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Preface

The development of large-scale data analysis and statistical learning methods for
data science is gaining more and more interest, not only among statisticians, but also
among computer scientists, mathematicians, computational physicists, economists,
and, in general, all experts in different fields of knowledge who are interested in
extracting insight from data.
Cross-fertilization between the different scientific communities is becoming crucial
for progressing and developing new methods and tools in data science.
In this respect, the Statistics & Data Science group of the Italian Statistical Society
has organized an international conference held in Pavia on the 27 and 28 of April
2023, attended by over 70 researchers from different scientific fields.
A collection of the presented papers is available in the present Proceedings showing
a huge variety of approaches, methods, and data-driven problems, always tackled
according to a rigorous and robust scientific paradigm.

The Statistics & Data Science group
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Critical Visual Explanations. On the Use of
Example-Based Strategies for Explaining
Artificial Intelligence to Laypersons.
Spiegazioni visive critiche. Uso di strategie basate su
esempi per spiegare l’intelligenza artificiale ai non addetti
ai lavori.

Beatrice Gobbo

Long Abstract. Explainable Artificial Intelligence (XAI) has started to develop both
as a field and as a collection of techniques for enabling humans to understand and
interpret Artificial Intelligence (AI) mechanisms and decisions that permeate the
lives of many human beings today. [16] While much effort was initially put into
making AI systems and algorithms intelligible to their developers and creators, over
time, interest expanded towards newcomers, domain experts and laypersons [18, 4],
opening new challenges and research opportunities. For instance, promoting algo-
rithmic fairness, accountability, trust, ethics, and awareness at all levels has become
a significant challenge in terms of governance. [1] As a consequence, expanding
audiences and scopes have made room for other disciplines. Indeed, surveys and
State-of-the-Art Reports (STARs) on AI Explainability witness the proliferation of
scientific contributions increasingly leaning towards multidisciplinary cooperation
where efforts in organising and classifying AI explanations have been made con-
sidering a large variety of parameters including, for instance, strategies, media and
audience [8, 11]. Specifically, strategies define how the line of explanation reasoning
goes. Media and audiences define the visual, audio or text apparatus staged for sup-
porting the explanation and its target public. [8] Among the numerous combination
that could be found in the literature [11], this paper will discuss and critique from
an information design perspective the use of example-based [16] visual explanations
[19] for AI addressed to laypersons. While some oversimplification and misunder-
standing risks have emerged when addressing with expert users [14], example-based
explanations supported by visual means are considered efficient when targeted to
laypersons [13, 7, 10, 15].

A study carried on by Cai and colleagues in 2019 aimed at evaluating the effec-
tiveness of comparative and normative visual explanations for a sketch recognition
system on a sample of laypersons [2] demonstrates that normative explanations are
more effective than comparative explanations. In other words, it demonstrates that

Beatrice Gobbo
CIM — Centre for Interdisciplinary Methodologies, Warwick University, e-mail: beatrice.
gobbo@warwick.ac.uk
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the sample of lay users involved in the study, when trying to understand the reason
why a sketch recognition system did not recognise their drawings (see the screenshot
depicting two examples of Visual Explanation provided by the system in Figure 1),
prefer to establish a norm for what drawings look like in the target class (1 , left)
instead of understanding the system relying on the comparison between the user’s
drawing and similar drawings from alternative classes (1 , right).

Fig. 1 The image juxtaposes normative (left) and comparative (right) example-based visual expla-
nations. Source: [2] using QuickDraw

Hence, although example-based visual explanations are effective when dealing
with laypersons, possible limitations emerging from this case study concern the risk
of relying on widespread sample datasets [3] and providing biased explanations of
complex, unstable and situated systems such as Artificial Intelligence machines. In
this regard, it is worth mentioning that Artificial Intelligence algorithms have been
defined as socio-technical assemblages [9], and megamachines [5] since they are so-
cially, historically and materially entangled with data. Thus, the contribution revolves
around the discussion on how to engage laypersons in understanding such complex
machines using example-based visual explanations and how the concept of critical
information visualisation [6] could support their design process. The principles of
critical information visualisation are meant to help designers and researchers to for-
mulate questions during the design, use, and study of information visualisations.
Similarly, this paper aims to provide researchers with — preliminary — conceptual
tools to critically design and stage example-based visual explanations for laypersons.
1.

• Enrich to counteract the norm — In line with the idea of plurality proposed
by Dörk et al. [6], exposing multiple perspectives could enhance the audience’s

1 Note that we do not criticise the explanation of the system per sé — if the system is explainable
— but the way the examples are displayed while explaining it.
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ability to identify with the complex system. For instance, the ’Anatomy of an AI
System’ [17] provides a ramified visual explanation involving different actors,
materials and technologies.

Fig. 2 The Anatomy of an AI System is a project by Share Lab, which explain how Amazon Echo
by Alexa works using a multi-perspective range of examples. Source: [17]

• Dissect to disclose the process — Drawing on the disclosure principle proposed by
Dörk et al., being critical in presenting example-based visual explanations implies
being able to inform the audience about design decisions, such as the reason why
particular examples have been presented instead of others. For instance, Mauri
and colleagues present a collection of visual posters explaining a collection of
statistical models (including some AI algorithms) to laypersons using examples.
There, visual explanation fragments are usually accompanied by texts specifying
the reason behind the choice of each example.

• Simulate to empower the audience — Simulation is a well-known procedure in
computing and statistics. Indeed, many examples of visual explanations simulate
the functioning of Artificial Intelligence systems enabling the users to interact with
them. Moreover, the simulation of examples was revealed to be convincing when
dealing with experts and newcomers [12]. Here, we are promoting simulation to
support example-based strategies to empower the audience. Indeed, users could
have the opportunity to play with their data or produce data with the algorithm
in a real-time scenario (i.e., the ”Simplicial Depth Measure” and ”Page Rank”
examples proposed by Mauri et al. [15]).

In the first part, the author presented example-based visual explanations as effec-
tive tools for explaining AI to laypersons. In the second part, the use of examples
has been challenged. Finally, by drawing on the principle of plurality, contingency,
disclosure, and empowerment proposed by Dörk et al., the paper outlined the need to
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promote a critical approach to the design of example-based visual explanation and
denoted an increasing need for collaboration, where computer scientists, statisticians,
social scientists and information designers cooperate in co-design settings.
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