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Abstract—In Cyber-Physical Systems (CPS) and Internet of
Things (IoT) systems, many high-demanding applications are
cut off due to the limited computational resources and the
necessity to keep energy consumption as low as possible. For
instance, pattern matching is a complex kernel for many essential
applications, such as computer security, and the high computa-
tional and energy requirements can strongly limit its use. This
paper proposes a system that combines an efficient Domain-
Specific Architecture for Regular Expressions to enable host-
based intrusion detection systems on edge FPGA-based devices.
We demonstrate comparable execution times and remarkable
energy efficiency improvements compared to a Raspberry PI.
Moreover, our work aims to facilitate complex tasks offloading
(such as security ones) in constrained scenarios while keeping a
low energy profile and comparable performance.

Index Terms—Security for IoT and CPS, DSA, Regex

I. INTRODUCTION AND MOTIVATIONS

The continuous advancements of systems with reduced
computational capabilities and constrained energy consump-
tion requirements, such as Cyber-Physical Systems (CPS)
and Internet of Things (IoT) systems [1], [2], have seen
a surge in many fields. Indeed, industry 4.0, autonomous
driving, remote surgery, and smart home systems are some of
the most common examples of these systems’ pervasiveness
and importance [1]–[3]. These systems enhance the available
functionalities by providing internet connectivity and sensing
with low-priced and energy-efficient devices. Moreover, they
can work in harsh environments with reduced accessibility
where the devices must rely on batteries for long periods
making low energy consumption paramount. The connectiv-
ity and efficiency requirements often overshadowed essential
aspects, such as security. However, threats like DDoS attacks
commonly exploit their pervasiveness combined with reduced
security to create a widespread and distributed botnet used
to attack a critical target massively [4], [5]. Furthermore,
these systems’ presence in critical scenarios constantly pushes
security research studies that can mitigate or block attacks
towards them, and botnet creation [6].

Intrusion Detection Systems (IDSs), and more specifically
Host-IDSs (HIDSs), analyze network traffic and takes de-
cisions at run-time on the device, relying on one or more
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malevolous patterns matched in the packets [4], [7]. However,
simple string matching does not have enough expressiveness
power to describe complex patterns. For this reason, security
systems like pattern-matching-based HIDSs use Regular Ex-
pressions (REs) [4], [8]. Additionally, REs are essential in
other domains like bioinformatics and Natural-Language Pro-
cessing (NLP) [9]. Furthermore, REs, or the equivalent model
Finite-State Automata (FSAs), are are both computational and
control intensive, leading to high energy consumption and
latency, that are incompatible with the requirements [10].

Meanwhile, the end of Moore’s law pushes toward new
architecture design approaches to reduce energy consumption,
improve execution time, and reduce latency. For instance, the
Domain-Specific Architectures (DSAs) promising paradigm
concentrates on architectures tailored to specific domains [11].
DSAs combine the software compilation flexibility, essential
in IDS, with the hardware specialization, leading to flexible
and efficient solutions. An alternative to ASIC-based DSAs
are the FPGA systems that enable specialized architectures
with on-field programmable hardware after manufacturing,
achieving remarkable efficiency and flexibility [12], [13].

For these reasons, this work builds upon CICERO [14],
an open-source DSA for REs, to improve RE-based pattern
matching at the edge. We detail an efficient open-source
system-level methodology that leverages CICERO and novel
designed components for efficient REs matching, from the
hardware communication infrastructure to the software-level
components. Indeed, we exploit the Arduino MKR Vidor 4000,
a cheap and efficient board used in IoT and CPS systems
powered by an integrated low-power Intel FPGA [15]. Overall,
the main contributions are:

• A system design methodology of a DSA-based RE
matching system with a low-energy footprint usable by
CPS and IoT systems for HIDS (Section III-B1);

• The comparison and results of our open system design1

against CPU-based solutions showcases top geomean
improvement of 3.36× and 15.67× in terms of execu-
tion time and energy efficiency with state-of-the-art RE
benchmarks based on real-world use cases (Section IV);

• An adaptable approach to enable computational inten-
sive tasks offloading in constrained edge scenarios paving
the way to future CPS and IoT systems.

1https://github.com/necst/cicero-on-vidor4000

https://github.com/necst/cicero-on-vidor4000


II. CICERO DOMAIN-SPECIFIC ARCHITECTURE

We analyze the State of the Art of REs matching hardware
solutions. On the one hand, many embed the REs/automata
either in the reconfigurable fabric or in special memories [16],
[17], while others exploit SW-programmable DSAs [14], [18].
Given the limited resources we exclude embedding solutions;
therefore, we build our system design approach for HIDS on
the open DSA CICERO [14] that features flexibility for pattern
detection and specialization for low latency.

CICERO builds on the fundamental approach of seeing the
REs as a sequence of operations executed on a sequence
of characters [14], [18], [19], where it specifically execute
parallel threads that working in lockstep resemble a breadth-
first exploration. Moving to the kernel of CICERO, the engine
is the basic unit that can perform the RE matching on an
input string and returns whether it is accepted or rejected.
The engine comprises a 3-stage core that performs the cor-
responding instruction primitive and produces the following
instruction address to fetch. Then, a set of two FIFOs splits
in the current character thread execution and the next thread
waiting. CICERO can scale up the engine with a vectorization-
like approach. This kind of engine enables a sort of window
of parallel threads (or explorations) across a window of
characters. In this way, this sort of parallel multi-thread exe-
cution improves the 3-stage pipelined core utilization across
continuous parallel independent exploration flows. Besides,
CICERO can scale out in the number of available engines
with different topologies. Parravicini et al. [14] demonstrated
how their FPGA-based prototype can take full advantage of a
ring topology and scale the number of cores through a load-
balancing infrastructure. Their evaluation on an edge device
demonstrates outstanding energy efficiency making CICERO
highly appealing to IoT and CPS scenarios.

III. PROPOSED APPROACH AND DESIGN METHODOLOGY

We propose a system for CPS and IoT scenarios that exploit
CICERO as DSA for efficient REs execution. Section III-A
describes the target device we used to deploy our final solution.
Then, Section III-B displays the architectural changes and
design choices we took Finally, Section III-C explains the
CICERO DSA integration final execution system.

A. Arduino MKR Vidor 4000

The Arduino MKR Vidor 4000 is one of the most ad-
vanced boards in the MKR family. It combines Arduino’s
advantages like standardization, the high number of interfaces,
and powerfulness with the Intel Cyclone LP 10CL016 FPGA
chip. The board is also equipped with the ARM Cortex-M0
32-bit SAMD21 microcontroller, which, combined with the
integrated low-power FPGA, can be exploited to create novel
solutions in CPS and IoT systems. Specifically, the FPGA can
access the I/O pins or communicate with the ARM processor to
offload tasks that are otherwise too complex or not accessible
with standard tiny, low-price, and energy-efficient boards.

B. Adapting CICERO to the Arduino Ecosystem

CICERO was originally designed to target AMD-Xilinx
FPGAs. Though it does not embed any FPGA-part-specific
macro, we tailor CICERO to target Intel FPGA technology of
our system. Moreover, we design an effective communication
infrastructure to connect CICERO and the microcontroller.

1) Top-Level Design Considerations: We exploited a fork
of the official Arduino template [20] to ease the development
process. Indeed, this template exposes all the available FPGA
signals and instantiates a Phase-Locked Loop (PLL) along
with an oscillator for custom clock generation. We then adapt
the main interface of CICERO not to exploit any AMD-
Xilinx-specific feature, such as using the AXI protocol to
communicate. Hence, we design the necessary glue logic
and add registers to bind CICERO top-level to our custom
communication infrastructure with the microprocessor.

2) Communication Infrastructure: One of the main chal-
lenges in CICERO adaptation to these CPS and IoT sce-
narios has been the CPU-DSA communication. We exploit
the Intel Virtual JTAG IP for simple yet effective CPU-DSA
transmissions through set of Virtual Data Registers (VDRs)
via the Virtual Instruction Registers (VIRs). We extend the
Vidor libraries functionalities [21] with a novel library that
easily handles the read and write of 32 and 64-bit registers
through the Virtual JTAG protocol. Although JTAG is a serial
protocol that shifts in and out bit by bit the communication
data, our approach eases the CPU-DSA communication explo
our library Section III-C.

3) RTL Adaptation to Quartus: Since CICERO HDL is
tailored to AMD-Xilinx FPGAs, we adapted its RTL to be
compatible with an Intel Cyclone 10 LP. Our adaptation can
aid future work on such CPS and IoT platforms. SystemVerilog
standard supported by Quartus has different limitations than
the previous CICERO implementation platform. Moreover, we
adapt Xilinx-specific syntax attributes to the corresponding
Intel ones for example to let infer the RAM when required.

4) Bitstream Conversion: Once the overall programmable
logic design is ready, we compile our design into a standard
Intel FPGA bitstream. For compatibility purposes, such file
must then be converted with the vidor-bitstream-converter
utility. We exploit this C-based utility, instead of the official
Arduino conversion one, to provide a streamlined flow for
future work, as compiling a C program does not need any
additional software on most systems.

C. System Integration Design and Implementation

We implement a reliable infrastructure to perform system
validation and test real-world use cases. Figure 1 represents
the whole complex system. It is composed of an external
system and an Arduino running a program based on our
library. Specifically, to be fully compatible with the Arduino
environments and thus allow reusability for non-experts, we
implement an Arduino library that configures the CICERO
bitstream and provides high-level functions to control and
use it. Thanks to the vast Arduino ecosystem, it is simple to
integrate any external system: the Arduino Vidor board offers
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Fig. 1: Conceptual system view: the µcontroller retrieves data
through our Arduino’s library, and then will offload to multi-
engine ring CICERO IP through the VJTAG.

a multitude of external interfaces (e.g., USB, WiFi, Bluetooth,
and MiniPCI-E) that can effortlessly be used to receive data
from different sources. Once retrieved the data on the Arduino,
our library eases the computation offloading to the FPGA. We
implement the two main components to stress-test the system
and demonstrate its usefulness in real-world scenarios.

1) External System: We employ an example external
Python-based host that controls the Arduino through the serial
interface. It compiles an RE, transmits it, along with the data
to the Arduino while waiting for results.

2) Arduino Program: The Arduino program on the device
exploit our library to configure CICERO. Then, it begins to
accept only REs or data to analyze as input until receiving
all the bytes. The SAMD21 can also begin the execution and
waits for CICERO to finish and send back the results.

Finally, we exploit an ack-based protocol to exchange
information between the host and the Arduino, ensuring statu
synchronization between the two main components.

IV. EXPERIMENTAL SETUP AND RESULTS

We evaluated the proposed solution by comparing the aver-
age execution time, and the energy efficiency based on a subset
of state-of-the-art high-end datacenter RE benchmarks [9],
[22]. Specifically, we selected four benchmarks, spacing from
security (Snort IDS from Cisco [8], a synthetic benchmark
called PowerEN [9]) to other application domains, such as
Protomata (bioinformatics) and Brill (NLP), to consolidate our
proposed approach across various RE domains.

We use them in two modalities: the basic mode, which uses
the RE benchmarks as-is, and the ORed mode, which combines
multiple REs with the OR operator, similarly to Reference
[14]. For each benchmark, we randomly selected 200 REs
and then executed each of them on the 1MB dataset on the
target systems. We measure the average execution times of 10
runs on the CPU to mitigate cold start memory effects and
hardware performance counters for CICERO clock cycles.

We selected a Raspberry PI 3.B for the comparison against
our solution because it represents an excellent general-purpose
board that can be used in many CPS and IoT scenarios, such as

HIDS [5], with a good compromise between performance and
energy consumption. The board has a 1.2 GHz ARM Cortex
A53 and 1 GB RAM and is configured with the Raspberry
Pi OS Lite 11 (the official OS with the lowest resources and
energy footprints). We select Google RE2 library [23], which
is designed to have bounded memory access and predictable
run-time and excluded platform-specific solutions (e.g., [24])
or those that support few REs operators. Instead, CICERO runs
at 48Mhz in a 7-ring topology implementation. We measure
the power consumption of the Raspberry through a Voltcraft
4000 energy logger and a USB voltemeter for the Arduino.

A. Benchmark Time and Energy Analysis

Figure 2a reports the average execution time for each bench-
mark executed on CICERO DSA on the Arduino and RE2
on the Raspberry in the single-RE and ORed-REs scenarios.
Specifically, in simple mode, CICERO has comparable average
execution times with Google RE2. Instead, in the complex
scenario with multiple ORed-REs, CICERO has a remarkable
speedup in almost all benchmarks. Moreover, we compute the
ORed-REs speedup’s overall geometric mean, and CICERO
achieves a 3.36× of CICERO against RE2 on the Raspberry.

Considering the energy-efficiency results reported by Fig-
ure 2b, in the single-RE tests CICERO demonstrated good
results in almost all benchmarks with a geometric mean of
improvements of 1.57×. Furthermore, in the execution of
multiple ORed-REs, our solution attains a geometric mean
of 15.67× in energy efficiency improvement, showcasing the
goodness of the proposed approach in complex benchmarks.

In conclusion, considering both the single REs and ORed
REs scenarios, our system-level approach exhibits a geometric
mean of 4.96× in energy efficiency improvements, confirming
the goodness of the proposed approach and making it a good
candidate for many CPS and IoT scenarios.

V. RELATED WORK

Exploiting IoT and CPS systems for information and data
retrieval is essential for knowledge extraction [1], and REs
represent an excellent mean for pattern analysis [7]. Sev-
eral approaches exist to perform RE matching efficiently (or
its corresponding automata-based version) [16], [18], [24],
[25]. However, the majority of the solutions target high-
end, datacenter-like application scenarios, lacking an effective
solution to constrained deployments like our case.

Differently, RE2 is a software library, ISA agnostic small
memory footprint library [23] which can be exploited in less
common and resource-limited environments. However, RE2
depends on an Operative System and might exceed small-
scale IoT and CPS memory capacity. Considering HIDS, they
usually provide only a software-based approach that would
lock the system until the end of the computation with poor
results on a Raspberry Pi [26]. Instead, offloading the HIDS
pattern-matching operations to a DSA, such CICERO, could
free the host and combine software programmability with a
domain-specialized architecture. This combination better fits
on various IoT and CPS scenarios.
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Fig. 2: Average of matching times and energy efficiency comparison between CICERO on the Arduino MKR Vidor 4000 and
the Raspberry PI ARM A53 on Simple and Ored4 benchmarks.

VI. FINAL REMARKS

We presented a system design approach to enable complex
task execution at the edge exploiting FPGA-based solutions.
Our solution demonstrates an overall geometric mean im-
provement of 4.96× in energy efficiency against Google RE2
on a Raspberry Pi. The reported results from different real
benchmarks are a concrete example of exploiting DSAs and
FPGAs to bring high-demand applications in scenarios where
computational power and energy consumption are limited. We
hope these results can push other research works to consider
our approach to removing barriers in constrained scenarios.
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APPENDIX

A. Abstract

These Artifacts contain the code and all the necessary steps
required to reproduce the execution results of CICERO on the
Arduino MKR Vidor 4000, RE2 on the Raspberry Pi, and
reproduce the plots of the paper.

B. Artifact check-list (meta-information)
• Compilation: C++, Makefile, Bash
• Data set: Randomly selected 200 REs from ANMLZoo and

AutomataZoo benchmark suites and 1MB datasets.
• Run-time environment: Any OS host, Raspberry Pi Lite OS
• Hardware: Arduino MKR Vidor 4000, Raspberry PI 3 B;
• Metrics: Average Execution time in µs
• Output: Raw execution time results, and Charts of Figure 2
• Experiments: Replicate Execution times (Figure 2a), Energy

Efficiency (Figure 2b) requires Figure 2a + Voltemeters
• How much disk space required (approximately)?: 200MB
• How much time is needed to prepare workflow (approxi-

mately)?: 10 minutes
• How much time is needed to complete experiments (approx-

imately)?: 1 week
• Publicly available?: yes
• Code licenses (if publicly available)?: MIT License
• Data licenses (if publicly available)?: Refer to single bench-

marks licenses.
• Archived (provide DOI)?:

https://doi.org/10.5281/zenodo.7797406

C. Description

1) How to access: Code publicly available at https:
//github.com/necst/cicero-on-vidor4000/artifact evaluation
with the following DOI https://doi.org/10.5281/
zenodo.7797406

2) Hardware dependencies:
• Arduino MKR Vidor 4000 board
• Requires a Raspberry PI 3 model B
• Any CPU capable of running Arduino IDE and Intel

Quartus (Lite minimum)
3) Software dependencies:
• Requires Google RE2
• Requires Python 3.10 including ply, tqdm, pyserial, pan-

das, matplotlib, scipy, and numpy packages
• Requires screen or tmux
• Arduino IDE
• Intel Quartus Lite for bitstream regeneration
4) Data sets: The datasets are available in the ANM-

LZoo repository. For additional information, refer to https:
//github.com/necst/cicero-on-vidor4000/artifact evaluation.

D. Installation

Clone the repository as a command or download the archive
from the DOI. Install Intel Quartus Lite if you aim to regen-
erate the bitstream.

E. Experiment workflow

Download the archive or clone the repository
git clone https://github.com/necst/cicero-on-

vidor4000.git --recurse-submodules

We encourage the usage of tmux or screen to have remote
sessions going on, given the long time required to finish the
overall execution. To program the Arduino, please follow the
instruction in the artifact-evaluation folder.

1) RE2 Execution: Connect to the Raspberri Pi, clone the
repository, and then
cd cicero-on-vidor4000/artifact-evaluation/
./creating_re2_benchmark.sh

2) CICERO Execution: Connect with a machine linked
via the Micro-USB with the Arduino MKR Vidor 4000.
Navigate to the folder and execute the scripts for executing
all the benchmarks. Before any execution, be sure that the
arduinoport parameter has the proper Arduino port.
cd cicero-on-vidor4000/cicero-arduino-drivers
./execute_all_benchmark.sh

This script will execute all the benchmarks and aggre-
gate the results in a more comfortable way for reproduc-
ing the charts. Alternatively, for single benchmark execu-
tion, you may call the single benchmark script execution as
benchmark_name:
./execute_{benchmark_name}.sh

3) Plotting: It is required to have the results all on a single
machines, for instance the Raspberry Pi with the Arduino
connected, and followed the previous steps. To reproduce
Figure 2 then:
cd cicero-on-vidor4000/artifact-evaluation/plotting
./generating_folders_structure.sh
python charts.py 0
python charts.py 1

F. Evaluation and expected results

These Artifacts mainly replicate Figure 2a of the execution
times from scratch on the Arduino MKR Vidor 4000 and the
Raspberry PI. We included the power data to replicate Figure
2b. Collecting them from scratch requires physical access to
the devices and the voltmeters. The artifacts let reproduce both
numerical and graphical representation of the manuscript.

G. Experiment customization

To customize CICERO bitstream, you can
find the Quartus Lite project under the
<top_folder>/projects/cicero-cyclone/
MKRVIDOR4000qpf, customize the project in any way, and
finally generate the bitstream. Follow the instructions in the
“About vidor-bitstream-converter” to convert your bitstream,
and then replace the novel generated app.h.

To customize the experiments, the user must first pick the
dataset (REs and input data), and dispose them as for the other
benchmarks. Then follow the instruction to run.

H. Methodology

Submission, reviewing and badging methodology:
• https://www.acm.org/publications/policies/artifact-

review-badging
• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html

https://github.com/necst/cicero-on-vidor4000/artifact_evaluation
https://github.com/necst/cicero-on-vidor4000/artifact_evaluation
https://doi.org/10.5281/zenodo.7797406
https://doi.org/10.5281/zenodo.7797406
https://github.com/necst/cicero-on-vidor4000/artifact_evaluation
https://github.com/necst/cicero-on-vidor4000/artifact_evaluation
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html
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