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Occupant behaviour is an important source of uncertainty in building energy performance simulations.
This has led to the development and integration of different modelling approaches that represent the
complex, stochastic nature of human-building interaction. Yet, several barriers prevent their wide use
in simulation-aided building design. The procedures and practical solutions for integrating occupant
behaviour models are segmented through the literature. Accordingly, this paper examines the state-of-
the-art in the application of occupant behaviour models. Based on the PRISMA methodology, the litera-
ture is critically analysed to: i) identify and map the barriers between theory and application; ii) propose
a simulation framework establishing the steps for integrating occupant behaviour models into building
performance simulations; iii) synthetise practical solutions and highlight remaining challenges towards
a simulation framework adequately integrating occupant behaviour. The paper stresses the added value
within the decision-making process at different building design stages. Furthermore, key elements for
identifying the appropriated modelling approach for each occupant behaviour aspect are presented con-
sidering factors such as type of behaviour, building type, and spatial and temporal scale. Ultimately, this
critical review establishes guidelines for the integration of occupant behaviour into building design prac-
tice and defines a research pathway for bridging the gap between the OB research field and the
simulation-aided building design practice.
� 2021 The Authors. Published by Elsevier B.V. This is an open access articleunder the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
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1. Introduction

1.1. Motivation

Building Performance Simulation (BPS) tools are extensively
used to support the decision-making process in the building design
practice. Yet, a disagreement between predicted and actual build-
ing energy performance is often observed, the so-called perfor-
mance gap [1]. As reviewed by Shi et al. [2] this gap could vary
by a factor between 0.2 and 4, where in most cases measured
energy consumption is higher. Assumptions related to occupant
behaviour (OB), weather deviations, and discrepancies between
design vs. as-built are acknowledged as main causes [2]. Regarding
OB, its representation – comprising both occupants’ presence and
actions (OPA) – in BPS in terms of static schedules and occupant-
related power densities is oversimplified. Occupants are typically
described as homogeneous and passive agents although they are
diverse and actively interacting with the building and building sys-
tems [3].

To overcome this challenge, in the last four decades several
methods for modelling OPA have been developed [4] aiming at
capturing the stochastic nature of the behaviour, the diversity of
the occupants, and the two-way interaction between the occu-
pants and their built environment [5]. Notably, IEA-EBC Annex
66 [6] and its follow up, Annex 79 [7] have motivated an interna-
tional effort for advancing on the OB research. As a result, over 310
OPA models have been produced to better describe actions such as
window, shading, and lighting operation, thermostat adjustment,
appliance use, and clothing adjustment [4].

Despite these efforts, advanced OPA modelling approaches are
still mainly applied by researchers and developers as several barri-
ers prevent their widespread application [8]. Indeed, an interna-
tional survey on current OB modelling approaches revealed that
most interviewed practitioners consider OB the most important
uncertainty source in BPS. However, BPS typically relies on deter-
ministic schedules or rule-based models [9].
1.2. Existing reviews

Several review articles assessed crucial aspects of the OB mod-
elling research field. For instance, Berger et al. [10] examined stud-
ies claiming OB as mainly responsible of the performance gap and
assessed their evidence. Harputlugil et al. [11] focused on describ-
ing different categories of occupants, understanding occupant́s
attributes, and exploring the interaction between humans and
buildings. Similarly, Wu et al. [12] presented formal definitions
for OB, drivers motivating OB, and the impact of OB on building
energy analysis. They also started exploring BPS tools representing
common OB. Stazi et al. [13] deepened the understanding of OB
drivers and the influence of environmental and time-related fac-
2

tors. They reviewed how this information is translated into OB
model variables. Different studies focused on the formalisms and
application of OB modelling approaches [14–18], describing mod-
elling requirements for different applications and related mod-
elling approaches identifying their strengths and disadvantages,
or giving a broad view of the field and the OB impact on energy-
saving potential. Osman et al. [19] focused on the exploitation of
Time Use Survey (TUS) data for developing OB models and their
application on building energy use. Furthermore, while some
researchers focused on OB modelling applied to specific contexts
such as residential buildings [20], offices [3], and urban scale
[21,22], Carlucci et al. [4] performed a systematic review on the
modelling approaches and models developed for a wide range of
building types, climates, and occupant actions.

Regarding the integration and application of OB models in the
building design process, Yu et al. [23] focused on the main criteria
for comparing and selecting modelling approaches, as well as
improving the performance of OB models. Hong et al. [1] reviewed
integration approaches of OB models into BPS, their advantages
and shortcomings, how to choose them depending on the OB
model, and related commercial software capabilities. Finally, Azar
et al. [5] investigated simulation-aided occupant-centric design.
They established and highlighted fundamental concepts and defi-
nitions for occupant-centric design, supporting mechanisms, and
design methodologies.

Despite these efforts, most of the articles are focused on the OB
research field and few on its application within simulation-aided
building design. The reasons, challenges, and solutions for applying
OB models are segmented across the literature.
1.3. This review: Objectives and methodology

This review aims at establishing a research pathway for bridg-
ing the gap between the OB research field and its application in
simulation-aided building design. To the knowledge of the authors,
this is the first review discussing in detail proposed and practical
solutions to overcome the barriers preventing extensive use of
advanced OB modelling approaches. This information is segmented
throughout the literature without a clear proposition of the options
and steps users need to address, from problem definition to
informing the design decision, when implementing advanced OB
modelling approaches. To this end, this critical review aims at
answering:

i. What is the added value of considering more advanced OB
models in the simulation-aided building design process?

ii. How to choose the most appropriate OB modelling approach
and model depending on the design purpose?

iii. How can advanced OB models be integrated into BPS acces-
sible and useful for supporting the decision-making process?
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To clarify, in this paper and as stated by Becker and Parker [24]
‘‘a simulation enacts, or implements, or instantiates, a model. A
model is a description of some system that is to be simulated,
and that model is often a mathematical one. A system contains
objects of some sort that interact with each other. A model
describes the system in such a way that it can be understood by
anyone who can read the description and it describes a system at
a particular level of abstraction to be used”.

This critical review is divided into two parts. In the first part, a
literature survey was performed to draw a general view of the
simulation-aided building design field and OB research field, thus
identifying the barriers. Exploring key words such as occupant
behaviour, building design, energy, performance, practice, application,
and industry, 18 review articles published after 2015 focusing on
the OB field and 12 articles focusing on simulation-aided building
design processes were identified and included in Section 2.

As for the second part, a more exhaustive literature survey was
performed to: i) identify novel and practical solutions to the chal-
lenges BPS users need to address for applying advanced OB repre-
sentations within the building design process; ii) identify most
urgent matters that would transform the current complex steps
faced by an end-user into a streamlined simulation process seam-
lessly integrating OB (see Section 3). Using the search engine Sco-
pus, combination of the keywords occupant, behavio*, building,
model*, simulation, energy, and performance, and based on the
methodology PRISMA (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses) [25], four steps were performed,
namely identification, screening, eligibility, and inclusion of stud-
ies (see Fig. 1).

The asterisk was used to simultaneously capture word variants
(singular and plural as well as differences between British and
Fig. 1. PRISMA workflow - State-of-the-art on the application of OB models.

3

American English) such as in behavio* for including ‘behaviour’
and ‘behavior’. Besides, additional articles known to the authors,
and articles citing or being cited by the articles were manually
added to the collection.

The selected articles included in this review go beyond the
proposition of models but compare different modelling
approaches, apply models from the literature in different contexts,
or present clear model evaluation, validation, or integration
methodologies. Special attention was given to studies demonstrat-
ing the application of advanced OPA models in simulation-aided
design practice.

Accordingly, the rest of the article is structured as follows: Sec-
tion 2 presents a general view of the simulation-aided building
design field, the OB research field and maps the research gap
between them; Section 3 presents solutions for bridging this gap;
Section 4 synthetises the findings and highlights urgent matters
requiring further research; Section 5 gives the main conclusions.
2. Simulation-aided building design & OB research field

2.1. On simulation-aided building design practice

BPS is the use of computational models to represent physical
characteristics, operation and control strategies of a building and
its energy systems [26]. It is adopted by building design practition-
ers i.e. architects, energy modelers, engineers, etc. [27] to reduce
uncertainty in the performance of the building and thus assist
the building design decision-making process [26]. Its application
covers a range of purposes such as performing load calculations
to select and size HVAC systems; demonstrating code compliance;
evaluating design scenarios [28]. To better understand the differ-
ent simulation requirements, input and output data, and simula-
tion aims, Table 1 (adapted from [29]) presents different building
design stages and possible simulation scenarios. This information
is necessary to understand the current simulation-aided building
design practice and hence the needs of the practitioners.

Different disciplines play a role in the building design process
(e.g., architects, energy modelers, HVAC engineers). Practitioners
can work under different collaborative approaches, for example,
the engineer can assist the architect, the practitioner can be both
engineer and architect, or they can be partners [30]. As a result,
there is a synergy between practitioners with different skills,
knowledge, and expertise levels [29], where not necessarily all of
them are familiar with the resources and limitations of BPS tools
and how to interpret their outputs [31]. Furthermore, modelling
requirements are different depending on the design stage and type
of simulation to be performed [32]. Thus, BPS tools need to produce
initial results from a rough building representation and limited
input data at early design phases as well as allow for detailing
building components in more advanced design phases [30].

Regarding OB, its related uncertainty is recognised as a major
challenge within the building design field. Practitioners may tend
to base their assumptions on building energy codes and standards
which rely on outdated and simple OB representations not suitable
for every case [26]. As observed by O’Brien et al. [9], despite prac-
titioners often acknowledge this problem, they may not implement
advanced OB modelling approaches due to barriers such as time
constraints, the substantial effort required, and lack of understand-
ing and education on the topic. As a result, they favour increasing
OB modelling requirements by standards together with modelling
capabilities in BPS tools. Consequently, building designers need
data, models, tools, case studies and standards that support their
practice including the human dimensions of energy use [33].

Finally, it has been stressed that more attention should be paid
to BPS outputs. Practitioners prefer clear, concise, readable, and



Table 1
Aim, inputs and outputs of BPS at different design stages. . Adapted from [29]

Conceptual Design Preliminary Design Detailed Design Code Compliance

General
aim

Examine alternative strategies and its
impact on:� Achieving the required
indoor environment� Investment and
life-cycle cost� Energy consumption�
Space requirements for HVAC systems

Specify technical solutions that fulfil
the indoor air quality and cost targets
of the project:� Definition of main
HVAC zones� HVAC central
plantSpecific shading systems

Definition of technical details and
detailed building design and its
systems.

Demonstrating the building
design is compliant with
requirements defined by
energy codes or green
building certifications

Purpose of simulations � Impact of building orientation and
envelope configuration on energy
economy and life-cycle;� Evaluation of
architectural concepts involving
alternative methods of energy
savings;� Day lighting and electrical
lighting;� Air flows in open areas of
office buildings;� Natural ventilation
air flows.

� Computation of the cooling
requirements of systems and rooms;�
Comparison of shading alternatives�
Comparison of HVAC system
alternatives;� Analysis of the zoning of
HVAC systems;� Sizing of the central
HVAC plant;� Daylighting and
electrical lighting design;� Air
infiltration;� Achievement of
satisfactory indoor climate.

� Detailed sizing of air
handling and cooling
equipment;� Detailed
dimensioning of piping and
ductwork;� Acoustic
analysis of ductwork;�
Calibration and balancing of
the piping and ductwork;�
Simulation of control
strategies;� Sizing of special
systems;� Special
evaluation of comfort.

Calculation
of key

performance indicators:� Energy
related;� Comfort related.
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well documented information presented in a visual format [29].
This is necessary to promote an effective communication with
the different groups of stakeholders involved in the building design
decision-making process [31].

Summarizing, to promote the integration of OB modelling in the
simulation-aided building design field, practitioners need the
proper motivation, knowledge, and tools. In this view, it is needed
to:

i. Understand the added value of including OB models in the
design process

ii. Have policies, regulations, and building standards that pro-
mote and guide in the use of OB models within the building
design process

iii. Be educated and guided on when and how to use the OB
models considering different simulation purposes and
design stages (Table 1)

iv. Develop BPS tools that facilitate the integration and applica-
tion of OB models whose outputs effectively communicate
the results.

2.2. Progress in the OB research field

The OB research field can be described using the occupant-
building interaction energy behaviour loop (see Fig. 2) consisting
of the three, possibly iterated, steps investigate, understand, improve
[17]. This schema describes a first stage of investigationwhere data
collection techniques are used to gather information about the
occupants and how they interact with the building as defined by
their presence and actions. The latter include on the one hand
adaptive behaviours such as window, light, blind and thermostat
operation, intended to adapt the indoor environment, and on the
other hand non-adaptive actions such as appliances use, which
are not driven by physical discomfort but by contextual factors
(non-physical factors affecting the behaviour, habits and attitudes
of the occupants) [3]. Different studies have focused on sensing
technologies [15,34,35], highlighting the link between energy con-
sumption data and occupancy monitoring as opportunity for indi-
rectly identifying behaviours such as appliance use [34]; proposing
a categorization framework for OPA-sensing technologies [35];
emphasising the importance of sensor selection and placement
arguing that not only environmental variables (e.g., CO2 concentra-
4

tion and temperature) should be considered but also factors such
as room orientation to exclude interferences [15]. Likewise, in-
situ monitoring methods such as sensor-based (i.e., to detect occu-
pant presence, measure environmental variables, and capture
occupant actions on building systems), model-based (e.g., estimat-
ing occupant presence from CO2 measurements), and surveys have
been explored. As a result, the significance of conducting a moni-
toring campaign and a documentation process of meaningful infor-
mation has been pointed out [36]. Further, surveys are recognised
to have potential of revealing the role of socio-economic, cultural
and psychological factors in the human-building interaction
[37,38]. Finally, developments in immersive virtual reality [39]
and the evolution of the Internet of Things (IoT) and Information
and Communication Technology (ICT) [33] have made available
an increasing amount of data to understand the energy-related
behaviour of occupants.

In the understanding stage, the data collected is analysed and
modelled to identify influential factors motivating OB and quanti-
fying its impact on building performance [17]. Here, an important
milestone was the establishment of the DNAS (drivers – needs –
actions – systems) ontology to describe energy-related OB where:
the drivers identify the motivation behind a behaviour; the needs
specify what occupants look to fulfil; actions are carried out by
the occupants; the building systems are acted upon by the occu-
pants [40]. Recently, this ontology has been extended to include
socio-economic characteristics, geographical location, subjective
values, occupant activities, and collective and individual adaptive
actions [41]. Accordingly, several reviews focused on the drivers
behind occupants’ actions exploring: fan use in different types of
buildings [42]; light-switching behaviour in office buildings [43];
how climatic factors, social and personal attributes, architecture
and interior design features, energy regulations and economic
parameters affect the energy-related OB [12]. As a result, complex
interactions have been noticed requiring the combination of mul-
tidisciplinary approaches, cognitive behavioural methods, and cog-
nitive complex theory to provide a better understanding. This is
because OB is influenced by: environmental, time-related, contex-
tual, physiological, psychological, social, and random factors (i.e.,
uncertain, not quantifiable factors) [13].

The increasing knowledge on drivers of energy-related OB has
led to the production of a myriad of modelling approaches and
models thus, a large body of literature has focused on classifying
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them and identifying their limitations and opportunities. Based on
the research goal OB models are classified as: agent-based mod-
elling where agents are simulated to assess the interaction with
each other and the external environment; statistical analysis per-
formed to discover a numerical relationship between OB and for
example indoor/outdoor environmental factors; data mining
approaches used to learn behavioural patterns from information
such as appliance energy consumption; stochastic process modelling
developed to estimate occupancy state (e.g., whether an occupant
is present or not) and related energy consumption [15]. Further,
depending on the action modelled, they are differentiated between
occupancy, adaptive, and non-adaptive models [3]. OB models can
be also classified depending on their level of complexity (listed
from the lowest to the highest level): fixed schedules, data-based
(non-probabilistic) models, stochastic (probabilistic) models, and
agent-based models (ABM) [8]. Ultimately, more than 300 models
have been developed and included in dynamic open-access data-
base [4].

In the improving stage (see Fig. 2), simulations are performed to
quantify the impact of the occupants on energy-saving strategies,
low energy building, or robust building design [17]. In this context,
OB models can be integrated to the BPS program using a direct
input or control method, a built-in OB model, a user function or cus-
tom code, or a co-simulation scheme [1] (see Section 3.5 for details).
On a higher-level perspective, the simulation-aided occupant-
centric building design process has been explored [5]. In this con-
text, occupant-centric refers to considering the occupants and their
well-being as the main priority throughout the building life cycle.
Accordingly, occupant-centric metrics of building performance are
defined covering aspects such as thermal comfort, indoor air qual-
ity (IAQ), well-being (i.e., physical, mental, emotional, and social
health of a person), space planning, and energy use [5]. Finally,
design strategies such as parametric design, optimization, and
probabilistic design have been explored towards promoting an
Fig. 2. Occupant-building interaction energ

5

evolution from simple parametric design – where best/worst sce-
narios are employed – to probabilistic design in which stochastic
models can quantify the likelihood of extreme results [5].

2.3. The gap between OB research and OB models application

This section presents the main research gaps reported in the lit-
erature that need to be addressed towards promoting the integra-
tion of OB models in the simulation-aided building design process.
To this end, three knowledge domains are defined: the fundamen-
tal knowledge domain i.e., fundamental knowledge required for
completely understanding the different aspects of the human-
building interaction; the integrated knowledge domain i.e., the
knowledge require for integrating the models within the design
process; supporting tools i.e., the OB capabilities of BPS tools and
post-processing modules. Table 2 presents the research gaps, their
corresponding knowledge domain and related BPS user’s need.
Some gaps are not directly associated with a user’s need, neverthe-
less they are presented in Table 2 since they need to be addressed
to resolve other research gaps.

Starting in the fundamental knowledge domain of the three
components of the human-building interaction research loop
(Fig. 2) an urgent need for standardized protocols is required. Nota-
bly, in the data collection area monitoring campaigns require stan-
dardized procedures for their design, execution, and
documentation. This would allow to properly compare the findings
from different studies. As a result, a deeper understanding of the
energy, comfort, and wellbeing-related OB would be achieved,
assessing the influence of contextual factors on the behaviour. Fur-
ther, more data and from other domains than the ones widely cov-
ered in the literature (i.e., geographically from developed countries
in the northern hemisphere; according to the building use, residen-
tial and commercial buildings; regarding occupant actions, win-
dow, lighting, shading, HVAC systems operation) [4], is required
y behaviour loop. . Adapted from [17]
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to allow developing models for missing contexts, testing the scal-
ability of developed models and defining a hierarchy of actions.
The last aspect is fundamental for the integration of OB models
into the design practice [17] (see Section 3.5).

Developments in the data collection field go in parallel with the
evolution of the modelling front where it is urgent to establish
standardized guidelines and systematic procedures for developing
new models and documenting them [13,45]. Similarly, standard-
ized and methodical model evaluation and validation protocols
are required [4,14,17,34,45]. Most of the models are developed
splitting a single dataset into two parts for model development
(training) and internal validation, respectively, and are therefore
presented without proper external validation (including data from
different contexts). Additionally, developed models must be tested
in different building types, locations, seasons, etc. All in all, the
robustness, scalability and transferability of OB models is not well
understood [5,13,14,20,34].

In the simulation field three main aspects need to be addressed
[5,44]. First, it is essential to develop occupant-centric metrics with
corresponding guidelines for their implementation. Currently, the
scope of the metrics used is limited to energy and comfort aspects,
which are normalised by building features instead of occupant-
related factors. Second, the development and demonstration of
design methodologies using advanced OB modelling approaches
need further investigation. Third, the advances in the OB field need
to be demonstrated in real scenarios and building design applica-
tions. Filling these gaps will allow designing buildings that are
robust to OB while reducing the energy consumption and promot-
ing occupants’ wellbeing.

Regarding the integrated knowledge, several aspects emerge.
First, guidelines for model integration need to be formulated
together with the model documentation [13,15,34,45]. The lack
of such guidelines results in researchers using different integration
strategies, presenting the models without a simulation framework,
and increasing the difficulty of making models interchangeable.
Second, the most suitable modelling approach depends on the sim-
ulation aim and context, thus requiring the definition of qualitative
and quantitative selection criteria [5,8]. Equally important, new OB
modules need to be developed to include advanced modelling
approaches in current BPS software [33].

Finally, based on the information presented in this section, a
conceptual map of the main issues that need to be addressed for
integrating OB modelling into the simulation-aided building
design practice is presented in Fig. 3.
Table 2
Research gaps reported in the literature (Cont.)

Ref. Research Gap Objective

[4] OB research in more contexts: Climates zones, building
types, OB aspects, countries

Allowing the un
meeting specific

[34] Understanding influence of building size on occupants’
energy behaviour

[14] Lack of new models that meet the specific needs for the
application

[14] Challenge of training and validation of the developed model Understanding a
[4] Lack of standard model testing framework
[4] Lack of evaluation and validation protocols of OB Models
[34] Simulation research is recommended to test and verify the

assumptions used to develop the models
[17] Lack of standardization of OB model development
[17] Lack of verification of behaviour models
[8] Lack of model validation
[13] Lack of standardized methods for modelling OB and

validating OB models
[15] Improving validation of OB models

6

3. Integrating occupant behaviour in BPS

Following a logical workflow with the steps a user would need
to address with the knowledge and tools available today, the liter-
ature is analysed to identify the propositions for facing each of the
steps (Sections 3.2 - 3.6) and to draw a research pathway towards a
full integration of advanced OB modelling approaches into the
simulation-aided building design process. Yet, the discussion starts
in Section 3.1 highlighting the added value of including OB models
and supporting design practices.

3.1. Value proposition

It is necessary to explicitly review the advantages of OB models
since the different stakeholders related to the building design prac-
tice are often not well informed about the added-value of this
approach, the contractors are typically not adding resources, nei-
ther budget nor time, to the projects for this, and codes, standards,
and green certifications do not yet require or guide the application
of advance OB models [9,46–48].

Current standard schedules and nominal densities convention-
ally used to represent OB oversimplify human-building interaction
[4]. As a result, buildings do not achieve the desired performance;
building systems are over- or undersized; payback periods are
wrongly estimated and investment decisions misled [32,49]. With
Advanced OB modelling techniques modellers would have the abil-
ity to explore different occupant-related scenarios, assess building
resilience, and quantify the potential for adaptive behaviour to
achieve comfort in extreme situations [46]. A summary of studies
highlighting the added value of using OB models in the building
design practice is presented in Table 3.

As shown in Table 3, the benefits of OB models pertain different
stages of the building life cycle. In early architectural design or con-
ceptual design stages, it has been shown [50–52] that advanced OB
modelling can help decide over factors such as aspect ratio and ori-
entation of the building, roof type, glazing fraction, position of the
windows, shading type and configuration towards reducing energy
consumption, enhancing comfort, or promoting the benefits of nat-
ural ventilation. In other words, dynamic OB models allow the
designer to assess how design alternatives influence adaptive
behaviours to maximise comfort while reducing energy consump-
tion. Concerning a more advanced design stage, mathematical and
statistical techniques (e.g., factorial design) can be used together
with advanced OB modelling approaches to find the most relevant
Knowledge
Domain

Practitioners need

derstanding and modelling of OB for
needs in different contexts.

Fundamental Available models

ccuracy and performance of OB models. Fundamental Models’ strengths
and limitations
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parameters affecting specific performance indicators (PIs), e.g.,
heating and cooling demand. By accounting for the occupant-
related uncertainty and describing PIs with probability distribu-
tions or expected ranges, it is possible to achieve more robust
(i.e., the variability of the PI against OB is reduced) and resilient
designs [32,53]. Concerning building systems, OB should be consid-
ered in their selection and sizing process. Occupants’ preferences
in terms of the indoor environment, occupancy, appliance use
levels, and the control flexibility the occupants have with each sys-
tem influence system performance. An advanced OB representa-
tion gives designers the opportunity of accounting for the
occupants’ diversity and their interaction with the building sys-
tems. Modellers are better informed to find more comprehensive
and optimised solutions within an expected range of OB than if
they use a single, averaged or conservative deterministic schedule
[54,55].

The evaluation of IEQ is another important front that can profit
from advanced OB modelling approaches. For example, with
stochastic models capturing the occupant interaction with shading
systems, daylight levels and glare can be realistically predicted for
proper visual comfort assessment. This information can be used to
inform interior designers regarding the best desk layout and seated
positions [56]. By including realistic lighting and blinds use in the
design of lighting and shading systems, appropriate design deci-
sions can be taken improving

visual comfort [62]. Knowing the occupants’ diverse needs and
preferences regarding indoor air quality and thermal comfort, the
most suitable ventilation strategy can be determined [63].

Energy-related OB has a high relative impact on the energy per-
formance of nearly zero-energy buildings (NZEBs) [49,57], plus-
energy buildings etc., making the use of advanced OB models par-
ticularly important in this context. To ensure that the designs
achieve desired performance targets and that they are code-
compliant, the uncertainty added by the occupants needs to be
minimised and the design robustness to the OB maximised [58].
To this end, multiple OB patterns can be used to generate PI prob-
ability distributions, and stochastic models can capture the influ-
ence of design alternatives over the occupants and vice versa,
Fig. 3. Conceptual map
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hence, the building performance and its potential variation can
be realistically predicted [57–59]. Furthermore, the electricity
demand can be better estimated so that on-site electricity genera-
tion (i.e. using PV panels) can be properly designed [49]. Finally,
energy conservation measures (ECM) and retrofit strategies can
be better designed and evaluated using advanced OB modelling
approaches. It has been demonstrated that energy savings associ-
ated to ECMs could be significantly overestimated using traditional
modelling approaches. This in turn misleads the economic assess-
ment, i.e., Net Present Value (NPV) is overestimated [60,61,64] and
the ECM prioritization process wrongly executed [65].

To summarize, there are three main characteristics of the OB
models that add value to the building design process over standard
representations (see Table 4).

3.2. Identifying influential occupant behaviour

The BPS process integrates aspects of building design, weather
and environmental information, and OB to estimate building per-
formance. The complex and dynamic interaction between these
elements and the non-linear nature of involved physical phenom-
ena make the BPS process challenging [66]. Additional complexity
from advanced OB models can enhance the accuracy and robust-
ness of BPS [4], yet a balance between accuracy and complexity
is required to avoid the so-called curse of dimensionality, i.e.,
introducing too many parameters with respect to available data.
This is an issue that leads to further difficulty when identifying
the most significant parameters within the model, so that calibrat-
ing or using BPS models become demanding tasks [8,66]. Conse-
quently, it is essential to identify the elements of OB to which
the BPS process is more sensitive, so that each element can be
determined with the appropriate level of accuracy. Nonetheless,
it has been demonstrated that the impact of the OB is case- and
context-specific and that defining general guidelines is impossible
[32] thus, identifying the most relevant aspects of the OB needs to
be an integral step of the BPS procedure.

Sensitivity analysis (SA) and uncertainty analysis (UA) are used
to reduce model complexity associated with BPS [23]: simplifying
- OB research gap.



Table 3
Summary of studies showing added-value from OB models.

Ref. Simulation aim Design
stage

OB Models Highlights

[32] Best performing shading strategy Preliminary
/ Detailed
Design

Dynamic and stochastic models for
lighting and blind operation

Without the OB models suboptimal strategies would be chosen.
Dynamic models captured the influence of the design
alternatives on OB. Therefore, the design decision-making
process was better informed.

[50] Optimize façade design and
fenestration geometry
considering energy use

Conceptual
design

Stochastic models for: Occupancy,
lighting and equipment use, thermostat
adjustment and blinds operation

Building’s design alternatives could lead to changes in the
indoor environment. Occupants are encouraged to use building
components (e.g., blinds) towards reducing energy use. Optimal
configuration calculated using dynamic OB (two-way human
building interaction).

[51] Evaluating thermal comfort Conceptual
design

Stochastic models for window operation Stochastic models can in principle better capture the dynamic
nature of occupants’ actions, the study showed that a standard
model can over-predict comfort.

[52] Optimize façade design and
fenestration geometry for
thermal comfort

Conceptual
design

Stochastic models for window operation The deterministic model likely overpredicted thermal comfort
and underestimated the need for cooling measures. The
stochastic approach seemed to better model the dynamic
nature of occupants’ actions and optimal solutions resulted in
more shading elements.

[53] Identifying the most influential
aspects of energy needs

Conceptual
design

Stochastic models for presence; windows,
shading, and lighting use; heating set-
point temperature adjustment.

Parameters identify for further optimisation: for example,
intensive opening of windows and the temperature set-point
had a more significant effect on heating needs than the
orientation or the performance of the building.

[54] Defining HVAC systems and
evaluating performance of
ground source heat pumps

Detailed
design

Probabilistic model for Air conditioning
operation

This study investigated thermal imbalance, building load, and
heat pump performance. Information that can be used to inform
design of HVAC systems and heat pumps considering the
occupant behaviour, in this case the operation of the air
conditioning units.

[55] Sizing HVAC systems Detailed
design

Stochastic model for generating lighting,
plug-load, and occupancy profiles

The standard schedules used in practice are reason- able,
though conservative compared to measured values for
predicting peak internal gains, relative to stochastic synthetic
schedules.

[56] Identifying optimal occupant’s
seating position and orientation
considering visual comfort

Interior
design

Blinds operation model Performance prediction based on simulation using simple
assumptions may deviate from actual performance and lead to a
wrong decision in selecting appropriate furniture layout.
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a model by screening parameters; performing robustness analysis;
validating a model; and evaluating the model’s sensitivity to errors
[67]. SA is a method that quantifies how the uncertainty of the
inputs is propagated to the uncertainty of the output. It focuses
on ranking the input parameters regarding their contribution to
the output uncertainty. On the other hand, UA analyses the
response of the simulation output considering, along with input
variations, the lack of knowledge and errors of the model. Together,
they quantify uncertainties in the inputs and outputs of the BPS
process [23,66]. In this view, ÓNeill et al. [66] aimed at establishing
systematic guidelines for the application of SA discussing: input
categories, such as urban-level and building-level design parame-
ters, building envelope characteristics, ventilation and infiltration
parameters, HVAC and other mechanical systems, OB aspects, eco-
nomic factors, weather information, control strategies; output cat-
egories, namely building load and energy consumption, occupant
thermal and visual comfort, indoor environmental factors, outdoor
environmental factors, economic factors, equipment performance;
probability density functions (PDFs) associated to uncertainties;
sampling methods to propagate the uncertainty of the inputs
through the whole model; SA methodologies, such as screening,
local, and global approaches; available tools for performing such
SA studies (readers are referred to [66] for details).

As stressed by Yu et al. [23] there is a limited cover of SA and UA
studies dealing with OB parameters. They showed that the main
focus of SA and UA studies on OB is understanding the impact of
internal gains and presence while adaptive behaviours are
assumed to be fixed scenarios. These studies assume occupancy
scenarios and probability distributions for occupant-related inputs
or use synthetic profiles from OB models. Further, ÓNeill et al.
showed that OB is mostly considered together with building envel-
ope and mechanical systems parameters to understand its impact
8

on building load and energy consumption as well as occupants’
thermal and visual comfort.

SA and UA studies might be infeasible within the simulation-
aided building design practice because of the computational cost
and time required i.e., large amount of runs required to evaluate
all the parameter variations. Alternatively, a fast screening method
was proposed for identifying the most relevant OB aspects as part
of the fit-for-purpose strategy developed by Gaetani et al. [32] for
choosing the most suitable modelling approach (for details see Sec-
tion 3.3). It quantifies in one simulation the influence of OB
aspects. Instead of using different OB scenarios, it calculates impact
indices for each aspect of the OB, which are expressed in terms of
ratios extracted from the building energy balance.

3.3. Choosing the most suitable OB modelling approach

For the most influential aspects of the BPS, the practitioner have
the option of improving the estimations to reduce epistemic uncer-
tainty or improving their representation to better account for their
uncertainty [32,46]. As illustrated in Section 2.3, guidelines for
choosing the most suitable model are still missing. To this end, this
section discusses the findings reported in the literature regarding
the application of advanced OB models considering: type of beha-
viour (e.g., adaptive behaviours) [3,4,32,68–71]; building design
stage [3,18,23,55,65,72–77]; spatial scale of the study, i.e., whether
it is at room or building level [3,9,23,65,78]. This is because the
aforementioned dimensions dictate the modelling requirements
in terms of resolution, complexity, and accuracy [23,32,79].

Advanced OB modelling can be static or dynamic regarding the
interaction with the BPS tool. The former approach generates
inputs for the building energy model at the beginning of the simu-
lation, while the latter has continuous and two-way interaction



Table 4
Potential of OB models.

Two-way human-
building interaction

Assessing how design alternatives influence adaptive behaviours to maximise
comfort while reducing energy consumption

Uncertainty in PI Estimating what is the range or expected value of the building performance
considering occupants diversity - e.g., Probability distribution of PI

Robustness against
OB

Assessing what is the impact of the OB on the performance of different design
alternatives
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with the simulation, i.e., at each time step the output of a dynamic
OB model affects the simulation, which in turn generates inputs for
the OB model [65]. Therefore, presence and non-adaptive beha-
viours, which are mainly driven by contextual factors (e.g., occu-
pant́s routines), are better represented by static models. Instead,
depending on the degree of accuracy required, adaptive behaviours
can be characterized either by static or dynamic models. For exam-
ple, when estimating the total annual energy consumption of a
building stock, the averaging effects of OB at large scales may allow
the use of static models. In contrast, if the aim of the study is esti-
mating the distribution of the peak load of a building, the interac-
tions of the occupants with building systems such as thermostats
and windows become highly relevant requiring dynamic models
[3,9,23,65,78].

Presence and non-adaptive behaviours are typically modelled
by schedules, discrete-time Markov models, and survival models
[3]. Schedules can be fixed corresponding to standards (e.g., ASH-
RAE Standard 90.1), according to monitoring data, or considering
different types of occupants (e.g., high/low occupancy scenarios)
[3,68]. Markov-chain models predict the likelihood of a state to
happen depending on the state of the previous time step together
with state transition probabilities. The states can be defined as ar-
rivals, departures, and breaks for office buildings [3] while in resi-
dential buildings they can be defined, for instance, as at home
and active, at home and sleeping, not at home [69]. Survival models
estimate the time until an event happens, such as considering the
arrival time, when the occupant will leave, or how much time
passes until the TV is turned off after turning it on [70,71]. Adap-
tive behaviours can be modelled using schedules, rule-based mod-
els (i.e., deterministic models), stochastic models such as Bernoulli
models, discrete-time or discrete-event Markov models, and data-
9

driven models based on machine learning techniques such as arti-
ficial neural networks, deep learning algorithms, and decision trees
[3,4,32]. Furthermore, it has been highlighted that despite survival
models are better suited for presence and non-adaptive beha-
viours, they can be modified for adaptive behaviours. However,
they are only recommended for infrequently executed actions such
as shading systems use. This is because the survival curves are
given at particular environmental conditions that can be signifi-
cantly influenced by the adaptive behaviours [3].

Concerning building life cycle stages, some suggestions are pro-
posed for specific modelling approaches. For example, Bernoulli
models (i.e., low complexity stochastic models) predict the likeli-
hood of the state of a building system given defined predicting
parameters [73]. Since they are computationally efficient and do
not require much information, they are suitable for estimating
the performance at the whole building level during early design
[74]. However, they should not be used for comparing design alter-
natives or quantifying occupant comfort metrics. This is because
generally Bernoulli models do not use indoor environmental condi-
tions as predicting variables. Therefore, the impact of design alter-
natives on the behaviour cannot be captured [3]. Moreover, these
models predict the state of the building rather than the occupant
action (e.g., having a window open vs. an occupant opening a win-
dow). Thus, they cannot predict the number of interactions
between the occupant and the building systems as a proxy for
occupant comfort [23]. An ABM represents the occupants as indi-
vidual agents capable of interacting with other agents and their
surrounding environment. The agents are characterized by per-
sonal attributes and preferences along with rules that define their
interactions [18,72]. In this way, this modelling approach can be
used to represent with a great level of detail the OB and its rela-
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tionship with the building performance considering not only envi-
ronmental factors but psychological, social, cultural, and economic
characteristics of the occupants. Therefore, an ABM can be used to
reduce the occupant-related uncertainty when sizing building
equipment, designing NZEBs, or assessing occupant comfort [75–
77]. Nevertheless, ABMs have limited scalability. At small spatial
scales (e.g., room level) few occupants can be modelled using an
ABM, but at larger scales (e.g., building level) the number of occu-
pants makes this approach impractical [15,16,55,72]. As an alter-
native, static-stochastic OB models can be used to generate
profiles that account for occupant diversity. These models can be
developed from monitored data to generate heat gains and elec-
tricity profiles for OB such as occupancy, equipment use, and light-
ing use. Using these synthetic profiles as inputs of BPS, peak loads
and total energy use estimations can be more reliable for properly
sizing, for example, HVAC and PV systems [55,65].

An important milestone was the fit-for-purpose strategy devel-
oped by Gaetani et al. [32] that aims at defining the most suitable
level of complexity required for representing each OB aspect
within the BPS study. Thus, their approach is specifically developed
for supporting the building design practice in the decision-making
process as well as in the selection of the most suitable modelling
approach. The core of the strategy comprises three sequential
steps: the impact indices method [80] (presented in Section 3.2),
the diversity patterns method [79], and the Mann-Whitney U test
[79]. First, the impact indices method is performed, and the lowest
level of complexity (i.e., schedules and rule-based models) should
be imposed for the OB aspects that show low influence on the
PIs [32,80]. For the ones with a high impact, the diversity patterns
method should be applied by using schedules or rule-based models
to define low/high variations. Then, simulations are run to calcu-
late the PI. This approach is applied to test the sensitivity of the
results to the variations. Thus, the definition of the diversity pat-
terns becomes crucial [32,79]. In other words, while the impact
indices method extracts the contribution of each OB aspect using
a single schedule, the diversity patterns method tests the sensitiv-
ity against the variation produced by schedules representing low/
high OB scenarios. Finally, if the diversity patterns method is not
conclusive, the Mann-Whitney U test would be performed. It
assesses if the results from the low OB level and the high OB level
simulations (i.e., from the diversity patterns) are significantly dif-
ferent, and ultimately which aspects of the OB are causing the
spread in the results and are therefore worth focusing on [32,79].

In summary, systematic, and general guidelines for supporting
the building design practitioner in selecting the most suitable
modelling approach do not exist. Furthermore, the suggestions
presented are not definitive since they are drawn from a limited
number of studies that compare and apply advanced OB modelling
approaches. These suggestions might be conditional to the context
of each study. Despite them being a good starting point, a system-
atic methodology for selecting the modelling approach is an urgent
matter in the field [5]. The fit-for-purpose methodology developed
by Gaetani et al. [32] is the only quantitative method proposed.
Still, its demonstration is limited to office buildings, heating, and
cooling demand estimation, and using virtual experiments instead
of real case studies. Further, like any approach, its effectiveness is
conditional to the validity of the specific models a practitioner
chooses.

3.4. Choosing and adapting the OB model

Carlucci et al. [4] have made available a comprehensive data-
base containing more than 300 OB models published in the litera-
ture. They cover OB aspects such as presence, window operation,
lighting operation, thermostat adjustment, shading operation,
appliance use, and clothing adjustment. Further, these aspects
10
were developed from data for 17 countries, 14 climate zones based
on the Köppen-Geiger classification, and various building uses (of-
fices, commercial, residential, educational, hotels). Identifying the
most suitable OB model and transferring it to a given deployment
space requires analysing the motivation, drivers, and actions that
characterise the OB, and the different dimensions of the deploy-
ment space (for a detailed definition refer to [78]); the evaluation
and validation of OB models; procedures to transfer a model from
the development space to the deployment space. On the one hand,
the OB in buildings is influenced by environmental, time-related,
contextual, psychological, physiological, social, and economic fac-
tors. On the other hand, OB models are mainly developed using
environmental and time-related factors as predictive variables
[13]. Accordingly, these models have hidden information and
imprinted characteristics of the occupants that go beyond the pre-
dictive variables [20]. Therefore, the extrapolation from a develop-
ment space to a deployment space must be carefully evaluated
[14].

In the view of drivers and factors affecting OB, deep reviews
have been conducted to understand the influential factors for dif-
ferent actions across different building types [13,81]. While defini-
tive and general conclusions have not been reached yet, the results
presented provide an idea of the differences that might exist
between different contexts. For example, indoor and outdoor tem-
peratures are the main drivers of window operation in both resi-
dential and office buildings. However, indoor air quality seems to
be a relevant factor only for residential buildings. Additionally,
while in office buildings arrival and departure times influence
the frequency of the interactions with windows, in residential
buildings this frequency is related to the different types of activi-
ties (e.g., cooking) [13,44]. Lighting and shading system uses are
commonly studied simultaneously in office or commercial build-
ings [13]. This is because of their high correlation and their com-
bined effect on visual comfort. The interactions of the occupants
with these systems are mainly driven by time-related factors
(e.g., arrival and departure events, absence duration) and visual,
comfort-related factors (e.g., work plane illuminance and glare)
[62]. Instead, turning off the lights is mainly driven by departure
times rather than illuminance levels [82]. In residential buildings
the research on shading systems use is limited. However, it is
observed to be noticeably infrequent (e.g., once shadings are open,
they remain in this state for long periods) and not only driven by
time-related and environmental factors but sometimes also pri-
vacy issues. Further, lighting use is mainly driven by time-related
factors, type of activities, and illuminance levels [20]. Furthermore,
aspects related to the building orientation can have an impact on
OB. For example, drivers and frequency of shading operation could
be different whether shading systems are located in a north or
south façade [64]. Concerning air-conditioning, thermostats, fans,
and doors, the indoor and outdoor temperatures are the main fac-
tors influencing their operation [13]. Additionally, in office build-
ings, the spatial scale has a big impact on OB such as lighting,
shading, and window operation. For instance, in single offices the
occupant is more autonomous to decide what to do, whereas in
open-space office floors these behaviours are constrained by social
interactions [83]. Finally, diversity, preferences, and lifestyles of
the occupants have a greater impact in residential buildings, where
occupants usually have complete control on the building systems,
rather than in office buildings, where OBs could be limited by the
building design aspects (e.g., the impossibility to open windows)
and centrally controlled systems (e.g., central HVAC units).

A second aspect to be considered when choosing a specific OB
model is the model development and quality evaluation processes.
Notably, Mahdavi and Tahmasebi [84] discussed several necessary
conditions for a systematic assessment of the models: the model
validation should be performed with a dataset different from the
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one used for model development; models from a single beha-
vioural study should not be extrapolated to all deployment spaces;
measures need to be taken to reduce bias in the evaluation process,
i.e., not only an internal validation process should be performed
but an external evaluation, double-blind studies, and round-robin
tests as well [23,70,84]. In consequence, models with insufficient
documentation or simple evaluation tests, and models developed
using short monitoring periods or small sample sizes (e.g., one
apartment) cannot be generalized and should be used with caution
[23].

A third aspect to consider when using an OB model developed
for a different context are the mechanisms for transferring the
model. Again, studies undertaking this kind of procedures are lim-
ited. In general, models are developed and used in the same con-
text, or they are selected without exhaustive criteria and further
adaptations. However, an alternative is to obtain calibration data
from the context of interest and use it for fitting probability curves
of the models to obtain specific model coefficients [62,84,85]. Since
existing data is not always available, the development of factors to
transfer the models from one context to another would be benefi-
cial to the design practice [86]. For example, in the residential sec-
tor, scaling factors have been proposed to adapt an occupancy
model developed for the UK to the Canadian context [87]. To do
so, the time occupants usually spend in different activities is com-
pared to scale the models accordingly (e.g., from an aggregated
point of view, in Canada people spend about 35 min less at home
and awake than people in the UK). This methodology is only suit-
able assuming that both countries have a similar lifestyle [87].

3.5. Implementing the OB models into the BPS

Advanced OB models are not readily available in most of the
commercial BPS tools [5]. Therefore, dedicated integration
approaches are required. Hong et al. [5] thoroughly reviewed and
classified those approaches in: (a) direct input where the user
defines temporal schedules for thermostat settings, occupancy,
lighting, plug loads, and the HVAC system. Here, the user pre-
calculates the schedules, so there is no runtime communication
between the pre-calculation module and the BPS software; (b)
built-in OB models in which a dedicated OB module is already
implemented within the BPS software. Yet, this type of modules
is found in a reduced number of BPS programs [1] and the imple-
mented OB models lack of conclusive evidence of their generaliz-
ability [84]; (c) user functions that allow the user to write custom
functions or codes to incorporate or overwrite supervisory controls
without the need for recompiling the BPS engine. Deterministic
and stochastic OB models can be included using this methodology;
(d) co-simulation allowing the use of different simulation tools to
be integrated and run simultaneously in a coupled runtime rou-
tine. In this latter case, BPS tools specialised on different aspects
can be combined to achieve a consistent analysis [5]. For example,
an OBmodule written in Python can be used along with EnergyPlus
under a two-way interaction between these components. As a
result, dynamic stochastic OB models can be included in the esti-
mation of building performance metrics [88,89]. Nevertheless, OB
models have been integrated into BPS software (for a comprehen-
sive list of key integration efforts refer to [5]). For example, Gunay
et al. [90] implemented 20 OB models using Energy Management
System (EMS) scripts in a user function approach for EnergyPlus.
Since this approach lacks interoperability and exchangeability
between OB models and BPS tools, the co-simulation approach
has gained significant attention [91]. For instance, using Functional
Mockup Units (FMU) different simulation tools can be compiled
into units, which are then interconnected by the Functional
Mockup Interface (FMI) using a combination of XML files, binaries,
and C code zipped into a single file [92]. Hong et al. [93] developed
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the obXML and obFMU tools. The former standardizes the repre-
sentation and exchange of OB models, while the latter is a software
component module working as the engine to compute the OBmod-
els. Together they can be used for co-simulation with different BPS
software equipped with FMI compatibility.

The previous paragraph discussed possibilities for the integra-
tion of OB models into the BPS simulation from a technical point
of view. Equally important, the hierarchy of OB actions needs to
be discussed. It refers to the priority each occupant action has
among different options to fulfil the same occupant’s need. For
example, occupants could either decide to adjust their clothing
or to change their thermostat setpoint to achieve thermal comfort.
This hierarchy of actions needs to be defined to implement suitable
logics within the simulation framework when considering multiple
models. This concept becomes relevant when developing ABMs
that integrate different behavioural actions, as well as when con-
sidering multiple models for representing different behaviours in
a BPS study [74]. As highlighted by Stazi et al. [13], few studies
have addressed this problem. Some observations indicate that this
hierarchy is conditional to the context of the study so that general
conclusions cannot be defined [94]. For instance, Langevin et al.
[95] noticed that clothing adjustment is preferred in both naturally
ventilated and air-conditioned buildings. However, in naturally
ventilated buildings window operation is chosen over fan opera-
tion whereas in air-conditioned buildings this sequence is
reversed. Moreover, Kwak et al. [96] analysed the impact of imple-
menting window and AC operation models, as well as interchang-
ing their order of execution, in the energy consumption of a
residential building. As a result, the prediction of the energy con-
sumption has a variation of 7.5%. Considering that different actions
have a different impact on occupant comfort and energy consump-
tion, taking into account the behavioural hierarchy and assessing
its influence in the BPS simulations is essential [76].

3.6. Performing the simulation and post-processing results

The inclusion of advanced OB models makes it necessary to
review and discuss technical issues such as methods for conduct-
ing the simulations, the number of runs required, and methods
for analysing the results. From the practitioner perspective, the
whole BPS process must minimise model preparation and compu-
tational requirements to be feasible within the building design
practice [46].

Azar et al. [5] exhaustively reviewed studies applying OB mod-
elling formalisms to inform design decisions. They stressed the
reduced number of works on this topic despite advances in the
modelling field as well as a general focus on providing a proof-
of-concept rather than effectively applying the proposed method-
ologies in actual building design applications. They categorised
the research in four main areas: (a) proposed workflows such as
the fit-for-purpose strategy developed by Gaetani et al. [32] and
the best practices book for selecting the most appropriate mod-
elling approach by Gilani and ÓBrien [65] (covered in Section 3.3);
(b) parametric design propositions where the impact of extreme
occupant-related conditions are evaluated using the concept of
personas [5], i.e., the building performance is evaluated by imple-
menting schedules, densities, or OB models that represent a differ-
ent type of occupants such as active and passive [97–99], or
austerity, normal, and wasteful [100]; (c) design optimization stud-
ies [5] in which geometric design alternatives and spatial layouts
are evaluated using advanced OB models along with optimization
algorithms (e.g., genetic algorithms, ant colony algorithm).
Remarkably, not only energy-related performance indicators are
used as optimization objectives but also organizational and pro-
ductivity metrics; (d) probabilistic design methods that exploit the
use of advanced OB modelling approaches and minimise the vari-
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ance of non-deterministic outputs. In other words, this methodol-
ogy aims to support designs that are robust to the impact of OB [5].

Another key point emerges when using stochastic OB models in
BPS. Contrary to deterministic studies, a stochastic simulation will
calculate a different output each time it is run [65]. Therefore, a cri-
terion must be established for determining the minimum number
of simulations required. Researchers often choose the number of
simulations based on other references or perform simulations until
certain convergence criteria are fulfilled. Different recommenda-
tions can be found varying from 10 to 100 simulations
[23,32,56,62,64,101]. A common approach for defining the number
of simulations is to calculate the mean value and variance of the
performance indicators while the number of simulations increases.
When the change in those parameters is small, the simulation pro-
cess can be stopped [102]. Graphically, the cumulative mean of the
outputs is plotted, and the simulation process stopped when the
curve becomes flat without an upward or downward trend. Quan-
titatively, the percentage variation of the cumulative output́s mean
and variance is calculated and when it is smaller than a threshold
(i.e., a tolerance) the simulation process is stopped [61].

Finally, BPS tools do not post-process the aggregate results from
multiple simulation neither visually nor quantitatively. This means
the practitioner will be left with a set of results for each design
configuration multiplied by the number of design alternatives or
scenarios studied. For the latter, the postprocessing and visualiza-
tion process needs to be performed manually [46]. As a result,
researchers follow different strategies for analysing and communi-
cating the results, such as: a) box plots of the outputs [32]; b) fit-
ting the outputs to probability distribution functions such as the
normal distribution and reporting the output mean value and a
confidence interval at a defined significance level [64]; c) data min-
ing of stochastic BPS, which has recently emerged as an alternative
for analysing simultaneously all the simulation results to identify
the influential aspects of the BPS model. Here, correlation matrices,
Pearson correlation coefficients, and Principal Component Analysis
(PCA) can be exploited to understand the role of each model
parameter in the estimation of the performance indicators [53].
4. Discussion

This article critically reviewed the efforts aiming at transferring
the knowledge developed within the OB research field to the
simulation-aided building design process. While involuntary
exclusion of relevant articles can be a limitation of this work, the
PRISMA methodology was followed to minimise this risk. In line
with the research questions in Section 1.3, this review covers find-
ings related to the building design process. Building operation and
control were considered out of scope.

One of the most important points addressed by this review is
why advanced OB models should be included into BPS (see Sec-
tion 3.1). The advantages and potential of using advanced OB mod-
els over standard representations such as fixed, periodic schedules
go beyond having an exact description of the OB. This is especially
important since, as stressed in Section 3.4, OB is influenced not
only by environmental and time-related factors but economic,
socio-cultural, psychological, and physiological ones as well. Thus,
developing generalized models entirely replacing standard sched-
ules will be virtually impossible. Instead, the use of OB models
gives the practitioner the possibility of a) understanding how the
diversity of the occupants influences the building performance
and b) predicting the probability distribution of PIs, i.e., the likeli-
hood of a PI falling within a certain range. Second, dynamic OB
models allow considering the two-way interaction between the
occupants and the building and its systems. While the occupants
affect the building performance passively (e.g., through OPA-
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related heat gains) and actively (e.g., adjusting the thermostat),
the building design can influence the OB (e.g., the location and size
of the windows could encourage occupants to adopt natural over
mechanical ventilation modes). Including this interaction gives
the designer the possibility to design a building that promotes
energy-efficient behaviours and is more robust to the impact of
the OPA. Accounting for the occupant-related uncertainty allows
the designer to make better-informed decisions, e.g., avoiding
overestimation of energy savings from ECMs.

It was also highlighted that it is not always necessary to use
advanced OB models (See Section 3.3). Each case has specific
requirements in terms of OB and energy model complexity and
accuracy depending on the deployment space (i.e., climate, loca-
tion, building type, use, and systems, occupant characteristics, spa-
tial and temporal scale). As a result, identifying the OB aspects that
significantly impact the PIs needs to be an integral part of the BPS
process. To this end, a fit-for-purpose strategy is required so that
the most adequate level of complexity can be imposed for each
of them. General methodologies using a screening method are rec-
ommended, so that subsequent analysis focuses only on a small set
of parameters reducing computational cost without compromising
reliability. Furthermore, since OB models are not always the
answer, standard schedules should be reviewed and updated to
improve the OB representation. Similarly, proposing a variety of
standard schedules that represent different OB scenarios tailored
to different building life cycle stages and simulation purposes
can be beneficial for the practitioner to better assess the building
performance.

Further, the literature has shown preliminary observations
regarding which modelling approaches should be used or avoided
for the different dimensions of the deployment space. Regarding
occupancy (i.e., presence) and non-adaptive behaviours (e.g., use
of appliances) static models are recommended, while for adaptive
behaviours the approach could be static or dynamic. The latter is
especially recommended if different design alternatives are
explored or if the PIs are related to occupant comfort. In these
cases, the two-way interaction between the occupants and the
building becomes highly relevant. Further, at large spatial scales
(e.g., whole high-rise building) or when considering aggregated
PIs (e.g., annual energy use), averaging effects are responsible for
a reduced impact of the occupant diversity compared to small spa-
tial scales (e.g., room level) or disaggregated PIs (e.g., peak load).
Consequently, while in the first scenario low complexity models
can be used, in the second one higher complexity is recommended.
Further research is yet required to define systematic and fit-for-
purpose guidelines for selecting the most suitable modelling
approach.

This critical review also identifies two main points that required
attention for promoting the use of OB models. On the one hand, it
is urgent to define systematic guidelines for evaluating and docu-
menting the models including not only an internal but also an
external and double-blind process; conduct systematic monitoring
campaigns to compare the differences in OB in different contexts;
perform comparative studies to assess the generalizability and
applicability of the models. These efforts will potentially help to
define coefficients for transferring the models from one context
to another, hence enhancing the generalizability of OB models.
On the other hand, understanding and defining behavioural hierar-
chies are required to specify which logic should be used to execute
multiple OB models.

Regarding the automation of the BPS process, this is an impor-
tant aspect to be considered in each of the steps so that practi-
tioneŕs time and effort is minimised. For example, a pre-
processing engine can generate a set of synthetic schedules identi-
fying diverse scenarios depending on the application (e.g., equip-
ment sizing, robust design), possibly along with an estimated
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probability measure on how often a scenario is expected to occur.
This would allow designers giving appropriate weight to extreme
OBs with a high potential impact on PIs but happening rarely.
Then, the user could decide which subset of scenarios is worth
investigating further. For stochastic OB models, a default tolerance
threshold can be defined together with a maximum number of
runs. The simulation would stop when one of these criteria is
met. Finally, the outputs can be automatically visualized, and rep-
resentative statistics computed.

Finally, the reviewed articles show the possibility of exploiting
the potential of advanced OB models by performing parametric
studies, design optimization, and probabilistic design. Yet, few
studies have demonstrated these strategies using OB models. Fur-
ther, the stochastic nature of the models introduces a level of dif-
ficulty that can be overcome by automating processes (e.g.,
running the simulations, calculating convergence parameters)
and by applying statistical and data-mining techniques for analys-
ing the outputs to, in the end, inform the design decision.

All in all, with the knowledge and tools available today, the
integration of OB modelling into simulation-building design prac-
tice is a complex process, almost completely manual, without
proper guidance. As shown in Fig. 5 (left – Today simulation frame-
work), on top of the traditional steps problem definition, develop-
ment of the energy model and informing the decision of a BPS
study, the user needs to identify relevant OPA, choose the OB mod-
elling approaches, choose an OB model, and implement the model.
Furthermore, performing the simulation and post-processing the
results gain additional complexity due to the stochastic nature of
OB models and increased numbers of simulations required. This
paper presented solutions towards guiding and simplifying this
process but more importantly, highlighted the challenges that
need to be addressed for answering to the BPS user needs and fully
integrating the OB models into a BPS framework as in Fig. 5 (Right
– Future simulation framework).
5. Conclusions

Among other endeavours, the research community is aiming at
improving the representation of the energy-related OB and, at the
same time, better accounting for the occupant-related uncertainty
for bridging the energy performance gap. However, as illustrated in
Section 2.3, several barriers are preventing the use of advanced OB
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modelling approaches in the simulation-aided building design
field. To this aim, a simulation framework was proposed to estab-
lish a clear path for integrating the OB model in the building design
practice. The literature on this topic was critically analysed for syn-
thesising the practical solutions developed in each step.

First, it was highlighted the added value of better representing
the stochastic and dynamic nature of the OB through advanced
modelling approaches. Across the different building design stages,
advanced OB models contribute to desired building performance,
sizing building systems, estimating payback periods, and inform-
ing investment decisions. Ultimately, it will be possible to achieve
the targets imposed by the different policies for mitigating envi-
ronmental problems by improving the building robustness and
resilience. Second, the strategies and solutions for identifying the
most influential OB aspects, the most suitable modelling approach,
and the most adequate model were reviewed. It is stressed that
these steps are case specific and thus require a fit-for-purpose
strategy fully integrated within the simulation framework. To
reach this point, it is urgent to define the scalability and applicabil-
ity OB models to different contexts. In parallel, simulation software
needs to evolve for automatically integrating the OB models, per-
forming multiple simulations resulting from the application of
stochastic models, and post-processing the aggregated results. This
will reduce the time and effort a user needs to invest for perform-
ing the BPS.

In summary, the findings of this work aim to serve as guidelines
for researchers and practitioners pursuing the integration of OB
models in the building design process and performance evaluation.
Likewise, our study presented the most urgent matters that need to
be addressed for encouraging the application of OB models in
building design processes.
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