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Blow-up and global existence for solutions to the
porous medium equation with reaction and
slowly decaying density

Giulia Meglioli* and Fabio Punzo!

Abstract

We study existence of global solutions and finite time blow-up of solutions
to the Cauchy problem for the porous medium equation with a variable
density p(x) and a power-like reaction term p(z)uP with p > 1; this is a
mathematical model of a thermal evolution of a heated plasma (see [28]).
The density decays slowly at infinity, in the sense that p(z) < |z|77 as
|| — 400 with ¢ € [0,2). We show that for large enough initial data,
solutions blow-up in finite time for any p > 1. On the other hand, if the
initial datum is small enough and p > p, for a suitable p depending on
p,m, N, then global solutions exist. In addition, if p < p, for a suitable
p < p depending on p,m, N, then the solution blows-up in finite time for
any nontrivial initial datum; we need the extra hypotehsis that ¢ € [0,¢€)
for € > 0 small enough, when m < p < p. Observe that p = p, if p(z) is a
multiple of |z|~9 for || large enough. Such results are in agreement with
those established in [47], where p(z) = 1, and are related to some results in
[311B32]. The case of fast decaying density at infinity, i.e. ¢ > 2, is examined
in [37].
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1 Introduction

We investigate global existence and blow-up of nonnegative solutions to the Cauchy
parabolic problem

(1.1)

{ plz)uy = A(u™) + p(x)u? in RY x (0,7)
U = ug in RY x {0},

where m > 1,p > 1, N > 3,7 > 0; furthermore, we always assume that

((i) pe C(RY), p>0in RV ;
(ii) there exist k1, ko € (0,4+00) with k1 < ko and 0 < g < 2 such that

1
kilz|? < —— < ko|x|? for all RN\ B;1(0);
el < o5 < Rolaft forall @ € RY\ By(0);

\(111) Ug € LOO(RN), Uy > 0 in RV

(H)

The parabolic equation in problem (L)) is of the porous medium type, with a
variable density p(x) and a reaction term p(x)uP. Clearly, such parabolic equation
is degenerate, since m > 1. Moreover, the differential equation in ([L.T]) is equivalent

to
1

@)

therefore, the related diffusion operator is ﬁA, and in view of ([HJ), the coefficient

U = Aw™) +u?  in RY x (0,7);

$ can positively diverge at infinity. Problem (LI has been introduced in
[28] as a mathematical model of evolution of plasma temperature, where u is the
temperature, p(x) is the particle density, p(z)u® represents the volumetric heating
of plasma. Indeed, in [28, Introduction| a more general source term of the type
A(z)uP has also been considered; however, then the authors assume that A = 0;
only some remarks for the case A(x) = p(x) are made in [28, Section 4], when the
problem is set in a slab in one space dimension. Then in [26] and [27] problem
(LI)) is dealt with in the case without the reaction term p(x)u?.

We refer to p(x) as a slowly decaying density at infinity because, in view of

(H),

1 1
< < f 11 >1
R S0 < g forall > 1,
with
0<qg<?.

Global existence and blow-up of solutions for problem (L)) with fast decaying
density at infinity, i.e. ¢ > 2, is investigated in [37]. We regard the value ¢ = 2
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as the threshold one, indeed, the behavior of solutions is very different according
to the fact that ¢ < 2 or ¢ = 2 or ¢ > 2. Such important role played by the value
q = 2 does not surprise. In fact, for problem (ILI]) without the reaction term u?,
that is

(1.2)

pu; = A(u™) in RY x (0,7)
u = ug in RY x {0},

in [41], it is shown that for ¢ < 2 there exists a unique bounded solution, whereas
for ¢ > 2, for any ug € L>®(RY) there exist infinitely many bounded solutions.

Let us briefly recall some results in the literature concerning well-posedness
for problems related to (LI]). Problem (II) with p = 1 and without the reaction
term, that is

{ut = A(u™) %n RY x (0,7) (1.3)

U = in RY x {0},

has been the object of detailed investigations. We refer the reader to the book
[51] and references therein, for a comprehensive account of the main results. Also
problem ([LT]) with variable density, without reaction term, that is problem (L2I),
has been widely examined. In particular, depending on the behaviour of p(z) as
|x| — o0, existence and uniqueness of solutions and the asymptotic behaviour of
solutions for large times have been addressed (see, e.g., [8 9] 13, 14} [15] 18], 19, 20,
211, 22, 23], 241, 25], 26, 27, [41], 43, [44) 145]).

For problem (ILI) with m = 1 and p = 1, global existence and blow-up of
solutions have been studied. To be specific, if

<1+ 2
b= N’

then finite time blow-up occurs, for all nontrivial nonnegative data, whereas, for

> 14+ 2
p N’

global existence prevails for sufficiently small initial conditions (see, e.g., |5, 6] [10]
111, 07, 29] [42] 46, 48, [52]). In addition, in [30] (see also [7]), problem (1) with
m = 1 has been considered. Let assumption ([H]) be satisfied, and let

b:=2—q. (1.4)
Obviously, since ¢ € [0,2), we have that

be(0,2].



It is shown that if

<140
Pt N oy

then solutions blow-up in finite time, for all nontrivial nonnegative data, whereas,
for

L
prlt oy

global in time solutions exist, provided that ug is small enough.

Now, let us recall some results established in [47] for problem (L) with p =
I,m>1,p>1 (see also [12, [38]). We have:

e ([47, Theorem 1, p. 216]) For any p > 1, for all sufficiently large initial data,
solutions blow-up in finite time;

e ([47, Theorem 2, p. 217]) if p € (1,m+ %), for all initial data, solutions
blow-up in finite time;

e ([47, Theorem 3, p. 220]) if p > m + %, for all sufficiently small initial data,
solutions exist globally in time.

Similar results for quasilinear parabolic equations, also involving p-Laplace type
operators or double-nonlinear operators, have been stated in [1], [2], [3], [31], [?],
7], [36], [37], [39], [49], [53] (see also [34] for the case of Riemannian manifolds);
moreover, in [16] the same problem on Cartan-Hadamard manifolds has been in-
vestigated.

Let us observe that the results in [47] illustrated above have been proved by
means of comparison principles and suitable sub— and supersolutions of the form

n(t)] " for any (x,t) € RY x [0,T),
Jr

Kl

w(z,t) = C(t) [1

for appropriate auxiliary functions ¢ = ((t),n = n(t) and constants C' > 0,a > 0.

In |31} 32] double-nonlinear operators, including in particular problem (L1I), are
investigated. It is shown that (see [31, Theorem 1)) if p(x) = |z|~¢ with ¢ € (0, 2),
for any x € RV \ {0},

b
PN oy
ug > 0 and
{uo(x) + [uo(@)]7} plw)da < 6, (1.5)

RN



for some 6 > 0 small enough and ¢ > %(p —m), then there exists a global solution
of problem (LLI). In addition, a smoothing estimate holds. On the other hand, if
p(x) =|z|"% or p(x) = (1 + |z|)~? with ¢ € [0,2), ug Z 0 and

b
N-—-2+0b
then blow-up prevails, in the sense that there exist 6 € (0,1), R > 0,7 > 0 such
that

p<m-+

/B [u(z, )]’ p(z)de — +oo as t— T

Such results have also been generalized to more general initial data, decaying at
infinity with a certain rate (see [32]). We compare the results in [31] with ours
below (see Remarks 2.3, 2.5 and 2.§]).

1.1 Outline of our results
We prove the following results.

e (See Theorem [2.1]). Suppose that

sy (m —1)(N —2)
g T b )

(1.6)

and define
m(N —2+b) + 2= (m — £2)

M’ (1.7)
N-2+#50n—%)

p=

If ug has compact support and is small enough,
pP>D,
then global solutions exist.

Note that for k1 = ko,
b

N+2-0b
this is coherent with [31], Theorem 1] (see Remark 2.3 below for more details).
If in addition p = 1, and so b = 2, we have

_ i 2
=m+ —.
P N
Thus, our results are in accordance with those in [47]. Furthermore, for
m = 1, they are in agreement with the results established in [30], and in

[T, 17) when p = 1.

p=m+



e (See Theorem 2.4). For any p > 1, if ug is sufficiently large, then solutions
to problem (L.1)) blow-up in finite time.

e (see Theorem 2.6)). If 1 < p < m, then for any uy # 0, solutions to problem
(LI) blow-up in finite time. In addition (see Theorem 2.7]), if

b
N-2+b

and ¢ € [0,¢) for € > 0 small enough, then for any uy #Z 0, solutions to
problem ([LT]) blow-up in finite time.

mp<m+

It remains to be understood if the restriction ¢ € [0, €) can be removed.

Actually, we obtain similar results to those described above, also when assump-
tion ((H]) is fulfilled for general 0 < k; < ko. In that case, the blow-up result for
large initial data can be stated exactly as in the previous case k; = k5 . Instead, in
order to get global existence, the assumption on p changes, since it also depends
on the parameters k; and ky. More precisely, Indeed, also our blow-up results for
any nontrivial initial datum holds when 0 < k; < ky. The case 1 < p < m is
exactly as before. Moreover (see Theorem [2.7), if

m < p <p,

where
m(N —2+0b)+ =2 <m—%)
(1.8)

m—1
p= )
= b k
N —2 + m—1 (m - k—;)

then the solution blows-up for any nontrivial initial datum, under the extra hypo-
thesis that ¢ € [0, ¢€) for € > 0 small enough. Note that in view of (L)), it can be

easily checked that
pP<p.
In particular, p = p whenever k; = k.

The methods used in [7, [11], 17, 30] cannot work in the present situation, since
they strongly require m = 1. Indeed, our proofs mainly relies on suitable com-
parison principles (see Propositions 3.6, B.7]) and properly constructed sub- and
supersolutions. Let us mention that the arguments exploited in [47] cannot be
directly used in our case, due to the presence of the coefficient p(z). In fact,
we construct appropriate sub— and supersolutions, which crucially depend on the
behavior at infinity of the inhomogeneity term p(x). More precisely, whenever
|z| > 1, they are of the type

2l ]
w(z,t) = C¢(t) { - 77)(75)} for any (z,t) € [RY\ B1(0)] x [0,T),
+



for suitable functions ¢ = ((t),n = n(t) and constants C' > 0,a > 0. In view of
the term |z|® with b € (0,2], we cannot show that such functions are sub- and
supersolutions in B;(0) x (0,7"). Thus we have to extend them in a suitable way
in B1(0) x (0,7). This is not only a technical aspect. In fact, in order to extend
our sub— and supersolutions, we need to impose some extra conditions on ¢ = ((t),
n =n(t), C and a. Thus, it appears a sort of interplay between the behavior of the
density p(x) in compact sets, say Bj(0), and its behavior for large values of |z|.
Finally, let us comment about the proofs of the blow-up result for any nontrivial
initial datum. For 1 < p < m, the result follows by a direct application of Theorem
2.4l For m < p < p, the proof is more involved. The corresponding result for the
case p = 1 established in [47] is proved by means of the Barenblatt solutions of
the porous medium equation

uy = Au™  in RN x (0, +00).

In our situation, we do not have self-similar solutions, since our equation in (L) is
not scaling invariant, in view of the presence of the term p(z). Indeed, we construct
a suitable subsolution z of equation

1
up = —Au™ in RY x (0, +00) .
p

By means of z, we can show that after a certain time, the solution u of problem
(L)) satisfies the hypotheses required by Theorem 2.4l Hence u blows-up in finite
time.

The paper is organized as follows. In Section [2 we state our main results, in
Section [3] we give the precise definitions of solutions, we establish a local in time
existence result and some useful comparison principles. In Section 4l we prove
the global existence theorem. The blow-up results are proved in Section [l for
sufficiently big initial data, and in Section [@] for any initial datum.

2 Statements of the main results

In view of (H])-(i), there exist p1, p2 € (0, +00) with p; < py such that

1 -
P1 S m S P2 for all z € Bl<0) (21)

As a consequence of hypothesis () and (Z1]), we can assume that

k’l = P1, k’g = pP2. (22)



Let p be defined by (7). It is immediate to see that P is monotonically increasing
with respect to the ratio Z—f; furthermore,

p>m.

Edk if |z > 1,
t(z) = 2.3
( ) {bxb:2b lf |$| < 1 ] ( )

Define

The first result concerns the global existence of solutions to problem (L] for
p>p-

Theorem 2.1. Let assumptions (H)), (L) and 22) be satisfied. Suppose that
p>D,
where p is given in (L1), and that ug is small enough and has compact support.

Then problem (L)) admits a global solution u € L=(RY x (0, +00)).
More precisely, if C' > 0 is small enough, T' > 0 is big enough, a > 0 with

m—1
wo < < wr,
for suitable 0 < wy < wy,
(-5 ——), s=1-am-1) 2.4)
a T 1) = a(m ) :
up(z) < CT™¢ {1 - @Tﬁ] " for any x € RY | (2.5)
a
+
then problem (L)) admits a global solution u € L®(RY x (0,+00)). Moreover,
o |y H@) | N
u(z,t) < C(T+t)"“ |1 (T +1) for any (z,t) € R™ x [0, 400).
a
+

(2.6)
The precise choice of the parameters C' > 0,7 > 0 and a > 0 in Theorem 2.1]
is discussed in Remark (4.2 below. Observe that if ug satisfies (2.5), then
[uollo < CT,
suppug C {x € RY : tv(z) < aT”}.

In view of the choice of C, T, a (see also Remark [.2)), ||ug|| is small enough, but
supp ug can be large, since we can select a1 > 7y for any fixed ry > 0.
Moreover, from (2.6) we can infer that

suppu(-,t) C {z € RY : v(z) < a(T +1)°} forallt>0. (2.7)



Remark 2.2. Note that if ky = ks, then
b
N—-2+b
In particular, for g =0, 1.e. b =2, we obtain
_ 2
p=m-+ N
Hence, Theorem[2.1] is coherent with the results in [{7].

p=m+

Remark 2.3. In [31, Theorem 1] a similar global existence result is proved, for
p(x) = |z|7 for any x € RN\ {0} with q € [0,2) and for suitable uy not necessarily
compactly supported. Clearly, such p does not satisfy assumption (Hl). Moreover,
we can consider a more general behaviour of p(x) for |z| large; this affects the
definition of p, and consequently the choice of p. The smallness condition in The-
orem[21) is different from that in [31)], and it is not possible in general to say which
1s stronger. Moreover, since we consider ug with compact support, we can obtain
the estimates (2.6) and (21), which do not have a counterpart in [31)]. Finally, in
[31] energy methods are used and a smoothing estimate is derived; hence the proof
is completely different from our.

The next result concerns the blow-up of solutions in finite time, for every p > 1
and m > 1, provided that the initial datum is sufficiently large.

Let
lz|° if |z > 1,
s(x) =
(@) {|ac|2 if |z <1.

Theorem 2.4. Let assumptions (H)) and [22) be satisfied. For anyp > 1,m > 1
and for any T > 0, if the initial datum ug is large enough, then the solution u of
problem (1)) blows-up in a finite time S € (0,T], in the sense that

|u(t)||w = +00 as t— S™. (2.8)
More precisely, we have the following three cases.

(a) Let p>m. If C' > 0,a > 0 are large enough, T > 0,

1 m—p | m—1
up(z) > CT vt {1 - @T =1 } ) (2.9)
a +
then the solution w of problem (L) blows-up and satisfies the bound from

below

m—

u(z,t) > C’(T—t)*p_il [1 — fﬂ(T — )1 ] " for any (z,t) € RV x[0,S) .
(2.10)




(b) Let p < m. If CmTﬂ > 0 and a > 0 are big enough, T" > 0 and ([2.9) holds,
then the solution u of problem (1)) blows-up and satisfies the bound from

below (2.10).

(¢c) Let p =m. If %_1 > 0 and a > 0 are big enough, T > 0 and ([2.9) holds,
then the solution w of problem (L) blows-up and satisfies the bound from

below (2.10).
Observe that if ug satisfies (2.9)), then

suppug 2 {r € RY : 5(2) < aT%}.
In all the cases (a), (b), (¢), from (2I0) we can infer that
suppu(-,t) D {z € RY : s(x) < a(T — t)%} for all t € [0,.5). (2.11)

The precise choice of parameters C' > 0, T' > 0, a > 0 in Theorem [2.4] is discussed
in Remark below.

Remark 2.5. Let us mention that in [31)], where some blow-up results are shown
for problem (L)), there is not a counterpart of Theorem since our result
concerns any p > 1 and sufficiently large initial data.

2.1 Blow-up for any nontrivial initial datum

In this Subsection we discuss a further result concerning the blow-up of the solution
to problem (1)) for any initial datum ug € C(RY), ug > 0, uy Z 0.

Let p and be defined by ((L8) and (L7), respectively. Assume (L6). It is direct
to see that

p<p. (2.12)

In particular, p = p, whenever k1 = k. We distinguish between two cases:
1) 1<p<m,
2) m<p<p.

In case 2), we need an extra hypothesis. In fact, we assume that (H]) holds
with
g€ (0,¢), (2.13)

for some € > 0 to be fixed small enough later. Then, b defined by (L)), satisfies

2—e < b < 2. (2.14)
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Theorem 2.6. Let assumption (H) be satisfied. Suppose that
l<p<m,

and that ug € C(RY),up(x) # 0. Then, for any sufficiently large T > 0, the
solution u of problem (L)) blows-up in a finite time S € (0,T], in the sense that

lu(t)|loo = +00 as t— S™.

More precisely, the bound from below (2.10) holds, with b,C,a,(,n as in Theorem

2.4-(b).

Theorem 2.7. Let assumptions (H]) and (2.13)) be satisfied for e > 0 small enough.
Let ug € C®(RY) and ug Z0. If

m < p <p, (2.15)

then there exist sufficiently large t; > 0 and T > 0 such that the solution u of
problem (1)) blows-up in a finite time S € (0,T + t1], in the sense that

|u(t)||oo = +00 as t— S™.

More precisely, when S > t;, we have the bound from below

]

u(z,t) > C(T+t—t) v |1 — £%(TjL ty—t)rt "

[un

for any (z,t) € RV x (11, 9),

(2.16)
with C,a as in Theorem [2.7}(a).

Remark 2.8. As it has been mentioned in the Introduction, in [31, Theorem
3] blow-up of solutions to problem (1) is shown when p(z) = x|~ or p(z) =
(1 + |z|)~? with q € [0,2). However, the results in [31] are different, in fact it
is obtained an integral blow-up, that is, for some R > 0, 8 € (0,1), T > 0,
fBR [u(z, )’ p(x)dx — 400 ast — T—. On the other hand, we should mention
that the extra hypothesis (2.13), that we need in Theorem 2.7, in [31)] is not used.
Furthermore, the methods of proofs in [31] are completely different, since they are
based on the choice of a special test function and integration by parts.
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3 Preliminaries

In this section we give the precise definitions of solution of all problems we address,
then we state a local in time existence result for problem (.I]). Moreover, we recall
some useful comparison principles.

Throughout the paper we deal with very weak solutions to problem (I.T]) and to
the same problem set in different domains, according to the following definitions.

Definition 3.1. Let ug € L®(RY) with ug > 0. Let 7 >0, p > 1,m > 1. We say
that a nonnegative function u € L>®(RYN x (0,85)) for any S < 7 is a solution of

problem (1) if
/RN/ x)up, dt doe = /RN p(z)uo(x)p(x,0) dx

+/ / u"Apdt dx (3.1)
RN
/ / x)uPp dt dx
RN

for any o € C(RYN x[0,7)), 9 > 0. Moreover, we say that a nonnegative function
u € L®(RYN x (0,5)) for any S < 7 is a subsolution (supersolution) if it satisfies
BI) with the inequality ” <7 (7 > 7 ) instead of " =" with ¢ > 0.

For any zy € RY and R > 0 we set
Br(z¢) = {z € RY : ||z — x0]| < R}.

When zq = 0, we write Bg = Bg(0). For every R > 0, we consider the auxiliary
problem

uy = —=A(u™) +uP in Bg x (0,7)

p(z)
u=20 on dBg x (0,7) (3.2)
u = U in Bg x {0}.

Definition 3.2. Let ug € L>®(Bg) with ug > 0. Let 7 >0, p>1,m > 1. We say
that a nonnegative function uw € L*(Bg x (0,5)) for any S < 7 is a solution of

problem ([B.2)) if
/ / ugptdtdx—/ p(x)up(z)p(z,0) dx
Br Br

s
+/BR

u™ Ay dt dz (3.3)

Y

c\«%

p(x)uPp dt dx



for any ¢ € C(Bg x [0,7)) with p|op, = 0 for all t € [0,7). Moreover, we say
that a nonnegative function u € L>®°(Bg x (0,S5)) for any S < T is a subsolution
(supersolution) if it satisfies [B3) with the inequality ” < 7 (7 > 7) instead of
=" with ¢ > 0.

Proposition 3.3. Let hypothesis (HI) be satisfied. Then there exists a solution u

to problem ([B.2l) with
1

(p = 1)]luol i;l(BR).

T > TR :=

Proof. Note that u = 0 is a subsolution to (3.2). Moreover, let ug(t) be the
solution of the Cauchy problem

w'(t) =uP
(0) = l[uollLo(Bg) »

an(t) = [woll Lo (Br)

I~

that is
—— forall t€[0,75).
—1
1= 0= Dthuolli ]
Clearly, for every R > 0, up is a supersolution of problem (B.2)). Due to hypothesis

(H),

1 L gmfax1 for all x € Bp.

r P~ pT) T B p

Hence, by standard results (see, e.g., [51]), problem (3.2)) admits a nonnegative
solution ur € L>®(Bg x (0,5)) for any S < 7, where 7 > 7 is the maximal time
of existence, i.e.

O<m1

|ur(t)||oo = 00 as t — 75.

0

Moreover, the following comparison principle for problem (3.2]) holds (see [4]
for the proof).

Proposition 3.4. Let assumption (H]) hold. If u is a subsolution of problem (3.2))
and v is a supersolution of ([B.2), then

u<wv a.e. in Bgx(0,7).

13



Proposition 3.5. Let hypothesis (Hl) be satisfied. Then there exists a solution u
to problem (ILT]) with
1
(p = Dlluollss™
Moreover, u is the minimal solution, in the sense that for any solution v to problem

(L) there holds

T 2> Ty =

u<v in RY x(0,7).

Proof. For every R > 0 let ug be the unique solution of problem ([B.2)). It is easily
seen that if 0 < R; < R», then

UR, < UR, in BR1 X (O,TO) . (34)

In fact, ug, is a supersolution, while ug, is a solution of problem ([3.2]) with R = R;.
Hence, by Proposition B.4], (8.4]) follows. Let u(t) be the solution of

{a’(t) =
(0) = [luolls »

u(t) = [oloc — forall t€]0,7).

[1—(p = Dtfuollss]
Clearly, for every R > 0, @ is a supersolution of problem (B3.2]). Hence

g

that is

0 <wug(z,t) <u in Brx(0,7). (3.5)

In view of ([B.4)), the family {ur}r>o is monotone increasing w.r.t. R. Moreover,
(B.5) implies that the family {ug} is uniformly bounded. Hence {ug}r~o converges
point-wise to a function, say u(z,t), as R — 400, i.e.

lim ug(x,t) = u(z,t) ae. in RY x (0,7).
R—+o00

Moreover, by the monotone convergence theorem, passing to the limit as R — +oo
in (3.3) we obtain

_ /R ) /0 ! p(x)up, dt do = /R _Pl@)uo(2)e(x,0) dz

70
+/ / u™ Apdtdx
RN Jo

70
+/ / p(x)uPpdt dx
RN Jo
14



for any ¢ € C®(RY x [0,79)),o > 0. Hence u is a solution of problem (L))
u € L®(RY x(0,5)) for any S < 7, where 7 > 75 is the maximal time of existence,
ie.

lu(t)]|oo = 00 as t— 7.

Let us now prove that w is the minimal nonnegative solution to problem (L.IJ).
Let v be any other solution to problem (LT). Note that, for every R > 0, v is a
supersolution to problem (B.2). Hence, thanks to Proposition [3.4]

ugp <v in Bg x (0,7).
Then passing to the limit as R — oo, we get
u<wvin RY x (0,7).
Therefore, u is the minimal nonnegative solution. U
In conclusion, we can state the following two comparison results.

Proposition 3.6. Let hypothesis (Hl) be satisfied. Let u be a supersolution to prob-
lem (LI)). Then, if u is the minimal solution to problem (1)) given by Proposition
(2.3, then

uw<u ae inRY x(0,7). (3.6)

In particular, if u exists until time T, then also u exists at least until time 7.

Proof. Clearly, for any R > 0, u is a supersolution to problem Hence, by
Proposition [3.4],
ugp <u in Bgx(0,7).

By passing to the limit as R — 400, we easily obtain (3.6]), which trivially ensures
that u does exist at least up to 7, by the definition of maximal existence time. [

Proposition 3.7. Let hypothesis (H) be satisfied. Let u be a solution to problem
(L) for some time T =1 > 0 and u a subsolution to problem (LII) for some time
T =15 > 0. Suppose also that

SUpp u|rn x[0,5] s compact for every S € (0, 7).

Then
u>u in RY x (0,min{r,n}) . (3.7)

Proof. We fix any S < min{7, »}. It R > 0 is so large that

supp ulrn xj0,5) € Br % [0,5],
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then u and u are a supersolution and a subsolution, respectively, to Hence
uw>wu in Bgx(0,5).

Inequality (B.7) then just follows by letting R — +oo and using the arbitrariness

Remark 3.8. Note that by minor modifications in the proof of [?, Theorem | one
could show that problem (LIl) admits at most one bounded solution.

In what follows we also consider solutions of equations of the form
u = ——Au™)+u’ in Qx(0,7), (3.8)

where 0 C RY. Solutions are meant in the following sense.

Definition 3.9. Let 7 > 0, p > 1,m > 1. We say that a nonnegative function
u € L>®(Qx(0,9)) for any S < 7 is a solution of problem ([B.2)) if

—// p(x)ugptdtdx:// u™ A dt dx
QJo QJo
+// p(x)uPpdt dx
aJo

for any ¢ € C(Q x [0,7)) with plag = 0 for all t € [0,7). Moreover, we say
that a nonnegative function u € L>(2 x (0,5)) for any S < 7 is a subsolution
(supersolution) if it satisfies [B.3) with the inequality ” < 7 (7 > 7 ) instead of
=" with ¢ > 0.

(3.9)

Finally, let us recall the following well-known criterion, that will be used in
the sequel; we reproduce it for reader’s convenience. Let @ C R be an open set.
Suppose that Q = Q; U Qy with Q; N Qy = 0, and that X := 0Q; N 9Ny is of class
C'. Let n be the unit outwards normal to ; at . Let

(3.10)

wyp in € X [O,T),
u =
Uy In QQ X [O,T),

where d,u € C( x (0,T)),ul* € C?(Qy x (0, T))NCHQy x (0,T)), yuy € C(Qy x
(0,7)),)us € C%*(Qy x (0, 7)) NCH(Qy x (0,7)).

Lemma 3.1. Let assumption (H]) be satisfied.

16



(i) Suppose that

1
Opuy > —Au" +uf  for any (z,t) € QO x (0,7T),
f (3.11)
Oy > ;Augn +ub  for any (z,t) € Qy x (0,7,
our _ oul
= _ > —= . .
up =g, -2 o for any (x,t) € ¥ x (0,T) (3.12)
Then u, defined in [BI0), is a supersolution to equation (3.8]), in the sense of
Definition [3.9.
(i) Suppose that
1
Owuy < —Au" +ul  for any (x,t) € O x (0,7T),
/1) (3.13)
Opug < —Aul +ub  for any (x,t) € Qy x (0,7),
p
ouyr  ouly
Uy = Ug, i W Qe for any (x,t) € £ x (0,T). (3.14)

on — On
Then u, defined in (3.10), is a subsolution to equation (B.8]), in the sense of Defi-
nition [3.9.

Proof. Take any ¢ € C%°(Q x [0,7)) with ¢|sq = 0 for all t € [0,7),p > 0.
(i) We multiply by ¢ both sides of the two inequalities in (8.11]), then integrating

two times by parts we get

—/ / p(urpr + ufp)dadt
951
/ Agpd:cdt—/ /ul 8‘pdadt+/ / 81d odt,

- / / p(uzepy — uzp)drdl
Qo
/ mApdzdt + / / ul 8‘pdadt— / / 9 ot

Summing up the previous two inequalities and using (3.12)) we obtain

—/ /p(wpt+upg0) dxdtz/ u" Ap dxdt .
0o Jo 0

Hence the conclusion follows in this case. The statement (ii) can be obtained in

the same way. This completes the proof. O
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4 Global existence: proofs

In what follows we set r = |z|. We want to construct a suitable family of super-
solutions of equation

uy = ——Au™) +u?  in RY x (0, +00). (4.1)

To this purpose, we define, for all (z,t) € [RY \ B1(0)] x [0, +o0),

b 1

r m=1
) = ulr(,1) 1= Co(0) | 1= S| (12)
+
where 7, ¢ € C*([0, +00); [0, +00)) and C' > 0, a > 0.
Now, we compute
1
uy — —A(u™) — uP.
A (u™)

To do this, let us set
b

F(r,t) == 1— —p(t)
a
and define

Dy = {(z,t) € RV \ B1(0)] x (0,+00)| 0 < F(r,t) <1}.

For any (x,t) € Dy, we have:

1 1 1 1 Tb
u = CCFm-1 4+ (C(———Fm-1" (——77/)
m—1 a
1 1 Tb 7]/ 1 1 77/ 1 1
=C(Fn1 +C(—— (1 - —n) L~ Fmn-i7l — O(———Fmit (4.3)
m—1 a n m—1mn

1 1 ! 1 1 / 1
= CC/Fm + Ccin_Fm,l _ CQ*Q m—l;
m—1n

m b
(um)r — _Cmgmm — lFm,l 57774b 1; (4'4)
m L b? r
m — _(m miFm—l_ b—2 1__
(™) c™¢ (m—1)2 amﬂ ( an)

+ Cmcmim [ (4.5)
m

—omem Fa-t nr



We set u = u,

. o ) u(x,t) in RN\ By1(0)] x [0, +00),
w(z,t) =w(r(x),t) = {ﬂ(x,t) in B,(0) x [0, +00), (4.7)
where 1
2 m—1
HLOEE&@%ﬂ:%X®{1—®T+2_®n@} (4.8)
2 a |,
We also define
m—1 = m—1 T
h= <p+m—2) _<p+m—2) =0,
e L b gy tm
0(t).—§+§m_1n+0 ¢ m_lank1<N 2+m_1),
1o o m D
o) = Cm —19 O (m — 1)2577]{;2’ (4.9)

() = CPIER(L)

1 /
Go(t) == ¢+ (——L 4 ™" Nk,

m—1n m—1 a
- 1 7 _ m 7
So(t) i =(——L + O™ W2 fy(m——— L.
o(t) Cm_1?7+ 26 (m—1)2a?
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Proposition 4.1. Let ( = ((t), n = n(t) € C*([0, +0); [0, +00)). Let K, 7, 6,7, 5o, 6o

be defined in ([A9). Assume (LO), 2.2)), and that, for allt € (0,+00),

n(t) <a, (4.10)
/ b2 m
. % Z Ecmflcmfl(t) — 1k2’ (411)
b kob
e 16’”——mm 0 [kl ( —2 T_”l) - mQ_J — P20, (4.12)
77 Cm 1 1 m
_ 7 k 4.1
77 (l 2< m — 17 ( 3)
om— 1 m Cm*1

C/ + NC?’TL

Eijmydwm Sk —CPTICP > 0. (4.14)

m
a> (m—1)
Then w defined in (A1) is a supersolution of equation (4.TI).

Proof of Proposition[{.1. In view of (43), (£4), (45) and ([4.6), for any (z,t) €
D17

1
u — —A(u™) —a®

p
1 1
= OC'Fa1 + Cg—iFm P cc—”— i1
L m-ln (4.15)
rb=2 m b 1 m b '
_ domem Y ppwst _om(N — )¢ 2
p { ¢ 1 a" - IS L
2 2
—C™¢ mib_npm T _Cpcppﬁ_
m—1Fa
Thanks to hypothesis (H]), we have
b2 b2
—;—zkh ——;-> —ky forall 2 € RY\ B(0). (4.16)
From (4.I5) and (4I6) we get
I _
uy — —A(a™) — af
p
1 b b
zcwwi*{ {c+c———fl+ mlc-Jﬁ—ﬂmlcv—2+—ﬁl>}
17 1 1
1 ! b2 P m 2
_Cil —omiem L—lez cr-ler Pt T
m—11 (m—1)%a
(4.17)
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From (£I7), taking advantage from (), §(t) and 4(t) defined in ([{3), we have

— p+m—2

iy — %A(am) _ @ > CFRT [5(t)F — 6(t) — A0 o] (4.18)

For each t > 0, set

ptm—

o(F) = 6(t)F — §(t) —3() F="T, F e (0,1).

Now our goal is to find suitable C, a, (,n such that, for each t > 0,
@(F)>0 forany F € (0,1).

We observe that ¢(F) is concave in the variable F', hence it is sufficient to have
©(F) positive in the extrema of the interval of definition (0,1). This reduces to

the system
0) >0
{90( ) = (4.19)
>0,

that is

_T]_' E m—1,m—1_m
n? > aC C mfle

O iy [l (N =24 2) = A4 — 07> 0,

a m—1

which is guaranteed by (L)), (£11]) and (4.I2). Hence we have proved that
1
uy——A(@m)—u? >0 in Di.
p

Since a™ € CY([RN \ B1(0)] x (0,T)), in view of Lemma B.I-(i) (applied with
0 = D1, =R\ [B1(0) U Dy],u; = u,uy = 0,u = @), we can deduce that @ is
a supersolution of equation

at—%A(am)—apzo i [RY\ Bi(0)] x (0, +00), (4.20)

in the sense of Definition Now let v be as in ([A8). Set

br? +2 — bn(t)
=1- )
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Due to (£I0),
0<G(r,t) <1 forall (z,t) € By(0) x (0,4+00).

For any (x,t) € B1(0) x (0, +00), we have:

1 1
— CCGw 1+C¢——Gm i —Cc—_lgG**1 (4.21)
(7™ )__—(ﬁwcm————Gm];;- (4.22)
—~m m,m m #—177 2.2 mym T L7
— — (Im=1 - — — (G m—-1—, 42
(™) = C™(¢ (m—1)2G aQbr C"bC m—lG " (4.23)
Therefore, for all (z,t) € B1(0) x (0, +00),
1
o — —A@") — o
= (")
/ —
- cem e [ML T emmgn M0 Yo M
m—1n r m—1pa p m—1la
e M s
s LA s SR }
(4.24)

Using (2.I)) and the fact that r € (0,1), [A24) yields, for all (z,t) € By(0) x
(0, 400),

1
o — =A@") — P
=3 (™)
1 /
> CGE*{G [g’ + 7 + Nb klcmlgmlﬁ}
) —1n —la (4.25)
_72 m—1p2 1. LT’ p1pp+m2
—1n R (m—1)2a? -G }
— OG- [ao(t)G — So(t) — At )G”L’"IQ] .
Hence, due to (4.25), we obtain for all (z,t) € B1(0) x (0, +00),
1 1 — p+m—2
B AT~ 2 CGmi! [ao(t)a —o(t) — ()G ] . (4.26)

For each t > 0, set

ptm

W(G) = 50()G — §o(t) — ()G T, G € (0,1).
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Now our goal is to verify that, for each ¢ > 0,
Y(G) >0 forany G € (0,1).

We observe that 1(G) is concave in the variable G, hence it is sufficient to have
(@) positive in the extrema of the interval of definition (0,1). This reduces to

the system
¥(0) =
{w(l) >0, (4.27)

for each ¢ > 0. The system is equivalent to

—0(t) >0
Go(t) — do(t) —3(t) > 0,

that is

/ m—1 _
_1% Z b2C 2 kzcm 1_m

n a m—1

¢+ DN k(i — VP C kol g — OGP 2 0,

a

which is guaranteed by (L6]), (4I3)) and (£I4). Hence we have proved that

1
vy — ;A(@m) —oP >0 forall (z,t) € B1(0) x (0, +00) (4.28)

Now, observe that w € C(R"™ x [0, +00)); indeed,

u=0v=C((t) {1 - @] " in 0B1(0) x (0, +00).

Moreover, w™ € CHRY x [0, +00)); indeed,

(@™, = (™), = —C™C(t)"— b”g) [1 - "(t)} " 0 9By (0) x (0, +00) .

m—1 a ]
(4.29)
In conclusion, by (20), [#25), (£29) and LemmaB.Il(i) (applied with ; = R\
B1(0),Qy = B1(0),u; = u,us = v,u = w), we can infer that w is a supersolution
to equation (4.J]) in the sense of Definition [3.9] O

Remark 4.2. Let
P> D,
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and assumptions (L) and [2.2) be satisfied. Let w := CmTfl In Theorem[2.1], the
precise hypotheses on parameters a, 3,C > 0,w > 0,T > 0 are the following:

condition (2.4)),
B — Buwks—2— >0, (4.30)
m—1
—a+ bw {k1<N—2+ bm )— k2b}20p_1, (4.31)
m — m—1 m—1
BT? > B2y (4.32)
a “m-—1
Tﬁ>%0 (for ro > 1), (4.33)
m T8
— bwo——— BN — by | > CP71, 4.34
ot u}m—l(l (m—1)a 2>_C (4:34)

Lemma 4.1. All the conditions in Remark[{.9 can be satisfied simoultaneously.

Proof. We take « satisfying (2.4 and

ko (N — 2 4 bm ) hab
o <mind Fil n21) ~ i , ¥ R e

This is possible, since
>p > + kel >
m4+-——>m.
p->p e N

In view of (A.35), (LO) and the fact that § = 1 — a(m — 1), we can take w > 0 so
that ({30) holds, the left-hand-side of (A31]) is positive, and

m
m—1

—o + bw (kitN —¢€) >0,

for some € > 0. Then, we choose C' > 0 so small that (431]) holds and

m

— 1(k1N —e) > Pt (4.36)

—a+ bw

therefore, also a > 0 is properly fixed, in view of the definition of w. We select

T > 0 so big that (4.32), (4.33) are valid and

! (m - ]_)(] 2 ¢ ( 3 )
From (m) and (m lnequallty (m) fOHOWS. |:|
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Proof of Theorem[21. We prove Theorem 2.11by means of Proposition 2.1l In view
of Lemma [4.1] we can assume that all the conditions of Remark are fulfilled.
Set
Ct)y=(T+t)™, nt)=(T+t)™", forall t>0.

Observe that condition (£33]) implies (4.I0). Moreover, consider conditions (£.11]),
(412)) of Proposition A1 with this choice of ((¢) and n(t). Therefore we obtain

b? m—1__ M —a(m—1)—pF+1
g ——C ko(T + ) >0 (4.38)
a m—1
and
C™ 1 mb bm kab
—a(T +t)y ! — N -2 — T +t)-em=F
o(T+1) + a m—l[kl( +m—1) m—l]< +1)
P T+ 1) >0,
(4.39)

Since, f =1 —a(m — 1), (£38) and ([@39) become

_ b l—a(m-1)
o™ 1m0 < -\ 7 4.4
m—1a — kob ’ (4.40)
cml m bm kob
— b — |k [N =2 — T+t) !
{ ari m—1{1( +m—1) m—l]}( 1) (4.41)
> CP T +t)~°P.
Due to assumption (2.4)),
6>0—a—1>—pa. (4.42)

Thus ([£40) and ({4 follow from (G.47), (E30) and (E3]).

We now consider conditions (413 and ([d.14]) of Proposition 4.1l Substituting
C(t), n(t), « and 8 previously chosen, we get (£32]) and

m—1 m

— (k;lN—b
1

a m —

Condition (4.43)) follows from (6.47) and (4.34)).
Hence, we can choose «, 8, C > 0, a > 0 and T so that (£.40), (4.41)), (4.32)

and (£.43) hold. Thus the conclusion follows by Propositions A1l and 3.6 O

(T +t)7#

—a+b
ot (m—1)a

kg)} (T+t)" >t > CP T + ).
(4.43)
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5 Blow-up: proofs

Let
RN
w(l‘,t) = M(T‘(l‘),t) — Q(l‘,t) lIl [R \Bl(o)] X [OvT)a (51)
v(z,t) in B1(0) x [0,7T),
where u = u is defined in (£.2) and v is defined as follows
v(z,t) = v(r(x),t) := C{(t) {1 - 7’2?} i (5.2)
+
Observe that for any (z,t) € B1(0) x (0,7"), we have:
1 1
CC Gm 1 +C<7 Gm 1 — ng m_l; (53)
my __ mm ﬁﬂ .
(™), = —=2C"¢ 7_1(}’ .
m _ m, m m ﬁflﬂ . mpm_ ﬁﬂ
(") = 4C™¢ (m—1)2 a 2076 —1G a
moon 1
_4 mmsm___ - T m—1
c™¢ m—1%a G
m 1M moon 1
A(™) = 40™¢™ m_1 — Q0™ ™ R
e e R )
—ongmem g
m—1 a
Therefore, from (5.3) and (5.4]) we get, for all (z,t) € B1(0) x (0,7,
1 m
v — ;A(y ) —v”
T / C n, m—1,m 1 1?7 m—1,m m Ui
= m—1 - 2N -
G {G{C+m_1n+ i 2o 1
¢ 4 0 o moq p—1 P BE
m—1n p (m—1)2a et }
(5.5)
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We also define

a(t):=¢ +C%%+Cm e Lléﬁkz (N—2+b—rfl)
&)-—o—li%+cmlgzag%pgﬁh,

) = g
Q()—<+<—i7%+20”%'—@T(N+_%j)p%7 (5.6)
é<>—<—ij%+4omlépﬁ—ﬁ%Pm

1o\ 1\
K—(""% Y > 0.
p+m—2 p+m—2
Proposition 5.1. Let T € (0,00), ¢, n € C'([0,7);[0,+00)). Let 0,9,7, 04,09, K
be defined in (5.6). Assume ([2.2)) and that, for all t € (0,T),

Klo()] 7T < 801>, (5.7)
(m—=1)a(t) < (p+m—2)y(t), (5.8)
Kloo(®)] 5T < &0 (1), (5.9)
(m = 1)oo(t) < (p+m — 2)5(t). (5.10)

Then w defined in (B.1) is a weak subsolution of equation (4J]).
Proof of Proposition[2.1]. In view of (d.3)), (4.4), (4.5) and (4.6) we obtain

1
u, — —A(u™) — o’
p
1 1
= C(¢'Fat +Cgiipm - Cgin_pffl
In m—1n
b—2

r m b m b m b?
- mm___ """ v F*fl mm__ """ Y Fm T _(mmm__
p{C<< S T T e

— CPPFwT for all (x,t) € Dy

(5.11)
In view of hypothesis (H]), we can infer that
b2 b2
D <k, —T <k forall z€RY\ B(0). (5.12)
p p
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From (5.11) and (5.12) we have

1
u, — —A(u™) —uP

p
1 1 !
<ot | p T Lm0 (N g P
m—1mn m—1a m—1
1 77/ -1 m b2 —1 ptm—2
—(——— " ("————nky — CP(PF =T ;.
(o " — 07
(5.13)
Thanks to (5.6), (5.13) becomes
1 1
u, — —Au™) —uP < CFn-1 p(F), (5.14)

p
where, for each ¢ € (0,7),

Our goal is to find suitable C, a, (,n such that, for each ¢t € (0,T),
o(F) <0 forany F € (0,1).
To this aim, we impose that

sup @(F) = max ¢(F) = ¢(fp) <0,
Fe(0,1) Fe(0,1)

for some Fy € (0,1). We have

dp p+m—2 po1
d—F—O<:>g(t)— o () Fm=t =
m—1
— p—1
— F=F)= { m—1 Q(t)]
p+m—29(t)
Then
o(t) T
p(Fo) = K ————=—4(t),
()=

where the coefficient K depending on m and p has been defined in (5.6). By
hypoteses (5.7) and (5.8)), for each t € (0,7,

o(Fy) <0, Fy<1. (5.15)
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So far, we have proved that

u, — ﬁA(gm) —u’ <0 in Dy. (5.16)
Furthermore, since u™ € CY([RY \ B;(0)] x (0,T)), due to Lemma Bl (applied
with Q; = D1, Qy = RV \ [B1(0) U Dy],u1 = u,us = 0,u = u), it follows that u is
a subsolution to equation
b= AW~ =0 i [BY\B(0)] % (0.7).
in the sense of Definition

Let
Dy = {(z,t) € B1(0) x (0,T) : 0 < G(r,t) < 1}.

Using (2.1)), (5.5) yields, for all (z,t) € D,

1
vy — =A@™) — 0P
t A0

1 ! 2
<com{afor = v (v 22 oo ]

m—1 m—1a

1
¢ 7 m—1 m n -1 ptm—2
———— 40"k ———=— — CPT (PG }
( 2a
= CGT g6 = 8y(t) = ()G
(5.17)
Now, by the same arguments used to obtain (5.16]), in view of (5.9) and (5.I0) we
can infer that 1
v, — —Av™ <P for any (z,t) € D,. (5.18)
p
Moreover, since v™ € C'(B;(0) x (0,7)), in view of Lemma 3] (applied with
Q= Dy, Qs = B1(0) \ Do, u; = v,us = 0,u = v), we get that v is a subsolution to

equation

1
v, — —Av" =" in By(0) x (0,7, (5.19)
p

in the sense of Definition Now, observe that w € C(RY x [0,T)); indeed,

u=uv=C((t) [1—@]ml in 0B;(0) x (0,7).
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In conclusion, in view of (5.20) and Lemma B.] (applied with €, = B1(0),s =
RN\ B1(0),u; = v, us = u,u = w), we can infer that w is a subsolution to equation
(4.1)), in the sense of Definition 3.9l O

Remark 5.2. Let w := %_1 In Theorem|[2.4] the precise choice of the parameters
C>0,a>0,T>0 are as follows.

(a) Let p > m. We require that

1 b p—1
K{—1+bk2w m1< m1+N—2)}
mC;H me LA (5.21)
< b2k w L=
m—1 m—1 p—1
bm 1
1 + wmbks N—2+71 <(p+m-—-2)C" (5.22)
m_
1 2\
K[t srtae (2]
?mjl me me (5.23)
S 4]{?1(,(} m +p_m )
m—1 m—1 p—1
2
1+ kow <N+—1) <(p+m-—2)Cr 1, (5.24)
m_
(b) Let p <m. We require that
(m —p)(m —1)
5.25
©= b2(p — 1)mk; (5:25)
p+m—2
K{-L +why-mob (N — 24 o)1 er
aZmaX {mfl w 2 m—1 ( mfl)} ’
1 m 2 m=—p
Wt [wmklb - pTl]
2 (5.26)
K{Gs + 2wkt (N4 55)) 7
wiky [ ke - 2] |
p=L bm
(p+m—2)(aw)™T >max< 1+ wmbks 71+N—2 :
m_
(5.27)

2
1+wk2(N+7)}.
m—1
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(c) Let p=m. We require that w > 0,

K1 m_p (N 24 bm 2
a Z max{ {mfl +Wk2 b( + mfl)}

bzklw (m— 1) ’

K {1+ 2wk, (N+—)}2
Ak gy ’ (5.28)

1 bm
— |1 bky | ——+ N -2
2(m—1)w[ wm 2(m 1+ )]

s [k (V)

Lemma 5.1. All the conditions of Remark[5.2 can hold simultaneously.

Proof. (a) We take any w > 0, then we select C' > 0 big enough (therefore, a > 0
is also fixed, due to the definition of w) so that (5.21)-(5.24) hold.

(b) We can take w > 0 so that (5.25]) holds, then we take a > 0 sufficiently large
to guarantee (5.26) and (5.27) (therefore, C' > 0 is also fixed).

(¢) For any w > 0, we take a > 0 sufficiently large to guarantee (5.28) (thus, C' > 0
is also fixed). O

Proof of Theorem [2.4 We now prove Theorem 2.4 by means of Proposition [5.11
In view of Lemma [5.1] we can assume that all the conditions in Remark are
fulfilled. Set

C)y=(T—=t)"", nt)=(T-1)’

and

Then

o) = [<m—1><p—1>*cm_ m—1%a

A(t) == CP~H(T — )71 .

Let p > m. Conditions (5.21)) and (5.22) imply (5.7) and (5.8), whereas (5.23)
and (5.24) imply (5.9) and (5.10). Hence, by Propositions 6.1l and B.7 the thesis
follows in this case.

k‘l] (T —t)7T
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Let p < m. Conditions (5.26) and (5.27) imply (£.7) and (5.8), whereas condi-
tions (5.23) and (£.24]) imply (£.9) and (5.10). Hence, by Propositions 5.1 and B.7]

the thesis follows in this case, too.

Finally, let p = m. Condition (B.28)) implies (5.7), (5.8), (5.9) and (EI0).
Hence, by Propositions 5.1 and 3.7 the thesis follows in this case, too. The proof
is complete.

O

6 Blow-up for any nontrivial initial datum: proofs

Proof of Theorem[Z8. Since ug # 0 and ug € C(RY), there exist € > 0,79 > 0
and 2o € RY such that

up(z) >¢e, forall x € B, ().

Without loss of generality, we can assume that o = 0. Let w be the subsolution of
problem ([LT)) considered in Theorem 2.4 (with a > 0 and C' > 0 properly fixed).
We can find T > 0 sufficiently big in such a way that

CT 77 < e, aT »t < min{rf, r2}. (6.1)
From inequalities in ([6.I]), we can deduce that
w(z,0) <wug(z) for any z € R.

Hence, by Theorem 2.4l and the comparison principle, the thesis follows. O

Let us explain the strategy of the proof of Theorem 271 Let u be a solution
to problem (1) and let w be the subsolution to problem (IL]) given by Theorem
2.4l We look for a subsolution z to the equation

1
2= —A(z™) in RY x (0, 00), 6.2
such that
2(2,0) < ug(xz) for any z € RV, (6.3)
and
2(x,t)) > w(z,0) for any z € RY (6.4)

for t; > 0 and T" > 0 large enough. Let 7 > 0 be the maximal existence time of
u. If 7 < tq, then nothing has to be proved, and u(x,t) blows-up at a certain time
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S € (0,t1]. Suppose that 7 > ;. Since z is also a subsolution to problem (L),
due to (6.3) and the comparison principle,

2(x,t) <wu(x,t) for any (z,t) € RY x (0,7). (6.5)
From (6.4]) and (6.5),
u(z,t1) > 2(x,t) > w(zx,0) for any x € RY.
Thus u(x,t 4 t;) is a supersolution, whereas w(z,t) is a subsolution of problem
{ :% (u™) +w? in RY x (0,+00)
(5,2) = w(z,0) in BV x {0}
Hence by Theorem [24] u(x,t) blows-up in a finite time S € (t1,t; + 7).

In order to construct a suitable family of subsolutions of equation (6.2)), let us
consider two functions 7(t), ¢(t) € C*([0, +00); [0, +00)) and two constants Cy > 0,
a; > 0. Define

_ _ &) in [RY\ B(0)] x (0, +00)
z(x,t) = z(r(x),t) := { zt) in By(0) x (0, +00). (6.6)
where .
b T
£(0.1) = €(r(e). 0 = () |1 = Tt (67)
1 +
and 1
) = €0 (0),0) = Coc0) 1= T 20| (65)
1 +
Let us set
b 2 _
Flrt)=1-"n(t). Glrt):=1- b ;j Oo(®)
and define
Dy = {(z,t) € RV \ B1(0)] x (0,+00) |0 < F(r,t) <1},
Dy :={(z,t) € B1(0) x (0,+00)|0 < G(r,t) < 1}.
Furthermore, for ¢y > 0 small enough, let
ky
p L
Bo = e (6.9)

(m—1)(N —2)+bm’
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b k1
N—2+—(m-t

= 1
QT (m—1)(N—=2)+bm (6.10)
k
Qk—l — €p
Bo = 2 11
fo N(m—1)+2’ (6.11)
N(m—1)+2 ok
5 — —2— +e¢
o = L1 ky (6.12)
m—1 (m—1)[N(m—1)+2] ’
Observe that .
0 < By < 1, 0< By < 1. (6.13)
Note that, if ¢g > 0 is small enough, then
0 < 60 < Bo. (614)

Proposition 6.1. Let assumption (Hl) be satisfied. Assume that [2I3) holds, for
e > 0 small enough. Let

5€(0,60), (6.15)
__1-p
: . 1
Q= _—— (6.16)
Suppose that -
1<p<m—|—g (6.17)
Let Ty € (0,00), .
q¢ ) = (T1 +6)7% ) =(Ti+ )77
Then there exist wy := or
a subsolution of equatwn (IB]) and satisfies (0.3) and ([6.4).
Proof. We can argue as we have done to obtain (5.13]), in order to get
1
N
‘3 (")
1 b b
<CiFmT' 4 F { {c - c—i + OP Ik <N —2+ —m)}
1n —1la m—1
1 7 m b
—(——— - O (" ————1k for all (z,t) € D;.
C 17 C( ~1a 771} orall (z,t) € Dy
(6.18)
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We now define

1 ! b b
o(t) = +(——L 4 omiem 2, (N N
m—1n m—1a
1 7 m b
5(t) = ——L popten Tk,
®) <’m—177+ ros (m—1)2a771

Hence, (6.18]) becomes
1 1
&~ —A(E") < CLF»=17g(F) i Dy,
p

where

G(F) := o(t)F — §(1).

Observe that £ is a subsolution to equation
1 .
ft — ;A(ém) = O mn Dl s

whenever, for any ¢t > 0
P(F) <0,
that is
o(t)>0
i(t) >0 for any t >0
o(t)—0o(t) <0.
By using the very definition of ( and 7, we get

m—1

) | (6.19)

(6.20)

(6.21)

(6.22)

(6.23)

_ _ cm1 b L
o(t) = —a(T1+t)*a*1—i(T1+t)*a*1+ L p—"p (N — 2+ TTJ (Ty+)~m=5,

m—1 aq m—1
_ B —a—1 C{n_l m
i(t) = m—l(T1+t) + @ (m—1)

By (6.13), (6.15) and (G.16),

Due to (6.16), (6.23) becomes

( Cmfl
14+

ky b (N—2+bi1> >0,

m _
Cmfl
L kq mn b? > 0,
aq m—1

_ m—1 b b
o1+ 9 [kz(N—erll)—kl

\ a1

ky V(T +t)~om 7P,

(6.24)

(6.25)



which reduces to

m—1 1 - 1
G > max 2 ’ﬁé;n ’ ) , (6.26)
“ bmk2<N—2+i) i
m—1
m—1 1 -
¢ < b : (6.27)
aq bm b
bm ]{ZQ N —2 +— — ]{Zl
m—1 m—1

If (6.26) and ([6.27) are verified, then £ is a subsolution to equation ([6.22). We

now show that it is possible to find w; := C{::l such that (6.26) (6.27) hold. Such
wy can be selected, if

1 1-—
= < bfn 2 ,  (6.28)
m—1 m—1 m—1
and _ _
1 1—
5;;” k) < bfn — (6.29)
i bm{kQ(N—u—)—kl }
m—1 m—1

Conditions (6.28)) and (6.29) are satisfied, if

B <. (6.30)
Finally, condition (6.30]) is guaranteed by hypothesis (6.15). Moreover, by Lemma
[B.1] £ is a subsolution to equation
1
~pla)

in the sense of Definition 3.9 We can argue as we have done to obtain (5.17), in
order to get

& AE™ =0 in [RY\ By(0)] x (0,T). (6.31)

1
pe — —A(p™
: p( )
1 ! m—1 9
<o ooy ST g, Ay (N 2
m—1n7 m—1 a m—1
¢ crt om Tt om 2
———— —2kb " 2—0b)kyb mn
m—1n Y (m—l)ZC n+ ke a? (m—l)Qg g

for any (x,t) € Ds.
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We now define

1 cmt 2
o) =+ ¢—— Ty pp, L em <N+7) m

m—1n ay m—1 m—1
¢ crt om it om 2
t)=————+4+2kb "n — (2—=0)kyb "
é(]() m_1n+ 1 a (m_l)gc n ( ) 2 a[% (m_l)gc
Hence, (6.32)) becomes,
1

[y — ;A(um) <, G ¢(G) in D, (6.33)

where
P(G) = ao(1)G = 9(t) -
By arguing as above, we can infer that
1
e — ;A(um) <0 in Dy, (6.34)

provided that

Uo(t) >0

do(t) >0 for any ¢ € (0,77) (6.35)

By using the very definition of ¢ and 7, (6.35) becomes

m—1 2
—1+bk201 m<N+7)>O,
ai m—1
_ Cm—l m Cm—l m _
— 20k 4———— — (2=b)bky2—-—-(T1+ )"
B+ 2bk p— (2—10)bky 2 (L) >0,
_ cmt 2 ky crtoom >
— 14 bk L N 1—— 2D kob—t - (Ty+t)? <0
“ T okam a +m—1< k2>+< Ik a? m—1<1+) -
(6.36)
which reduces to
m—1 n _
Ci > max 1 ’ kﬁ(m 2) 7
m — 2 aq
(6.37)
cmt 1-0
L < P . (6.38)
a1

bmk2

— -
N+ 2 <1_@>+2 b(Ty +1)
m




If (6.37) and (6.38) are verified then p is a subsolution to equation

1
,ut—;A,um:O in Dy.

m—1
In order to find w; = L satisfying (6:37) and (638), we need

al

1 ) 1- 5
2 2 k 2—b (T, +1)°
bk <N + 7) bk, | N 1 !
m—1 M +m—1 ko + a; m—1
(6.39)
and
B 1) . 1=
ki 2-0 5 2 k 2—b(Ty+1)°
bmks [2— — (T + t)_ﬁ] bk, | N 1 1
ko ax i er—l ko + ay m—1
(6.40)
Now we choose in (213) € = €(ay,T1) > 0 so that
ST < e, (6.41)

ai

with €y used in (6.I1]) and ([6.12]) to be appropriately fixed. By 2.13]), ([2.14]) and
(6.410),

2-b 3 5
<T1 -+ t)_ﬁ < inﬁ S €0-
a1 a1
So, conditions ([6.39) and (6.40) are fulfilled, if
1 1-8
5 < 5 b ? - , (6.42)
bmky (N+——=)  bmhky [N+ ——(1-2) 4
m—1 m—1 ko m—1
and
B — 1 -
fim - ) . 5 b - —. (6.43)
oL _ N+—— [(1-2 0
bka[kQ e} bmkg{ —l—m_l( k2)+m—1]
Finally, conditions (6.42) and (6.43) are satisfied, if
B <P, (6.44)
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provided that ¢y > 0 is small enough. Observe that (6.44]) is guaranteed due to
hypothesis (6.14) and (6.15). Moreover, since u™ € C*(B;(0) x (0,T})), by Lemma
Bl 1 is a subsolution to

e — %A(Mm) —0 in Bi(0) x (0,T1), (6.45)

in the sense of Definition 3.9 Hence z is a subsolution of equation ([6.2]).
Since ug # 0 and ug € C(RY), there exist 79 > 0 and € > 0 such that
up(z) > ¢ in B, (0).

Hence, if
supp 2(-,0) C B,,(0), (6.46)

and
2(z,0) <e in B,,(0), (6.47)

then (6.3]) follows. Moreover, if
supp w(-,0) Csupp z(-, ), (6.48)

and
w(z,0) < z(z,t;) for all z € RY, (6.49)

then (6.4]) follows.

We first verify that z satisfies condition (6.46]) and (6.47). If we require that

2
a TP < 50 (6.50)

then

supp z(+,0) N B1(0) C B,,(0),
and
sSupp Z(', 0) N [RN \ Bl(o)] - BT‘O(O) )
therefore (6.46) holds. Moreover, if

(ayw)mT < T, (6.51)

then (6.47) holds. Obviously, for any 77 > 0 we can choose a; = a1(77) > 0 such
that (6.50) and (6.51)) are valid. On the other hand,

supp w(-,0) N By(0) C supp z(-,t1) N B1(0),
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and if

3

p—

ar (Ty +11)% > aT 1 (6.52)

then,
supp w(-,0) N [RY\ B1(0)] C supp 2(-, t1) N [RY \ Bi(0)].

Hence, (6.48)) holds. If ) 1
Ci(Th+t)*>CT »1, (6.53)

then (6.49) holds. If we choose the equality in (6.53)),

C\ & 1
T+t = (5) T(Pfl)a,

1

Q=

then (6.52)) becomes
B
c\ = B_1_ p=m
— Tawe-1 > qT 1 .
(Cl) aq = Qa
The latter holds, if )
B

vmd OV Ea
T 71 < | — —. 54
< (C) (6.54)

a

Condition (6.54) is satisfied thanks to (6.I7), for 7" > 0 sufficiently large. This
completes the proof. O

Proof of Theorem[2.7] Let 7 > 0 be the maximal existence time of u. If 7 < ¢y,
then nothing has to be showed, and u blows-up at a certain time S € (0,].
Suppose 7 > t;. Let us consider the subsolution z of equation (6.2]) as defined in

([G6). Since p < p, we can find 3 (and so @) such that ([G.15), (GI6) and (G.17)
hold. By Proposition [6.1] z satisfies (6.3)) and (6.4]). Thanks to condition (6.3))

and the comparison principle, we have (6.5]). From (6.4]) and (6.5),
u(z,t) > 2(x,t) > w(zr,0) for any x € RY.

Thus u(z,t 4 t1) is a supersolution, whereas w(x,t) is a subsolution of problem

o

u, = LAW™) +wP in RN x (0, +00)
u=w in RY x {0}.

Hence by Theorem [2Z4] u(z,t) blows-up in a finite time S € (¢1,¢; + 7). This
completes the proof. O
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