T ),

again by Lemma 4.3 (with β replaced by xν) we have

Aα(T ) ≥ Axν
(T ).

Thus, by (4.3) and assumption (G2) we obtain

g(xν(0), xν(T ),Axν
(0),Axν

(T )) ≥ g(α(0), α(T ),Aα(0),Aα(T )) ≥ 0.

This proves that ν ∈ V , as claimed. In particular, V 6= ∅.

Claim II: If ν := supV , we have ν ∈ V . In fact, if ν = α(0), we have
already proved in Claim I that ν ∈ V ; if, instead, ν > α(0), we choose a sequence
{νn}n ⊆ V such that νn → ν as n→ ∞ and νn ≤ ν for every n. Since {νn}n ⊆ V ,
there exists a solution xn ∈ W 1,p(I) of (Dνn) s.t.

(a) α ≤ xn ≤ β on I;

(b) xn satisfies (∗);

25



(c) g(xn(0), xn(T ),Axn
(0),Axn

(T )) ≥ 0.

On account of (b) we can apply Proposition 4.2, which provides us with a
solution x0 ∈W 1,p(I) of (4.1) such that (up to a sub-sequence)

xn(t) → x0(t) and Axn
(t) → Ax0

(t) for every t ∈ I.

Now, since νn → ν and ρ is continuous, it is readily seen that x0 is a solution of
(Dν); moreover, since xn satisfies (∗) and α ≤ xn ≤ β on I for every n ∈ N, then
the same is true of x0. Finally, by (c) and the continuity of the function g on
whole of R4 (see assumption (G2)) we conclude that

g(x0(0), x0(T ),Ax0
(0),Ax0

(T ))

= lim
n→∞

g(xn(0), xn(T ),Axn
(0),Axn

(T )) ≥ 0,

and this proves that ν ∈ V .

With Claims I and II at hand, we now prove the existence of a solution for (4.2).
In fact, let ν = supV ∈ [α(0), β(0)] and let xν ∈ W 1,p(I) be a corresponding
solution of (Dν) satisfying (⋆) and such that

(i) α ≤ xν ≤ β on I;

(ii) g(xν(0), xν(T ),Axν
(0),Axν

(T )) ≥ 0.

If ν = β(0), we have xν(0) = β(0) and (by (4.3))

xν(T ) = ρ(β(0)) = β(T );

on the other hand, since we also know that x0 ≤ β on I, from Lemma 4.3 (with α
replaced by xν , which is a solution of (Dν)) we infer that

Axν
(0) ≤ Aβ(0) and Axν

(T ) ≥ Aβ(T ).

Hence, by (ii), the monotonicity of g (see (G2)), and (4.3) we obtain

0 ≤ g(xν(0), xν(T ),Axν
(0),Axν

(T )) = g(β(0), β(T ),Axν
(0),Axν

(T ))

≤ g(β(0), β(T ),Aβ(0),Aβ(T )) ≤ 0,

and this proves that xν is a solution of (4.2) satisfying (4.4) and (4.5).

If, instead ν < β(0), we choose a sequence {µm}m ⊆ [α(0), β(0)] such that
µm → ν as m → ∞ and µm > ν for every m. Since xν is a solution of (Dν)
satisfying (i)-(ii) above, we can think of xν and β as, respectively, a lower and
a upper solution of (4.1) satisfying (A1’) in Theorem 3.5; moreover, by the very
choice of M > 0 we also have that

sup
t∈I

|xν(t)|, sup
t∈I

|β(t)| ≤M.

Hence, for every m there exists a solution um of (Dµm
) such that

• α ≤ xν ≤ um ≤ β on I;

• supI |um| ≤M and supI |Aum
| ≤ LM .
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In particular, um satisfies (∗) for any m. We can then apply Proposition 4.2, which
provides us with a solution u0 of (4.1) such that (up to a sub-sequence)

um(t) → u0(t) and Aum
(t) → Au0

(t) for every t ∈ I.

Since µm → ν and ρ is continuous, u0 solves (Dν); hence

u0(T ) = ρ(u0(0)).

We now observe that, since µm > ν = supV , then µm /∈ V ; as a consequence,
since α ≤ um ≤ β on I and um satisfies (∗) for every m, we necessarily have

g(um(0), um(T ),Aum
(0),Aum

(T )) < 0.

From this, by the continuity of g (see assumption (G1)), we get

g(u0(0), u0(T ),Au0
(0),Au0

(T )) ≤ 0. (4.14)

On the other hand, since both xν and u0 solve (Dν), we have

u0(0) = xν(0) = ν and u0(T ) = xν(T ) = ρ(ν);

moreover, since um ≥ xν on I for every m, then the same is true of u0. From
this, by exploiting once again Lemma 4.3 (with α = xν and β = um, which are
solutions of (Dν)), we infer that

Au0
(0) ≥ Ax0

(0) and Au0
(T ) ≤ Ax0

(T ).

By (4.14), the by monotonicity of g and (ii) above, we then obtain

0 ≥ g(u0(0), u0(T ),Au0
(0),Au0

(T )) = g(xν(0), xν(T ),Au0
(0),Au0

(T ))

≥ g(xν(0), xν(T ),Axν
(0),Axν

(T )) ≥ 0,

and this shows that u0 solves (4.2). Finally, since α ≤ um ≤ β on I and um
satisfies (∗) for every m, we conclude that u0 satisfies (4.4)-(4.5).

As a particular case of Theorem 4.1, we have the following result.

Corollary 4.4. Let us assume that all the hypotheses of Theorem 3.5 are satisfied;
moreover, if α, β ∈ W 1,p(I) are as in assumption (A1’), we suppose that the
following inequality hold:




Aα(0) ≥ Aα(T ),

α(T ) = α(0),




Aβ(0) ≤ Aβ(T ),

β(T ) = β(0).

Finally, let us assume that the function a satisfies the condition:

a(0, x) 6= 0 and a(T, x) 6= 0 for every x ∈ R.

Then, there exists (at least) one solution x ∈W 1,p(I) of





(
Φ
(
a(t, x(t))x′(t)

))′

= f(t, x(t), x′(t)), a.e. on I,

Ax(0) = Ax(T ),

x(0) = x(T ).
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Proof. It is a straightforward consequence of Theorem 4.1 applied to

ρ(r) = r and g(u, v, w, z) = w − z

(which trivially satisfy assumptions (G1) and (G2)). This ends the proof.

We conclude the present section by turning our attention to Sturm-Liouville-
type and Neumann-type problems associated with the ODE (4.1).
To be more precise, we consider the following boundary value problems:





(
Φ
(
a(t, x(t))x′(t)

))′

= f(t, x(t), x′(t)), a.e. on I,

p(x(0),Ax(0)) = 0, q(x(T ),Ax(T )) = 0.
(4.15)

Here, the functions p, q : R2 −→ R satisfies the following general assumptions:

(S1) p ∈ C(R2,R) and, for every s ∈ R, the map p(s, ·) is increasing on R;

(S2) q ∈ C(R2,R) and, for every s ∈ R, the map q(s, ·) is decreasing on R.

The following theorem is the second main result of this section.

Theorem 4.5. Let us assume that all the hypotheses of Theorem 3.5 are satisfied,
and that the functions p and q fulfill the assumptions (S1)-(S2) introduced above.
Moreover, if α, β ∈ W 1,p(I) are as in assumption (A1’), we suppose that the
following inequality hold:




p(α(0),Aα(0)) ≥ 0,

q(α(T ),Aα(T )) ≥ 0;




p(β(0),Aβ(0)) ≤ 0,

q(β(T ),Aβ(T )) ≤ 0.
(4.16)

Finally, let us assume that a satisfies the “compatibility” condition:

a(0, x) 6= 0 and a(T, x) 6= 0 for every x ∈ R.

Then the problem (4.15) possesses one solution x ∈W 1,p(I) such that

α(t) ≤ x(t) ≤ β(t) for every t ∈ I. (4.17)

Furthermore, if M > 0 is any real number such that supI |α|, supI |β| ≤ M and
LM > 0 is as in Theorem 3.5 (see (3.10)), then

max
t∈I

∣∣x(t)
∣∣ ≤M and max

t∈I

∣∣Ax(t)
∣∣ ≤ L. (4.18)

The proof of Theorem 4.5 relies on the following lemma.

Lemma 4.6. Let the assumptions and the notation of Theorem 4.5 apply. Then,
for every fixed ν ∈ [α(T ), β(T )], the boundary value problem

(Dν)





(
Φ
(
a(t, x(t))x′(t)

))′

= f(t, x(t), x′(t)), a.e. on I,

p(x(0),Ax(0)) = 0,

x(T ) = ν.

possesses at least one solution x ∈ W 1,p(I) such that α ≤ x ≤ β on I. Further-
more, if M and LM are as in the statement of Theorem 4.5, then

sup
t∈I

|x(t)| ≤M and sup
t∈I

|Ax(t)| ≤ LM . (4.19)
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Proof. We fix ν ∈ [α(T ), β(T )] and we consider the following functions:

(⋆) ρ : R → R, ρ(r) := ν;

(⋆) g : R4 → R, g(u, v, w, z) := p(u,w).

Then, by means of these functions, we can re-write the problem (Dν) as





(
Φ
(
a(t, x(t))x′(t)

))′

= f(t, x(t), x′(t)), a.e. on I,

g(x(0), x(T ),Ax(0),Ax(T )) = 0,

x(T ) = ρ(x(0)).

Now, taking into account (S1), it is readily seen that ρ and g satisfy, respectively,
(G1) and (G2) in the statement of Theorem 4.1; thus, to prove the lemma, it
suffices to show the existence of a lower and a upper solution for (4.1) satisfying
(A1’) and (4.3) (with the above choices of ρ and g).

To this end we first observe that, by assumption, α and β are, respectively, a
lower and a upper solution for (4.1) satisfying (A1’) (that is, α ≤ β on I); as a
consequence, by Theorem 3.5, the Dirichlet problem

(D)1





(
Φ
(
a(t, x(t))x′(t)

))′

= f(t, x(t), x′(t)), a.e. on I,

x(0) = α(0), x(T ) = ν

possesses (at least) one solution x1 ∈ W 1,p(I) such that α ≤ x1 ≤ β on I. More-
over, if M and LM are as in the statement of Theorem 4.1, we have

sup
t∈I

|x1(t)| ≤M and sup
t∈I

|Ax1
(t)| ≤ LM . (4.20)

We claim that the function x1, which is obviously a lower solution of (4.1), satisfies
the first assumption in (4.3) (with g as above). In fact, since

x1(0) = α(0) and x1 ≥ α on I,

from Lemma 4.3 (with x1 in place of β) we infer that

Ax1
(0) ≥ Aα(0);

as a consequence, by assumption (S1) and (4.16), we obtain

g(x1(0), x1(T ),Ax1
(0),Ax1

(T )) = p(x1(0),Ax1
(0))

= p(α(0),Ax1
(0)) ≥ p(α(0),Aα(0)) ≥ 0.

Furthermore, since x1 solves (D)1, we have x1(T ) = ν = ρ(x1(0)), and this proves
that x1 satisfies the first assumption in (4.3).

We now turn to prove the existence of a upper solution x2 of (4.1) such that
x2 ≥ x1 on I and satisfying the second assumption in (4.3).

First of all, we notice that x1 and β are, respectively, a lower and a upper
solution for (4.1) such that x1 ≤ β on I; moreover,

ν = x1(T ) ∈ [x1(T ), β(T )].
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Finally, by (4.20) and the choice of M , we have

sup
t∈I

|x1(t)|, sup
t∈I

|β(t)| ≤M.

As a consequence, by Theorem 3.5, the Dirichlet problem

(D)2





(
Φ
(
a(t, x(t))x′(t)

))′

= f(t, x(t), x′(t)), a.e. on I,

x(0) = β(0), x(T ) = ν

has a solution x2 ∈W 1,p(I) such that x1 ≤ x2 ≤ β on I, further satisfying

sup
t∈I

|x2(t)| ≤M and sup
t∈I

|Ax2
(t)| ≤ LM , (4.21)

for the same M > 0 fixed at beginning (and LM as in Theorem 3.5). We claim that
x2, which is obviously a upper solution of (4.1), satisfies the second assumption in
(4.3). In fact, since

x2(0) = β(0) and x2 ≤ β on I,

by exploiting Lemma 4.3 (with x2 in place of α) we get

Ax2
(0) ≤ Aβ(0);

thus, by assumption (G2) and again (4.16) we have

g(x2(0), x2(T ),Ax2
(0),Ax2

(T )) = p(x2(0),Ax2
(0))

= p(β(0),Ax2
(0)) ≤ p(β(0),Aβ(0)) ≤ 0.

Furthermore, since x2 solves (D2), one has x2(T ) = ν = ρ(x2(0)), and this proves
that x2 ≥ x1 satisfies the second assumption in (4.16).

Gathering together all these facts, we can conclude that all the assumptions in
Theorem 4.1 are fulfilled (with the above choice of g and ρ); thus, there exists (at
least) one solution x ∈ W 1,p(I) of (Dν) such that

α ≤ x1 ≤ x ≤ x2 ≤ β on I.

In particular, by the choice of M and LM (according to (3.10)) and the fact that
x1, x2 fulfill, respectively, (4.20) and (4.21), we deduce that

sup
t∈I

|x(t)| ≤M and sup
t∈I

|Ax(t)| ≤ LM ,

with the very same M,LM > 0 fixed at the beginning. This ends the proof.

Remark 4.7. Let the assumptions and the notation of Lemma 4.6 apply.
By giving a closer inspection to the proof of this lemma, we see that the only

property of α and β we have used is the following (see (4.16)):

(
⋆
)

p(α(0),Aα(0)) ≥ 0 and p(β(0),Aβ(0)) ≤ 0.

Hence, Lemma 4.6 still holds if we replace (4.16) with the weaker
(
⋆
)
.

Thanks to Lemma 4.6, we are able to prove Theorem 4.5.
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Proof (of Theorem 4.5). Let ν ∈ [α(T ), β(T )] be fixed. By Lemma 4.6, there exists
(at least) one solution xν ∈ W 1,p(I) of the BVP

(Dν)





(
Φ
(
a(t, x(t))x′(t)

))′

= f(t, x(t), x′(t)), a.e. on I,

p(x(0),Ax(0)) = 0,

x(T ) = ν,

such that α ≤ xν ≤ β on I; moreover, if M,LM > 0 are as in the statement of the
theorem (that is, LM is as in (3.10)), we have (see Lemma 4.6)

(
∗) sup

t∈I
|xν(t)| ≤M and sup

t∈I
|Axν

(t)| ≤ LM .

We then consider the following set:

V :=
{
ν ∈ [α(T ), β(T )] : ∃ a solution xν ∈W 1,p(I) of (Dν) s.t.α ≤ xν ≤ β,

xν satisfies (∗) and q(xν(T ),Axν
(T )) ≥ 0

}
.

Step I: We have ν = α(T ) ∈ V . In fact, by Lemma 4.6, there exists a solution
xν ∈ W 1,p(I) of (Dν) such that α ≤ xν ≤ β and satisfying (∗); in particular, we
have xν(T ) = α(T ). Hence, by Lemma 4.3 we get

Axν
(T ) ≤ Aα(T ).

From this, by assumption (S2) and (4.16), we obtain

q(xν(T ),Axν
(T )) = q(α(T ),Axν

(T )) ≥ q(α(T ),Aα(T )) ≥ 0.

This proves that ν ∈ V , as claimed. In particular, V 6= ∅.

Step II: Setting ν := supV , we have ν ∈ V . In fact, if ν = α(T ), by Step I
we know that ν ∈ V ; if, instead, ν > α(T ), we can choose a sequence {νn}n ⊆ V
such that νn → ν as n → ∞ and νn ≤ ν for every n. Then, for every natural n
there exists a solution xn ∈ W 1,p(I) of (Dνn) such that

(a) α ≤ xn ≤ β on I;

(b) xn satisfies (∗);

(c) q(xn(T ),Axn
(T )) ≥ 0.

On account of (b) we can apply Proposition 4.2, which provides us with a solution
x0 ∈W 1,p(I) of (4.1) such that, up to a sub-sequence,

xn(t) → x0(t) and Axn
(t) → Ax0

(t) for every t ∈ I.

Now, since νn → ν and p is continuous, we see that x0 solves (Dν); hence

p(x0(0),Ax0
(0)) = 0.

Moreover, since xn satisfies (∗) and α ≤ xn ≤ β on I for every natural n, then the
same is true of x0. Finally, by (c) and the continuity of q, one has

q(x0(T ),Ax0
(T )) = lim

n→∞

q(xn(T ),Axn
(T )) ≥ 0.
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This proves that ν ∈ V , as claimed.

Now we have established Claims I and II, we can finally prove the existence of
a solution to (4.15). In fact, let ν = supV ∈ [α(T ), β(T )], and let xν ∈ W 1,p(I)
be a solution of (Dν) satisfying (⋆) and such that

(i) α ≤ xν ≤ β on I;

(ii) q(xν(T ),Axν
(T )) ≥ 0.

If ν = β(T ), we have

xν(T ) = ν = β(T ) and p(xν(0),Axν
(0)) = 0;

moreover, since xν ≤ β on I, Lemma 4.3 implies that Axν
(T ) ≥ Aβ(T ); from this,

by (ii), the monotonicity of q (see (S2)) and (4.16), we obtain

0 ≤ q(xν(T ),Axν
(T )) = q(β(T ),Axν

(T )) ≤ q(β(T ),Aβ(T )) ≤ 0,

and this proves that xν is a solution of (4.15) satisfying (4.17) and (4.18).

If, instead, ν < β(T ), we choose a sequence {µm}m ⊆ [α(T ), β(T )] such that
µm → ν as m → ∞ and µm > ν for any m. Since xν solves (Dν) and xν ≤ β
on I, we can think of xν and β as, respectively, a lower and a upper solution of
(4.1) satisfying (A1’) in Theorem 3.5 and

(
⋆
)

in Remark 4.7 (see indeed (4.16));
moreover, by (∗) and the choice of M we have

sup
t∈I

|xν(t)|, sup
t∈I

|β(t)| ≤M.

As a consequence, by Remark 4.7, for every m ∈ N there exists a solution um ∈
W 1,p(I) of (Dµm

) such that

• α ≤ xν ≤ um ≤ β on I;

• supI |um| ≤M and supI |Aum
| ≤ LM .

In particular, um satisfies (∗) for every m. We can then apply Proposition 4.2,
which provides us with a solution u0 of (4.1) such that (up to a sub-sequence)

um(t) → u0(t) and Aum
(t) → Au0

(t) for every t ∈ I.

Thus, since µm → ν and p is continuous, we see that u0 solves (Dν); hence

p(u0(0),Au0
(0)) = 0.

We now observe that, since µm > ν = supV , then µm /∈ V ; as a consequence,
since α ≤ um ≤ β on I and um satisfies (∗) for every m, we necessarily have

q(um(T ),Aum
(T )) < 0 for every m ∈ N

From this, by the continuity of q (see assumption (S2)), we get

q(u0(T ),Au0
(T )) = lim

m→∞

q(um(T ),Aum
(T )) ≤ 0. (4.22)

On the other hand, since both xν and u0 solve (Dν), we have

xν(T ) = ν = u0(T );
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moreover, since um ≥ xν for every natural m (by the construction of um), then
the same is true of u0. From this, by using Lemma 4.3 we infer that

Au0
(T ) ≤ Axν

(T ).

By (4.22), the monotonicity of q (see (S2)) and (ii) above, we then get

0 ≥ q(u0(T ),Au0
(T )) = q(xν(T ),Au0

(T )) ≥ q(xν(T ),Axν
(T )) ≥ 0,

and this shows that u0 solves (4.18). Finally, since α ≤ um ≤ β and um satisfies
(∗) for every m, we conclude that u0 fulfills (4.17)-(4.18).

From Theorem 4.5 we easily deduce the following results.

Corollary 4.8. Let us assume that all the hypotheses of Theorem 3.5 are satisfied.
Moreover, let ℓ1, ℓ2, ν1, ν2 ∈ R and let m1, m2 ∈ [0,∞). If α and β are as in
assumption (A1)’, we suppose that

{
ℓ1 α(0) +m1 Aα(0) ≥ ν1,

ℓ2 α(T )−m2 Aα(T ) ≥ ν2;

{
ℓ1 β(0) +m1 Aβ(0) ≤ ν1,

ℓ2 β(T )−m2 Aβ(T ) ≤ ν2

Finally, we assume that the function a fulfills the the following assumption:

a(0, x) 6= 0 and a(T, x) 6= 0 for every x ∈ R.

Then, there exists a solution x ∈ W 1,p(I) of the Sturm-Liouville problem




(
Φ
(
a(t, x(t))x′(t)

))′

= f(t, x(t), x′(t)), a.e. on I,

ℓ1 x(0) +m1 Ax(0) = ν1,

ℓ2 x(T )−m2 Ax(T ) = ν2.

Proof. It is a direct consequence of Theorem 4.5 applied to the functions

p(s, t) := ℓ1 s+m1 t− ν1 and q(s, t) := ℓ2 s−m2 t− ν2,

which satisfy (S1)-(S2) (since m1,m2 ≥ 0). This ends the proof.

Corollary 4.9. Let us assume that all the hypotheses of Theorem 3.5 are satisfied.
Moreover, let ν1, ν2 ∈ R be arbitrarily fixed. If α and β are as in assumption (A1)’,
we suppose that the following conditions are satisfied:

{
Aα(0) ≥ ν1,

Aα(T ) ≤ ν2;

{
Aβ(0) ≤ ν1,

Aβ(T ) ≥ ν2

Finally, we assume that the function a fulfills the following assumption:

a(0, x) 6= 0 and a(T, x) 6= 0 for every x ∈ R.

Then, there exists a solution x ∈ W 1,p(I) of the Neumann problem




(
Φ
(
a(t, x(t))x′(t)

))′

= f(t, x(t), x′(t)), a.e. on I,

Ax(0) = ν1,

Ax(T ) = ν2.

Proof. It is another direct consequence of Theorem 4.5 applied to

p(s, t) := t− ν1 and q(s, t) := ν2 − t,

which obviously satisfy assumptions (S1)-(S2). This ends the proof.
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