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Abstract

Compressible two-phase flows of carbon dioxide in supercritical thermodynamic conditions are encoun-

tered in many applications, e.g. ejectors for refrigeration and compressors for power production and carbon

capture and sequestration to name a few. Alongside the phase change, transonic/supersonic flow regimes and

real-gas effects also add additional complexities in the simulations of such flows. In this work, we investigate

cavitating and condensing flows of carbon dioxide via numerical simulations based on the two-fluid concept,

applying both a mixture model and a barotropic model. In the mixture model, the phase change is modelled

with an extra transport equation for the mass of the dispersed phase and a source term introduced via a

penalty formulation. The barotropic model reproduces the pressure-density relation of the mixture along the

upstream isentrope. Both the models assume thermodynamic and mechanical equilibrium between phases

and exclude meta-stability effects. All results are compared against experimental data taken from literature

and the main numerical issues of the models are discussed in detail. The agreement between the simulations

and the experiments is remarkable qualitatively and quantitatively, resulting in the range 2-4% for pres-

sure and below 1% for temperature in terms of weighted mean absolute percentage error for supercritical

expansions, even though suggesting a further margin of improvement in the physical modeling , especially

for subcritical expansions. Finally, we show that the barotropic model yields comparable predictions of the

expansion processes at a lower computational cost and with an improved solver robustness.
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1. Introduction

Carbon dioxide (CO2) is not only a greenhouse gas. Thanks to its low toxicity and its thermal stability

for wide ranges of pressure and temperature, CO2 (also known as R744 in the refrigeration field) is also

attracting scientific research efforts and R&D investments to enable its usage as working fluid for energy

systems and process engineering. Several alternative and novel energy technologies are presently based on5

the application of CO2, e.g. refrigeration systems [1, 2] and closed power cycles [3, 4, 5, 6] to name a few.

These technologies share a specific technical issue: in at least one component of the system, CO2 evolves in

thermodynamic states close to the critical point. An example is represented by the main compressor of closed

power cycles operating with CO2 in supercritical conditions, whose typical thermodynamic transformations

are reported in the left frame of Figure 1 for the regenerative layout. The key idea behind the success of10

this novel power cycle is to compress CO2 near the thermodynamic critical point, where the fluid possesses

liquid-like properties. In doing so, the compression work is considerably reduced, thus increasing the useful

work retrieved from the power cycle. This idea has, however, important technical implications on the

device selected to compress the fluid. Due to the high fluid density, the specific speed of these machines

is typically low, but not so low to justify the use of volumetric compressors [7], so turbocompressors are15

typically considered in supercritical CO2 power systems. As well known, within the turbocompressor the flow

undergoes severe accelerations that generate sudden local expansions, and the local thermodynamic state

may fall below the saturation curve. If such condition persists for a sufficient amount of time, then the fluid

can ultimately change phase, then setting the ground for two-phase flow operation within the compressor, as

sketched in the right frame of Figure 1. Analogous flow features can also occur in other flow devices, which20

include (not exclusively) supersonic ejectors for refrigeration and valves. Interestingly, research activities in

this field may also improve the economic feasibility of carbon capture and sequestration (CCS) technologies,

e.g. by reducing the power consumption required by compressors or by increasing compressor operability

[8].

Depending on the entropy level of the intake supercritical condition, the phase transition might lead to25

the formation of either vapour (when s < sc) or liquid (when s > sc); in other words, expanding from a

general supercritical state either cavitation (liquid 7→ vapour) or condensation (vapour 7→ liquid) can take

place in supercritical carbon dioxide (sCO2) flow components. With reference to the flow devices listed

above, ejectors for refrigeration typically operate for s < sc, while compressors for CCS operate for s > sc;
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Figure 1: Representative closed power cycle based on supercritical carbon dioxide as working fluid. The compression process

takes place in the neighbourhood of the critical point, hence local flow accelerations within the impeller blade channel can

promote excursions below the saturation curve.

conversely, compressors for closed power cycles can be run in both the conditions, depending on the cycle30

configuration, the thermodynamic optimization, and the full-/part-load strategy of the plant. In all these

flow devices the phase transition occurs within streams of high-speed fluid; the available experiments (see,

for example, the visualization published in [9]) indicate that in such flow configurations the new phase

(composed by either droplets or bubbles) appears dispersed into the main one, without evident interfaces

between the phases. The onset of a dispersed phase is typically associated to a sudden drop of the speed35

of sound, which is comparably lower than that of the fluid in either of the saturated conditions. As a

result, the onset of two-phase flows is associated to a sudden increase of the Mach number of the stream,

promoting the establishment of supersonic flows, shock waves, and choking with respect to single-phase flows

of the same fluid [10]. In this context, a proper computational modeling of cavitation and condensation

phenomena in sCO2 compressible flows, and their subsequent implications on the flow morphology and on40

the thermodynamics of the process, is crucial for the design of sCO2 devices and, ultimately, for the technical

feasibility and market penetration of the entire sCO2 energy technology.

Two-phase flows were object of theoretical, computational and experimental studies in the last decades;

historically, the vast majority of these studies was focused on water for cavitation in pumps [11] and valves

[12, 13], on cryogenic fluids for rocket turbopumps [14, 15] and on steam for condensation in turbines45

[16, 17, 18]. The outcome of these studies is best summarized, to the authors’ knowledge, in the excellent

book of Brennen [19], which provides a rigorous and comprehensive presentation of two-phase flows, with

emphasis on both the physical and modeling perspectives. With reference to Brennen’s classification, the

so-called two-fluid model appears to be the most computational-effective formulation to model the dispersed

phase transitions of interest in this work. In the two-fluid model, the dispersed phase is considered mixed50
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from an Eulerian perspective with the main phase in a unique continuous fluid, whose mean properties are

defined on the basis of proper volume or mass averages of the corresponding single-phase properties. Even

within this modeling framework, several alternative sub-models were proposed in the scientific literature to

treat the generation of the dispersed phase and the interaction between the phases.

The typical short time-scale of the process might allow the supercritical fluid to expand below the satu-55

ration limit without incurring in a phase change, reaching the so-called meta-stable state. Meta-stable states

might exist within limited thermodynamic regions, comprised between the saturation curve (representative

of the phase transition under thermodynamic equilibrium) and the spinodal curve (limit of the meta-stable

equilibrium). Experiments for wet steam [20] and, recently, for sCO2 [9] indicate that in high-speed flows

the transition occurs delayed with respect to the saturation line, thus proving the existence of meta-stable60

states, though in limited regions of the flow. When the two phases are established, velocity and temper-

ature differences might arise between the phases, promoting mechanical and/or thermal non-equilibrium.

De Lorenzo et al. [21] reviewed the most relevant two-fluid models, classified them with respect to the

character of non-equilibrium phenomena to be represented in the solution, and proposed a class of novel

one-dimensional analytic solutions of two-phase flows in nozzles.65

Such rich scientific background allows us to provide a classification of the most relevant models available

for the prediction of cavitating/condensing high-speed flows, which could also be applied in presence of sCO2

flows:

• the homogeneous equilibrium model (HEM), which excludes meta-stable states and assumes mechanical

and thermal equilibrium between the phases;70

• the non-homogeneous equilibrium model (NEM), which excludes meta-stable states and assumes ther-

mal equilibrium between the phases, but allows for the existence of a relative velocity between the two

phases;

• the homogeneous frozen model (HFM), which excludes meta-stable states and assumes mechanical

equilibrium, but neglects the heat exchange between the phases;75

• the delayed equilibrium model (DEM), which allows for the existence of meta-stable states (by consider-

ing a third phase, besides the saturated liquid and vapour, composed by the supersatured supercritical

fluid), and only considers mechanical equilibrium between the phases.

Brennen [19] and De Lorenzo el al. [21] successfully applied these models in simple geometric configura-

tions like ducts and nozzles, where quasi-one-dimensional analytical solutions provide a technically relevant80

representation of the flow. However, to pursue the thermofluid-dynamic design of the technical devices of

interest for sCO2 technology, the aforementioned models have to be reformulated in order to be implemented
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in a multi-dimensional computational fluid-dynamic (CFD) framework. Examples of two-phase models im-

plemented in the frame of CFD tools are reported in [22] and [23], mainly focusing on water cavitation.

With respect to such studies, the supercritical condition of CO2 complicates the thermodynamic modeling85

of the single phases, besides the inherent complication associated to the phase change. Recently, examples of

CFD simulations of two-phase flows of sCO2 were proposed [24, 25, 26, 27], and compared with experiments

performed on either cavitating or condensing flows of sCO2 in converging-diverging nozzles. However, in

none of the aforementioned publications the proposed CFD model is compared to both classes of phase

transition.90

Since sCO2 compressors for closed power cycles can operate with both lower and higher entropy than

the critical one, the computational model have to be assessed for both cavitating and condensing flows.

Moreover, numerical models tailored for turbomachinery design have to be robust and computationally

efficient for being used in routine design and optimization tasks. To this end, we propose two alternative

CFD formulations for simulating two-phase non-ideal compressible flows of sCO2, comparing in detail their95

physical assumptions and numerical aspects. To cope with the large departure from the ideal-gas model,

state-of-the-art thermodynamic properties are incorporated into the CFD solver via look-up-table (LUT)

interpolations to speed up the calculations. LUT approaches represent the standard for simulating non-ideal

flows in turbomachinery components, as widely documented in literature, see, e.g., [28, 29, 30]. Therefore,

we herein focus on the multi-phase modeling; accordingly, the computational methodologies are tested100

on simplified converging-diverging ducts, which can effectively mimic the flow accelerations that may occur

within compressor blade channels. Both cavitating and condensing flows are simulated and compared against

experimental results of Nakagawa et al. [31] and of Lettieri et al. [9], respectively.

This paper is structured as follows. At first the computational models are outlined, then the two test-

cases are presented. The results of the application of the flow models to, first, cavitating flows and, then,105

condensing flows are discussed, highlighting modeling issues and computational accuracies. Finally, a critical

discussion on the calculation of the speed of sound in presence of cavitating and condensing flows is proposed.

2. Computational framework

In this section, we outline the two computational formulations that will be used throughout this work,

highlighting the main modeling assumptions. Both of them stems from the two-fluid concept, but they110

differ in terms of the thermodynamic treatment and, ultimately, in the way in which the dispersed phase is

generated and evolves within the main one. Both the flow models are implemented in the Ansys-FluentR©

framework making use of ad-hoc user-defined functions (UDFs).

The first model, named mixture model hereinafter, considers the mixture as a whole instead of being

composed by two distinct phases. Such flow modeling allows for a drastic simplification in the mathematical115
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description of the two-phase flow: the classical set of Reynolds-Average Navier-Stokes equations is recovered

and formulated in terms of mixture density and mixture centre-of-mass velocity, eventually complemented

with constitutive equations to model the relative motion between phases. Analogously, the energy equation

is expressed in terms of the mixture enthalpy.

Defining the volumetric fraction of the main or principal phase as αp and that of the dispersed phase as120

αd, the mixture density ρm, molecular viscosity µm and thermal conductivity κm result from the volume-

weighted average as follows:

ρm = αpρp + αdρd (1)

µm = αpµp + αdµd (2)

κm = αpκp + αdκd (3)

It is recalled that αp = 1 − αd for single-component two-phase flow. Any specific thermodynamic

quantity of the mixture ψm (such as enthalpy, entropy, internal energy, etc...) is instead evaluated using

mass-averages, by resorting to the mass fractions of the phases. The mass fractions of the primary and125

dispersed phases, defined as wp and wd respectively, are evaluated as:

wp =
ρp
ρm

αp (4)

wd =
ρd
ρm

αd (5)

From mass conservation, the two mass fractions sum to unity, i.e. wp + wd = 1. They are used to

determine the general specific mixture quantity ψm as follows:

ψm = wpψp + wdψd (6)

An additional transport equation for the mass of the dispersed phase describes the generation and the

evolution of the dispersed phase. The resulting set of governing equations can effectively track the evolution130

of averaged properties without resorting to sub-models that account for inner interactions between phases,

whose modeling would require a deep knowledge of the interfacial properties [32].

The second model, named barotropic model hereinafter, is still based on the two-fluid flow representation

and strictly assumes that (i) the phases are in thermal and mechanical equilibrium, and (ii) any thermody-

namic/transport property of the mixture Ψ only depends on the pressure, e.g. Ψ = Ψ(P ). In general, the135

generic mixture property for a single-component fluid should depend on two independent thermodynamic

quantities, for example Ψ = Ψ(P, s). The barotropic assumption hence implies to neglect the any contribu-

tion besides the one of pressure on the quantity of interest; this means, in practice, to neglect the volumetric
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thermal expansion of the fluid. However, thanks to the barotropic assumption the equations of motion are

decoupled from the energy equation, which does not need to be explicitly resolved. Such model, though140

highly simplified, is deemed to be particularly relevant for turbocompressor application, since heat transfer

is usually negligible in such components and the computational efficiency is crucial for their aerodynamic

design and optimization.

2.1. Mixture model

The set of steady-state governing equations for the mixture model reads:

∇ · (ρmvm) = 0

∇ · (ρmvm ⊗ vm) = ∇ · (T + Tturb)−∇Pm

∇ · (ρmhtmvm) = −∇ · (q + qturb) +∇ · [vm(T + Tturb)]

∇ · (αdρdvm) = G (7)

where no slip velocity is considered between phases, i.e. v = vm = vp = vd, and equal pressure and145

temperature is assumed between the phases, i.e. P = Pm = Pp = Pd and T = Tm = Tp = Td, thus

imposing thermal and mechanical equilibrium. The shear-stress relationship for an isotropic Newtonian

fluid is supplied T = µm(∇ ⊗ vm + (∇ ⊗ vm)T ), where the contribution given by the volume viscosity

coefficient is neglected in the mixture model implementation by Ansys-FluentR©. The influence of this

latter contribution on compressible CO2 flows in thermodynamic conditions of interest for this work was150

analysed by Fang [33], who concludes that the volume viscosity has only negligible effects on the main

flow distributions. The Fourier’s law q = −κm∇Tm is used for the heat conduction. The gross effects of

turbulence, expressed by the Reynolds stresses Tturb and the turbulent heat transfer qturb, are introduced by

means of the well-known two-equation k−ω SST model [34]. Alternatively, the turbulence effects can also be

included via the one-equation Spalart-Allmaras model [35], which was proven to yield accurate predictions155

of the main near-wall distributions in presence of severe thermo-physical property variations [36], such as the

ones across the pseudo-critical line. Expansions passing through the pseudo-critical line are not considered

in this work, hence the standard k − ω SST model is employed hereinafter for the turbulence modeling. It

follows that a system consisting in seven partial differential equations has to be solved for a two-dimensional

problem.160

The last equation of system (7) is the specific feature of the proposed mixture model and its formulation is

crucial to obtain smooth numerical convergence and accurate results. The role of this equation is actually to

produce a certain amount of mass-flow rate of the dispersed phase (left-hand side of the equation) when the

local thermodynamic state resulting from the numerical calculation reaches the condition of phase transition

by activating a mass-transfer source term G (right-hand side of the equation). Several formulations were165

proposed for this source term (see, for example, Dang el al., [23], Giacomelli el al., [25], Boyds el al., [27]),
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typically referring to the Hertz-Knudsen physical model [37]. In the present work, we propose a formulation

similar to the one used in Hosangadi el al. [26] but with a different concept and implementation. We define

G as:

G = sgn(s0 − sc)K [P − Psat(T )] , (8)

which is valid for both P > Psat(T ), which implies condensing flows, and for P < Psat(T ), which reproduces170

cavitating flows. Otherwise, G = 0 because there is no phase change.

In our model, P −Psat(T ) is the driving force of the phase change: when the local pressure exceeds (goes

below) the saturation pressure at the local temperature, condensation (cavitation) locally occurs generating

an increase in the mass of the dispersed phase. In this sense, such source term effectively mimics the

Hertz-Knudsen model; however, the Hertz-Knudsen model was conceived to represent processes occurring175

at the microscale, which are not solved in the continuum macroscopic framework of the CFD. Hence, we just

retain the general intuition to construct the mathematical model: from the mathematical perspective, this

formulation is actually a penalty term introduced in the equation to numerically impose the satisfaction of

a constraint, i.e. the onset of transition when P = Psat(T ). As a matter of fact, under the assumption of a

stable thermodynamic equilibrium, the last equation of the mixture model would be redundant if the CFD180

code uses either two specific or one specific and one intensive thermodynamic variables as primitive variables.

Nonetheless, when using two intensive thermodynamic quantities, such as pressure and temperature as in

the present work, there is the need to impose a constraint on those two variables to guide the solution

towards thermodynamic equilibrium, i.e. P = Psat(T ) Therefore, the numerical difference P −Psat(T ) can

be interpreted as a violation of the stable thermodynamic equilibrium and it becomes an artificial effect of185

the penalty formulation. To control P −Psat(T ), and thus recovering an accurate numerical approximation

of the two-phase solutions, i.e. P ≈ Psat(T ), the formulation of G features the penalty coefficient K [s m−2],

which is dimensional and represents the weight of the penalty: the higher the K, the lower P − Psat(T ). In

the result section, we will show the influence of this parameter on the accuracy of the solutions. From the

analytical perspective, the optimal choice of the penalty coefficient would be K 7→ ∞ to have infinitesimal190

constraint violations. However, in the numerical context such a choice would cause convergence issues,

because even a negligible violation of the constraint would dramatically affect the numerical value of the

source term G. Hence, the correct choice of K has to ensure a smooth convergence process alongside a

negligible violation of the constraint, in the limit of the approximation of the numerical solution. It is only

anticipated that K = O(102 ÷ 103) s m−2 is sufficient to impose that, in the two-phase region of the flow,195

the solution links the pressure field with the temperature field such that the actual P approximates Psat(T )

with a small numerical error (< 0.5%).

It is also worth mentioning that the present interpretation is fundamentally different from that of Dang
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et al. [23], in which the pressure difference is assigned a priori, Hosangadi et al. [26], in which the equi-

librium condition P = Psat(T ) is not recovered in the solution, and Bodys et al. [27], in which a reference200

saturation pressure is defined and the source term monotonically increases along the expansion accordingly.

In the present set-up, the source term is not representative of any physical considerations regarding ther-

mal, mechanical or thermodynamic equilibrium, but only represents a mathematical expedient to enforce

equilibrium conditions when using two intensive variables as primitive variables in the CFD solver.

As a final note on the source term formulation, in this work the phase transition was set at the saturation,205

hence it was assumed that the fluid undergoes an instantaneous phase change. Under these circumstances,

the mixture model (with negligible violation of the constraint) corresponds to a HEM formulated in a CFD

framework, making use of pressure and temperature as primitive variables. However, depending on local

thermodynamic conditions, a finite time is required to complete the phase-change process, exhibiting meta-

stable states in the meantime. If a reliable expression of the Wilson line is available for the process of210

interest, the Wilson line might be specified to set the limit at which stable thermodynamic equilibrium is

recovered, while separately modeling the meta-stable fluid, e.g. in a DEM fashion.

2.1.1. Thermodynamic modeling

A further issue of the mixture model, particularly relevant to sCO2 application, is the thermodynamic

modeling of the supercritical fluid in the single-phase region and of the individual phases in the two-phase215

region. Due to the near-critical conditions, a generalized thermodynamic description is required. In the

present formulation, any generic property Ψ of the single-phase primary phase (when either P > Pc, T > Tc

or P > Psat(T ) if the primary phase is liquid or P < Psat(T ) if the primary phase is vapour) is expressed

as a function of pressure and temperature, i.e. Ψp = Ψp(P, T ). A LUT approach was implemented in

Ansys-FluentR© and supplied via a user-defined real-gas model (UDRGM). Following this approach, discrete220

values of each thermodynamic property are stored in a tabular form assuming uniform steps in pressure and

temperature, as sketched in Figure 2(a). An uniform step allows for a faster search of the stored values at

a generic location. As a drawback, the memory requirements is generally higher, because the inability to

have localized refinements close to the critical point asks for larger tables, as the uniform step is dictated

by the region in which the gradients in thermodynamic properties are higher. However, we rather preferred225

to reduce the cost of the single CFD iteration over a reduced memory requirement. The value of Ψp at a

generic pair (P, T) is then computed with a bilinear interpolation between the four closest thermodynamic

nodes. Although meta-stable states are not simulated in the present work, the thermodynamic tables are

built by extrapolating the single phase properties until the corresponding spinodal limit to increase the

margin from the discontinuous liquid-vapour change in thermodynamic properties, as exemplary reported in230

Figure 2(b) for the density. Such expedient allows keeping the bilinear interpolation even in close proximity

of the saturation curve, where one or more of the closest nodes may fall behind the saturation line but still

9
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Figure 2: Schematic representation of the LUT approach implemented within the mixture model for the thermodynamic

modeling of the primary phase. For illustrative purposes, the primary phase is considered as a liquid and the phase transi-

tion is cavitation (liquid-to-vapour), but the opposite scenario (vapour as primary phase and condensation as phase-change

phenomenon) follows the same conceptual steps. The LUT for the secondary phase only involves the linear interpolation.

within the meta-stable region. If an interpolating point falls behind the spinodal line (as it happens in the

close proximity of the critical point, where the meta-stable region is narrowed), its value is set equal to the

saturation one. A schematic representation of the bilinear interpolation is reported in Figure 2(c).235

When the primary phase is in equilibrium with the dispersed phase (when P < Psat(T ) if the primary

phase is liquid or P > Psat(T ) if the primary phase is vapour), Ψp is only function of the saturation pressure

at the local temperature, i.e. Ψp = Ψp(Psat(T )). The local properties are thus computed with a linear

interpolation as in Figure 2(d) between the two closest saturation nodes (orange dots in Figure 2(a)), which

are determined by sampling the saturation line at the subcritical temperature locations. In practice, an240

if-statement discriminates between the two interpolation schemes in the developed UDRGM.
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On the other hand, the dispersed phase can only exist in equilibrium with the primary one, hence

the thermodynamic properties are always expressed as a function of the saturation pressure only, i.e.

Ψd = Ψd(Psat(T )). Therefore, the thermodynamic properties of the dispersed fluid are implemented with

a standard UDF, which contains only the linear interpolation scheme discussed for the primary phase and245

reported in Figure 2(c). It is worth mentioning that the dispersed-phase properties are functions of only one

independent variable (temperature), which unequivocally determines the local saturation pressure on which

the interpolation is performed.

For both phases, the thermodynamic tables are generated by making use of RefpropR©, which implements

a multi-parameter equation of state expressed in terms of the Helmholtz fundamental relation [38] for CO2.250

Transport properties µ, κ are computed in analogy with the thermodynamic properties, employing the

relationships made available by RefpropR© in the construction of the tables. Overall, full P–T tables are

generated for the primary phase, while saturation tables are generated for both phases. The resulting

mixture properties follow the averaging procedures described in §2.

The accuracy of the LUT interpolation is verified by considering a quasi-one-dimensional isentropic255

flow with constant total enthalpy ht = h(P t = 91 bar, T t = 310.45 K). The selected upstream total state

is the closest to the critical point among all two-phase flows that will be investigated in this work, thus

representing the most challenging case for the LUT testing. The associated entropy level is s/sc = 0.95,

hence the primary phase is liquid while the dispersed phase is vapour. The sampled thermodynamic region

is [230 K, 320 K] × [10 bar, 100 bar] and three different grid refinements are considered, namely 601 × 601,260

1201 × 1201 and 2401 × 2401. LUT predictions are compared against RefpropR© estimates in Figure 3 for

density, enthalpy and molecular viscosity. For all grid refinements, the largest discrepancy is found for the

primary phase in the proximity of the phase-change onset. The coarsest table returns an absolute error of

1.3%, which decreases to 0.2% for the most refined table. Within the two-phase region, where the properties

are only functions of the saturation pressure, the maximum error is about 0.1% regardless of the LUT265

refinement. Therefore, thermodynamic tables 2401× 2401 are selected for the following analyses.

2.2. Barotropic model

The set of steady-state governing equations for the barotropic model reads:

∇ · (ρv) = 0

∇ · (ρv ⊗ v) = ∇ · (T + Tturb)−∇P (9)

The two-equation k − ω SST model [34] completes the system of governing equations by taking into

account turbulence effects.

The barotropic set of equations are simply the single-phase Reynold-Averaged Navier-Stokes equations,270

in which the fluid behaves like the mixture when the thermodynamic state falls below the saturation curve.
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Figure 3: Errors of different LUT discretizations against RefpropR© predictions in density, enthalpy and molecular viscosity

estimates for an isentropic cavitating flows at constant total enthalpy ht = h(P t = 91 bar, T t = 310.45 K) (labelled as case A

later in the manuscript). The coloured bands show the maximum error found in the thermodynamic description of the primary

phase for the given LUT discretization.

Compared to the mixture model, the barotropic formulation inherently excludes any mechanical or thermal

disequilibrium between phases, and hence it strictly belongs to the HEM class. Furthermore, the barotropic

assumption implies that the thermo-physical properties of the fluid, which should depend on two thermody-

namic quantities, are only dependent on pressure, thus neglecting any thermal effect: the fluid is therefore275

considered compressible but not thermally expandable, i.e. (∂ρ/∂P )T 6= 0 and (∂ρ/∂T )P = 0 respectively.

Such assumption simplifies the resulting flow representation with respect to the classical HEM (whose most

general formulation is reported, for example, in [24]), but it provides crucial advantages from the compu-

tational perspective. The barotropic model decouples mechanical from thermal effects, removing the need

of solving the energy equation to characterize the thermo-physical fluid properties. As a consequence, the280

mathematical problem is reduced to the resolution of five partial differential equations (for 2D systems),

two less than the mixture model. Moreover, the solver becomes inherently more robust than mixture model

when dealing with supercritical fluids, because it does not handle the sharp gradients of cP which arise

close to the critical point (wherein cP is singular). In a hierarchy of CFD models, the barotropic model is

therefore the most robust and computationally efficient numerical formulation which can be conceived for285

tackling the numerical simulation of multi-dimensional two-phase flows of sCO2.

The physical accuracy of the model strongly relies on the definition of the barotropic relationships for
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the three thermo-physical properties of interest for the solution, i.e. the density, the molecular viscosity and

the speed of sound c:

ρ = ρ(P )

µ = µ(P )

c = c(P ) (10)

Since these properties physically depend also on entropy, a choice on the entropy generation across the290

process has to be made to obtain the three relationships (10). An obvious possibility, considered in the

simulations reported in this work, is to keep the entropy level constant at the upstream value s = s0. This

choice physically means that the thermal effects prompted by the entropy generation on the aforementioned

properties are ignored. It is worth stressing that the choice of building barotropic relationships based

on the upstream entropy does not mean to assume isentropic flows: the mechanical dissipation is indeed295

introduced via viscous and turbulent effects in the momentum equation; the model simply ignores the

correction to the thermo-physical properties due to this dissipation, which would cause an increase of entropy.

However, if a preliminary estimate on the entropy generation across the process is available, as often occurs

for turbocompressor simulations (via the estimated aerodynamic efficiency, for example), the barotropic

relations (10) could be in principle constructed considering the estimated entropy rise, thus refining the300

thermodynamic accuracy of the solution. In the results section we will discuss the contribution given by the

entropy generation, by comparing the results of the mixture model with that of the barotropic models.

As barotropic relationships only depend on a single independent variable, a LUT approach based on the

linear interpolation scheme described in §2.1.1 is encoded in a dedicated UDF. Tabular values for ρ, µ and

single-phase c are computed via RefpropR©, while different formulations for c in the two-phase region are305

tested and discussed in the last section of the manuscript. However, the choice of the two-phase speed of

sound does not alter the obtained flow solutions, as the actual value only depends on the governing equations

that are solved [39, 25]. Consistently with the mixture model, the tabular properties are generated in the

pressure interval [10 bar, 100 bar] with a step of 3.75× 10−2 bar.

3. Reference two-phase expanding flows310

We here introduce the reference cases against which the two numerical models are validated. Since both

the computational strategies focus on the mixture evolution, in principle there should be no differences

among cavitating and condensing flows regardless of the phase change initialization. However, despite the

generality of the mathematical formulation, the adequacy of the simulation tools in properly representing

the macroscopic flow features of two-phase compressible flows has to be verified for both flow conditions.315
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Specifically, we considered the experiments made by Nakagawa et al. [31] to validate the computational

solver for CO2 cavitating flows and the experimental data provided by Lettieri et al. [9] for the validation of

CO2 condensing flows. For both experiments, the nozzle width is large enough compared to the nozzle height

such that three-dimensional effects are expected to be negligible. Therefore, two-dimensional simulations

are carried out for both cavitating and condensing flows.320

Nakagawa et al. [31] analysed cavitating flows of CO2 for several converging-diverging nozzle geometries,

featuring different divergence angles, and for different upstream total conditions. They provided pressure

and temperature measurements along the nozzle axis by means of pressure transducers and thermocouples.

Specifically, four strain-gauge taps and nine thermocouple taps were distributed along the diverging section

of the nozzle. Comparing pressure and temperature measurements in the two-phase region, Nakagawa et325

al. argued that stable thermodynamic equilibrium is established very soon in the diverging section. In the

present work, we focused on the nozzle geometry with a divergence angle of 0.153◦ for the two published

upstream total conditions. Based on the isentropic homogeneous theory, the authors claimed that the flow

regime is not supersonic for both expansion processes. This conjecture will be object of a specific analysis in

the final part of the present paper. Authors also pointed out that a supersonic flow regime was established330

for nozzle geometries with a higher divergence angle, but the measured pressure falls below the triple point.

To avoid dealing with three-phase flows, these latter cases are not considered in this work.

Lettieri et al. [9] performed five supersonic expansions at s > sc whose upstream total state progres-

sively approaches the thermodynamic critical point. They provided the pressure evolution along the nozzle,

measured with pressure transducers at several (13) nozzle axial locations; moreover, through an optical335

apparatus, they also obtained visualizations of the two-phase flows inside the converging-diverging nozzle as

well as the experimental condensation onset for each condition. They showed that all expansion processes

are characterized by a misty flow regime, where the two phases are practically indistinguishable [9, Fig. 9].

By virtue of such experimental observations, a mixture description of the two-phase flow according to the

two-fluid model appears an appropriate approximation.340

Table 1 reports the boundary conditions for the cavitating and condensing flows that will be discussed

in this work along with the upstream entropy level. Cavitating flows are denoted with a capital letter,

while condensing flows are identified by a number. In Figure 4 the corresponding isentropic processes in

the T–s thermodynamic plane are reported. Out of the seven conditions available from experiments, case

A, case 4 and case 5 are expansions evolving from a supercritical upstream state (T > Tc and P > Pc). As345

a final note, the shaded areas in Figure 4 represent the extent of the meta-stable region predicted by the

multi-parameter equation of state included in the RefpropR©. As already stated, in constructing the CFD

models the onset of phase change was set at the saturation, thus excluding any meta-stability effects. The

plot shows that the extent of the meta-stable regions progressively reduces when approaching the critical

point, suggesting a minor relevance of meta-stable effects for cases evolving in near-critical conditions, i.e.350
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Figure 4: Reference isentropic expansions that are considered in this work for the validation of the proposed computational

methodologies.

case A and case 5 and 4 for cavitating and condensing flows, respectively. These three cases are also the

only ones, among the tested conditions, for that the expansion evolves from a supercritical state, thus being

the most representative of the local expansions occurring in sCO2 compressors. Therefore, cases A, 5, and

4 are the most relevant for the present study.

Table 1: Summary of boundary conditions for the cavitating (labelled with a capital letter) and condensing (labelled with

a number) flows simulated in this work. For condensing flows, the outlet static pressure is not specified because its value is

ignored as a consequence of the supersonic flow regime.

Case P t
0 (bar) T t

0 (K) P1 (bar) s0/sc

A 91.00 310.45 27.5 0.95

B 61.00 293.15 17.5 0.83

1 58.96 314.67 - 1.31

2 65.35 311.99 - 1.26

3 73.53 313.60 - 1.22

4 79.99 313.94 - 1.17

5 84.74 313.88 - 1.12
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4. Results355

4.1. Cavitating flows

We first consider the case of cavitating flow, occurring when the inlet entropy level is lower than the

critical one; such condition is representative of the local expansions occurring in the intake region of the

main compressor of sCO2 closed power cycles [40]. In this context, when the phase transition takes place

the primary phase is liquid and the dispersed one is vapour, hence αp = αL and αd = αV . The phase change360

occurs when P < Psat(T ).

Total pressure and total temperature are prescribed at the inlet section as in Table 1 for the two expansion

processes considered, imposing αV = 0 therein (the flow enters only in liquid phase). For the barotropic

model, only the total pressure is specified. As for the turbulent boundary conditions, a hydraulic diameter

equal to 10.0 mm (i.e., twice the height of the inlet section) and an eddy viscosity ratio equal to 2.5 are365

assigned, representative of a low turbulence level as expected in a nozzle expanding flow from a reservoir;

the algorithms implemented in Ansys-FluentR© obtain the corresponding values of k and ω assigned at the

inlet. The static pressure is specified at the nozzle outlet as in Table 1. However, it is to be noted that

if a supersonic condition is reached at the nozzle outlet, the solver ignores the assigned pressure value and

calculates the proper adapted pressure value.370

No-slip and adiabatic boundary conditions are prescribed at the wall, which is not considered smooth.

As reported in [41], a mean roughness of 2µm is considered on the nozzle wall; this value is converted into an

equivalent sand-grain roughness using a conversion factor of 3.1 [42], resulting in ks = 6.2 µm. Even though

it might appear very small in absolute terms, the relevance of the wall roughness stems from the small scale

of the experiment. A comparison with results obtained assuming smooth surfaces will be proposed later in375

this Section, when discussing the aerodynamics of the nozzle. Finally, a symmetry condition is imposed at

the nozzle axis.

The system of equations for the mixture model is solved in the following order: the continuity and the

momentum equations are solved together in a coupled fashion, then energy equation, vapour-mass equation

and turbulence equations are solved separately in this order. The barotropic model makes use of the same380

resolution scheme, but energy and vapour-mass equations are not solved. All equations are discretised with

a third-order QUICK scheme for both models. Furthermore, the PRESTO! scheme is used to interpolate

the pressure at the cell face, while the gradient is reconstructed with a Green-Gauss node-based technique.

A grid convergence assessment is first carried out by generating three hexahedral grids with an increasing

number of elements, by taking as a reference the case A. The mixture model is considered for this mesh385

analysis but equivalent outcomes are found for the barotropic simulations as well. In increasing the mesh

resolution, the number of elements are doubled each time in the x-direction while keeping the same wall

resolution, i.e. 9 evenly spaced layers in the y-direction with a first-layer wall distance equal to 6.7×10−6 m
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Figure 5: Grid-convergence assessment for cavitating-flow simulations: (a) the medium mesh selected as the grid-independent

mesh (number of elements ≈ 3× 104, grid resolution at the throat 2× 10−5 m, 9 evenly spaced elements along the y-direction

with a first-layer wall distance at the throat of 6.7× 10−6 m) alongside the main nozzle dimensions, (b) pressure, temperature

and vapour-mass fraction distributions for different grid refinements. The grid convergence study is performed on case A.

at the throat. The number of elements along the y-direction is dictated by the selected surface roughness,

i.e. the first centre-cell distance has to be higher than the roughness value.390

The results of this study in terms of main flow distributions is reported in Figure 5, showing that only

minor differences are found among three meshes with increasing number of elements. The geometrical error

is also quantified by computing the grid convergence index (GCI) at five axial location along the diverging

section of the nozzle for pressure, temperature and liquid mass fraction. The GCIs is evaluated by estimating

the apparent order of convergence as outlined in Roache [43]. The GCIs between the medium and the fine395

mesh for the above quantities of interest are reported in Table 2, showing that the maximum error is around

0.01%. The same error is also found when estimating the GCI for the mass-flow rate, demonstrating that a

complete grid convergence is achieved for the medium mesh. Therefore, the medium mesh is selected for the

following analyses, consisting in overall ≈ 3× 104 elements, with a grid resolution at throat of 2× 10−5 m.

The aspect ratio is included between 1.4 and 2. The selected computational mesh is displayed in Figure400
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Table 2: Grid convergence indexes for pressure, temperature and vapour-mass fraction at selected axial locations along the

diverging section. The grid-convergence study is performed on case A.

GCI

x P T wV

(mm) (%) (%) (%)

0 0.01 0.00 0.00

15 0.00 0.00 0.00

30 0.00 0.00 0.00

45 −0.01 0.00 0.00

55 −0.01 0.00 0.00

5(a).

As a final and most relevant modeling issue, the setting of the penalty term G in the mixture model is

defined though a set of simulations featuring progressively higher values of the penalty constant K, whose

value is raised from 10 sm−2 to 103 sm−2. The results of three calculations are reported in Figure 6 in

terms of pressure distributions (left) and vapour mass fraction (right). Simulation results denote an evident405

convergence process, showing significant differences when the penalty parameter is raised from 10 sm−2 to

102 sm−2, while nearly identical profiles are predicted when K is raised from 102 sm−2 to 103 sm−2. For these

values of K, the constraint P − Psat(T ) is violated with a maximum error of 0.5% in the early stages of the

phase transitions, which is also the region most affected by the penalty coefficient. The error is then reduced

of one order of magnitude in the ongoing expansion. Higher values of K interfered with the convergence410

process, as small violations of the constraint provoked an extremely large source term, thus preventing from

achieving a stable convergence. From the results of this analysis, K = 103 s m−2 is systematically set in all

following simulations performed with the mixture model.

After the definition of the numerical set-up, we now focus on the experimental assessment of the CFD

models. Simulation results are compared against experimental data [31] for both cases A and case B in415

Figure 7 in terms of pressure and temperature profiles along the nozzle axis. As in the experimental

reference, temperature measurements are also converted in pressure values through RefpropR© assuming

stable thermodynamic conditions, i.e Texp 7→ Pexp = Psat(Texp). For all cases the deviations between

numerical models and the experimental data are quantified and reported in a tabular form in Appendix A.

First considering case A, the agreement between the predicted pressure trends and the experimental one is420

excellent with both the direct or indirect pressure measurements. The maximum relative deviation, defined

as ε = (Pmix − Pexp)/Pexp, is located at the last pressure tap and amounts to 8.5%. The temperature

distribution predicted by the mixture model is also compared with the experimental temperature data,
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Figure 6: Influence of the penalty constant K on the solution of the case A.

returning a maximum deviation of 1.3% found at the last thermocouple.

Apart from local deviations, the introduction of a single parameter that summarizes the deviation of nu-425

merical predictions with respect to experiments can be useful to evaluate the overall quality of the numerical

model. In the forecasting field, the weighted mean absolute percentage error (WMAPE) is widely used to

quantify the quality of a forecast. Whether X is pressure or temperature, this error can be formulated as:

WMAPE(X) =

∑
i |Xexp,i −Xmix,i|∑

iXexp,i
· 100 [%] (11)

Applied to the case A, the error is 2.2% and 0.7% for pressure and temperature, respectively.

The agreement with the experimental data drops when considering the non-supercritical case B, for430

that a systematic over-prediction affects the expansion, although the overall trend is properly reproduced.

The overprediction of the experimental data by the mixture model is contained between 11.5% (second

pressure tap) and 35.8% (last pressure tap) for the pressure measurements. One order of magnitude smaller

deviations are, instead, found for temperature measurements, whose maximum discrepancy amounts to 3.0%

in correspondence of the last thermocouple. The overall deviation from pressure and temperature trends,435

following the definition provided in Eq. 11, is 23.1% and 2.1%, respectively. One possible explanation

for such larger deviations is that meta-stable effects, negligible close to the critical point as in case A

(s/sc = 0.95), gain importance away from it as in case B (s/sc = 0.83). Such differences are consistent with

the results of Palacz et al. [24], who also found a reduction in the HEM accuracy away from the critical

point. However, a closer inspection of the experimental data for case B shows a certain scattering of the440

experimental pressure data, especially between direct and temperature-derived measurements. In particular,

towards the end of the divergent the predicted pressure profile qualitatively follows the trend established by

temperature and associated pressure data; in this region, relatively far from any potential delay introduced

by meta-stable effects, conditions of stable thermodynamic equilibrium should have been recovered.
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Figure 7: Comparison of the mixture (solid lines) and barotropic (dashed lines) model against experimental data [31] along the

nozzle axis. The vapour-mass fraction predicted by the barotropic model is computed as a post-processing.

The above considerations apply identically for both the mixture and the barotropic models, which exhibit445

qualitatively equal predictions in terms of pressure profiles. Quantitatively, the maximum deviation between

mixture and barotropic estimates is 2.9% and 2.3% for case A and case B, respectively. However, the

thermodynamic implications of the simplified barotropic assumption are interesting to investigate and, hence,

a detailed post-processing was performed on the computed data to obtain estimates for:

• the enthalpy field, as hbaro = h(P t
0 , T

t
0)− 0.5 · v2baro450

• the entropy field, as sbaro = s(Pbaro, hbaro)

• the vapour mass-fraction, as wV,baro = wV (Pbaro, hbaro)

These thermodynamic estimates can be performed straightforwardly if the total enthalpy is assumed

uniform over the entire flow field. This assumption is actually a simplification of the actual flow configuration:

even if the nozzle walls are adiabatic, implying that the flux of total enthalpy must be conserved, local455

gradients of the total enthalpy might arise as a consequence of internal heat-transfer processes between

layers of fluid at different temperature. One classical example is the heat transfer between the boundary

layer, heated by the viscous dissipation, and the adjacent free-stream region. The mixture model, by virtue

of its complete thermodynamic formulation and its agreement with the experimental temperature profile,

can be used as a benchmark for the aforementioned processing of barotropic-simulation data.460

20

http://doi.org/10.1016/j.applthermaleng.2021.116816


This is a preprint of the following article: Romei, A., & Persico, G., Computational fluid-dynamic modelling of

two-phase compressible flows of carbon dioxide in supercritical conditions, Appl. Therm. Eng., 2021.

The published article may differ from this preprint, and is available at: 10.1016/j.applthermaleng.2021.116816

(a)

0.00 0.25 0.50 0.75 1.00

yw/yw,max

0.5

0.6

0.7

0.8

0.9

1.0

v
/v
∞

Mixture

Barotropic

−40 −20 0 20 40 60

x (mm)

1355

1364

1373

1382

1391

1400
s

(J
k
g−

1
K
−

1
)

(b) (c)

Figure 8: (a) Velocity fields predicted by the mixture model (top) and barotropic model (bottom) for the case A For visualization

purposes, the x-direction is stretched such that x/y = 0.125 and the convergent section is not shown; (b) spanwise velocity

profiles for three relevant sections, namely at x = −5 mm (orange lines), 5 mm (red lines) and 10 mm (dark-red lines); (c)

entropy distributions along the nozzle axis for the mixture and the barotropic model.

Figure 8 summarizes significant flow features predicted for the supercritical condition of case A. It

reports the two-dimensional distributions of the velocity magnitude, as well as spanwise velocity profiles

for three relevant sections across the throat, and the entropy distribution along the nozzle axis. For each

of these plots, results obtained with the mixture model (solid lines) are compared with corresponding data

extracted/processed from the barotropic flow field (dashed lines). First considering the velocity distributions,465

it is evident how the two simulation models predict very similar flow configurations in a relatively complex

flow field. Indeed, while in the converging region of the nozzle a common configuration is recognized, with a

wide isentropic free-stream contoured by a narrow boundary-layer, in the diverging part the isentropic core

rapidly vanishes and spanwise gradients affect the entire cross-section, leading to fully-developed profile.

By looking at the two-dimensional velocity contours in Figure 8(a) sharp angle at the throat promotes a470

thickening of the boundary layer, whose dimension rapidly becomes comparable with the nozzle height in

the diverging channel, as also confirmed by the spanwise velocity distributions before and after the throat

in Figure 8(b).

Such flow field in the diverging part of the nozzle is mostly due to the very low aspect ratio of the duct,

but also the very small scale of the experiment plays a role. The diverging duct is indeed so narrow that the475
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Figure 9: Impact of surface roughness on the flow solution for case A. Black lines correspond to results obtained with the

rough-wall mesh (no wall resolution), while pressure distributions in red come from the mesh with a cell clustering at the wall

(y+ < 1). All these results are obtained with the mixture model.

wall roughness also significantly contributes to determine the flow configuration. In this work, the surface

roughness adopted in [41] is considered, but two further comparative simulations for hydraulically smooth

walls were performed. The first one employs the same wall resolution of the rough-wall simulations, and

hence resorts to wall-functions for the near-wall treatment, while the second one features a refined mesh

clustering at the wall so to achieve y+ < 1 all over the wall boundaries. These two further simulations are480

compared to the one obtained with rough wall in Figure 9 for both case A and case B. The two smooth-wall

simulations show only marginal differences on the pressure profiles (with a slight quantitative differences am-

plifying towards the nozzle outflow), but they exhibit a considerable difference with respect to the rough-wall

simulation, highlighting the significance of the wall roughness in this experiment. Unfortunately, Nakagawa

et al. did not provide any information about the actual roughness level; however, a level of roughness must485

be considered in the simulation as the wall cannot be considered hydraulically smooth given the small-scale

nozzle. As a matter of fact, the roughness should be around two order of magnitude lower than the one

employed in this work to have hydraulically smooth surfaces, which is not compatible with up-to-date man-

ufacturing processes. In this regard, a smooth-wall simulation is just intended to represent an idealized

case for the quantification of roughness effect and not an attempt to match experimental data. Indeed, the490

importance of the roughness is not only quantitative, but also qualitative. For smooth-wall simulations the

flow regime is found to be supersonic in the diverging part, thus the expansion processes is driven by the

converging-diverging shape of the nozzle. On the other hand, the rough-wall simulation does not predict

a sonic Mach number at the throat, as it will be clearly shown in the last section of this manuscript, in

which several two-phase speed-of-sound formulations are discussed. The pressure drop in the diverging part495

of the nozzle is then prompted by frictional losses, as originally argued by Nakagawa and his co-authors

when discussing the experimental trends. From this angle, the better quantitative adherence of case B with
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experimental data assuming a smooth wall is misleading. Furthermore, the rough-wall simulation better

captures the overall pressure trend, notwithstanding the systematic overprediction. The reason of such

overprediction for case B can be twofold: an uncertainty in the roughness level, although large deviations500

from the actual level is not expected in the light of present manufacturing processes, and meta-stable effects,

which are more prominent far from the critical point.

The presence of the roughness also affects the mass-flow rate that passes through the nozzle, as reported

in Table 3. For both upstream states, the mass flow rate increases of 10− 15% from rough- to smooth-wall

simulations owing to a decrease of frictional losses. All cases were also simulated with the barotropic model:505

the higher discrepancy in the elaborated mass-flow rate is found for rough-wall simulation and amounts

to ∼ 1.5%. As rough-wall simulations do not predict a sonic throat, the mass-flow rate is determined by

the flow conditions at the nozzle outlet, in which the neglected effect of entropy on the density value is

maximum. For smooth-wall simulations, the flow conditions at the throat establish the mass-flow rate.

Given that the core is isentropic at the throat, the only differences between the two models regard the510

spanwise density distribution and small discrepancies in the computed velocity field (∼ 0.5%). Finally,

in smooth-wall simulations the barotropic model overestimates both expansion processes compared to the

mixture model, with an outlet pressure which is around 7% lower than the mixture-model counterpart. The

larger discrepancy depends on the role of the density in determining the expansion process: in smooth-wall

simulation, a supersonic expansion takes place in the diverging portion of the nozzle. The density predicted515

by the barotropic model does not consider the influence of the entropy that still raises along the axis,

notwithstanding the smooth-wall assumption, hence the density is smaller than the one predicted by the

thermodynamically complete mixture model. As a consequence, the flow expands more in the diverging

duct, explaining the larger deviations. In rough-wall simulations, on the other hand, the expansion is

dictated by frictional losses, therefore the volumetric evolution plays a minor role. It is to be noted that,520

for adiabatic flows, the barotropic model could be easily improved by resorting to non-isentropic laws for

the variability of thermo-physical properties along the transformation. In practice, a preliminary barotropic

simulation can be performed using isentropic laws, then the resulting entropy raise can be estimated with the

procedure reported above and the barotropic relationships updated to incorporate the effect of the entropy

rise (as done, for example, when computing the polytropic efficiency in turbomachinery analysis). Then, a525

new barotropic simulation, implementing the so-estimated non-isentropic relationships, can be performed to

better approximate the actual density change. Figure 8(b) indicates that one iteration should be sufficient

to estimate accurately the impact of entropy rise on the density.

All quantitative comparisons are reported in Appendix A: Table A.6 reports the maximum and minimum

deviation of the barotropic model from the mixture model, while the local pressure and temperature values530

at measurement locations alongside the experimental data are reported in Table A.7.

The flow configuration is complex not only on the aerodynamic ground, but also introduces thermody-
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Table 3: Comparison of the mass-flow rate predicted by the mixture and the barotropic model for all simulated cavitating

flows.

Wall ṁmix ṁbaro εmix−baro

functions (kg/s) (kg/s) (%)

Case A

Rough wall X 4.72 4.80 −1.54

Smooth wall X 5.43 5.40 0.59

Smooth wall 5.39 5.36 0.45

Case B

Rough wall X 3.71 3.77 −1.60

Smooth wall X 4.19 4.20 −0.67

Smooth wall 4.16 4.17 −0.33

namic challenges, resulting a very critical benchmark for the present barotropic model, which was constructed

by assuming an isentropic pressure-density relation. However, the velocity field reproduced by the barotropic

model is aligned with the mixture one (maximum deviations in the range of 0.5%), also in the region of535

developed profiles, where entropy is generated in the boundary layer. Moreover, by inspecting the entropy

generation along the nozzle axis, it is evident that the barotropic flow solution, once properly post-processed,

can be used to achieve realistic estimates of the mechanical dissipation processes, regardless of the isentropic

pressure-density relationship adopted. As a result, when the estimated entropy and the computed pressure

are combined to obtain the generation of vapour mass fraction along the nozzle, a remarkable agreement is540

found between the barotropic model and the complete mixture model, in terms of transition onset, overall

trend, and quantitative levels, as visible in Figure 7.

Due to the fully developed profiles observed in the diverging region of the nozzle, the distributions in

cross-stream direction are expected to be highly non-uniform for all the quantities, including the vapour

mass fraction. The spanwise distributions of wV at three different axial locations are reported in Figure 10545

for case A, showing a consistent increase close to the wall. This can be explained by considering that higher

entropy level is found moving away from the nozzle axis, due to the dissipation in the boundary layer. The

rise of entropy further increases the vapour quality with respect to that of the flow in the nozzle axis (which

is, in turn, higher with respect to the ideal quality in presence of an isentropic expansion). As a result, the

vapour-mass fraction at the wall is 3 − 5% higher than the free-stream value. In these trends, slight but550

visible differences appear between the results obtained with the mixture model and with the barotropic one.

This is a consequence of the uniform total enthalpy assumption in the post-processing of the barotropic
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Figure 10: Vapour-mass fraction of case A normalised to the free-stream value at different axial locations, namely at x = 10 mm

(orange lines), 20 mm (red lines) and 40 mm (dark-red lines).

solution: close to the wall, the fluid heated by dissipation exchanges heat with the fluid away from the

wall, resulting in a slight reduction of the total enthalpy. This effect, as already noted, cannot be captured

in the processing of the barotropic flow solution, which eventually results in a slight overestimate of the555

enthalpy close to the wall. Consequently, the mass fraction of vapour is slightly overestimated in barotropic

estimation, although the discrepancy remains within 1% of the local nozzle-axis value.

The good accuracy of the barotropic flow solution is worth for further physical investigations. As already

remarked, the barotropic model implies to consider the fluid compressible but not thermally expandable,

i.e. to assume the thermal expansion coefficient β = −1

ρ

(
∂ρ

∂T

)

P

equal to zero. Figure 11 reports the560

distribution β for the carbon dioxide in single-phase above saturation, including the liquid, the supercritical

and the superheated vapour region. To highlight the effects of thermal expansion, logarithmic scale is

used for the contours. The plot indicates that the carbon dioxide is prone to thermal expansion only in

a narrow region adjacent to the critical point, where the fluid exhibits severe gradients in all the thermo-

physical properties. Among the thermo-physical properties of interest, in the critical region the isobaric565

heat capacity cP grows significantly (becoming theoretically infinite at the critical point) , as illustrated by

the black dashed isolines superposed in the figure. The combination of high β and high cP in the critical

region is a further indication of the technical relevance of the barotropic model: where thermal expansion

is quantitatively significant, the amount of heat required to alter the fluid temperature is enormous and

arguably not comparable with the heating due to viscous dissipation occurring in adiabatic flows.570

The present theoretical interpretation indicates that the effects of the thermal expansion are limited for

any of the cases investigated in this work, which are rather representative of technical applications such as

compressors for sCO2 power cycles. Therefore, if the above deviations between the simplified barotropic
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Figure 11: Volumetric coefficient of thermal expansion and isobaric specific heat (black dashed lines) for single-phase CO2.

modeling and the thermodynamically complete mixture model are acceptable, the barotropic model would

be recommended in the light of its computational robustness and efficiency.575

4.2. Condensing flows

In condensing flows the primary phase is the vapour phase αp = αV , while the secondary phase is the

liquid phase αd = αL. The phase change is activated when P > Psat(T ).

The computational procedure resembles the one previously described for the cavitating case. Total

pressure and total temperature are prescribed at the inlet section as in Table 1 for the five flow configurations,580

imposing αL = 0 therein (the flow enters only in vapour phase). For the barotropic model, only the total

pressure is specified. To impose the typical low turbulence level of a flow expanding from a reservoir, a

hydraulic diameter equal to 12.6 mm, i.e. twice the height of the inlet section, and an eddy viscosity ratio

equal to 2.5 are assigned as turbulent boundary conditions. As the flow regime is always supersonic, the

solver ignores the static pressure value imposed at the outlet. No-slip and adiabatic boundary conditions585

are prescribed at the wall, while a symmetry condition is imposed at the nozzle axis. Differently from the

cavitation experiment, the nozzle used for the condensation study is of sufficiently large scale that the wall

is modelled as smooth (the nozzle throat is one order of magnitude larger than that of the previous nozzle).

Moreover, as a supersonic expansion always takes place in the diverging section, the effect of roughness is

expected to be secondary in determining the flow evolution. The numerical schemes and the solver strategy590

are identical to the ones already introduced in §4.1. The penalty constant is set to K = 103 as in the

previous section. It is anticipated that the resulting constraint violation P − Psat(T ) is limited to ∼ 1% in

the neighbourhood of the phase-change onset, reducing of one order of magnitude in the ongoing expansion.
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Figure 12: Grid-convergence assessment for condensing-flow simulations: (a) the medium mesh is selected as the grid-

independent mesh (number of elements ≈ 5 × 104, grid resolution at the throat ≈ 2 × 10−4 m, 20 cells in the boundary layer

with a first-layer wall distance of 3 × 10−8 m) alongside the main nozzle dimensions, (b) pressure, temperature, liquid-mass

fraction and turbulent kinetic energy distributions for different grid refinements. The grid-convergence study is performed on

case 5.

A grid convergence assessment was carried out by generating three structured meshes with an increasing

number of elements. The number of elements was doubled each time in both x- and y-directions while595

keeping the same wall resolution. Coherently with the smooth-wall condition in combination to the k − ω
SST turbulence model, the near-wall region of the mesh was constructed to avoid the use of wall functions

and it is composed by 20 layers in the boundary layer, with a first-layer wall distance equal to 3× 10−8 m.

The maximum y+ = 1.2 is found for the case 5 with three cells within the viscous sub-layer (y+ < 10). The

flow model used in this grid study is the mixture model and we focus on the expansion process closer to600

the thermodynamic critical point (case 5). Pressure, temperature and liquid-mass fraction trends along the

nozzle axis are reported in Figure 12(b) alongside the turbulent kinetic energy distribution at a specified

axial location (x = 20 mm). This latter quantity is reported in a logarithmic scale as a function of the

dimensionless wall distance to better highlight the trend of the turbulent kinetic energy close to the wall. As

in the previous section, the geometrical discretization error is quantified by computing the GCI between the605

medium and the fine mesh of pressure, temperature and liquid mass fraction at the throat and at different
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Table 4: Grid convergence indexes for pressure, temperature and liquid-mass fraction at selected axial locations along the

diverging section. The grid-convergence study is performed on case 5.

GCI

x P T wL

(mm) (%) (%) (%)

0 0.67 0.12 −2.53

15 0.03 0.00 −0.01

30 0.02 0.00 −0.01

45 0.01 0.00 0.00

60 0.00 0.00 0.00

axial location along the diverging portion. The highest values are found at the throat location where the

gradients are larger. In particular, the GCI for the liquid mass fraction is 2.53% as a consequence of the steep

increase of the dispersed phase at the throat, see Figure 12(b). Since the flow is supersonic, the mass-flow

rate is determined by the flow conditions at the throat; however, the GCI for the mass flow rate is 0.02%.610

Such low value combined with GCIs smaller than 0.03% throughout the divergent testifies the adequacy

of the medium mesh. Therefore, the medium mesh is selected for all the following analyses: it contains

≈ 5 × 104 hexahedral elements with a grid resolution at the throat of 2 × 10−4 m. Within the free-stream

region, the aspect ratio is around 1.5 in the convergent, which raises up to 2.5 at the throat, then reducing

to 2.0 in the divergent.615

Figure 13 reports the comparison of pressure and the liquid-mass fraction distributions against experi-

mental data for the five condensing flows. The differences in the distributions along the nozzle axis between

the mixture and the barotropic do not exceed 1%. As the boundary layers remain confined in a narrow

region close to the wall along the entire nozzle length, the barotropic model constructed using an isentropic

pressure-density relationship provides an exact description of the thermodynamics of the fluid expansion in620

the core region of the nozzle, both in the single-phase and in the two-phase region - in the limit of a HEM

two-phase flow representation. A further proof is provided by the excellent agreement (within 0.1%) of the

mass-flow rate predicted by the two models, as reported in Table 5. As the flow is supersonic, the mass-flow

rate depends on the flow conditions at the throat. Depending on the specific case, the two-phase flow can

already be established at the throat, confirming the quality of the barotropic modeling in also representing625

the two-phase flow.

When comparing the numerical results to the experiments in Figure 13, the larger pressure discrepancy

is found right after the onset of the phase change, where the experimental data exhibit a sudden change in

the pressure trend. Furthermore, for the first two cases, an unconventional knee is noticed in the pressure
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Figure 13: Comparison of the mixture (solid lines) and barotropic (dashed lines) model against experimental data along

the nozzle axis. The red tick identifies the condensation onset observed experimentally by Lettieri et al. [9, Tab. 3]. The

liquid-mass fraction predicted by the barotropic model is computed as a post-processing.

Table 5: Comparison of the mass-flow rate predicted by the mixture and the barotropic model for all simulated condensing

flows.

ṁmix ṁbaro εmix−baro

(kg/s) (kg/s) (%)

Case 1 29.43 29.46 −0.08

Case 2 33.64 33.66 −0.06

Case 3 38.97 38.99 −0.04

Case 4 44.02 44.04 −0.03

Case 5 48.94 48.95 −0.02

trend close the phase-transition onset, producing a concavity in the pressure trend which remains negative630

in the first part of the divergent. This feature is not captured by the models, which instead predict a

more conventional pressure trend, which smoothly evolves from a negative concavity in the convergent to a

positive concavity in the divergent. Such a peculiar trend in the experimental data probably originates from

meta-stable equilibrium states, which are expected to be prominent far from the critical point, delaying the

phase transition. Lettieri et al. [9] actually identified meta-stability effects in their results, and even derived635
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experimental samples of the Wilson line. They actually found that the largest departure from conventional

saturation applies for cases 1 and 2 of the present study , consistently with the largest discrepancy found

in the present study, corresponding to 16% for cases 2. Apart from the peculiar trend in correspondence

of the phase-transition onset, the overall pressure distribution is still properly captured by the model. The

global deviation in according to the error defined in Eq. 11 is quantified as 5.7% and 6.4% for cases 1 and640

2, respectively.

The agreement between experiments and simulations improves as long as the upstream total state gets

closer to the thermodynamic critical point. For these cases, the meta-stability effects are reduced, although

they are still present as reported in the experimental reference. An obvious development of this work would

be to include meta-stable states in the mixture model formulation, e.g. in a DEM fashion, notwithstanding645

the cases of most interest for sCO2 compressors are those in the proximity of the critical point (cases 4 and

5), for which deviations less than 10% are observed with respect to most of the experimental data. The

overall trend is generally well captured, with a WMAPE of 4.5% and 4.1% for cases 4 and 5, respectively.

All local deviations with respect to the available measurements are quantified in Table A.8.

Despite the meta-stability effects discussed above, it is worth highlighting that the present simulation650

model predicts the condensation onset in a very good approximation for all the cases. In the experiment,

the position of transition onset was derived from optical measurement, and it is reported in the frames of

Figure 13 as a red tick. In fact, a slight discrepancy is found for the cases far from the critical point (Cases

1 and 2), while a perfect matching is achieved for the expansions from the supercritical state (Cases 4 and

5). This is fully consistent with the above meta-stability effects, but we also note that the experimental655

identification of condensation point may be affected by a larger uncertainty for Cases 1, 2 and 3. In such

cases, the transition is smoother and it is not straightforward to exactly identify the axial location at which

the phase change starts, see [9, Fig. 9]. The opposite occurs for the near-critical cases 4 and 5, for that the

identification is made easier by the rapid growth of the condensed mass fraction, and the matching with the

experiment becomes excellent.660

The corresponding mass-fraction flow fields computed by the mixture models are reported in Fig. 14.

The flow fields are qualitatively similar to the experimental visualization made by Lettieri et al., in which

the condensation location moves back in the nozzle while the upstream thermodynamic state gets closer to

the critical point.

5. Mixture speed-of-sound formulation665

The two computational models introduced in this work have been shown to reproduce, with a good

or acceptable accuracy, the experimental results of compressible two-phase flows, both for cavitation and

condensation. Since both models are built on the two-fluid concept, which describes the mixture evolution
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Figure 14: Liquid-mass fraction distributions for the five condensing flows as predicted by the mixture model. The red tick

identifies the condensation onset observed experimentally by Lettieri et al. [9, Tab. 3]

without detailing the local interfaces between phases, the concept of speed of sound can be extended to the

mixture and a ’surrogate’ expression for that can be defined.670

The definition of the mixture speed of sound is closely linked to the employed two-phase models and its

associated assumptions [21, 39]. Moreover, it was demonstrated that the more the system is constrained,

the lower the corresponding speed of sound [44, 45]. It means that the HEM speed of sound will be lower

than the speed of sound of a HFM, which relaxes the thermal equilibrium assumption. Specifically, the

HEM speed of sound is expressed as:675

c2m =

(
∂P

∂ρm

)

s

(12)

Given the assumptions of the mixture and barotropic model, we expect that this relationship should be

used in the determination of the speed of sound and to assess whether or not the flow regime is supersonic.

By default, Ansys-FluentR© makes use of the speed-of-sound formulation originally conceived by Wood [46]:

1

ρmc2m
=

αL

ρLc2L
+

αV

ρV c2V
(13)

The expression says that the bulk modulus of the mixture ρmc
2
m is the harmonic average of the bulk
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Figure 15: Comparison among different two-phase speed-of-sound formulations: homogeneous equilibrium model (Equation

12), homogeneous frozen model (Equation 13) and an hybrid formulation between the homogeneous equilibrium model and the

homogeneous frozen model proposed by Brennen [19] (Equation 15).

moduli of the components weighted on their volume fractions. Such definition is derived on the basis of the680

single-phase volumetric behaviours, hence it excludes any thermal effects between them. For this reason, it

can be used under HFM assumptions and it is widely used in presence of multi-component flows which do

not chemically react. In analogy with the analysis of Giacomelli et al. [25], we also include the definition of

the mixture speed of sound provided by Brennen [19].

1

ρmc2m
=
αV

P
[(1− εV )fV + εV gV ] +

αL

P
[(1− εL)fL + εLgL] (14)

which considers that a portion of the phases can exchange heat and momentum instantaneously (εL, εV ),685

promoting equilibrium, and the remaining portion (1 − εL, 1 − εV ) does not contribute to the exchange,

promoting disequilibrium. In this way, depending on the portion of fluid involved in the phase change, either

the HEM (εL = εV = 1) or the HFM (εL = εV = 0) can be recovered. On top of that, Brennen suggested

the following approximations: fV = gV ≈ 1, fL ≈ 0, εL ≈ αV , and gL ≈ 2.1(P/Pc)
−0.566 for carbon dioxide

only. Plugging into Eq. (14) the above simplifications, the following expression for the mixture speed of690
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sound is obtained:

1

ρmc2m
= 2.1

αLαV

P 1.566
P 0.566
c +

αV

P
(15)

Figure 15 reports the speeds of sound computed according to three expressions (12), (13) and (15) for

isentropic expansions of cavitating (case A and B) and condensing (case 1 and 5) flows. The HEM speed

of sound exhibits a discontinuity at the saturation [44], which is more pronounced for cavitating flows.

Interestingly, the HEM speed of sound generally increases along isentropic expansion (unless case 1, which is695

far from the critical point and applications of interest) while the single-phase carbon-dioxide speed of sound

always decreases along isentropic expansion. Such evidence can be interpreted in terms of the fundamental

derivative of the gas dynamics Γ = 1 +
ρ

c

(
∂c

∂ρ

)

s

[47], which is lower than the unity in the two-phase region

of carbon dioxide. Moreover, under the HEM assumptions, Γ < 0 in the near-critical two-phase region [48],

paving the way for the occurrence of non-classical effects [49]. The HFM expression constantly overpredicts700

the speed of sound compared to the HEM predictions in accordance with the above explanation related

to the equilibrium assumptions and associated speed-of-sound values. Regarding Brennen’s expressions, as

the simplified derivation was conceived between HEM and HFM, the speed of sound should be contained

among the corresponding HEM and HFM values. When looking at cavitating cases, Brennen’s formulation

does exactly what it is meant to be. Right after the phase transition, the disequilibrium between phases705

is expected to be maximum and for this reason the speed-of-sound value is larger than the corresponding

HEM value. However, as long as the expansion process proceeds, the two expressions collapse in a good

approximation. It is worth specifying that the expression (15) shows a spike for cavitating flows at the

saturation, possibly due to the approximations that were introduced. To avoid this unphysical behaviour,

the maximum speed of sound was limited at the single-phase speed of sound. On the other hand, when710

Brennen’s formulation is applied to condensing flows, unphysical trends are obtained: in case 1, Brennen’s

speed of sound is lower than the corresponding HEM value, which is not admissible as the HEM should

be the lowest among all speed-of-sound formulations. Approaching the critical point, as in case 5, it seems

to recover the correct trend (similar to cavitating flows), but as long as the expansion proceeds, Brennen’s

expression tends to underestimate the HEM value with a non-negligible error. Finally, it is noted that the715

discontinuity in the speed of sound predicted by the HEM formulation is generally smaller in condensing

flows than cavitating flows, as reported in Figure 15 for exemplary upstream conditions. From this analysis,

we conclude that the expression provided by Brennen can be effectively used in modelling cavitating flows,

while it is not adequate for condensing flows of carbon dioxide.

The three speed-of-sound formulations are then applied in the post-process of case A (cavitation) and720

case 5 (condensation), which are the cases closest to the critical point among those presented in this work

for the two categories of phase transition. Analogous studies involving the HFM and Brennen’s formulation
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(a)

(b)

(c)

(d)

Figure 16: Mach number distributions for the case A (cavitating flow) using different two-phase speed-of-sound formulation: (a)

Ansys-FluentR© mixture-model built-in formulation, (b) HFM, (c) Brennen, (d) HEM. For visualization purposes, the x-direction

is stretched such that x/y = 0.125 and the convergent section is not shown.

are reported in [50, 25] for cavitating flows. To the authors’ knowledge, similar studies for condensing flows

are not available.

Figure 16 displays the Mach number fields for case A (cavitation). Specifically, Figure 16(a) is the Mach725

number field as provided by Ansys-FluentR© for the mixture model, while Figures 16(b–d) are obtained by

setting the three different speed-of-sound formulations in the equation (10) of the barotropic model. First,

the nearly identical distributions obtained in Figure 16(a)–(b) confirms that the present version of Ansys-

FluentR© makes use of equation (13) as a post-processing for the mixture speed of sound. As a consequence

of the higher speed of sound under HFM assumptions, the Mach number is everywhere lower than unity,730

reaching the maximum value of M = 0.82 at the nozzle outlet. In accordance with Figure 15, the main

difference between Figure 16(c)–(d) is located at the phase-transition onset, in which the HEM model predicts

a sudden drop. Brennen’s formulation instead smears the discontinuity, then recovering approximately the

same Mach number evolution predicted by the HEM formulation towards the nozzle outlet, in which a

slightly supersonic Mach number (M = 1.06) is predicted.735

As a final comment, the Mach number field obtained with Brennen’s model, which accepts a degree of

disequilibrium, do not diverge significantly from solutions obtained with HEM simulation tools. This finding

provides a crucial indication on the technical relevance of CFD simulations tools based on the assumption
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Mth = 0.79

Mth = 0.79

Mth = 0.96

Mth = 1.00

(a)

(b)

(c)

(d)

Figure 17: Mach number distributions for the case 5 (condensing flow) using different two-phase speed-of-sound formulation:

(a) Ansys-FluentR© mixture-model built-in formulation, (b) HFM, (c) Brennen, (d) HEM. The Mach number at the geometrical

throat Mth is also reported.

of homogeneous equilibrium for sCO2 compressor design and analysis, especially when it comes to the

identification of the choking limit.740

A similar analysis is illustrated in Figure 17 for the case 5 (condensation). Again, the default choice of

Ansys-FluentR© , which corresponds to the HFM formulation, provides the lowest Mach number, with the

onset of the sonic Mach number after the geometrical throat. Although the sonic throat may be different

from the geometrical one when the boundary layer is considered, the streamwise location where the sonic

Mach number onsets seems not consistent with the boundary-layer displacement thickness. This observation745

corroborates the idea that the expression for the speed of sound in (13) is not consistent with the HEM

governing equations. On the other hand, the HEM expression (12) predicts a sonic Mach number in the

geometrical throat, consistently with the assumptions of the model. As a matter of fact, in presence of

mechanical and thermal equilibrium among phases, the single-phase gas dynamics should be theoretically

recovered for the mixture. Finally, although the supersonic expansion in the divergent, with an outlet Mach750

number larger than the HEM counterpart, Brennen’s model does not predict a sonic Mach number at the

throat; as already mentioned, the corresponding speed of sound exhibits an unphysical trend when applied

to condensing flows.
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6. Conclusion

The paper has presented and discussed two computational strategies to simulate compressible two-phase755

flows of carbon dioxide for industrial applications, operating in the proximity of the thermodynamic critical

point and in supercritical conditions. Both models rely on the description of the mixture properties by

resorting to the so-called two-fluid concept, thus eliminating the need of detailing the local interaction

between phases. This allows to achieve a considerable simplification in the mathematical modeling, in

view of their application to the design and analysis of supercritical carbon dioxide compressors. The first760

formulation, named mixture model, consists in the full-set of governing equations for the mixture plus an

additional transport equation that governs the phase transitions; the onset of phase change is driven by the

difference between the local pressure and the saturation pressure at the local temperature, by resorting to

a penalty formulation. The second formulation, named barotropic model, strictly assumes mechanical and

thermal equilibrium and the mixture thermo-physical properties are expressed as functions of the pressure765

only. These simplifications leads to a reduction of the overall computational cost alongside an increased

solver robustness, by virtue of the simplified thermodynamic treatment.

The two models have been compared against experiments published in literature for cavitating (liquid

7→ vapour) and condensing (vapour 7→ liquid) flows. Both the comparisons involve expansion processes that

progressively approach the critical point, where large discrepancies from the ideal-gas thermodynamics are770

observed. The two models exhibit a remarkable agreement with each other and are able to reproduce the

trends set by the experimental data, also showing an overall good quantitative agreement with measured

data. For the expansions evolving from supercritical states, the weighted mean absolute percentage error of

pressure evaluated along the whole expansions resulted of about 2% and 4% for cavitating and condensing

flow respectively; in case of supercritical cavitating flows, for that also temperature measurements are775

available, the same global error in terms of temperature resulted below 1%.

More significant quantitative differences emerge when considering expansions evolving from subcritical

states. We conjecture that most of the deviations can be attributed to meta-stable effects, which might

delay the phase-change onset in the conditions farthest from the critical point, or to the presence of a

relative motion between phases. The mixture model, even though expressed under mechanical and thermal780

equilibrium in this work, is enough flexible to possibly relax these assumptions via constitutive equations,

when detailed experimental data will enable their formulations for compressible flows of carbon dioxide. In

the limit of the homogeneous equilibrium approximation, the barotropic model has been shown to provide

comparable predictions of the expansion processes at a lower computational cost and with an improved

solver robustness.785
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Appendix A. Tabular results

Experimental results for cavitating flows (case A and case B) were only reported by Nakagawa et al. [31]

in a graphical form, hence the exact measurement locations as well as the associated values are not precisely

known. Therefore, the following numerical comparisons have to account for this degree of approximation.

The deviations between experimental and numerical values are computed as ε = (Xmix − Xexp)/Xexp,790

where X can be either pressure or temperature. The smooth-wall results for cavitating flows refer to the

one obtained with the refined mesh at the wall (y+ < 1).

Table A.6: Maximum deviations in pressure predictions along the nozzle axis between mixture and barotropic model.

Pmix − Pbaro

Pmix

Case A Case A Case B Case B
Case 1 Case 2 Case 3 Case 4 Case 5

Rough Smooth Rough Smooth

Max 2.9% 7.4% 2.3% 7.2% 1.0% 0.9% 0.9% 0.8% 0.9%

Min 0.0% −0.1% 0.0% 0.0% 0.0% −0.6% −0.3% −0.3% −0.5%

Table A.7: Comparison of numerical predictions against experiments [31] for cavitating expansions.

Case A Case B

Rough Smooth Rough Smooth

x Pexp Pmix ε Pexp Pmix ε Pexp Pmix ε Pexp Pmix ε

(mm) (bar) (bar) (%) (bar) (bar) (%) (bar) (bar) (%) (bar) (bar) (%)

10 65.17 65.18 0.0 65.17 50.51 −22.5 35.10 43.54 24.0 35.10 34.17 −2.6

20 55.47 54.70 −1.4 55.47 41.90 −24.5 33.06 36.87 11.5 33.06 28.58 −13.6

30 46.01 46.61 1.3 46.01 36.55 −20.6 24.90 31.60 26.9 24.90 24.99 0.4

40 36.78 39.90 8.5 36.78 32.27 −12.2 20.00 27.17 35.8 20.00 22.10 10.5

Texp Tmix ε Texp Tmix ε Texp Tmix ε Texp Tmix ε

(K) (K) (%) (K) (K) (%) (K) (K) (%) (K) (K) (%)

4.8 300.61 302.57 0.7 300.61 293.32 −2.4 280.41 285.11 1.7 280.41 277.05 −1.2

10.8 294.93 298.07 1.1 294.93 287.16 −2.6 275.79 281.29 2.0 275.79 271.81 −1.4

16.8 291.06 293.49 0.8 291.06 282.38 −3.0 270.94 277.30 2.3 270.94 267.67 −1.2

22.8 286.90 289.27 0.8 286.90 278.70 −2.9 266.85 273.62 2.5 266.85 264.43 −0.9

28.8 282.81 285.33 0.9 282.81 275.57 −2.6 265.06 270.17 1.9 265.06 261.65 −1.3

34.8 280.55 281.57 0.4 280.55 272.65 −2.8 262.39 266.88 1.7 262.39 259.05 −1.3

40.8 277.52 277.86 0.1 277.52 269.93 −2.7 259.27 263.60 1.7 259.27 256.62 −1.0

46.8 272.84 273.96 0.4 272.84 267.40 −2.0 254.63 260.13 2.2 254.63 254.36 −0.1

52.8 265.72 269.20 1.3 265.72 265.05 −0.3 248.36 255.70 3.0 248.36 252.27 1.6
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Table A.8: Comparison of numerical predictions against experiments [9] for condensing expansions.

Case 1 Case 2 Case 3 Case 4 Case 5

x Pexp Pmix ε Pexp Pmix ε Pexp Pmix ε Pexp Pmix ε Pexp Pmix ε

(mm) (bar) (bar) (%) (bar) (bar) (%) (bar) (bar) (%) (bar) (bar) (%) (bar) (bar) (%)

−28 58.08 58.02 0.1 64.38 64.36 0.0 72.44 72.46 0.0 78.77 78.88 0.1 83.47 83.63 0.2

−21 57.48 57.13 −0.6 63.85 63.41 −0.7 71.97 71.44 −0.7 78.46 77.84 −0.8 82.80 82.59 −0.3

−14 54.97 54.38 −1.1 61.14 60.53 −1.0 68.89 68.36 −0.8 75.94 74.70 −1.6 80.49 79.48 −1.3

−7 48.40 47.10 −2.7 54.01 53.08 −1.7 62.67 60.57 −3.3 69.42 66.98 −3.5 74.10 72.05 −2.8

0 34.54 33.08 −4.2 41.12 40.40 −1.8 52.24 46.04 −11.9 53.96 50.68 −6.1 57.99 54.54 −5.9

7 32.82 28.64 −12.7 39.41 33.14 −15.9 42.11 37.84 −10.1 45.90 41.83 −8.9 49.71 45.28 −8.9

14 29.89 26.14 −12.5 35.48 29.97 −15.5 38.11 34.28 −10.1 41.90 37.95 −9.4 45.35 41.17 −9.2

21 28.01 24.20 −13.6 32.91 27.65 −16.0 35.81 31.65 −11.6 39.71 35.09 −11.6 43.03 38.12 −11.4

28 25.87 22.57 −12.8 30.07 25.77 −14.3 32.74 29.53 −9.8 36.07 32.77 −9.1 38.95 35.64 −8.5

35 23.51 21.22 −9.7 27.31 24.20 −11.4 29.84 27.73 −7.1 32.99 30.81 −6.6 35.58 33.55 −5.7

42 21.89 20.03 −8.5 25.28 22.83 −9.7 27.63 26.18 −5.3 30.55 29.10 −4.7 32.90 31.72 −3.6

49 20.59 18.98 −7.8 23.75 21.63 −8.9 25.89 24.80 −4.2 28.63 27.59 −3.6 30.91 30.09 −2.6

56 19.50 18.24 −6.5 22.43 20.78 −7.3 24.39 23.84 −2.3 26.92 26.53 −1.5 28.98 28.94 −0.1
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[18] M. Schatz, T. Eberle, M. Grübel, J. Starzmann, D. Vogt, N. Suerken, Two-Phase Flow Modeling and Measurements in

Low-Pressure Turbines - Part II: Turbine Wetness Measurement and Comparison to Computational Fluid Dynamics-

Predictions, Journal of Engineering for Gas Turbines and Power 137 (042603) (2015). doi:10.1115/1.4028547.

39

http://doi.org/10.1016/j.applthermaleng.2021.116816
https://doi.org/10.1016/0140-7007(94)90059-0
https://doi.org/10.1016/j.ijrefrig.2015.10.031
https://doi.org/10.1115/1.3609190
https://doi.org/10.1016/0013-7480(68)90105-8
https://doi.org/10.1016/0013-7480(68)90105-8
https://doi.org/10.1016/j.apenergy.2017.02.048
https://doi.org//10.1016/B978-0-08-100804-1.00001-3
https://doi.org/10.1115/1.4026322
https://doi.org/10.1115/1.4038082
https://doi.org/10.1115/1.4030614
https://doi.org/10.1002/prs.10034
https://doi.org/10.1002/prs.10035
https://doi.org/10.1115/1.1883238
https://doi.org/10.1063/1.5132591
https://doi.org/10.1115/1.2929181
https://doi.org/10.1115/1.4028468
https://doi.org/10.1115/1.4028547


This is a preprint of the following article: Romei, A., & Persico, G., Computational fluid-dynamic modelling of

two-phase compressible flows of carbon dioxide in supercritical conditions, Appl. Therm. Eng., 2021.

The published article may differ from this preprint, and is available at: 10.1016/j.applthermaleng.2021.116816

[19] C. E. Brennen, Homogeneous flows, in: Fundamentals of Multiphase Flow, Cambridge University Press, 2005, pp. 176–198.

doi:10.1017/CBO9780511807169.010.

[20] G. Gyarmathy, Nucleation of steam in high-pressure nozzle experiments, Proceedings of the Institution of Mechanical

Engineers, Part A: Journal of Power and Energy 219 (6) (2005) 511–521. doi:10.1243/095765005X31388.

[21] M. De Lorenzo, P. Lafon, J.-M. Seynhaeve, Y. Bartosiewicz, Benchmark of delayed equilibrium model (dem) and classic

two-phase critical flow models against experimental data, International Journal of Multiphase Flow 92 (2017) 112 – 130.

doi:10.1016/j.ijmultiphaseflow.2017.03.004.

[22] Y. Bartosiewicz, Z. Aidoun, Y. Mercadier, Numerical assessment of ejector operation for refrigeration applications based

on cfd, Applied Thermal Engineering 26 (5-6) (2006) 604–612. doi:10.1016/j.applthermaleng.2005.07.003.

[23] Q. Dang Le, R. Mereu, G. Besagni, V. Dossena, F. Inzoli, Computational Fluid Dynamics Modeling of Flashing Flow in

Convergent-Divergent Nozzle, Journal of Fluids Engineering 140 (10), 101102 (05 2018). doi:10.1115/1.4039908.

[24] M. Palacz, J. Smolka, A. Fic, Z. Bulinski, A. J. Nowak, K. Banasiak, A. Hafner, Application range of the HEM approach

for CO2 expansion inside two-phase ejectors for supermarket refrigeration systems, International Journal of Refrigeration

59 (2015) 251 – 258. doi:10.1016/j.ijrefrig.2015.07.006.

[25] F. Giacomelli, F. Mazzelli, A. Milazzo, A novel cfd approach for the computation of r744 flashing nozzles in compressible

and metastable conditions, Energy 162 (2018) 1092 – 1105. doi:10.1016/j.energy.2018.08.050.

[26] A. Hosangadi, Z. Liu, T. Weathers, V. Ahuja, J. Busby, Modeling Multiphase Effects in CO2 Compressors at Subcritical

Inlet Conditions, Journal of Engineering for Gas Turbines and Power 141 (8) (03 2019). doi:10.1115/1.4042975.

[27] J. Bodys, J. Smolka, M. Palacz, M. Haida, K. Banasiak, Non-equilibrium approach for the simulation of co2 expansion

in two-phase ejector driven by subcritical motive pressure, International Journal of Refrigeration 114 (2020) 32 – 46.

doi:10.1016/j.ijrefrig.2020.02.015.

[28] M. Pini, A. Spinelli, G. Persico, S. Rebay, Consistent look-up table interpolation method for real-gas flow simulations,

Computers & Fluids 107 (2015) 178 – 188. doi:10.1016/j.compfluid.2014.11.001.

[29] E. Rinaldi, R. Pecnik, P. Colonna, Computational fluid dynamic simulation of a supercritical CO2 compressor performance

map, J. Eng. Gas Turb. Power 137 (7) (2015) 072602. doi:10.1115/1.4029121.

[30] A. Ameli, A. Afzalifar, T. Turunen-Saaresti, J. Backman, Effects of Real Gas Model Accuracy and Operating Conditions

on Supercritical CO2 Compressor Performance and Flow Field, Journal of Engineering for Gas Turbines and Power 140 (6),

062603 (01 2018). doi:10.1115/1.4038552.

[31] M. Nakagawa, M. S. Berana, A. Kishine, Supersonic two-phase flow of CO2 through converging–diverging nozzles for

the ejector refrigeration cycle, International Journal of Refrigeration 32 (6) (2009) 1195–1202. doi:10.1016/j.ijrefrig.

2009.01.015.

[32] M. Ishii, T. Hibiki, Thermo-Fluid Dynamics of Two-Phase Flow, Springer-Verlag New York, 2011. doi:10.1007/

978-1-4419-7985-8.

[33] Y. Fang, Advanced numerical simulations of two-phase CO2 ejectors, Ph.D. thesis, Universite catholique de Louvain

(2019).

[34] F. R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA Journal 32 (8) (1994)

1598–1605. doi:10.2514/3.12149.

[35] P. R. Spalart, S. R. Allmaras, A one-equation turbulence model for aerodynamic flows, AIAA Paper 92-0439 (1992).

doi:10.2514/6.1992-439.

[36] G. J. Otero R., A. Patel, R. Diez S., R. Pecnik, Turbulence modelling for flows with strong variations in thermo-physical

properties, International Journal of Heat and Fluid Flow 73 (2018) 114 – 123. doi:10.1016/j.ijheatfluidflow.2018.

07.005.

[37] J. Young, The condensation and evaporation of liquid droplets in a pure vapour at arbitrary knudsen number, International

40

http://doi.org/10.1016/j.applthermaleng.2021.116816
https://doi.org/10.1017/CBO9780511807169.010
https://doi.org/10.1243/095765005X31388
https://doi.org/10.1016/j.ijmultiphaseflow.2017.03.004
https://doi.org/10.1016/j.applthermaleng.2005.07.003
https://doi.org/10.1115/1.4039908
https://doi.org/10.1016/j.ijrefrig.2015.07.006
https://doi.org/10.1016/j.energy.2018.08.050
https://doi.org/10.1115/1.4042975
https://doi.org/10.1016/j.ijrefrig.2020.02.015
https://doi.org/10.1016/j.compfluid.2014.11.001
https://doi.org/10.1115/1.4029121
https://doi.org/10.1115/1.4038552
https://doi.org/10.1016/j.ijrefrig.2009.01.015
https://doi.org/10.1016/j.ijrefrig.2009.01.015
https://doi.org/10.1007/978-1-4419-7985-8
https://doi.org/10.1007/978-1-4419-7985-8
https://doi.org/10.2514/3.12149
https://doi.org/10.2514/6.1992-439
https://doi.org/10.1016/j.ijheatfluidflow.2018.07.005
https://doi.org/10.1016/j.ijheatfluidflow.2018.07.005


This is a preprint of the following article: Romei, A., & Persico, G., Computational fluid-dynamic modelling of

two-phase compressible flows of carbon dioxide in supercritical conditions, Appl. Therm. Eng., 2021.

The published article may differ from this preprint, and is available at: 10.1016/j.applthermaleng.2021.116816

Journal of Heat and Mass Transfer 34 (7) (1991) 1649 – 1661. doi:10.1016/0017-9310(91)90143-3.

[38] R. Span, W. Wagner, A new equation of state for carbon dioxide covering the fluid region from the triplepoint temperature

to 1100 k at pressures up to 800 mpa, Journal of Physical and Chemical Reference Data 25 (6) (1996) 1509–1596.

doi:10.1063/1.555991.

[39] M. De Lorenzo, P. Lafon, M. Di Matteo, M. Pelanti, J.-M. Seynhaeve, Y. Bartosiewicz, Homogeneous two-phase flow

models and accurate steam-water table look-up method for fast transient simulations, International Journal of Multiphase

Flow 95 (2017) 199 – 219. doi:10.1016/j.ijmultiphaseflow.2017.06.001.

[40] G. Persico, P. Gaetani, A. Romei, L. Toni, E. Bellobuono, R. Valente, Implications of phase change on the aerodynamics

of centrifucal compressors for supercritical carbon dioxide applications, in: Proceedings of the ASME Turbo Expo 2020,

no. GT2020-14988, 2020, pp. 1–12. doi:10.1115/GT2020-14988.

[41] K. Banasiak, A. Hafner, Mathematical modelling of supersonic two-phase R744 flows through convergingdiverging noz-

zles: The effects of phase transition models, Applied Thermal Engineering 51 (1) (2013) 635 – 643. doi:10.1016/j.

applthermaleng.2012.10.005.

[42] T. Adams, C. Grant, H. Watson, A simple algorithm to relate measured surface roughness to equivalent sand-grain

roughness, nternational Journal of Mechanical Engineering and Mechatronics 1 (2012) 66–71. doi:10.11159/ijmem.2012.

008.

[43] P. J. Roache, Quantification of uncertainty in computational fluid dynamics, Annual Review of Fluid Mechanics 29 (1)

(1997) 123–160. doi:10.1146/annurev.fluid.29.1.123.

[44] T. Flatten, H. Lund, Relaxation two-phase flow models and the subcharacteristic condition, Mathematical Models and

Methods in Applied Sciences 21 (12) (2011) 2379–2407. doi:10.1142/S0218202511005775.

[45] M. Pelanti, K. Shyue, A numerical model for multiphase liquid–vapor–gas flows with interfaces and cavitation, International

Journal of Multiphase Flow 113 (2019) 208 – 230. doi:10.1016/j.ijmultiphaseflow.2019.01.010.

[46] A. B. Wood, A textbook of sound: being an account of the physics of vibrations with special reference to recent theoretical

and technical developments, New York: The Macmillan company, 1941.

[47] P. A. Thompson, A fundamental derivative in gasdynamics, Physics of Fluids 14 (9) (1971) 1843–1849. doi:10.1063/1.

1693693.

[48] N. R. Nannan, A. Guardone, P. Colonna, On the fundamental derivative of gas dynamics in the vapor–liquid critical region

of single-component typical fluids, Fluid Phase Equilibria 337 (2013) 259–273. doi:10.1016/j.fluid.2012.09.017.

[49] P. A. Thompson, K. C. Lambrakis, Negative shock waves, Journal of Fluid Mechanics 60 (1973) 187–208. doi:10.1017/

S002211207300011X.

[50] M. Yazdani, A. A. Alahyari, T. D. Radcliff, Numerical modeling of two-phase supersonic ejectors for work-recovery applica-

tions, International Journal of Heat and Mass Transfer 55 (21) (2012) 5744 – 5753. doi:10.1016/j.ijheatmasstransfer.

2012.05.071.

41

View publication stats

http://doi.org/10.1016/j.applthermaleng.2021.116816
https://doi.org/10.1016/0017-9310(91)90143-3
https://doi.org/10.1063/1.555991
https://doi.org/10.1016/j.ijmultiphaseflow.2017.06.001
https://doi.org/10.1115/GT2020-14988
https://doi.org/10.1016/j.applthermaleng.2012.10.005
https://doi.org/10.1016/j.applthermaleng.2012.10.005
https://doi.org/10.11159/ijmem.2012.008
https://doi.org/10.11159/ijmem.2012.008
https://doi.org/10.1146/annurev.fluid.29.1.123
https://doi.org/10.1142/S0218202511005775
https://doi.org/10.1016/j.ijmultiphaseflow.2019.01.010
https://doi.org/10.1063/1.1693693
https://doi.org/10.1063/1.1693693
https://doi.org/10.1016/j.fluid.2012.09.017
https://doi.org/10.1017/S002211207300011X
https://doi.org/10.1017/S002211207300011X
https://doi.org/10.1016/j.ijheatmasstransfer.2012.05.071
https://doi.org/10.1016/j.ijheatmasstransfer.2012.05.071
https://www.researchgate.net/publication/349951641

	Introduction
	Computational framework
	Mixture model
	 Thermodynamic modeling

	Barotropic model

	Reference two-phase expanding flows
	Results
	Cavitating flows
	Condensing flows

	Mixture speed-of-sound formulation
	Conclusion
	Tabular results



