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Abstract

The purpose of the K dissimilar paths problem is to find a set of K paths, between the same pair of nodes,
which share few arcs. The problem has been addressed from an application point of view, and integer pro-
gramming formulations have also been introduced recently. In the present work, it is assumed that each arc is
assigned with a cost, and the goal is then to find K dissimilar paths while simultaneously minimizing the total
cost. Some of the previous formulations: one minimizing the number of repeated arcs, another one minimiz-
ing the number of arc repetitions, as well as modifications that bound the number of paths in which the arcs
appear, are extended with a cost function. Properties of the resulting biobjective problems are studied and the
ε-constraint method is adapted to solve them using a decreasing and an increasing strategy for updating ε.
These methods are tested for finding sets of 10 paths in random and grid instances to assess the efficiency of
the ε-constraint methods and the performance of the formulations to calculate shortest and dissimilar paths.
Results show that minimizing the number of arc repetitions produces efficient solutions with higher dissimi-
larities faster than minimizing the number of repeated arcs. The cost range of the solutions is similar in both
approaches. Additionally, bounding the number of paths in which each arc appears improves the quality of
the solutions as to the dissimilarity while worsening its cost.

Keywords: biobjective optimization; cost; dissimilarity; integer programming formulations; K alternative paths

1. Introduction

The present paper addresses the determination of sets of K paths between two nodes in a network,
with two goals: the minimization of the total cost of the K paths, and the maximization of their
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dissimilarity. The first goal translates into one of the most well-studied network optimization prob-
lems, the shortest path problem. This problem arises in many contexts, whenever a path is needed,
which minimizes the sum of the values associated with its arcs, and several polynomial algorithms
are known to solve it (Ahuja et al., 1993). One related problem has also interested researchers: the
biobjective shortest path problem, dedicated to the case in which the objective functions are linear.
A survey about this problem was presented by Raith and Ehrgott (2009). Biobjective path prob-
lems involving different types of objective functions have also been studied. These works have been
reviewed in the more general survey by Clímaco and Pascoal (2012). The problem addressed in the
present work looks for sets of K paths, so the previous studies do not apply to the linear integer
approach considered in the following. The literature on biobjective integer programming, on the
other hand, is rich for general problems and also when considering particular problems (Ulungu
and Teghem, 1994; Ehrgott and Gandibleux, 2000).

The situation is different for the second goal. The term dissimilarity is often found in the literature
intending to measure the diversity between two entities, and, in practical terms, it is useful in a
number of situations, whenever we look for alternative solutions. Nevertheless, we are not aware of
the existence of a universal definition for it. On the contrary, it is usual to find different specifications
of this concept, according to the context in which it arises, although in general, when talking about
paths, the dissimilarity is measured according to the amount of network resources that are shared.
For instance, Constantino et al. (2015) study an arc routing problem with an additional constraint
on the number of shared nodes, whereas Hughes et al. (2021) study a problem where path conflict
is found whenever an arc or a node is used more than once. In the present work, we focus on
arc dissimilarity.

Perhaps, the most straightforward application of the arc dissimilarity problem is found in naviga-
tion systems and map-based services. These systems provide the fastest path from a source location
s to a target location t, as well as a set of alternative paths, giving the user more options to choose
from. Recently, Li et al. (2021) presented a study where the quality of the alternative paths produced
by several different methods within this framework is evaluated by the end users.

In more specific applications, the alternative paths are designed to fit their intended purpose. For
instance, in hazardous materials routing, where spatially dissimilar paths are sought to reduce the
impact of an accident over the traversed regions, Akgün et al. (2000) suggest that when computing
the similarity between two paths, the area of the intersection of a buffer zone defined for each path
should be considered. Differently, Dadkar et al. (2008) propose a system to derive a set of routes to
strike a balance between the quality of the worst path (regarding travel time, accident probability,
and population exposure) and the largest amount of overlap between any two paths. Dell’Olmo
et al.’s (2005) approach combines these two ideas. They start with a set of Pareto-optimal paths
found by a multiobjective shortest path algorithm. Then, for each path previously found, a buffer
zone approximating the impact area of a material being released after an accident is constructed
and a dissimilarity index for every pair of paths is derived to find the most spatially different routes.
Both Erkut et al. (2007) and Batta and Kwon (2013) present surveys on this type of problems. More
recently, Jabbarzadeh et al. (2020) extend these studies to the impact of disruption on hazardous
materials shipment, in the case of railway transport.

Another class of applications for this problem is related with the unpredictability of the routes,
in order to prevent robberies, when collecting or transporting cash, or to ensure more efficient
street patrols. In this case, besides spatial dissimilarity, time dissimilarity is also relevant. Calvo and
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Cordone (2003) address a real-world case, submitted by a security company operating in Milan,
Italy. It is required that space and time are covered and the response to alerts is secured, using
as few guards as possible so that each guard desirably performs a different route every night. The
authors propose both an integer linear programming (ILP) model and a heuristic to approach this
problem. Constantino et al. (2017) study a dissimilar arc routing problem that arises in a Portuguese
company. The firm needs to collect safes from parking meters located along the streets, minimizing
the total collecting time and avoiding similar tours. In this case, the similarity between two tours
is assessed on the basis of the number of tasks that are visited by both in the same time periods of
the day. The authors address this problem through both an ILP model and a heuristic where the
total collecting time is minimized and constraints are used to prevent the selection of similar tours.
Talarico et al. (2015) study a K dissimilar vehicle routing problem, where the aim is to generate a
set of k alternative solutions of a single vehicle routing problem instance, in such a way that each
alternative solution differs from all the others by at least a given threshold. Again, an ILP model
and a heuristic are the approaches used to deal with the problem. Tikani et al. (2021) extend such
applications given them a time-dependent perspective, while still taking the risk of robberies and
the effects of traffic congestion into account. They propose an evolutionary algorithm for find-
ing solutions for the problem, which includes a caching mechanism and fuzzy logic approach to
dynamically adjust the rates of operators during the searching process.

In some reliability and survivability problems in telecommunications, it is common to require
pairs of paths linking two nodes, which minimize a cost function and simultaneously can work as
alternatives in case a failure occurs along the first one (Hu, 2003; Gomes et al., 2020). Such paths are
known as the primary and backup paths. Ideally the two paths would be disjoint, however it is not
always possible to meet this requirement, therefore, a more flexible approach imposes only that the
overlap between them does not exceed a certain value. Another telecommunications problem that
also seeks for the minimization of shared resources consists in minimizing the number of shared
risk link groups in pairs of paths. In this case, each arc is associated with a given set of risk groups
and the goal is to find alternative paths that have as few groups in common as possible (Gomes
et al., 2016; Pascoal and Clímaco, 2020). In either case, the simultaneous minimization of the path
cost is also involved in the problem. Related problems were surveyed in the recent work (Clímaco
and Craveirinha, 2019).

Finally, Chang et al. (2020) study the k-discriminative paths problem, defined as the problem
of finding K paths between two given nodes in a network, such that the total path overlapping
and the total path length is minimized, while imposing an upper bound on maximal path length
and on the maximal length of overlapping segments. This problem is discussed having in mind
several applications including queries for emergency-purpose applications, queries for preschedule
transportation plan, and queries with multiple sources and destinations for regional evacuation. In
the work, a heuristic strategy based on the ant colony optimization is presented and tested.

It is worth noting that all the abovementioned works deal with arc dissimilarity in the context
of different and specific multiobjective problems, where often the presence of other types of con-
straints has a significant impact on the solutions to be obtained. In a recent study, Moghanni et al.
(2020) addressed the single-objective arc dissimilarity problem—several different ILP models were
proposed and compared in terms of the solutions’ dissimilarity and of the run time. Based on this
study, good ILP approaches to the single-objective problem were identified. In this paper, we ana-
lyze if this study’s findings hold in the biobjective context. The conclusions to be drawn from the
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present work will be useful for the applications community for two reasons: the proposed models
can be used in various contexts by performing adequate adjustments, and, furthermore, they allow
a better understanding on the trade-off between the two objective functions in different types of
networks, avoiding the distorting effects caused by the presence of other constraints, involved in the
abovementioned studies.

This is done by revisiting four of the models presented: one that intends to minimize the number
of arcs repeated in the paths; another model that intends to minimize the number of arc repetitions;
as well as variants of these two resulting from imposing an upper bound on the number of pres-
ences of each arc in the solution. These models are extended by adding a linear objective function
that depends on the arc costs, resulting in a biobjective problem. Two ε-constraint algorithms are
described for solving the biobjective problems, which differ on the strategy used for updating the
parameter ε. The performance of the formulations in the biobjective context is assessed by means
of a set of empirical tests.

The rest of this study is organized into five parts. Section 2 is dedicated to review general con-
cepts of biobjective optimization and of the ε-constraint method. In Section 3, notation and the K
dissimilar paths problem are introduced. Recent formulations for the K dissimilar paths problem
are also reviewed. In Section 4, the K shortest and dissimilar paths problem is defined. Moreover,
the ε-constraint methods described in Section 2 are adapted, based on the formulations for the
K shortest and dissimilar paths problem. Finally, the methods developed are tested and compu-
tational results of these experiments are presented in the next section. Concluding remarks are
provided in Section 6.

2. Biobjective optimization

In this section, we cover some concepts of biobjective optimization problems (BOPs). Let a BOP
be defined as

minimize{ f (x) = ( f1(x), f2(x)) : x ∈ X }, (1)

where f1, f2 : R
n → R are two objective functions and X ⊆ R

n is a set of feasible solutions. The im-
age of set X under the objective function f is denoted as Y = f (X ). In general the functions f1, f2

are conflicting, therefore there is no single solution that simultaneously optimizes both. Thus, in-
stead of searching for an optimal solution, in biobjective optimization we search for compromise
solutions, that is, solutions that cannot be improved in one of the objective functions without wors-
ening the other. In the following, we adapt the definition of Pareto-optimality or efficiency men-
tioned below.

A feasible solution of (1), x1 ∈ X , is said to dominate another feasible solution for the same
problem, x2 ∈ X , if

1. fi(x1) ≤ fi(x2), for i = 1, 2, and
2. fi(x1) < fi(x2), for at least one index i ∈ {1, 2}.
The solution is called efficient or Pareto-optimal if there is no other feasible solution, x ∈ X , which
dominates x̂. If x̂ is efficient, then its outcome vector f (x̂) is called a nondominated point. Some
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dominated solutions are dominated for only one of the objective functions. The feasible solution
x̂ ∈ X is weakly efficient if there is no x ∈ X such that f1(x) < f1(x̂) and f2(x) < f2(x̂). The corre-
sponding outcome vector f (x̂) is then said to be weakly nondominated. The set of all efficient solu-
tions is denoted by XE and called the efficient set. The set of all nondominated points ŷ = f (x̂) ∈ Y ,
x̂ ∈ XE , is denoted by YN and called the nondominated set.

The ideal and the nadir points of (1) are lower and upper bounds on the set of nondominated
points, respectively. They give an indication of the range of the values that the nondominated points
can attain (Ehrgott, 2005). The point yI = (yI

1, yI
2), where yI

k = minx∈X { fk(x)}, for k = 1, 2, is called
the ideal point of the BOP (1). Moreover, the point yN = (yN

1 , yN
2 ) where yN

k = maxx∈XE { fk(x)},
k = 1, 2, is called the nadir point of the BOP (1).

In biobjective optimization, the worst value of the second objective function is attained among
the solutions that minimize the first objective function and vice versa, which makes it easy to com-
pute the nadir point. Moreover, the ideal and the nadir points can be obtained by computing the
lexicographic optimal solution with respect to ( f1, f2) and the lexicographic optimal solution with
respect to ( f2, f1), thus avoiding the presence of weakly efficient solutions.

Traditional approaches to the BOPs are based on scalarization. This involves a single-objective
optimization problem related to the BOP (1) by means of a real-valued scalarizing function that
typically depends on the objective functions of the BOP, auxiliary scalar or vector variables, or
scalar or vector parameters. Sometimes the feasible set of the BOP is additionally restricted by new
constraints related to the objective functions of the BOP or the new variables introduced.

One of the simplest methods to solve biobjective problems is the weighted-sum method (Cohon,
1978), which solves the weighted-sum problem minx∈X λ1 f1(x) + λ2 f2(x), where λ1, λ2 ≥ 0 are pa-
rameters such that λ1 + λ2 = 1. This method solves a sequence of weighted-sum problems of this
type, where the parameters λ1, λ2 vary in order to obtain different solutions. All the weighted-
sum problems are of the same type as the original, given that the feasible region does not change.
However, the method requires the normalization of the two objective functions if they represent
different quantities. Furthermore, it is unable of finding solutions within the convex hull formed by
the extreme nondominated points (Ehrgott, 2005).

Together with the weighted-sum approach, the ε-constraint method is probably the best known
technique to solve BOPs. In this case, there is no aggregation of objectives. Instead, only one of
the original objective functions is minimized, while the other is transformed to a constraint. The
scalar ε represents the upper bound on the objective function involved in the new constraint, and
by varying this scalar in an appropriate way, all efficient solutions can be generated. The method
was first introduced by Haimes et al. (1971), and extensive discussions about the topic can be found
in Chankong and Haimes (1983) or Mavrotas (2009). In the following, some more details are given
on this method. For easiness of presentation, without loss of generality, we consider that f1 is the
objective function to minimize and f2 is the objective function included in the constraints.

As explained above, in the ε-constraint method, the BOP (1) is replaced by the ε-constraint
problem

minimize{ f1(x) : x ∈ X ∧ f2(x) ≤ ε}, (2)

where ε ∈ R. Furthermore, updating ε as f̂2 − �, where f̂2 is the value of a feasible solution with
regard to the second objective and � > 0 is a small number, guarantees an improvement of the
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Algorithm 1. The ε-constraint method—decreasing ε version

Fig. 1. The ε-constraint method.

second objective. The solution of this problem may be an efficient solution of the BOP, although in
a general case only the weakly efficiency can be ensured.

It can be shown that with appropriate choices of ε all nondominated solutions can be found.
These ε values are equal to the actual objective function values of the efficient solution one would
like to find.

The choice of which function to optimize and which to include in the constraints, as well as the
strategy adapted for updating the bound ε, can vary and may depend on the particular form of the
problem. An outline of a generic ε-constraint method is given in Algorithm 1.

The set YE stores the nondominated points of the problem as they are computed. A new solution
is found for each value of ε, and the parameter ε is updated according with its objective value. The
variable x̄ is an auxiliary variable that stores the latest solution found until it is concluded whether
it is efficient or it is dominated. Line 8 in the pseudo-code corresponds to a dominance test for
solution x̄. As a result, in case x̄ is an efficient solution, its image is included in the set YE .

Algorithm 1 is illustrated in Fig. 1a. Point 1, image of x∗
1, is the first nondominated point to

be computed. Then ε1 is set to f2(x∗
1) − �, where � is a suitably chosen and problem-dependent

value. Then the solution corresponding to point 2, image of x∗
2, is obtained. The procedure is then

repeated for ε2 = f2(x∗
2) − � and the new solution corresponds to point 3, image of x∗

3. Comparing
points 2 and 3, it can be concluded that point 2 is weakly dominated because it is dominated by
point 3. Therefore, point 2 is not inserted in set YE . Instead, the next step consists of computing the
solution corresponding to point 4, image of x∗

4, and when this is compared to x∗
3, the latter solution
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is inserted in the set YE . These instructions are repeated until ε reaches the ideal value for f2, thus
computing the solution represented by point 5, which is also a nondominated point.

The ε-constraint algorithm has two main drawbacks (Gadegaard et al., 2018). One is the weakly
dominated solutions that can be found along the process, as shown above. In this case, the method
presumably may solve more ε-constraint programs than what is actually required, that is, more
problems than the number of nondominated points. The other is that the new constraint may ruin
the structure of the underlying problem, making it harder to solve. The first of these drawbacks can
be overcome by

• comparing the solutions as they are computed, and filtering the dominated, as shown in Algo-
rithm 1;

• or transforming every subproblem into a lexicographic problem with respect to ( f1, f2), that is,
minimizing f1 and considering the best value for f2 whenever there is a tie in function f1. Then the
solution is certainly efficient, and the conditions in lines 8 and 9 of Algorithm 1 can be skipped;

• or deleting the dominated solutions from the set of computed solutions after they have been
found.

Additionally, the objective function can be perturbed in order to avoid the computation of these
weakly efficient solutions (Mavrotas, 2009).

Like in Algorithm 1, in traditional implementations of the ε-constraint method for minimiza-
tion problems, the values of ε decrease as solutions are computed. The region defined by the ideal
and the nadir points, however, may as well be swept by increasing the parameter ε rather than by
decreasing it. The solutions of problems (2) are still weakly solutions regardless of the policy for up-
dating ε. In practical terms, the difference is that by increasing ε the feasible regions in the sequence
of subproblems become larger and each subproblem is a relaxation of the previous, as stated next.

Proposition 1. Let x∗ and x′ be optimal solutions for the constrained problems

minimize
{

f1(x) : x ∈ X ∧ f2(x) ≤ ε∗} (3)

and

minimize
{

f1(x) : x ∈ X ∧ f2(x) ≤ ε′}, (4)

respectively, where ε∗ ≤ ε′. Then the following hold: (i) x∗ is a feasible solution of problem (4); (ii)
f1(x∗) ≥ f1(x′).

The first point in Proposition 1 implies that x∗ can be used as a feasible solution and the starting
point for solving problem (4), which is expected to speed up the resolution of each subproblem. On
the other hand, a consequence of the second point in the result is that the same solution may be
obtained more than once, thus requiring more subproblems to be solved. Additionally, ε needs to
be updated differently in order to progress the search in the image space when a solution is repeated.
In this case, ε should be updated as max{ε, f2(x∗)} + �, if x∗ denotes the optimal solution for the
previous subproblem.

The outline of the ε-constraint method when the parameter ε is increased is provided in Algo-
rithm 2.
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Algorithm 2. The ε-constraint method—increasing ε version

Like what happens with Algorithm 1, weakly efficient solutions can still be obtained with Algo-
rithm 2. However, these can be easily discarded after being compared with the latest computed so-
lution.

The application of Algorithm 2 is illustrated in Fig. 1b. In this case, point 1 is the first to be
obtained, and then ε is set to ε1, thus generating point 2. At this point ε is updated to ε2, which
produces a problem with an optimal solution that corresponds again to point 2. Nevertheless, that
solution is discarded and ε is set to ε3, which allows point 3 to be obtained. The procedure continues
until ε reaches the second coordinate of the nadir point, that is, yN

2 .

3. The K dissimilar paths problem

Let (N, A) be a directed graph with |N| = n nodes and |A| = m arcs, and let s and t denote given
source and terminal nodes, respectively, both in N. The goal of the K dissimilar paths problem
in (N, A) is to find a set of K paths from node s to node t, such that the paths in the set are
“diverse” enough. Needless to say, this notion permits a wide range of interpretations and, thus,
many different dissimilarity measures have been proposed in the literature. With this regard we
follow Erkut and Verter (1998), where index D is introduced for measuring the dissimilarity between
two given paths, pi and p j , as follows:

D(pi, p j ) = 1 − 1
2

(
L(pi ∩ p j )

L(pi)
+ L(pi ∩ p j )

L(p j )

)
, (5)

where L(p) denotes the number of arcs in the sequence p. Moghanni et al. (2020) used the same
metric to evaluate four new linear integer formulations for the K dissimilar paths. In the same work,
those models were also assessed as to the quality of their linear programming gaps and run times.
Although two of the proposed models clearly stand out, both with respect to the quality of integral-
ity gaps with regard to the balance between run times and the dissimilarities, we extended our study
to two other models from the same work, in order to test their behavior in the biobjective context.

Next, we revisit the four models mentioned above. The formulations presented may be grouped
into two pairs, based on the strategy used to model the problem:
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• minimizing the number of repeated arcs (i.e., the number of arcs used more than once) in the
paths;

• minimizing the number of arc repetitions (i.e., the number of copies of the repeated arcs) in the
paths.

In turn, the elements of each pair differ due to the presence of an extra constraint that imposes a
bound on the maximum number of occurrences of each arc in the solution. The bound used in this
“capacity” constraint is obtained solving a simple auxiliary problem that aims at finding a set of
K paths with the minimum maximum number of arc occurrences (for more details, see Moghanni
et al., 2020).

In the following, we use the acronyms MRA (minimizing repeated arcs) to designate the models
associated to the first strategy, and MAR (minimizing arc repetitions) to designate the models associ-
ated to the second strategy. To differentiate the unconstrained and the constrained versions of the
two pairs, we add an A to the latter.

3.1. Minimization of the number of repeated arcs

Let the binary variables xk
i j be 1 if the arc (i, j) lies in the kth path from node s to node t, or 0

otherwise, for any arc (i, j) ∈ A and k = 1, . . . , K. The MRA model for the K dissimilar path is as
follows:

minimize v1(x, y) =
∑

(i, j)∈A

yi j (6a)

subject to
∑

j∈N:(i, j)∈A

xk
i j −

∑
j∈N:( j,i)∈A

xk
ji =

⎧⎨
⎩

1 i = s
0 i �= s, t

−1 i = t
, k = 1, . . . , K (6b)

yi j ≤
K∑

k=1

xk
i j, (i, j) ∈ A (6c)

(K − 1)yi j ≥
K∑

k=1

xk
i j − 1, (i, j) ∈ A (6d)

xk
i j ∈ {0, 1}, yi j ∈ {0, 1}, (i, j) ∈ A, k = 1, . . . , K. (6e)

The constraints (6b) are flow conservation constraints that define a set of K paths from node s to
node t. Constraints (6c) and (6d) relate the x and the y variables, in a way that yi j is 1 if and only if
arc (i, j) ∈ A is used in more than one path, or 0 otherwise. Therefore, the objective function counts
the number of arcs that are used in more than one of the K paths.

Using the same variables, the corresponding constrained model is obtained by adding the condi-
tions:

K∑
k=1

xk
i j ≤ R, (i, j) ∈ A, (7)
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where R is the optimal value of the auxiliary problem mentioned above. Then, the MRAA model is

minimize v1(x, y) =
∑

(i, j)∈A

yi j

subject to (6b) − (6d )

K∑
k=1

xk
i j ≤ R, (i, j) ∈ A

xk
i j ∈ {0, 1}, yi j ∈ {0, 1}, (i, j) ∈ A, k = 1, . . . , K.

(8)

Observe that not all the feasible solutions of (6) satisfy the new constraints, thus, even though the
two problems have the same objective function, their optimal solutions may be quite different.

3.2. Minimization of the number of arc repetitions

Considering the same set of variables xk
i j , (i, j) ∈ A, k = 1, . . . , K, the MAR formulation is the fol-

lowing:

minimize v2(x, w, u) =
∑

(i, j)∈A

ui j (9a)

subject to
∑

j∈N:(i, j)∈A

xk
i j −

∑
j∈N:( j,i)∈A

xk
ji =

⎧⎨
⎩

1 i = s
0 i �= s, t

−1 i = t
, k = 1, . . . , K (9b)

K∑
k=1

xk
i j ≤ K wi j, (i, j) ∈ A (9c)

ui j =
K∑

k=1

xk
i j − wi j, (i, j) ∈ A (9d)

xk
i j ∈ {0, 1}, wi j ∈ {0, 1}, ui j ≥ 0, (i, j) ∈ A, k = 1, . . . , K. (9e)

Constraints (9c), together with (9d) and the nonnegativity constraints of the variables ui j , en-
sure that the binary variables wi j are equal to 1 if and only if the arc (i, j) ∈ A is used in at
least one path, or 0 otherwise. Constraints (9d) define the auxiliary variables ui j , which count
the number of times that arc (i, j) is repeated, for (i, j) ∈ A. These variables are implicitly inte-
gers. Like before, (9b) are flow conservation constraints that define sets of K paths between the
nodes s and t. The objective function v2 counts the number of repetitions of all the arcs in the
K paths.
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Finally, the constrained version of the model above, MARA, is formulated as follows:

minimize v2(x, w, u) =
∑

(i, j)∈A

ui j

subject to (9b) − (9d )

K∑
k=1

xk
i j ≤ R, (i, j) ∈ A

xk
i j ∈ {0, 1}, wi j ∈ {0, 1}, ui j ≥ 0, (i, j) ∈ A, k = 1, . . . , K.

(10)

Both formulations (9) and (10) admit optimal solutions that contain loops. Nevertheless, it was
shown that both have a loopless optimal solution and that such solution can be obtained by apply-
ing a polynomial in time algorithm to any given optimal solution Moghanni et al. (2020).

4. The biobjective K dissimilar paths problem

Let us now consider that each arc in the network is associated with a cost value ci j ∈ R
+, for any

(i, j) ∈ A. Additionally, given K vectors xk ∈ {0, 1}m, k = 1, . . . , K, their total cost is defined as the
sum of all their arc costs, that is

∑
(i, j)∈A ci j

∑K
k=1 xk

i j . If xk is the characteristic vector of a path
between nodes s and t, its cost defines the cost of the K paths.

As mentioned before, besides finding dissimilar paths that can serve as alternative routes, it is
of interest to find paths that are relatively short in terms of distance or cost. This is the solution
of a BOP with the goals of minimizing the number of arcs shared by the paths and minimizing
their total cost. We will refer to the two objective functions as a cost objective and an overlaps
objective, respectively. The resulting biobjective problem will be called the shortest and dissimilar
K paths problem.

Following the two approaches for the K dissimilar paths problem reviewed in Section 3, we for-
mulate two versions of the K shortest and dissimilar paths problem. One of the versions focuses the
minimization of the total cost as well as of the number of repeated arcs in the set of K paths; the
other one focuses the minimization of the total cost as well as of the total number of arc repetitions.
Each version is, in turn, associated to two models, the difference between them being the inclusion
of constraint (7). Next, we introduce the four models.

4.1. Minimization of the number of repeated arcs

The biobjective problem that results from extending formulation MRA, (6), is formulated as

minimize v3(x, y) =
∑

(i, j)∈A

ci j

K∑
k=1

xk
i j (11a)

minimize v1(x, y) =
∑

(i, j)∈A

yi j (11b)
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subject to
∑

j∈N:(i, j)∈A

xk
i j −

∑
j∈N:( j,i)∈A

xk
ji =

⎧⎨
⎩

1 i = s
0 i �= s, t

−1 i = t
, k = 1, . . . , K (11c)

yi j ≤
K∑

k=1

xk
i j, (i, j) ∈ A (11d)

(K − 1)yi j ≥
K∑

k=1

xk
i j − 1, (i, j) ∈ A (11e)

xk
i j ∈ {0, 1}, yi j ∈ {0, 1}, (i, j) ∈ A, k = 1, . . . , K, (11f)

where the decision variables have the same meaning as in Section 3. Hereinafter, this model will be
designated as BORA. We now analyze some properties of this formulation and of its solutions.

Proposition 2. Any efficient solution of problem (11) is loopless.

Proof. Let (x∗, y∗) be an efficient solution of (11). By contradiction, assume that the k′th path
defined by x∗ contains one loop, defined by the set L ⊆ A. (The reasoning can be replicated if more
than one loop exists or several paths contain several loops.)

Let x∗
A−L ∈ {0, 1}Km be a vector that results from removing the loop L from x∗, that is, the com-

ponents of x∗
A−L are equal to 0 when (i, j) ∈ L and k = k′, and equal to x∗ for all other components.

Moreover, let y∗
A−L ∈ {0, 1}m be a vector equal to y∗ for the positions (i, j) ∈ A − L and satisfying

the constraints (11d) and (11e) for the remaining positions. Then,

v3(x∗, y∗) = v3(x∗
A−L, y∗

A−L) +
∑

(i, j)∈A−L

ci jx∗k′
i j > v3(x∗

A−L, y∗
A−L)

because all the arc costs are positive. Similarly, v1(x∗, y∗) ≥ v1(x∗
A−L, y∗

A−L), because A − L ⊆ A and
therefore the set of repeated arcs in x∗

A−L is contained in the set of repeated arcs in x∗.
Additionally, a set of K paths is still obtained if the loop formed by L is deleted, therefore, x∗

A−L
defines a feasible solution of problem (11) such that

v3(x∗, y∗) > v3(x∗
A−L, y∗

A−L) and v1(x∗, y∗) ≥ v1(x∗
A−L, y∗

A−L).

Thus, x∗ is dominated by x∗
A−L, which contradicts the assumption. �

Two questions need to be discussed before applying the ε-constraint method to this problem:
the factor � that is used to update ε and which objective function to optimize versus which one
to restrain.

Regarding the first point, the function v1 is intrinsically integer, therefore � = 1 is a natural
choice if v1 is constrained. The cost function v3 is also integer when the arc costs are integers too,
and then � = 1 is a suitable choice if v3 is constrained, but in a more general case a small � can be
fixed. However, it is difficult to find the right value that does not prevent any nondominated point
from being computed.
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As to the second point, the two objective functions are bounded by

1 ≤ v3(x, y) ≤ K (n − 1) max
(i, j)∈A

{ci j} and 0 ≤ v1(x, y) ≤ m,

for any feasible solution (x, y) of (11). Thus, in general, the range of v3 is larger than that of v1,
which suggests that restricting function v1 may yield fewer subproblems to solve than restricting
function v3. Moreover, the subproblems to solve in each case are

minimize v3(x, y) =
∑

(i, j)∈A

ci j

K∑
k=1

xk
i j

subject to (6b) − (6d )∑
(i, j)∈A

yi j ≤ ε

xk
i j ∈ {0, 1}, yi j ∈ {0, 1}, (i, j) ∈ A, k = 1, . . . , K

(12)

and

minimize v1(x, y) =
∑

(i, j)∈A

yi j

subject to (6b) − (6d )

∑
(i, j)∈A

ci j

K∑
k=1

xk
i j ≤ ε

xk
i j ∈ {0, 1}, yi j ∈ {0, 1}, (i, j) ∈ A, k = 1, . . . , K.

(13)

The first of these problems is close to an extension of K shortest path problems. The first point in
the result mentioned below follows from a reasoning similar to Proposition 2; the second is due to
the fact that formulation (13) is closer to formulation (6).

Proposition 3.

1. Any optimal solution of problem (12) is loopless.
2. At least one optimal solution of problem (13) is loopless.

The loops in a given optimal solution can be discarded by applying a simple algorithm with time
of O(Km) presented in Moghanni et al. (2020). Nevertheless, experiments revealed that problem
(13) is harder than problem (12). For this reason, in the following we consider that function v3 is
minimized, while function v1 is restricted, and � = 1 will be used.

In order to illustrate the possible consequences of swapping the subproblems in hand, we con-
sider the problem of finding K = 2 paths from nodes 1–5 in the network in Fig. 2a. Figure 2b
lists all those paths and the possible solutions, P2, together with the corresponding objective val-
ues. There are three efficient solutions for BORA, listed in the rightmost table: {p1, p1}, {p1, p2}, and
{p1, p3}, the latest two of them have total cost 6 and in both cases the arc (3,5) is shared by the
two paths. The ε-constraint method finds a set of efficient solutions, each one corresponding to one
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(a)
(b)

Fig. 2. Finding K = 2 shortest and dissimilar paths from nodes 1–5.

nondominated point. As a consequence, only one of those solutions, either {p1, p2} or {p1, p3}, is
computed and stored.

Nevertheless, the solution {p1, p3} is longer than the solution {p1, p2}, and therefore the dissimi-
larity of the solution is 0.625 in the first case, whereas it is 0.583 in the second case. This means that
listing the solutions according to the minimization of different objective functions may change the
order by which the solutions are computed, originating different sets of nondominated solutions,
and thus translate into solutions with different dissimilarities.

To conclude this section, we consider the biobjective version of formulation MRAA, obtained by
adding the set of constraints (7) to formulation MRA to model the dissimilarity constraints.

The subproblems to solve in case of the biobjective extension of formulation MRAA are as follows:

minimize v3(x, y) =
∑

(i, j)∈A

ci j

K∑
k=1

xk
i j

subject to (6b) − (6d )
K∑

k=1

xk
i j ≤ R, (i, j) ∈ A

∑
(i, j)∈A

yi j ≤ ε

xk
i j ∈ {0, 1}, yi j ∈ {0, 1}, (i, j) ∈ A, k = 1, . . . , K

(14)

and

minimize v1(x, y) =
∑

(i, j)∈A

yi j

subject to (6b) − (6d )
K∑

k=1

xk
i j ≤ R, (i, j) ∈ A

∑
(i, j)∈A

ci j

K∑
k=1

xk
i j ≤ ε

xk
i j ∈ {0, 1}, yi j ∈ {0, 1}, (i, j) ∈ A, k = 1, . . . , K.

(15)

Hereinafter, the corresponding formulation will be designated as BORAA.
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(c)

(d)

(a) (b)

Fig. 3. Finding K = 3 shortest and dissimilar paths from node 1 to node 5.

Figure 3 illustrates the effect of adding constraints (7) to the previous problem, when seeking for
K = 3 paths. There is only one efficient solution for BORA, the set {p1, p1, p1} listed in Fig. 3c. When
imposing that the arcs cannot appear more than twice (R = 2) in the paths from 1 to 5 that solution
becomes unfeasible. Therefore, there are two efficient solutions in this case, listed in Fig. 3d.

The two questions discussed earlier regarding the subproblems to solve by the ε-constraint
method, (12) or (13), also arise when analyzing (14) and (15). Since adding the constraints (7) does
not alter the premises of the previous discussion, the same line of reasoning applies. Thus, also in
this case, we consider that function v3 is minimized, while function v1 is restricted, and � = 1 will
be used.

4.2. Minimization of the number of arc repetitions

Considering again the variables defined in Section 3, the biobjective problem can be written as

minimize v3(x, w, u) =
∑

(i, j)∈A

ci j

K∑
k=1

xk
i j (16a)

minimize v2(x, w, u) =
∑

(i, j)∈A

ui j (16b)

subject to
∑

j∈N:(i, j)∈A

xk
i j −

∑
j∈N:( j,i)∈A

xk
ji =

⎧⎨
⎩

1 i = s
0 i �= s, t

−1 i = t
, k = 1, . . . , K (16c)

K∑
k=1

xk
i j ≤ K wi j, (i, j) ∈ A (16d)
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ui j =
K∑

k=1

xk
i j − wi j, (i, j) ∈ A (16e)

xk
i j ∈ {0, 1}, wi j ∈ {0, 1}, ui j ≥ 0, (i, j) ∈ A, k = 1, . . . , K (16f)

designated as BOAR in the following. The reasoning used in Proposition 2 holds to prove the result
mentioned below.

Proposition 4. Any efficient solution of problem (16) is loopless.

Moreover, the function v3 is common to the previous problem and, like before, function v2 as-
sumes integer values, therefore the value of � can be set to 1 if v2 is the function chosen to include
in the constraints. Additionally,

0 ≤ v2(x, w, u) ≤ Km,

for any feasible solution (x, w, u). Once again, in general, the range of v3 is larger than that of
v2. Furthermore, the minimization of function v3 is also easier than the minimization of v2 and it
produces loopless solutions. Therefore, v3 will be the function to minimize and v2 the function to
restrict, and � = 1 will be chosen. In this case the subproblems to be solved in the ε-constraint
method are

minimize v3(x, w, u) =
∑

(i, j)∈A

ci j

K∑
k=1

xk
i j

subject to (9b) − (9d )∑
(i, j)∈A

ui j ≤ ε

xk
i j ∈ {0, 1}, wi j ∈ {0, 1}, ui j ≥ 0, (i, j) ∈ A, k = 1, . . . , K,

(17)

where the parameter ε > 0 is updated as new solutions are found.
Again, the constrained version of (16) is obtained by adding the constraints (7) to the model,

thus,

minimize v3(x, w, u) =
∑

(i, j)∈A

ci j

K∑
k=1

xk
i j

subject to (9b) − (9d )

K∑
k=1

xk
i j ≤ R, (i, j) ∈ A

∑
(i, j)∈A

ui j ≤ ε

xk
i j ∈ {0, 1}, wi j ∈ {0, 1}, ui j ≥ 0, (i, j) ∈ A, k = 1, . . . , K,

(18)
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hereinafter designated as BOARA. Like before, the premises of the discussion regarding (16) also
hold when analyzing (18). Therefore, we consider that function v1 is minimized, while function v2

is restricted, and that � = 1 is used.
Figure 3 illustrates also the effect of adding constraints (7) to formulation (16). There are five

efficient solutions for BOAR, all the sets listed in Fig. 3c. When imposing that the arcs cannot appear
more than twice (R = 2) in the paths from 1 to 5, many of those solutions become unfeasible,
remaining two efficient solutions, listed in Fig. 3d.

To conclude this section, we consider the biobjective version of formulation MRAA, obtained by
adding the set of constraints (7) to formulation MRAA to model the dissimilarity constraints. Revisit-
ing the problem depicted in Fig. 3, the five sets of paths listed in Fig. 3c are all efficient solutions for
formulation BOAR. When preventing each arc from appearing in more than R = 2 paths from 1 to 5,
the first three solutions in that table become unfeasible, and then there are two efficient solutions for
formulation BOARA, shown in Fig. 3d. It is interesting to observe that, unlike what happened when
adding the new constraints to problem BORA, in this case the number of efficient solutions decreases.

5. Computational results

Empirical experiments were run in order to evaluate the presented methods and formulations from
an empirical point of view. The purpose of the tests is bifold: (i) to assess the extent to which the
ε-constraint algorithm is efficient when increasing ε and when compared to the decreasing strategy;
(ii) to compare the performance of the introduced formulations for solving the biobjective problem
of finding sets of K shortest and dissimilar paths, based on the dissimilarity index (5).

The two ε-constraint algorithms were implemented for the four formulations presented in Sec-
tion 4. The following codes were implemented:

• codes DEC.BORA, DEC.BORAA, DEC.BOAR, and DEC.BOARA, for finding the nondominated set using
Algorithm 1 for formulations (11), (16), (14), and (18), respectively;

• codes IEC.BORA, IEC.BORAA, IEC.BOAR, and IEC.BOARA, for finding the nondominated set using
Algorithm 2 for formulations (11), (16), (14), and (18), respectively.

The eight variants of the methods were coded in C language, called CPLEX 20.1, to solve the
intermediate mixed-integer programs. As mentioned earlier, for all codes, the cost function was
selected as f1 to be minimized, and the overlaps function f2 was included in the set of constraints.
The update of the parameter ε consisted of decreasing or increasing as described in Algorithm 1 or
2, taking � = 1.

The codes ran for two sets of instances, namely random graphs and grids, such that

• random graphs, Rn,m,δ, with n = 100, 500 nodes, obtained generating randomly m = dn arcs, with
d = 5, 10, 15, and δ = 100m

n(n−1) % the density of the graph, equal to 5%, 10%, and 15% if n = 100
and 1%, 2%, and 5% if n = 500;

• grid graphs, Gp,q, comprising the following sizes: p × q = 4 × 36, 12 × 12, 5 × 45, 15 × 15.

In either case, each arc (i, j) ∈ A was associated with an integer cost value, ci j , uniformly obtained
in {1, 2, . . . , 100}. The results presented in the following correspond to average values obtained
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Table 1
Description of the column headings

Heading Description

T̄ Average total run time, in seconds
T̄R Average run time for finding R (Moghanni et al., 2020), in seconds

¯|YE | Average number of computed nondominated solutions
N̄ Average number of solved subproblems
f̄ j

min Average value for the minimum value of f j in each set of paths, j = 1, 2
f̄ j

max Average value for the maximum value of f j in each set of paths, j = 1, 2
D̄min Average value for the minimum of AvDi in each set of paths
D̄max Average value for the maximum of AvDi in each set of paths

after finding sets of K = 10 paths over 20 different instances generated for each dimension of these
data sets.

All the tests ran on a 64-bit PC with an Intel ®CoreTM i7-6700 Quad Core at 3.40 GHz with
64 GB of RAM. For all of them, we used a time limit of 300 seconds for each of the subproblems
solved along the generation of the nondominated set. To ease the reading, the test statistics are
summarized in Table 1. In this table, AvDi stands for the average dissimilarity of a given set of K
paths. The results are obtained over the 20 instances solved for each type of network.

In the following, we discuss the results of the application of the biobjective Algorithms 1 and 2 to
the integer programming formulations (11), (14), (16), and (18) for the instances described above.
We first consider the results for the formulations that aim at minimizing the number of repeated
arcs and afterwards focus on the minimization of the number of arc repetitions.

5.1. Minimization of the number of repeated arcs

The average results obtained when finding the nondominated set for the unconstrained formulation
that looks for the repeated arcs minimization are presented on Tables 2 and 3.

Table 2 summarizes the results in terms of the number of solved subproblems and run times. In
average, when talking about the decreasing version of the ε-constraint algorithm, the number of
solved subproblems was N̄ = |ȲE | + 1. This number increased by around 0.5 more subproblems
solved when the parameter ε is increased. When applied to grids, this code did not solve all the
subproblems in 300 seconds time. In that case, the algorithm proceeds using the best solution found
within that time, even if it may be a suboptimal solution. Moreover, only one solution was found
on rectangular grids, which means that the only problem solved consisted in the single-objective
minimization of the cost function. In general, in this case, the solution is simply formed by K = 10
paths (see Figs. 2 and 3), all equal to the shortest path and with fully overlapping arcs.

The average run times for solving the same problem are also presented in Table 2. The aver-
age time for solving each subproblem was shorter when applying the increasing version of the
ε-constraint algorithm, and this speedup is observed for the total run times as well. It can also
be noted that the difference in the run times of the two versions increases with the size of the in-
stance and that its magnitude is bigger in the case of the grid instances. The partial run times depend
mainly on n in the random instances and also tend to increase with d . The biggest random instances
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Table 2
Number of subproblems and run times (in seconds) for the unconstrained version of minimizing the number of repeated
arcs

DEC.BORA IEC.BORA

Instance ¯|YE | N̄ T̄ T̄/N̄ N̄ T̄ T̄/N̄

R100,500,5 3.21 4.21 15.702 3.72 4.73 12.563 2.65
R100,1000,10 4.00 5.00 32.314 6.46 5.45 28.793 5.28
R100,1500,15 3.70 4.70 26.685 5.67 4.75 23.654 4.97
R500,2500,1 5.25 6.25 185.250 29.64 6.63 166.059 25.04
R500,5000,2 4.75 5.75 199.338 34.66 6.25 190.491 30.47
R500,7500,5 4.95 5.95 281.739 47.35 6.30 265.316 42.11

G12,12
a

7.00 8.00 2702.111 337.76 8.50 2102.347 247.33
G4,36

a
1.00 2.00 601.260 300.63 3.00 301.550 100.51

G15,15
a

13.00 14.00 4501.274 321.51 14.60 3901.978 267.25
G5,45

a
1.00 2.00 603.415 301.70 3.00 304.764 101.58

aSubproblems interrupted after 300 seconds.

Table 3
Characteristics of the nondominated points for the unconstrained version of minimizing the number of repeated arcs

Instance ¯|YE | f̄ 1
min f̄ 1

max f̄ 2
min f̄ 2

max D̄min D̄max

R100,500,5 3.21 906.80 1530.60 2.21 4.42 0.000 0.518
R100,1000,10 4.00 555.50 1097.50 1.00 4.15 0.015 0.855
R100,1500,15 3.70 387.00 827.50 0.80 3.55 0.010 0.905
R500,2500,1 5.25 1239.40 2044.30 1.93 6.31 0.013 0.833
R500,5000,2 4.75 761.00 1218.20 1.10 5.10 0.006 0.867
R500,7500,5 4.95 481.00 895.80 0.70 4.75 0.010 0.936

G12,12
a

7.00 6596.00 9386.50 16.00 22.00 0.010 0.779
G4,36

a
1.00 14,676.00 14,676.00 38.00 38.00 0.000 0.000

G15,15
a

13.00 7842.00 12,417.75 16.00 28.00 0.003 0.864
G5,45

a
1.00 18,660.50 18,660.50 48.00 48.00 0.000 0.000

aSubproblems interrupted after 300 seconds.

were solved by code IEC.BORA in less than 266 seconds. The results obtained for grids follow the
same trend, with the difference that the corresponding subproblems are harder to solve than on the
random networks. In this case, IEC.BORA required about 3900 seconds to find 13 efficient sets of
paths in 15 × 15 grids.

According to Table 3, and as expected, the range of the cost, f1, is larger than the range of the
number of repeated arcs, f2. The latter is rather small, which results in a small number of non-
dominated points, between 3 and 4 for random networks with 100 nodes and around 5 for random
networks with 500 nodes. Also, the number of elements in YE seems to be close to the range of
the number of repeated arcs, given by function f2. This indicates that there is approximately one
nondominated point for each of those values. As pointed out by the example in Fig. 2, different
solutions may be associated to the same nondominated point and, when this happens, the associ-
ated dissimilarities may differ as well. For this reason, in some cases, the average dissimilarities of

© 2021 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation

of Operational Research Societies



1592 A. Moghanni et al. / Intl. Trans. in Op. Res. 29 (2022) 1573–1601

Table 4
Number of subproblems and run times (in seconds) for the constrained version of minimizing the number of repeated
arcs

DEC.BORAA IEC.BORAA

Instance ¯|YE | T̄R N̄ T̄ T̄/N̄ N̄ T̄ T̄/N̄

R100,500,5 7.84 0.793 8.84 45.406 5.13 10.31 43.799 4.24
R100,1000,10 11.05 1.507 12.05 70.850 5.90 14.70 76.057 5.17
R100,1500,15 11.45 1.955 12.45 42.264 3.39 16.85 51.157 3.03
R500,2500,1 12.25 1.891 13.25 334.251 25.22 15.18 333.326 21.95
R500,5000,2 15.15 27.864 16.15 221.579 13.72 21.45 254.715 11.87
R500,7500,5 11.30 59.171 12.30 185.666 15.09 17.50 216.820 12.38

G12,12
a

28.95 0.123 29.95 6714.120 224.17 30.95 6133.271 198.16
G4,36

a
3.00 0.232 4.00 1319.615 329.90 5.00 745.411 149.08

G15,15
a

40.70 0.180 41.70 11,251.766 269.82 42.85 10,687.353 249.41
G5,45

a
7.00 0.681 8.00 2604.887 325.61 9.00 2007.209 223.02

aSubproblems interrupted after 300 seconds.

Table 5
Characteristics of the nondominated points for the constrained version of minimizing the number of repeated arcs

Instance ¯|YE | f̄ 1
min f̄ 1

max f̄ 2
min f̄ 2

max D̄min D̄max

R100,500,5 7.84 1264.37 1825.05 3.74 11.05 0.514 0.814
R100,1000,10 11.05 953.80 1191.75 2.80 14.55 0.829 0.958
R100,1500,15 11.45 784.25 934.10 2.40 16.25 0.903 0.982
R500,2500,1 12.25 1516.00 2107.56 3.63 15.88 0.624 0.911
R500,5000,2 15.15 1057.70 1329.35 3.30 22.05 0.730 0.940
R500,7500,5 11.30 818.25 937.35 2.15 16.70 0.899 0.984

G12,12
a

28.95 7296.00 10,563.90 16.00 44.00 0.558 0.919
G4,36

a
3.00 16,415.50 17,252.90 74.00 76.00 0.556 0.651

G15,15
a

40.70 8764.75 13,672.05 16.00 56.00 0.557 0.937
G5,45

a
7.00 21,035.00 22,853.00 90.00 96.00 0.556 0.694

aSubproblems interrupted after 300 seconds.

the solutions obtained by IEC.BOAR and DEC.BOAR may be different. In the tested instances, this
situation rarely occurred and in that case the difference was always smaller than 0.006. Therefore,
the reported values are averages of those values.

In the random instances the average maximum dissimilarity grows with d , and specially with
n, varying from 0.518 to 0.936. The average minimum dissimilarity, on the other hand, is always
nearly 0. As mentioned, this is explained by the fact that most of the determined sets contain one
solution formed by paths that coincide with the shortest.

Few conclusions can be drawn from the results on grids, due to the interruptions. As noted
before, only one solution was found on rectangular grids. In this case, the solution is formed by
several shortest paths, which is confirmed by the average values D̄min in Table 3, always close to 0.

Tables 4 and 5 summarize the results obtained by the codes that implement the constrained ver-
sions of BORA, DEC.BORAA and IEC.BORAA. Besides the values presented before, Table 4 includes the
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average time for solving the auxiliary problem for finding the bound R to use in the new constraints
(7). These values are small compared to the times required for solving the biobjective problems. Still
they seem to increase fast with n, or even with d , and the bigger instances were solved in 59.171 sec-
onds. The first remark about the constrained version of BORA is that the number of nondominated
points it obtained is (two or three times) bigger than what was reported for the unconstrained one
in Table 2. In general, the constrained subproblems were easier to solve for the sparser instances,
but more difficult in most cases. This effect is magnified by the general increase in the number of
nondominated points. Therefore, the total run times for solving the constrained problems were
only shorter than when solving their constrained versions for the smaller and sparser instances,
with average degree 5.

Additionally, the increasing version of the method was between about 11% and 20% faster than
the decreasing version to solve the subproblems in the 100 node random instances, and between
4% and 10% faster than the decreasing version in the 500 node instances. Moreover, when applying
the code IEC.BORAA, the number of solved subproblems increased from 16% to 35%, and from 15%
to 42%, compared to DEC.BORAA, again in 100 and 500 node random instances, respectively. The
result of this trade-off is that IEC.BORAA outperformed only DEC.BORAA in the sparser random in-
stances. The improvement in the partial run times is bigger for grids, and therefore IEC.BORAA was
always faster than DEC.BORAA for these instances, despite the increase in the number of subprob-
lems that were solved. In terms of the total time, IEC.BORAA was between 5% and 43% faster than
DEC.BORAA.

Figure A1 compares the costs and dissimilarities and puts in evidence some characteristics of
the sets of nondominated points for the unconstrained and the constrained problems when count-
ing the number of repeated arcs. For the unconstrained problem, the costs decrease and the max-
imum dissimilarities worsen with the average degree of the random instances, regardless of its
number of nodes. The trend is similar for the constrained version of the problem, but the min-
imum cost of the solutions increases from 22% to 103%, whereas the maximum cost increases
only from 3% to 20%, both in the random instances. The same happens to the maximum dis-
similarity, but especially with the minimum dissimilarity, which is in accordance with the situation
illustrated in Fig. 3. In a nutshell, more solutions are found in the constrained version of the prob-
lem, with higher costs, but slightly better maximum dissimilarities and also fairly better minimum
dissimilarities.

The comparison is less clear for the grids due to the limitations of the code. Nevertheless, the
general conclusions are similar to the above: more nondominated points are found for the con-
strained problem than for the unconstrained problem, with higher costs and better dissimilarities,
in particular the minimum dissimilarities—in average, less than 16 in 500 node random networks
and less than 41 in 15 × 15 grids.

5.2. Minimization of the number of arc repetitions

A comparison of the results of DEC.BOAR, and IEC.BOAR is summarized in Tables 6 and 7. The
average number of nondominated points computed by the methods was between 24 and 39 for the
random instances and between 102 and 189 for grids. All subproblems were solved within 300 sec-
onds. The partial run times of the increasing version of the ε-constraint method were shorter than
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Table 6
Number of subproblems and run times (in seconds) for the unconstrained version of minimizing the number of arc
repetitions

DEC.BOAR IEC.BOAR

Instance ¯|YE | N̄ T̄ T̄/N̄ N̄ T̄ T̄/N̄

R100,500,5 24.68 25.68 51.483 2.00 31.31 57.516 1.83
R100,1000,10 28.55 29.55 108.051 3.65 35.20 117.345 3.33
R100,1500,15 27.25 28.25 104.745 3.70 32.15 109.738 3.41
R500,2500,1 38.12 39.12 339.510 8.67 50.93 401.132 7.87
R500,5000,2 34.15 35.15 389.859 11.09 42.85 438.223 10.22
R500,7500,5 34.36 35.36 517.432 14.63 41.15 568.557 13.81

G12,12 139.35 140.35 701.966 5.00 158.90 743.731 4.68
G4,36 102.80 103.80 639.974 6.16 130.20 755.640 5.80
G15,15 188.20 189.20 718.547 3.79 213.25 729.979 3.42
G5,45 167.60 168.60 1605.432 9.52 205.85 1799.108 8.73

Table 7
Characteristics of the nondominated points for the unconstrained version of minimizing the number of arc repetitions

Instance ¯|YE | f̄ 1
min f̄ 1

max f̄ 2
min f̄ 2

max D̄min D̄max

R100,500,5 24.68 906.80 1 821.40 11.42 39.78 0.000 0.826
R100,1000,10 28.55 555.50 1 137.20 4.70 36.90 0.012 0.931
R100,1500,15 27.25 387.00 888.30 2.70 31.85 0.010 0.970
R500,2500,1 38.12 1239.40 2163.90 8.50 56.50 0.013 0.910
R500,5000,2 34.15 761.00 1 246.10 5.75 45.60 0.006 0.933
R500,7500,5 34.36 481.00 917.10 2.63 40.78 0.017 0.977

G12,12 139.35 6596.00 10,363.80 40.00 196.85 0.010 0.919
G4,36 102.80 14,676.00 17,337.50 214.00 342.00 0.000 0.675
G15,15 188.20 7842.00 12,629.90 40.00 251.25 0.008 0.936
G5,45 167.60 18,660.50 22,169.40 228.00 431.80 0.000 0.757

those of the decreasing version. Nevertheless, the difference between them does not compensate
the bigger number of subproblems solved by the former, and therefore DEC.BOAR was faster than
IEC.BOAR for all instances. For the networks R500,7500,5, the code DEC.BOAR computed 34 solutions
in average time of 517.432 seconds. The method IEC.BOAR obtained the same solutions in an av-
erage time of 568.557 seconds. For the most difficult grid instances, G15,15, 188 efficient solutions
were found in 718.547 seconds.

Table 7 shows that the range of f1 is wider than that of the number of arc repetitions, f2, and
also that not all the values in the range of f2 correspond to one nondominated point. Moreover,
like for the previous problem, the average minimum dissimilarity in each efficient set of K paths is
either 0 or near 0. The cost of the solutions increases with n and with d in the random instances,
while it is bigger in the rectangular grids as well. Additionally, the average maximum dissimilarity is
better for the bigger random instances and for the square grids. The best average results in random
networks were obtained in the R500,7500,5 instances, with 0.017 minimum dissimilarity and 0.977
maximum dissimilarity.
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Table 8
Number of subproblems and run times (in seconds) for the constrained version of minimizing the number of arc repeti-
tions

DEC.BOARA IEC.BOARA

Instance ¯|YE | N̄ T̄ T̄/N̄ N̄ T̄ T̄/N̄

R100,500,5 22.10 23.10 53.156 2.30 28.57 60.411 2.11
R100,1000,10 15.65 16.65 67.177 4.03 20.50 79.107 3.85
R100,1500,15 11.00 12.00 60.632 5.05 17.65 83.174 4.71
R500,2500,1 28.68 29.68 300.262 10.11 37.25 348.602 9.35
R500,5000,2 20.15 21.15 317.971 15.03 30.90 419.021 13.56
R500,7500,5 12.40 13.40 273.993 20.44 20.15 352.712 17.50

G12,12 120.10 121.10 559.768 4.62 137.65 595.977 4.32
G4,36 59.40 60.40 356.390 5.90 85.95 475.187 5.52
G15,15 159.45 160.45 607.412 3.78 184.85 630.729 3.41
G5,45 114.95 115.95 1082.416 9.33 154.20 1295.232 8.39

Table 9
Characteristics of the nondominated points for the constrained version of minimizing the number of arc repetitions

Instance ¯|YE | f̄ 1
min f̄ 1

max f̄ 2
min f̄ 2

max D̄min D̄max

R100,500,5 22.10 1264.36 1900.94 12.00 37.57 0.514 0.853
R100,1000,10 15.65 953.80 1195.50 4.70 22.20 0.830 0.959
R100,1500,15 11.00 784.25 934.10 2.70 17.35 0.903 0.982
R500,2500,1 28.68 1516.00 2152.50 9.62 44.00 0.627 0.923
R500,5000,2 20.15 1057.70 1324.15 5.95 33.90 0.730 0.947
R500,7500,5 12.40 818.25 937.35 2.75 19.90 0.900 0.984

G12,12 120.10 7296.00 10,363.80 40.00 175.40 0.558 0.920
G4,36 59.40 16,415.50 17,470.00 220.00 303.65 0.556 0.746
G15,15 159.45 8764.75 12,629.90 40.00 222.80 0.560 0.937
G5,45 114.95 20,215.50 22,265.30 232.00 383.80 0.556 0.796

Finally, Tables 8 and 9 show the results obtained by the codes DEC.BOARA and IEC.BOARA, the
constrained versions of the codes for minimizing the number of arc repetitions. In this case, the
number of nondominated points is smaller than for the corresponding unconstrained problem. The
number of subproblems to solve when increasing ε can be 53% bigger than without the constraints,
which slows down the method when compared with a decreasing implementation.

Taking Table 9 into account, the subproblems are more difficult when including the constraints
(7) than without them. The minimum cost of the solutions increased, due to paths that may not
satisfy the new constraints. However, the most noticeable change was, again, the improvement of
the minimum dissimilarity to at least 0.556, for rectangular grids. The maximum dissimilarity also
increased, but less, which indicates that the constraints affect mostly the solutions with small cost,
containing many arc repetitions. This is also shown in Fig. A2. Here, it is interesting to note that
the cost and dissimilarity of the constrained solutions are almost a subset of the images obtained
for the unconstrained problems.
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(a)
(b)

Fig. 4. Average number of computed nondominated points for the constrained problems.

5.3. Overall comparison

We now compare the constrained versions of the minimization of the number of repeated arcs
and of the minimization of the number of arc repetitions. As noted in the previous sections,
adding constraints on the number of each arc presences affects differently formulations BORA and
BOAR:

• For the first of these approaches, most efficient sets of paths found for BORA became unfeasi-
ble and were excluded after adding the constraints. New sets of paths, with higher costs and
greater dissimilarities, were obtained with BORAA. The subproblems associated with this formu-
lation were easier to solve than in the unconstrained formulation. Thus, in spite of more sub-
problems being solved, the total run times decreased for all the instances, except the densest with
500 nodes.

• For the second approach, contrariwise, most efficient solutions found by BOAR are not discarded
when adding the extra constraints, while a few others with a greater cost and slightly better maxi-
mum dissimilarity are found. The subproblems associated with BOARA were more difficult to solve
than when not considering the constraints, but fewer subproblems are solved then, which results
in a decrease in the total run time for most instances, except the sparser ones.

In order to compare the two constrained formulations, the number of efficient sets of K = 10
paths and the total run time required by the codes BOARA and BOARA are summarized in Figs. 4 and
5. The reported times are the best, considering those of the decreasing and the increasing versions
of the ε-constraint method for each formulation.

According to Fig. 4, |ȲE | increases slowly with the density of the network for BORAA, except for
R500,7500,5, while the opposite happens for BOARA. Moreover, this number is also considerably bigger
when minimizing the number of arc repetitions than when minimizing the number of repeated
arcs. In the grid instances, the two models behave similarly to what was observed for the random
instances. Additionally, there are more solutions in square grids than in rectangular grids.
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(a)
(b)

Fig. 5. Average total run times (in seconds) for the constrained problems.

In terms of the run time, the subproblems of BORAA are more difficult to solve than those of
BOARA, in particular in the grid instances. This is balanced by the fact that fewer subproblems are
solved in the case of the first model. Therefore, the difference in the total run times of the codes
is not significant in the random instances, besides for R500,2500,1, as shown in Fig. 5. The approach
BOARA was clearly more efficient than BORAA in the grid instances.

In Fig. A3, each rectangle shows the range of the cost and of the dissimilarity of the efficient
solutions produced by the models in comparison, BOARA and BORAA. For the random instances, we
observe an almost full overlap between the rectangles associated with each model, whereas, for the
grid instances, BOARA gives slightly more costly and more dissimilar solutions than BORAA. Based
on this observation, it seems reasonable to conclude that the two models behave similarly under the
additional constraints. This finding together with the information gathered from Figs. A1 and A2
would mean that the extra constraints permit to mitigate the shortcomings of BORA in relation to
BOAR. To clarify this issue, the points associated to the cost and dissimilarity of the efficient solutions
found by both methods were also represented, so that their distributions within the rectangles could
be assessed (see Fig. 6). In fact, although the points are uniformly distributed in the interval defined
by the best for the cost and the best for the dissimilarity for both methods, the values of the points
associated to BORA are almost always worse and its distribution is slightly inconsistent, regardless of
the type of network under consideration. Therefore, although Fig. A3 places the points in the same
range, the differences observed in the distributions associated to those points allow to differentiate
the quality of the solutions found by each one of the two models.

Finally, we also compared the distribution of the cost and dissimilarity points associated with
the efficient solutions produced by BOAR and BOARA, since the previous results indicate these models
as the most promising ones. Figure 6 shows that BOARA produces solutions in a narrower range,
higher in cost and dissimilarity, whereas BOAR seems more versatile, offering solutions also in the
lower range of both cost and dissimilarity. Thus, the first model seems more fitted to applications
where the focus is on finding sets of highly dissimilar paths, even if this means substantially higher
costs, while the latter seems more fitted to applications where the cost of the solution is a major
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(a)

(b)

Fig. 6. Solutions for particular instances.

concern. In this way, both models are of interest in the context of the biobjective shortest dissimilar
K paths problem.

6. Concluding remarks

This paper addressed the problem of finding sets of K paths that are as dissimilar as possible, while
minimizing their total cost. A biobjective approach for finding efficient solutions to this prob-
lem was introduced. The approach consists of a modification of the ε-constraint method in two
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versions: decreasing and increasing the parameter ε. The two versions were empirically tested on
random and grid instances and the computational results were discussed.

The increasing ε-constraint method outperformed the original when applied to the formulations
based in BORA, as the number of nondominated points is not very large and the subproblems are
difficult to solve. Contrarily, the original version of the ε-constraint method was more efficient than
the increasing version when applied to BOAR. In both cases, the constrained versions of the models,
BORAA and BOARA, improved the average maximum dissimilarity of the solutions up to 0.937. How-
ever, although the increase is quite significant in the first case, it had very little impact in the latter.
In turn, the average minimum dissimilarity of the solution was greatly improved when using both
BORAA and BOARA. In fact, the minimum dissimilarity for unconstrained problems was near 0, while
for the constrained version of the problems it was at least 0.514 in the random networks, and 0.556
in the grid networks, preventing some solutions of little practical interest for most applications from
being found.

Finally, a detailed analysis of the results indicates that BOARA produces better and more consistent
results when compared to BORAA. The code BORA was faster than BOAR for the random instances,
because less nondominated points were computed in that case, while the opposite happened for
the grid networks. Regarding the run times for the constrained versions of the problems, either
they were not affected by the new constraints or even decreased, and the two approaches behaved
similarly in this respect.
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Appendix: Cost and dissimilarity for the unconstrained and the constrained problems
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(a) Random networks with 100 nodes
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Fig. A1. Cost and dissimilarity for the unconstrained and the constrained problems when minimizing the number of
repeated arcs.
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Fig. A2. Cost and dissimilarity for the unconstrained and the constrained problems when minimizing the number of arc
repetitions.
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Fig. A3. Cost and dissimilarity for the constrained problems.

© 2021 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation

of Operational Research Societies


