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1. INTRODUCTION 

Industry is nowadays demanding an effective use of Artificial 

Intelligence (AI) to solve different problems across industrial 

processes such as production, maintenance, quality, logistics. 

Industry 4.0 has boosted this need, also leading to recognize 

Industrial AI as a powerful concept and method to be used for 

solving problems and for creating new values in such industrial 

processes (Lee, 2020). Therefore, problem-oriented 

applications are essential for the successful adoption of AI 

technology in the industrial field. Besides knowing the 

engineering tasks that are supported and the addressed 

problems, Industrial AI, as any other AI application domain, is 

based on data availability. In the context of Industry 4.0, lots 

of data are available from field thanks to the digitalization of 

industrial processes. Anyhow, companies often lack data 

featuring the proper quality level, as they miss the capability 

of data for providing useful information for decision support 

(Cattaneo et al. 2021). To fulfil the gap, this paper reflects on 

the need of a framework aimed at guaranteeing a proper level 

of Data Quality (DQ) in problem-oriented applications, having 

a special emphasis on the use of Industrial AI algorithms in 

advanced maintenance systems. Prognostics and Health 

Management (PHM) is considered as the body of knowledge 

providing the background for building advanced maintenance 

systems (Guillén et al. 2016). PHM is generally understood as 

the process of determining the current state of a production 

system or asset in view of reliability and prediction of its future 

state (Pellegrino et al. 2016), based on the control and analysis 

of Condition Monitoring (CM) data and degradation signals 

(Jardine et al. 2006). To be correctly implemented, PHM needs 

to follow a specific strategy, this can be formalized through the 

use of reference frameworks, as the case of the framework 

proposed in (Cattaneo et al. 2021) by extending the ISO 13374 

– OSA-CBM standards. The specific objective of the paper is 

to use the development of an industrial application in the 

textile sector as a showcase to discuss different aspects to be 

considered in order to guarantee the DQ along the entire PHM 

solution development process. It allows to discuss the need of 

a framework to enable such a DQ for developing AI-based 

PHM applications. After a background on the concept of DQ 

in Section 2, Section 3 presents the industrial application in the 

textile sector, while Section 4 discusses the lessons learnt and 

concludes with some remarks for the future evolution of data 

quality in AI-based maintenance systems. 

2. BACKGROUND 

DQ is essential for a reliable decision-making process in the 

industrial environment (Yeganeh et al. 2014), where raw data 

must be transformed into useful information. However, 

particularly referring to the manufacturing context, DQ is a 

more general concept that encompasses more detailed 

dimensions. Namely, DQ dimensions include (Scannapieco et 

al. 2006): 

 Accuracy, as the closeness between a value v and a value 

v’, which is thought as the correct representation of the 

real-life phenomenon that v aims to represent. 

 Completeness, considered as “the extent to which data are 

of sufficient breadth, depth, and scope for the task at 

hand” (Wang et al. 1996). 

 Consistency, related to “the violation of semantic rules 

defined over (the set of) data items” (Scannapieco, et al. 

2006), e.g., the violation of integrity constraints or 

consistency rules. 

Besides, (Tam et al. 2019) summarizes what presented by 

(Sarfi et al. 2012) as the 5C’s of DQ, listing the following: 

 Clean, intended as no error; 

 Consistent, with no doubts about the correct version; 

 Conformed, as data must be shareable for business use; 

 Current, understood as always up to date; 

 Comprehensive, when all needed data are available. 

Also, in the (ISO 8000-8 2015) three categories are identified 

to measure DQ: 

 Syntactic quality, as “degree to which data conforms to its 

specified syntax”; 
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1. INTRODUCTION 

Industry is nowadays demanding an effective use of Artificial 

Intelligence (AI) to solve different problems across industrial 

processes such as production, maintenance, quality, logistics. 

Industry 4.0 has boosted this need, also leading to recognize 

Industrial AI as a powerful concept and method to be used for 

solving problems and for creating new values in such industrial 

processes (Lee, 2020). Therefore, problem-oriented 

applications are essential for the successful adoption of AI 

technology in the industrial field. Besides knowing the 

engineering tasks that are supported and the addressed 

problems, Industrial AI, as any other AI application domain, is 

based on data availability. In the context of Industry 4.0, lots 

of data are available from field thanks to the digitalization of 

industrial processes. Anyhow, companies often lack data 

featuring the proper quality level, as they miss the capability 

of data for providing useful information for decision support 

(Cattaneo et al. 2021). To fulfil the gap, this paper reflects on 

the need of a framework aimed at guaranteeing a proper level 

of Data Quality (DQ) in problem-oriented applications, having 

a special emphasis on the use of Industrial AI algorithms in 

advanced maintenance systems. Prognostics and Health 

Management (PHM) is considered as the body of knowledge 

providing the background for building advanced maintenance 

systems (Guillén et al. 2016). PHM is generally understood as 

the process of determining the current state of a production 

system or asset in view of reliability and prediction of its future 

state (Pellegrino et al. 2016), based on the control and analysis 

of Condition Monitoring (CM) data and degradation signals 

(Jardine et al. 2006). To be correctly implemented, PHM needs 

to follow a specific strategy, this can be formalized through the 

use of reference frameworks, as the case of the framework 

proposed in (Cattaneo et al. 2021) by extending the ISO 13374 

– OSA-CBM standards. The specific objective of the paper is 

to use the development of an industrial application in the 

textile sector as a showcase to discuss different aspects to be 

considered in order to guarantee the DQ along the entire PHM 

solution development process. It allows to discuss the need of 

a framework to enable such a DQ for developing AI-based 

PHM applications. After a background on the concept of DQ 

in Section 2, Section 3 presents the industrial application in the 

textile sector, while Section 4 discusses the lessons learnt and 

concludes with some remarks for the future evolution of data 

quality in AI-based maintenance systems. 

2. BACKGROUND 

DQ is essential for a reliable decision-making process in the 

industrial environment (Yeganeh et al. 2014), where raw data 

must be transformed into useful information. However, 

particularly referring to the manufacturing context, DQ is a 

more general concept that encompasses more detailed 

dimensions. Namely, DQ dimensions include (Scannapieco et 

al. 2006): 

 Accuracy, as the closeness between a value v and a value 

v’, which is thought as the correct representation of the 

real-life phenomenon that v aims to represent. 

 Completeness, considered as “the extent to which data are 

of sufficient breadth, depth, and scope for the task at 

hand” (Wang et al. 1996). 

 Consistency, related to “the violation of semantic rules 

defined over (the set of) data items” (Scannapieco, et al. 

2006), e.g., the violation of integrity constraints or 

consistency rules. 

Besides, (Tam et al. 2019) summarizes what presented by 

(Sarfi et al. 2012) as the 5C’s of DQ, listing the following: 

 Clean, intended as no error; 

 Consistent, with no doubts about the correct version; 

 Conformed, as data must be shareable for business use; 

 Current, understood as always up to date; 

 Comprehensive, when all needed data are available. 

Also, in the (ISO 8000-8 2015) three categories are identified 

to measure DQ: 

 Syntactic quality, as “degree to which data conforms to its 

specified syntax”; 
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to measure DQ: 
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 Semantic quality, as “degree to which data corresponds 

to what it represents”; 

 Pragmatic quality, as “degree to which data is found 

suitable and worthwhile for a particular purpose”. 

More recently, (Lee, 2020) has introduced a characterization 

of the DQ according to “three B’s”, namely: Bad Quality, 

Broken and Background. This classification aims at managing 

the problems related to DQ in industrial data. In few words, 

the three B’s primarily include a content similar to the 5C’s of 

(Sarfi et al., 2012), whilst some additional remarks can be 

pointed out. Bad Quality explicitly refers to the capability of 

building a proper industrial IT architecture for data collection. 

Besides, Broken relates to the comprehensiveness of data to 

guarantee the capability of extracting key parameters and 

features in order to describe the object being investigated in 

accordance with the purpose of analysis; thus, when a proper 

quality is missed, the Broken can be interpreted as data with a 

low Pragmatic quality. Finally, the DQ concept is enriched by 

adding the Background part, meant as the capability of 

extracting hidden correlations among data, to finally label the 

data themselves. This task is often related to the availability of 

auxiliary data, such as work condition settings, maintenance 

records, task information, and so on. This is also a mandatory 

task when a supervised learning AI algorithm is implemented. 

The decomposition of DQ into several characteristics shows 

that there is not a unique way to look at it. Indeed, the issue is 

still open. This paper follows the 3B’s classification to ensure 

DQ when developing an AI-based PHM application. 

3. PHM DEPLOYMENT IN THE INDUSTRIAL CASE 

The case refers to a manufacturer offering advanced weaving 

solutions. The rapier loom is the asset under study, selected 

from the asset portfolio of the company. This loom shoots the 

weft yarns across the warp one row at a time, working in a 

sequence to form the final textile fabric. A monitoring system 

is being developed, using data collected from optical sensors: 

the company aims at achieving a PHM application runnable in 

a real-time monitoring, so to enable technicians to reduce the 

downtime for maintenance interventions. The presentation of 

the case is streamlined according to the framework published 

in (Cattaneo et al. 2021). It provides guidelines for PHM 

implementation from a process viewpoint, focused on the 

interesting ISO 13374 – OSA-CBM levels and with the aim of 

extended them; Some of these levels (Lx), from 0 to 3, are 

illustrated in the next sections. 

3.1 L0-Asset Analysis 

Regarding the functioning of the asset, two rapiers on the two 

opposite sides of the loom reciprocally transfer the yarn. Each 

rapier is basically composed by a flat metal tape and by the so-

called rapier head, see Fig. 1 for details. In turns, the rapier 

tape is a composite material made by three layers: Ceramic, 

Polyester and Carbon. The tape is in contact with the wheel 

throughout the operation cycle. Moreover, the tape is in charge 

of managing the head, finally allowing the creation of the 

textile fabric. The flat metal tape has been recognized as one 

of the most critical item for which it is worth dedicating a PHM 

application. Then, the tape has been investigated by means of 

an engineering analysis of the failures, to better set the 

problem. In particular, it is known that failure modes depend 

on the different parts of the surface of the tape, as the 

degradation process is effectively different. The external 

surface is in contact with pressure plates, used to maintain the 

tape’s rigidity during the launching process: over time, the 

external surface is then subject to wear out, due to the 

continuous rubbing with the plates themselves; this wear can 

lead to a misalignment of the two rapier heads as failure mode. 

The internal surface is also subject to wear, from a continuous 

scrolling with the wheels, leading to the tape thinning as failure 

mode. About the lateral surfaces, with the rapier entering and 

exiting the shed at high speed, the yarn generates alternating 

compressive stress on the lateral surfaces, causing the peeling 

off from the external layer on; a difference in tape height is 

formed between substrate and the more external layer, leading 

to a cutting edge, which can finally cause the warp breakage 

as failure mode. The PHM application is focused on the 

avoidance of the warp breakage:  considering their faster 

degradation, lateral surfaces of the tape are agreed with the 

experts of the rapier loom to be the critical part of the item to 

be monitored. 

 

Figure 1. On the top left, the rapier loom. On the top right, zoom on 

the position of the sensors. Below, starting from the left, the weft 

and the warp, the tape and the wheel and a schema explaining the 

optical sensor functioning over the tape (and its layers). 

3.2 L1-Data Acquisition 

Two light sensors are used for the Data Acquisition (DA) 

phase. The sensors are mounted on the two opposite sides of 

the loom, to monitor both the two tapes (i.e. left and right sides 

of the loom, as reported in Fig. 1). Each sensor consists of two 

illuminators: one emits Infrared light beams, while the other 

emits visible light beams at different frequencies, i.e. Red, 

Green and Blue. The emitted beams hit the tape surface and 

are reflected, and the sensor is employed to detect these 

reflected light beams (Fig 1, bottom right). The choice of using 

this kind of sensor lies on the physical principle that different 

materials are expected to reflect different light beams. Thus, 

the capability of associating a different reflection to a different 

material in relationship to the different layers of the tape could 

be then employed to derive the state of wear. The difference in 

the reflection signal physically describes the process for which 

a new material compares on the surface tape due to the 

degradation and disappearance of the previous layer.  

Data were collected from test benches starting from September 

2020 to January 2021, with more or less a daily sample time 

(for about 130 days sampled). So, it means that each day the 

company has collected data for reflectivity for the left tape and 

the right tape, each of them spatially divided into 500 segments 

over the tape length, and considering all frequencies (Infrared, 
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3.2 L1-Data Acquisition 

Two light sensors are used for the Data Acquisition (DA) 

phase. The sensors are mounted on the two opposite sides of 

the loom, to monitor both the two tapes (i.e. left and right sides 

of the loom, as reported in Fig. 1). Each sensor consists of two 

illuminators: one emits Infrared light beams, while the other 

emits visible light beams at different frequencies, i.e. Red, 

Green and Blue. The emitted beams hit the tape surface and 

are reflected, and the sensor is employed to detect these 

reflected light beams (Fig 1, bottom right). The choice of using 

this kind of sensor lies on the physical principle that different 

materials are expected to reflect different light beams. Thus, 

the capability of associating a different reflection to a different 

material in relationship to the different layers of the tape could 

be then employed to derive the state of wear. The difference in 

the reflection signal physically describes the process for which 

a new material compares on the surface tape due to the 

degradation and disappearance of the previous layer.  

Data were collected from test benches starting from September 

2020 to January 2021, with more or less a daily sample time 

(for about 130 days sampled). So, it means that each day the 

company has collected data for reflectivity for the left tape and 

the right tape, each of them spatially divided into 500 segments 

over the tape length, and considering all frequencies (Infrared, 

Red, Green and Blue). Moreover, it is important to notice that 

data are collected starting from the moment of installation of a 

new tape till the moment in which the same tape has reached 

its end of life (EOL) due to an advanced state of degradation. 

Overall, it is worth remarking that the role of the company as 

the OEM (Original Equipment Manufacturer) of the rapier 

loom enabled to easily motivate, from a prior engineering 

knowledge, the use of the optical sensor to promote a high 

detectability of the evolution of the failure mode under study 

in the set problem. For the sake of simplicity, in the rest of the 

paper only the analysis for the left tape is presented. 

3.3 L2-Data Manipulation 

The Data Manipulation (DM) phase aims to process raw data 

so to obtain high-quality data, where quality is intended as 

described in the 3B’s classification. Typically, it encompasses 

three steps: (i) Data pre-processing, aimed at checking 

integrity and consistency of the collected raw data, smoothing 

and eliminating the noise that might characterize them, coping 

with missing values or errors and making any transformation 

convenient for specific uses such as scaling; (ii) Feature 

extraction starting from the acquired signals and (iii) Feature 

selection, with the end result of obtaining the key parameters 

and features as indicators that properly describe the 

degradation process of the item/s under analysis. As 

implementation of step (i), an initial cleaning process leads to 

reduce the sample to about 100 days, after discarding data with 

evident errors. This enabled to avoid “Bad Quality” due to the 

data collected in the test benches. No specific detail will be 

provided to this regard in this paper.  

Then, an assessment plan was particularly developed by 

defining a list of questions due to the problem-oriented 

application. These should guide the data analysis, primarily 

aimed at implementing steps (ii) and (iii) of this phase: (Q1) Is 

the reflectivity a proper indicator of the state of wear? (Q2) 

Are all frequencies proper indicators of the state of wear? (Q3) 

Is there any combination of the frequencies that describes the 

state of wear, so selecting a smaller number of features?  

Concerning (Q1), analysis of variance with multiple responses 

(MANOVA) has been performed, taken as response variables 

the different frequencies. The analysis has used MATLAB®, 

in particular the function manova1 (Krzanowski, 1988). Both 

time and space have been considered as factors that can 

influence the different frequencies of reflectivity. Starting 

from the time, groups of different levels of this factor have 

been defined in light of the different times registered in the 

dataset, ranging from the installation time of the tape, when 

the tape is new, to the last moment as the EOL, when the tape 

must be removed and changed. manova1 returns a vector of p-

values for testing the null hypothesis that the mean vectors of 

the groups lie on a space of various dimensions, i.e., starting 

from 0 dimension (that means equal averages) till at least 4 

dimensions (if all the tests are rejected). The p-values lead to 

conclude that not only the averages in time are not the same, 

but also that they are in a space of more than 4 dimensions. In 

other words, reflectivity is confirmed as a good indicator of 

degradation until EOL, since it is able to catch the variability 

(so, degradation effect) over time. The analysis has been 

replicated considering the space factor. In this case, to “freeze” 

time and to analyse variability in space (i.e., along the length 

of the tape), only data belonging to the installation time and to 

the EOL of the tape were considered. Data have been grouped 

by manova1 according to the segments over the length, i.e., 

from 1 to 500, in each time. Also in this case, manova1 results 

in rejecting the null hypothesis of the test, allowing to assert 

that reflectivity at the different frequencies have different 

averages in space, i.e., they are able to express variability (so, 

degradation effect) also over the space dimension. Concerning 

(Q2), in order to understand if all the frequencies are able and 

needed to describe the state of wear, a correlation analysis has 

been performed, considering the entire dataset (all the 

segments, for all the times, for all the frequencies). Correlation 

has been computed using the Pearson’s coefficient. Results are 

reported in Fig. 2, and they present a very high correlation 

degree between Green and Red (95.7%), between Green and 

Blue (94.4%) and between Red and Infrared (95.4%). These 

results allow to conclude that all the frequencies are correlated 

and therefore able to represent the wear process of the tape, as 

they are reporting similar piece of information.  

 

Figure 2. Correlation analysis among frequencies tape left. 

Regarding (Q3), the answer corresponds to the extraction and 

selection of new features resulting from extant features 

combination. These new features should be able to describe the 

variability of the wear process and to simplify the analysis, 

both in time and space, by taking advantage of a lower 

dimensional space. A Principal Components Analysis (PCA) 

has been performed (Johnson et al. 2013). PCA is concerned 

with explaining the variance-covariance structure of a data set 

described by a certain number of variables through a lower 

number of components obtained as a linear combinations of 

the original variables. In this case, PCA was conducted using 

the whole dataset, so analysing data in terms of times, 

segments and frequencies. To take into account the segments 

position, a variable “tape” has been added to the data set, 

which takes values between 1 and 500, according to the 

position from which data are collected. From Table 1, it is 

possible to observe the eigenvalues of the correlation matrix 

for each principal component (PC), with the relative portion of 

expressed variability. Usually, the number of PC is chosen 

such that the percentage of variability expressed is the 80/90% 

of the original one. So, in this case, it is good to consider at 

least the first two PCs. Remembering that the magnitude of the 

elements of the eigenvectors measures the importance of the 
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p-th variable to the k-th PC, irrespective of the other variables, 

it is possible to better analyse the results, looking at Table 2. 

Table 1. Eigenvalues and Explained Variance 

 PC1 PC2 PC3 PC4 PC5 

Eigenvalues 3,6186 1,0463 0,2385 0,0653 0,0314 

Proportion of 

variability 

0,724 0,209 0,048 0,013 0,006 

Cumulative 0,724 0,933 0,981 0,994 1,000 

Table 2. Eigenvectors and Principal Components 

Variable PC1 PC2 PC3 PC4 PC5 

Tape -0,064 0,963 -0,234 -0,114 0,003 

Red 0,513 0,040 0,269 -0,517 -0,629 

Green 0,515 -0,061 -0,169 -0,446 0,710 

Blue 0,487 -0,089 -0,710 0,426 -0,263 

Infrared 0,480 0,242 0,583 0,583 0,177 

 

In particular, to define the first PC, almost all the four 

frequencies are significant, even if Green is slightly more 

important (0.515). Then, about the second PC, the Infrared is 

definitively more important than all the other frequencies 

(0.242 as can be seen from Table 2, PC2). Considering, in 

addiction, that the correlation analysis highlighted a high 

correlation among frequencies as general trend (>89.6%, as 

average), it is possible to conclude that the variables Green and 

Infrared could be selected as main features, since they are able 

also to cover the variability explained by Red and Blue, that 

could be therefore discarded for the rest of the analysis.  

The DM phase has been enriched by a further step of analysis, 

to complete the feature engineering (as a completion of step ii) 

and iii)). Considering the huge quantity of data to be analysed 

both in time and space, it has been explored the possibility to 

reduce the space complexity. Indeed, it has been noted that 

some portions of the tape length degrade in the same way. For 

this reason, a new question was defined: (Q4) Is it possible to 

reduce the control of the degradation to a few points in the tape 

length? To this end, a clustering algorithm has been applied; 

its objective is to group consecutive segments characterized by 

the same level of wear. Clustering has been developed 

respecting some constraints: 1. space constraint, as it is 

fundamental that the original spatial position of the segments 

is maintained, since the wear is not uniform along the tape 

(some segments are wearing, others do not wear out at all); 2. 

time assumption, for simplicity it was assumed that the 

degradation inside each cluster is uniform in time; 3. frequency 

assumption, as clustering is made taking into account the 

Green frequency as selected feature from the previous step. To 

cope with the space constraints a clustering algorithm was 

developed as a customization of K-means clustering method. 

A short outline of the customization logic is hereafter 

presented: (i) Initial number of clusters is selected through the 

computation of the Silhouette indexes as proxy of the goodness 

of the clustering outcome (for details on Silhouette indexes see 

(Johnson et al. 2013)); (ii) K-means clustering is applied after 

receiving as input the data and the number of clusters obtained 

at previous step; (iii) an Adjustment function adjusts the 

clusters obtained by K-means, based on the segments position, 

and in light of a tolerance set to find a good quality of the 

clustering strategy; it results in the final number of clusters. 

After the algorithm is run, a final configuration is obtained, 

leading to a number of clusters equal to 8, with an average 

Silhouette index equal to 0.3714. Thanks to this clustering 

algorithm, it is then possible to limit the time analysis to just 8 

points, the centroids of each cluster. Moreover, the analysis of 

the degradation process of the clusters centroids allows to 

make a step forward through the assurance of DQ. In this case, 

DQ has to be intended as the capability of selecting only the 

data that are really necessary to perform the analysis. Indeed, 

from the clustering algorithm results, it has been possible to 

further recognize two different subgroups. The first contains 

clusters that do not change their trends over time in a 

significant way (clusters 1, 2, 5 and 8), while the second one 

contains clusters that show important changes in reflectivity 

(clusters 3 and 6). In Fig. 3, cluster 8 and cluster 3 are reported 

as example of elements belonging to the two different 

subgroups. This result implies that not all the segments are 

affected by degradation, alias not all the segments need to be 

controlled. Thus, the focus of the analysis has been moved on 

the second subgroup and cluster 3 and cluster 6 have been 

compared in terms of trends, to find out the cluster that 

registers the highest variation over time.  

 

Figure 3. Clusters 8 and 3 are reported to compare the two 

subgroups recognized after the cluster analysis. On the x-axis time is 

reported in terms of percentage of number of strokes. 

This cluster is also called the “bottleneck” cluster and, being 

the faster cluster in terms of degradation, it will be responsible 

for determining the EOL of the whole tape. The selection 

algorithm has been implemented checking the variation in 

terms of slope of the trend of the centroids. As result, cluster 

number 3 has been selected as “bottleneck”. From now on, the 

analysis is performed by taking as reference cluster only the 

bottleneck one, which contains segments numbered from 202 

to 235. Overall, going through Q1-Q4 enabled to increase the 

quality of the manipulated data, leading to what can be 

considered for the case the most comprehensive data model, 

even with limited dimensionality. On one hand, reflectivity at 

Green and Infrared frequencies may suffice as selected 
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p-th variable to the k-th PC, irrespective of the other variables, 

it is possible to better analyse the results, looking at Table 2. 

Table 1. Eigenvalues and Explained Variance 

 PC1 PC2 PC3 PC4 PC5 

Eigenvalues 3,6186 1,0463 0,2385 0,0653 0,0314 

Proportion of 

variability 

0,724 0,209 0,048 0,013 0,006 

Cumulative 0,724 0,933 0,981 0,994 1,000 

Table 2. Eigenvectors and Principal Components 

Variable PC1 PC2 PC3 PC4 PC5 

Tape -0,064 0,963 -0,234 -0,114 0,003 

Red 0,513 0,040 0,269 -0,517 -0,629 

Green 0,515 -0,061 -0,169 -0,446 0,710 

Blue 0,487 -0,089 -0,710 0,426 -0,263 

Infrared 0,480 0,242 0,583 0,583 0,177 

 

In particular, to define the first PC, almost all the four 

frequencies are significant, even if Green is slightly more 

important (0.515). Then, about the second PC, the Infrared is 

definitively more important than all the other frequencies 

(0.242 as can be seen from Table 2, PC2). Considering, in 

addiction, that the correlation analysis highlighted a high 

correlation among frequencies as general trend (>89.6%, as 

average), it is possible to conclude that the variables Green and 

Infrared could be selected as main features, since they are able 

also to cover the variability explained by Red and Blue, that 

could be therefore discarded for the rest of the analysis.  

The DM phase has been enriched by a further step of analysis, 

to complete the feature engineering (as a completion of step ii) 

and iii)). Considering the huge quantity of data to be analysed 

both in time and space, it has been explored the possibility to 

reduce the space complexity. Indeed, it has been noted that 

some portions of the tape length degrade in the same way. For 

this reason, a new question was defined: (Q4) Is it possible to 

reduce the control of the degradation to a few points in the tape 

length? To this end, a clustering algorithm has been applied; 

its objective is to group consecutive segments characterized by 

the same level of wear. Clustering has been developed 

respecting some constraints: 1. space constraint, as it is 

fundamental that the original spatial position of the segments 

is maintained, since the wear is not uniform along the tape 

(some segments are wearing, others do not wear out at all); 2. 

time assumption, for simplicity it was assumed that the 

degradation inside each cluster is uniform in time; 3. frequency 

assumption, as clustering is made taking into account the 

Green frequency as selected feature from the previous step. To 

cope with the space constraints a clustering algorithm was 

developed as a customization of K-means clustering method. 

A short outline of the customization logic is hereafter 

presented: (i) Initial number of clusters is selected through the 

computation of the Silhouette indexes as proxy of the goodness 

of the clustering outcome (for details on Silhouette indexes see 

(Johnson et al. 2013)); (ii) K-means clustering is applied after 

receiving as input the data and the number of clusters obtained 

at previous step; (iii) an Adjustment function adjusts the 

clusters obtained by K-means, based on the segments position, 

and in light of a tolerance set to find a good quality of the 

clustering strategy; it results in the final number of clusters. 

After the algorithm is run, a final configuration is obtained, 

leading to a number of clusters equal to 8, with an average 

Silhouette index equal to 0.3714. Thanks to this clustering 

algorithm, it is then possible to limit the time analysis to just 8 

points, the centroids of each cluster. Moreover, the analysis of 

the degradation process of the clusters centroids allows to 

make a step forward through the assurance of DQ. In this case, 

DQ has to be intended as the capability of selecting only the 

data that are really necessary to perform the analysis. Indeed, 

from the clustering algorithm results, it has been possible to 

further recognize two different subgroups. The first contains 

clusters that do not change their trends over time in a 

significant way (clusters 1, 2, 5 and 8), while the second one 

contains clusters that show important changes in reflectivity 

(clusters 3 and 6). In Fig. 3, cluster 8 and cluster 3 are reported 

as example of elements belonging to the two different 

subgroups. This result implies that not all the segments are 

affected by degradation, alias not all the segments need to be 

controlled. Thus, the focus of the analysis has been moved on 

the second subgroup and cluster 3 and cluster 6 have been 

compared in terms of trends, to find out the cluster that 

registers the highest variation over time.  

 

Figure 3. Clusters 8 and 3 are reported to compare the two 

subgroups recognized after the cluster analysis. On the x-axis time is 

reported in terms of percentage of number of strokes. 

This cluster is also called the “bottleneck” cluster and, being 

the faster cluster in terms of degradation, it will be responsible 

for determining the EOL of the whole tape. The selection 

algorithm has been implemented checking the variation in 

terms of slope of the trend of the centroids. As result, cluster 

number 3 has been selected as “bottleneck”. From now on, the 

analysis is performed by taking as reference cluster only the 

bottleneck one, which contains segments numbered from 202 

to 235. Overall, going through Q1-Q4 enabled to increase the 

quality of the manipulated data, leading to what can be 

considered for the case the most comprehensive data model, 

even with limited dimensionality. On one hand, reflectivity at 

Green and Infrared frequencies may suffice as selected 

features, or eventually the first two PCs of the whole 

frequencies (if it is acceptable to lose the physical meaning). 

Besides, the trend analysis of the degradation process can be 

limited to analyse the clusters’ centroids with special focus on 

the cluster showing the faster degradation, i.e., the 

“bottleneck”. This high quality in the understanding of the 

problem is essential to be confident to have prepared the 

ground for the next steps with engineered features as indicators 

to establish a complete performance evaluation and prediction 

model. In other words, while making the data manipulation 

through Q1-Q4, “Broken” quality issues should be avoided. 

The last part of this DM phase is eventually concerned with 

another important issue, that is directly connected with the 

third B of the 3B’s classification: Background. It is important 

to recall that Background refers to the capability of correlating 

the collected data with other sources of information to make 

possible the “labelling” process (Lee, 2020). In this specific 

case, the “labelling” process has been developed analysing 

further in details the available data and exploiting the 

engineering knowledge about the physical composition of the 

metal tape and its way of degrading over time. The objective 

is to discover how much and in which ways the tape changes 

its reflectivity. Looking at the bottleneck cluster, it is possible 

to notice the presence of four well distinct zones. Considering 

also that the tape is composed by three layers of different 

materials, it is assumed that degradation is strongly related to 

the structural composition of the tape. As the weft’s wires 

repeatedly rub against the tape, the friction and the resulting 

surface stress cause a progressive wear of the lateral surface, 

until it is completely worn, and the underlying layer emerges. 

So, detection of the slope change is needed to opportunely 

label the different zones: the first plateau corresponds to the 

ceramic layer (new tape), the second plateau corresponds to 

the rising of the polyester layer, the third plateau corresponds 

to the rising of the carbon fibre layer and the last transient (last 

decreasing pattern) corresponds to a worsening of the 

conditions of the last layer (carbon fibre degradation). See Fig. 

4 for a visual explanation. This analysis has allowed to 

understand that it is necessary to define a multi-state model 

(Lei et al. 2018), where the unhealthy state has to be further 

divided into different states, according to the different 

composition of the tape. Moreover, data have been labelled 

according to which state they belongs. 

 

Figure 4. Multi state degradation model as seen from the bottleneck 

cluster. On the x-axis time is reported in terms of percentage of 

number of strokes performed by the loom. 

3.4 L3- State Detection 

The DM phase has led to the identification of relevant features 

for understanding the tape states. Further, the labelling process 

has allowed to define a multi-state model. Now, the State 

Detection (SD) phase should be able of building an alerting 

system. Exploiting again the engineering knowledge, it has 

been decided that an alert should be sent each time a new layer 

appears, since this means that the tape is getting thinner. Then 

an alarm, indicating a serious level of wear, should correspond 

to the degradation of the last layer, the carbon fibre. The 

labelling process has allowed to implement a supervised 

learning algorithm. The MATLAB® Classification Learner 

Toolbox has been used for the implementation of the SD 

algorithm. The model has been trained using data referred to 

the bottleneck cluster, organized in such a way.  

(i) The response variable is a binary variable, that represents 

the state of the tape. Each state is indicated with 0 or 1 and 

corresponds to the appearance of a specific material layer: state 

0 corresponds to ceramic layer, state 1 corresponds to 

polyester layer, state 0 corresponds to carbon fibre layer, state 

1 corresponds to the last state that represents the degradation 

of the carbon fibre layer. It is worth noting that the same label 

appears twice (both 0 and 1) since the reflectivity values 

corresponding to the ceramic layer are similar to the ones 

representing the carbon fibre, and the same situation happens 

in the case of polyester and the final degraded condition, i.e., 

degraded carbon fibre layer.  

(ii) The regressors of the model are the reflectivity values of 

the selected frequencies (Infrared and Green) as features 

measured on an identified segment over the tape length, that 

belongs to the bottleneck cluster. It has been selected segment 

222 since it is the “median” segment of the bottleneck cluster. 

Among the alternatives provided by the Classification Learner 

Toolbox of MATLAB®, a Linear Discriminant classification 

model has been selected. The selection has been furtherly 

validated making two tests on two different datasets: the 

reflectivity of the same identified segment using the other two 

frequencies (Blue and Red) and the bottleneck centroid, using 

again Green and Infrared. For each test the values of Precision, 

Recall and F1 score are tabled in Table 3. 

Table 3. Validation tests 

 Precision Recall F1 score 

Test 1 99,11% 98,98% 99,04% 

Test 2 97,12% 97,27% 97,19% 

 

High scores are obtained for each computed indicator, so it is 

possible to conclude that the model works properly and can be 

used as detector of the wear state. However, the model presents 

a limitation, as it is able to distinguish only two states: 0 and 

1, which does not help to detect the appeared layer. To solve 

this issue, the classification is nested within an algorithm able 

to check for a difference in light of the state transition: i) if the 

transition is from 0 to 1, then the change of state regards the 

first layer, as it changed from ceramic (0) to polyester (1); ii) 

otherwise, the change of state regards the third layer, from 

polyester (1) to carbon layer (0). Joined with these simple 

rules, the algorithm allows to recognize which layers emerge 

during the degradation process. 
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4. DISCUSSION AND CONCLUSIONS 

Checking the DQ in PHM is a mandatory requirement before 

implementing any kind of AI algorithm in the PHM process. 

The industrial case, showcased in the paper, is an exemplary 

proof of the need of a systematic approach that should consider 

the DQ with its role embedded along the development of the 

PHM processes. The industrial case permits to report some 

lessons learnt (LLx). 

(LL1) DQ is inherently guaranteed when a proper framework 

is considered, from the data acquisition until the validation of 

the AI algorithm results: this framework is an aid to promote a 

consistent and holistic view. 

(LL2) Within the same framework, the initial phases – DA and 

DM phases – are key to elaborate the raw data to achieve the 

need of high-quality data. During these phases, different DQ 

aspects may be considered: i) the selection of adequate data 

sources (sensors, controllers, etc.) enabling the detectability of 

the evolution of the failure mode; ii) the data pre-processing, 

aimed to provide cleaned data to the algorithm/s, thus avoiding 

a “Bad Quality” due to the collected raw data; iii) the feature 

engineering, to guarantee a high quality in the comprehensive 

capability to describe the object under study, and to avoid the 

occurrence of the “Broken” issues; iv) the “labelling” process, 

to correlate the patterns discovered in the analysed data to the 

extant sources of information representative of the operation 

of the object under study, to avoid the risk to loose knowledge 

of the “Background”. 

(LL3) Guaranteeing the DQ requires a mixture of engineering 

knowledge, rules of thumbs and mathematical methods, and 

lots of effort. Methods that can be used to assess the DQ are 

taken from multivariate statistical analysis (as data 

visualization, analysis of variance, hypothesis testing, PCA, 

clustering). They are aimed at specific tasks, such as data 

reduction and simplification, investigation of the dependence 

among variables, grouping, hypothesis testing. These are 

necessarily joined with an engineering knowledge of the object 

under study, which is relevant for i) providing initial 

hypothesis about the way in which the object is expected to 

response/behave, ii) driving some choices in the algorithm/s to 

comply with physical constraint or meaning, and/or iii) 

validating the results with respect to the engineering task 

expected by the algorithm/s and, thus, the decision support. 

In the end, the authors look for future works to gain a synthesis 

of the wide knowledge required to guarantee DQ in AI-based 

PHM development. This inspires a next research step, aimed 

at systematizing the DQ theory inside the extant framework.  

Last but not least, future works have to focus also on the 

development of the last phases of the framework, with 

particular attention to L5, i.e. the Prognostics one. 

Requirements in terms of DQ have to be defined and validated 

to guarantee robust results for AI-based algorithms for 

prognostics assessment. Indeed, even if the showcase here 

reported has a complete history of run to failure data, 

prognostics has to take into account different sources of 

variation, such as working conditions, age of the loom, 

maintenance interventions previously performed, etc. 

Therefore, a single run to failure data collection is however not 

sufficient to explore this last level of the framework. 
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