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SEMILINEAR ELLIPTIC EQUATIONS

INVOLVING MIXED LOCAL AND NONLOCAL OPERATORS

STEFANO BIAGI, SERENA DIPIERRO, ENRICO VALDINOCI, AND EUGENIO VECCHI

Abstract. In this paper, we consider an elliptic operator obtained as the
superposition of a classical second-order differential operator and a nonlocal
operator of fractional type. Though the methods that we develop are quite
general, for concreteness we focus on the case in which the operator takes the
form −∆ + (−∆)s, with s ∈ (0, 1). We focus here on symmetry properties
of the solutions and we prove a radial symmetry result, based on the moving
plane method, and a one-dimensional symmetry result, related to a classical
conjecture by G.W. Gibbons.

1. Introduction

In this article we discuss some symmetry properties for the solutions of se-
milinear equations driven by a mixed operator. Specifically, we will consider
operators that combine local and nonlocal features. For the sake of concreteness,
we focus on operators of the form

(1.1) L := −∆+ (−∆)s

where s ∈ (0, 1) and

(−∆)su(x) := P.V.

∫

RN

u(x)− u(y)

|x− y|N+2s
dy.

The study of mixed operators has a consolidated interest in the recent literature,
both in terms of theoretical studies and in view of real-world applications. The
development of the theory includes, among the others, viscosity solutions methods
(see [33, 34, 4, 10, 18, 2, 3]), parabolic equations (see [25]), Aubry-Mather theory
(see [19]), Cahn-Hilliard equations (see [17]), porous medium equations (see [20])
phase transitions (see [15]), fractional damping effects (see [21]), Bernstein-type

Date: June 11, 2020.
2010 Mathematics Subject Classification. 35A01, 35B65, 35R11.
Key words and phrases. Operators of mixed order, existence, symmetry, moving plane, qual-

itative properties of solutions.
The authors are members of INdAM. S. Biagi is partially supported by the INdAM-GNAMPA

project Metodi topologici per problemi al contorno associati a certe classi di equazioni alle
derivate parziali. S. Dipierro and E. Valdinoci are members of AustMS and are supported by
the Australian Research Council Discovery Project DP170104880 NEW “Nonlocal Equations
at Work”. S. Dipierro is supported by the Australian Research Council DECRA DE180100957
“PDEs, free boundaries and applications”. E. Vecchi is partially supported by the INdAM-
GNAMPA project Convergenze variazionali per funzionali e operatori dipendenti da campi vet-
toriali .

1

http://arxiv.org/abs/2006.05830v1


2 S.BIAGI, S.DIPIERRO, E.VALDINOCI, AND E.VECCHI

regularity results (see [14]), existence and non-existence results (see [1, 39]), reg-
ularity theory (see [8]). Concrete applications of mixed operators also arise nat-
urally in plasma physics (see [12]) and population dynamics (see [23]), and nu-
merical methods have been also developed to take into account the specifics of
mixed operators (see [11]).

In this article, we provide two sets of symmetry results for solutions of semilinar
equations driven by mixed operators: the first type of results deals with the
radial symmetry of the solutions, and relies on the moving plane method; the
second type of results is inspired by a classical conjecture by G.W. Gibbons
and establishes the one-dimensional symmetry of the global solutions that attain
uniformly their limit values at infinity.

In this spirit, the first symmetry result that we present is as follows:

Theorem 1.1. Let f : R → R be a locally Lipschitz continuous function, and let

Ω ⊂ R
N be an open and bounded set with smooth boundary. We assume that Ω

is symmetric and convex with respect to the hyperplane {x1 = 0}.
If u ∈ C(RN ) is any weak solution of

(1.2)











Lu = f(u) in Ω,

u ≡ 0 in R
N \ Ω,

u > 0 in Ω,

then u is symmetric with respect to {x1 = 0} and increasing in the x1-direction

in Ω ∩ {x1 < 0}.

As usual, from Theorem 1.1 one deduces that if Ω is a ball, then the solutions
of (1.2) are necessarily radial and radially decreasing.

The proof of Theorem 1.1 that we present combines the integral formulation of
the moving plane method (see [38, 40]) with suitable adaptations of some results
in [36], where the case of integral equations was taken into account by introducing
a new small-volume maximum principle and a strong maximum principle for an-
tisymmetric supersolutions. See also [26, 35, 22, 24, 6, 41] for related moving
plane methods in the nonlocal setting.

In terms of one-dimensional symmetry for global solutions under uniform limit
assumptions, we have the following result:

Theorem 1.2. Let f ∈ C1(R) be such that

(1.3) sup
|r|≥1

f ′(r) < 0.

Let u ∈ C3(RN ) ∩W 4,∞(RN ) be a solution of the problem

(1.4)

{

Lu = f(u) in R
N ,

lim
t→±∞

u(y, t) = ±1 uniformly for y ∈ R
N−1.

Then, there exists u0 : R → R such that

(1.5) u(y, t) = u0(t) for every x = (y, t) ∈ R
N .

The result in Theorem 1.2 is inspired by a classical conjecture by G.W. Gib-
bons, formulated when L was the classical Laplace operator and motivated by the
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cosmological problem of detecting the shape of the interfaces which “separate”
the different regions of the universe after the big bang (see [32]).

The classical Gibbons conjecture was established, independently and with dif-
ferent methods, by [5, 7, 27]. See also [28, 29, 30] for related results.

The fractional version of Gibbons conjecture (i.e., the case in which the ope-
rator in (1.4) is the fractional Laplacian) has been established in [31, 16]. As
a matter of fact, the method developed in [31] is very general and comprises a
number of different operators in a unified way: for this, our proof of Theorem 1.2
will rely on the general structure provided in [31] by showing that the structural
hypothesis of [31] are fulfilled in the case that we consider here.

In the rest of the paper we provide the proof of Theorem 1.1, which is contained
in Section 2, and that of Theorem 1.2, which is contained in Section 3.

2. Radial symmetry and proof of Theorem 1.1

In this section, we prove Theorem 1.1. To this end, without loss of generality,
we may assume that

inf
x∈Ω

x1 = −1.

We will combine the integral version of the moving plane method (see [38]) with
a suitable generalization of a strong maximum principle for antisymmetric super-

solutions (see [36]).

Let us now introduce and fix some notation needed in what follows. We define
the bilinear form

B(u, v) :=

∫

RN

〈∇u,∇v〉 dx

+

∫∫

R2N

(u(x)− u(y))(v(x) − v(y))

|x− y|N+2s
dx dy,

(2.1)

and the function space

(2.2) D(Ω) :=
{

u ∈ H1(RN ) s.t. u ≡ 0 in R
N \Ω

}

.

In this setting, we give the following definition of weak solution of (1.2):

Definition 2.1. We say that a function u : Ω → R is a weak solution of (1.2)
if u ∈ D(Ω), u > 0 in Ω, and

(2.3) B(u, ϕ) =

∫

RN

f(u(x))ϕ(x) dx,

for any ϕ ∈ D(Ω).

Also, given a set U ⊂ R
N , we let

(2.4) ρ(v, U) :=

∫

U
|∇v|2 + [v]2Hs(U),

where

[v]2Hs(U) :=

∫∫

U×U

|v(x)− v(y)|2

|x− y|N+2s
dx dy,

and

(2.5) H(U) :=
{

v ∈ L2(RN ) s.t. v ∈ H1(U)
}

.
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As customary, for any v ∈ L2(RN ) we define the positive and negative parts of v
as follows

v+ := max{v, 0} and v− := max{−v, 0}.

As it is well known,

(2.6) v(x) = v+(x)− v−(x), for a.e. x ∈ R
N

and

(2.7) v+(x)v−(x) = 0, for a.e. x ∈ R
N .

It is useful to observe that the functional introduced in (2.4) is monotone with
respect to the operation of taking the positive and negative parts, as pointed out
in the following result:

Lemma 2.2. Let U ⊂ R
N be an open set and let v ∈ H(U). Then v± ∈ H(U)

and

(2.8) ρ(v±, U) ≤ ρ(v, U).

Proof. Since v ∈ H(U) = L2(RN ) ∩H1(U), it is easy to see that v± ∈ H(U), in
light of (2.6) and (2.7). We then focus on the proof of (2.8).

For this, recalling (2.4) and using again (2.6)-(2.7), we get

ρ(v, U) =

∫

U
|∇v|2 +

∫∫

U×U

|v(x)− v(y)|2

|x− y|N+2s
dx dy

=

∫

U
|∇(v+ − v−)|2 +

∫∫

U×U

|(v+ − v−)(x)− (v+ − v−)(y)|2

|x− y|N+2s
dx dy

=

∫

U
|∇v+|2 +

∫

U
|∇v−|2

+

∫∫

U×U

|v+(x)− v+(y)|2

|x− y|N+2s
dx dy +

∫∫

U×U

|v−(x)− v−(y)|2

|x− y|N+2s
dx dy

− 2

∫∫

U×U

(

v+(x)− v+(y)
)(

v−(x)− v−(y)
)

|x− y|N+2s
dx dy

= ρ(v+, U) + ρ(v−, U) + 2

∫∫

U×U

v+(x)v−(y) + v+(y)v−(x)

|x− y|N+2s
dx dy

≥ ρ(v+, U) + ρ(v−, U),

which gives the desired result in (2.8). �

Inspired by [36], we now deal with a linear problem associated to the reflection
with respect to a given hyperplane. For this, with the notation in (2.1) and (2.2),
for every open and bounded set Ω ⊂ R

N , we define the first (variational) eigen-
value of the operator L introduced in (1.1) as

(2.9) Λ1(Ω) := inf
u∈D(Ω)

B(u, u)

‖u‖2
L2(Ω)

.

We point out that, since we can identify D(Ω) with the space of functions
in H1

0 (Ω) that vanish outside Ω, we see that

(2.10) Λ1(Ω) ≥ Λ−∆(Ω),
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where Λ−∆(Ω) stands for the first eigenvalue of −∆ in Ω with homogeneous
Dirichlet boundary conditions. Recalling that

Λ−∆(Ω) → +∞ as |Ω| → 0,

and setting

Λ1(r) := inf
{

Λ1(Ω) with Ω ⊂ R
n open with |Ω| = r

}

, r > 0,

it follows from (2.10) that

(2.11) Λ1(r) → +∞ as r → 0+.

Furthermore, let H ⊂ R
N be an open and affine halfspace. We denote by

Q : RN → R
N

the reflection with respect to ∂H. For convenience, we will sometimes denote
with

(2.12) x̄ := Q(x),

for every x ∈ R
N . With this notation at hand, we say that a function v : RN → R

is antisymmetric with respect to Q if

(2.13) v(x̄) = −v(x), for every x ∈ R
N .

Moreover, we give the following definition of antisymmetric supersolutions:

Definition 2.3. Let U ⊂ H be an open and bounded set. Let c ∈ L∞(U). We
say that a function v : RN → R is an antisymmetric supersolution of

(2.14)

{

Lv = cv in U,

v ≡ 0 in H \ U,

if it satisfies the following properties:

(i) v is antisymmetric,
(ii) v ∈ H(U ′) for some open set U ′ ⊂ R

N such that Q(U ′) = U ′ and U ⊂ U ′,
(iii) v ≥ 0 in H \ U and, for every ϕ ∈ D(U) with ϕ ≥ 0, one has

(2.15) B(v, ϕ) ≥

∫

U
c(x)v(x)ϕ(x) dx.

The aim is now to provide a suitable maximum principle for antisymmetric
supersolutions, as given in Definition 2.3.

We start with the following observation on the bilinear form introduced in (2.1):

Lemma 2.4. Let U ′ ⊂ R
N be an open set such that Q(U ′) = U ′. Let v ∈ H(U ′)

be an antisymmetric function such that

(2.16) v ≥ 0 in H \ U,

for a certain open and bounded set U ⊂ H with the property that

(2.17) U ⊂ H ∩ U ′.

Then, the function

(2.18) w := χHv− ∈ D(U)

and it holds that

(2.19) B(w,w) ≤ −B(v,w).
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Proof. We first prove (2.18). To this end we first observe that, since v ∈ L2(RN ),
one obviously has w ∈ L2(RN ). Also, recalling (2.5), we know that v ∈ H1(U ′),
and therefore it is easy to see that v− ∈ H1(U ′). In addition, in light of (2.16), we
have that v− ≡ 0 in H \U . As a consequence of these observations and of (2.17),
we have that there exists an open set W such that

U ⊂ W ⊂ W ⊂ U ′ ∩H and v− ∈ H1
0 (W ).

Therefore, if we identify w = χHv− with the zero extension of v− outside of U ,
we get that w ∈ H1(RN ). Moreover, we have that w ≡ 0 in R

N \ U . These
considerations imply (2.18).

Now we focus on the proof of (2.19). Recalling (2.1), we observe that

B(w,w) +B(v,w)

=

∫

RN

|∇w|2 dx+

∫∫

R2N

(w(x) − w(y))2

|x− y|N+2s
dx dy

+

∫

RN

〈∇v,∇w〉 dx+

∫∫

R2N

(v(x) − v(y))(w(x) −w(y))

|x− y|N+2s
dx dy.

(2.20)

We notice that, thanks to (2.16),

∫

RN

|∇w|2 dx+

∫

RN

〈∇v,∇w〉 dx =

∫

U
|∇v−|2 dx+

∫

U
〈∇v,∇v−〉 dx

=

∫

U
|∇v−|2 dx−

∫

U
〈∇v−,∇v−〉 dx = 0.

(2.21)

Furthermore, we remark that, for any x ∈ R
N ,

w(x)
(

w(x) + v(x)
)

= χH(x)v−(x)
(

χH(x)v−(x) + χH(x)v(x) + χRN\H(x)v(x)
)

= χH(x)v−(x)
(

χH(x)v+(x) + χRN\H(x)v(x)
)

= 0,

and therefore

(w(x)− w(y))2 + (v(x) − v(y))(w(x) − w(y))

= (w(x) −w(y))
(

(w(x) + v(x)) − (w(y) + v(y))
)

= −w(x)(w(y) + v(y)) − w(y)(w(x) + v(x)).
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As a consequence, using (2.13) and the change of variable Y := ȳ (also recall the
notation in (2.12)), we obtain

∫∫

R2N

(w(x) − w(y))2

|x− y|N+2s
dx dy +

∫∫

R2N

(v(x)− v(y))(w(x) − w(y))

|x− y|N+2s
dx dy

=

∫∫

R2N

w(x)(w(y) + v(y)) + w(y)(w(x) + v(x))

|x− y|N+2s
dx dy

= −2

∫∫

R2N

w(x)(w(y) + v(y))

|x− y|N+2s
dx dy

= −2

∫∫

H×RN

v−(x)
(

χH(y)v−(y) + v(y)
)

|x− y|N+2s
dx dy

= −2

∫∫

H×RN

v−(x)
(

χH(y)v+(y) + χRN\H(y)v(y)
)

|x− y|N+2s
dx dy

= −2

∫∫

H×H

v−(x)v+(y)

|x− y|N+2s
dx dy − 2

∫∫

H×(RN\H)

v−(x)v(y)

|x− y|N+2s
dx dy

= −2

∫∫

H×H

v−(x)v+(y)

|x− y|N+2s
dx dy + 2

∫∫

H×(RN\H)

v−(x)v(ȳ)

|x− y|N+2s
dx dy

= −2

∫∫

H×H

v−(x)v+(y)

|x− y|N+2s
dx dy + 2

∫∫

H×H

v−(x)v(Y )

|x− Ȳ |N+2s
dx dY

= −2

∫∫

H×H
v−(x)v+(y)

(

1

|x− y|N+2s
−

1

|x− ȳ|N+2s

)

dx dy

− 2

∫∫

H×H

v−(x)v−(y)

|x− ȳ|N+2s
dx dy

≤ 0.

Plugging this information and (2.21) into (2.20) we obtain (2.19), as desired. �

With the aid of Lemma 2.4, we now prove the following maximum principle:

Proposition 2.5. Let U ⊂ R
N be an open and bounded set with U ⊂ H. More-

over, let c ∈ L∞(U) be such that

(2.22) ‖c+‖L∞(U) < Λ1(U),

where the notation in (2.9) has been used.

Then, every antisymmetric supersolution v of (2.14) (in U) is nonnegative

throughout H, that is, v(x) ≥ 0 for a.e.x ∈ H.

Proof. We consider the function w introduced in (2.18) and we claim that

(2.23) w ≡ 0.

To prove it, we argue towards a contradiction, supposing that ‖w‖L2(U) 6= 0. By
Lemma 2.4, we know that w ∈ D(U), and hence it is an admissible test function
in (2.15). Accordingly,

B(v,w) ≥

∫

U
c(x)v(x)w(x) dx.
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From this, (2.9), (2.19) and (2.22), we conclude that

Λ1(U)‖w‖2L2(U) ≤ B(w,w) ≤ −B(v,w) ≤ −

∫

U
c(x)v(x)w(x) dx

=

∫

U
c(x)w2(x) dx ≤ ‖c+‖L∞(U)‖w‖

2
L2(U) < Λ1(U)‖w‖2L2(U),

which is a contradiction. This proves (2.23), we implies the desired result. �

We are now in the position of establishing a strong maximum principle for
antisymmetric supersolutions (which is the counterpart in the setting of mixed
local-nonlocal operators of [36, Proposition 3.6]):

Proposition 2.6. Let U ⊂ H be an open and bounded set. Let c ∈ L∞(U) and

let v be an antisymmetric supersolution of (2.14) (in U). Assume that

(2.24) v ≥ 0 a.e. in H.

Then, either v ≡ 0 in R
N or

ess infKv > 0, for every compact set K ⊂ U.

Proof. If v ≡ 0 in R
N , there is nothing to prove, so we assume that

(2.25) v 6≡ 0 in R
N .

In this case, it suffices to show that, for a fixed x0 ∈ U , one has

(2.26) ess infBr(x0)v > 0,

for a some radius r > 0 small enough. We then prove (2.26).

First of all, in light of (2.24), (2.25) and the fact that v is antisymmetric, we
can find a bounded set M ⊂ H, with positive measure, which does not contain a
small neighborhood of x0 and such that

(2.27) δ := inf
M

v > 0.

In addition, by (2.11), we find a radius

(2.28) r ∈

(

0,
dist(x0; (R

N \H) ∪M)

4

)

such that

(2.29) Λ1(B2r(x0)) > ‖c‖L∞(U).

We now pick a function g ∈ C2
0 (R

N , [0, 1]) such that

g(x) :=

{

1, if x ∈ Br(x0),

0, if x ∈ R
N \B2r(x0).

Moreover, for a given a > 0 to be chosen later, we define the function

(2.30) h : RN → R, h(x) := g(x) − g(x̄) + a (χM (x)− χM (x̄)) ,

where we are using the notation in (2.12). We also define the sets U0 := B2r(x0)
and U ′

0 := B3r(x0) ∪Q(B3r(x0)).
We observe that h is antisymmetric, and moreover

(2.31) h ≡ 0 on H \ (U0 ∪M) and h ≡ a on M,
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thanks to (2.28). From (2.28) we also deduce that

(2.32) (M ∪Q(M)) ∩ U ′
0 = ∅.

This and the fact that M is bounded give that h ∈ H(U ′
0). We now claim that

there exists a constant C1 > 0, depending on g, such that

(2.33) B(g, ϕ) ≤ C1

∫

U0

ϕ(x) dx, for every ϕ ∈ D(U0) with ϕ ≥ 0.

In fact, for any ϕ ∈ D(U0) with ϕ ≥ 0, by an integration by parts,
∫

RN

〈∇g,∇ϕ〉 dx =

∫

U0

〈∇g,∇ϕ〉 dx

= −

∫

U0

∆g ϕdx ≤ ‖g‖C2(RN )

∫

U0

ϕ(x) dx.

(2.34)

Moreover, by Proposition 2.3-(ii) in [36] (applied here with v := g and u := ϕ),
we have that

1

2

∫∫

R2N

(g(x) − g(y))(ϕ(x) − ϕ(y))

|x− y|N+2s
dx dy =

∫

RN

(−∆)sg(x)ϕ(x) dx

=

∫

U0

(−∆)sg(x)ϕ(x) dx ≤ ‖(−∆)sg‖L∞(U0)

∫

U0

ϕ(x) dx.

Recalling (2.1), this and (2.34) imply (2.33). Similarly, one has that

(2.35) B(g ◦Q,ϕ) ≤ C2

∫

U0

ϕ(x) dx, for every ϕ ∈ D(U0) with ϕ ≥ 0,

for some C2 > 0. In addition, we see that, for any ϕ ∈ D(U0) and any x ∈ R
N ,

from (2.28) we infer that

(χM (x)− χM (x̄))ϕ(x) = 0;

as a consequence,

1

2

∫∫

R2N

(

(χM (x)− χM (x̄))− (χM (y)− χM (ȳ))
)

(ϕ(x) − ϕ(y))

|x− y|N+2s
dx dy

= −
1

2

∫∫

R2N

(χM (x)− χM (x̄))ϕ(y) + (χM (y)− χM (ȳ))ϕ(x)

|x− y|N+2s
dx dy

= −

∫∫

U0×RN

(χM (y)− χM (ȳ))ϕ(x)

|x− y|N+2s
dx dy

= −

∫∫

U0×RN

(χM (y)− χM (ȳ))ϕ(x)

|x− y|N+2s
dx dy

= −

∫

U0

ϕ(x)

(

∫

M

dy

|x− y|N+2s
−

∫

Q(M)

dy

|x− y|N+2s

)

dx

= −

∫

U0

ϕ(x)

(
∫

M

dy

|x− y|N+2s
−

∫

M

dy

|x− ȳ|N+2s

)

dx

≤ −C0

∫

U0

ϕ(x) dx,

(2.36)

where

C0 := inf
x∈U0

(
∫

M

dy

|x− y|N+2s
−

∫

M

dy

|x− ȳ|N+2s

)

.



10 S.BIAGI, S.DIPIERRO, E.VALDINOCI, AND E.VECCHI

We stress on the fact that the constant C0 is finite, thanks to (2.28).
Now, recalling (2.30), and using (2.33), (2.35) and (2.36), we conclude that,

for any ϕ ∈ D(U0), one has

B(h, ϕ) = B(g, ϕ) +B(g ◦Q,ϕ)

+ a

∫∫

R2N

(

(χM (x)− χM (x̄))− (χM (y)− χM (ȳ))
)

(ϕ(x) − ϕ(y))

|x− y|N+2s
dx dy

≤ Ca

∫

U0

ϕ(x) dx,

(2.37)

where

Ca := C1 + C2 − 2aC0.

Now we perform our choice of the parameter a: we choose a > 0 such that

Ca < −‖c‖L∞(U0).

In particular, with this choice, (2.37) yields that

B(h, ϕ) ≤ −‖c‖L∞(U0)

∫

U0

ϕ(x) dx ≤ −‖c−‖L∞(U0)

∫

U0

ϕ(x) dx

≤ −

∫

U0

c−(x)ϕ(x) dx ≤ −

∫

U0

c−(x)h(x)ϕ(x) dx

≤

∫

U0

c+(x)h(x)ϕ(x) dx −

∫

U0

c−(x)h(x)ϕ(x) dx

=

∫

U0

c(x)h(x)ϕ(x) dx,

(2.38)

since h(x) = g(x) ∈ [0, 1] for every x ∈ U0. Now, we recall (2.27), we define the
function ṽ as

(2.39) ṽ(x) := v(x)−
δ

a
h(x),

and we notice that ṽ ∈ H(U ′
0) and it is antisymmetric, since both v and h are so.

Furthermore, by (2.24), (2.27) and (2.31), we have that

ṽ ≥ 0 on H \ U0.

In addition, for any ϕ ∈ D(U0) with ϕ ≥ 0,

B(ṽ, ϕ) = B(v, ϕ) −
δ

a
B(h, ϕ)

≥

∫

U0

c(x)v(x)ϕ(x) dx −
δ

a

∫

U0

c(x)h(x)ϕ(x) dx

=

∫

U0

c(x)ṽ(x)ϕ(x) dx,

thanks to (2.15) and (2.38).
As a consequence, we have that ṽ is an antisymmetric supersolution of

{

Lṽ = cṽ in U0,

ṽ ≡ 0 in H \ U0.
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Since ‖c‖L∞(U0) < Λ1(U0), thanks to (2.29), we are in the position to apply
Proposition 2.5 to conclude that ṽ ≥ 0 a.e. on U0. Recalling (2.39), this gives

v ≥
δ

a
> 0 a.e. on Br(x0).

This establishes (2.26), and the proof of Proposition 2.6 is thereby complete. �

With this preliminary work, we now prove Theorem 1.1. For this, let u ∈ C(Ω)
be a weak solution of (1.2). We fix the usual notation needed to implement the
moving plane method. For every λ ∈ (−1, 0] we define the following:

Ωλ := {x ∈ Ω : x1 < λ},

Σλ := {x ∈ R
N : x1 < λ},

Qλ(x) = xλ := (2λ− x1, x2, . . . , xN ),

and uλ(x) := u(xλ).

We also define the function

(2.40) c(x) :=







f(uλ(x))− f(u(x)))

uλ(x)− u(x)
, if uλ(x) 6= u(x),

0, if uλ(x) = u(x).

We observe that c ∈ L∞(Ωλ), thanks to the Lipschitz assumption on f .
Furthermore, setting

(2.41) vλ := uλ − u,

we point out the following observation:

Lemma 2.7. Let u be a weak solution of (1.2) according to Definition 2.1.

Then, the function vλ in (2.41) is an antisymmetric supersolution of (2.14) in
Ωλ, according to Definition 2.3, with c as in (2.40).

Proof. We notice that vλ ∈ H1(RN ) ⊂ H(U ′), for every open set U ′ ⊂ R
N

such that Q(U ′) = U ′ and Ωλ ⊂ U ′. Moreover, since u ≥ 0 in R
N and u ≡ 0

on Σλ \Ωλ, we have that vλ ≥ 0 on Σλ \Ωλ. In addition, for any ϕ ∈ D(Ωλ) and
for any x ∈ R

N , we have

〈∇uλ(x),∇ϕ(x)〉 =
(

− ∂1u, ∂2u, · · · , ∂Nu
)

(x̄) ·
(

∂1ϕ, ∂2ϕ, · · · , ∂Nϕ
)

(x)

=
(

∂1u, ∂2u, · · · , ∂Nu
)

(X) ·
(

− ∂1ϕ, ∂2ϕ, · · · , ∂Nϕ
)

(X̄)

= 〈∇u(X),∇ϕλ(X)〉,

(2.42)

where X := x̄. Similarly, setting also Y := ȳ,

(uλ(x)− uλ(y))(ϕ(x) − ϕ(y))

|x− y|N+2s
=

(u(x̄)− u(ȳ))(ϕ(x) − ϕ(y))

|x− y|N+2s

=
(u(X) − u(Y ))(ϕ(X̄)− ϕ(Ȳ ))

|X̄ − Ȳ |N+2s
=

(u(X) − u(Y ))(ϕ(X̄)− ϕ(Ȳ ))

|X − Y |N+2s

=
(u(X) − u(Y ))(ϕλ(X) − ϕλ(Y ))

|X − Y |N+2s
.
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From this and (2.42), we obtain that

B(uλ, ϕ)

=

∫

RN

〈∇uλ(x),∇ϕ(x)〉 dx+

∫∫

R2N

(uλ(x)− uλ(y))(ϕ(x) − ϕ(y))

|x− y|N+2s
dx dy

=

∫

RN

〈∇u(X),∇ϕλ(X)〉 dX +

∫∫

R2N

(u(X)− u(Y ))(ϕλ(X)− ϕλ(Y ))

|X − Y |N+2s
dX dY

= B(u, ϕλ).

As a consequence, since ϕλ ∈ D(Qλ(Ωλ)) ⊂ D(Ω), we can use Definition 2.1 to
find that

B(uλ, ϕ) =

∫

RN

f(u(x))ϕλ(x) dx

=

∫

RN

f(u(X̄))ϕ(X) dX =

∫

RN

f(uλ(X))ϕ(X) dX.

Therefore,

B(vλ, ϕ) = B(uλ, ϕ)−B(u, ϕ)

=

∫

RN

f(uλ(x))ϕ(x) dx −

∫

RN

f(u(x))ϕ(x) dx

=

∫

RN

c(x)vλ(x)ϕ(x) dx,

which proves (2.15), and thereby completes the proof of Lemma 2.7. �

With these considerations, we are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. For every λ ∈ (−1, 0), we define the function

(2.43) wλ : RN → R, wλ(x) :=

{

(u− uλ)
+(x) in Σλ,

(u− uλ)
−(x) in R

N \ Σλ,

where, differently from before, we have set

(u− uλ)
− := min{u− uλ, 0},

which is nonpositive. We claim that

(2.44) wλ ∈ H1(RN ).

Indeed, we know that u ∈ H1(RN ) and thus u− uλ ∈ H1(RN ). Accordingly, we
have that (see e.g. the Chain Rule on page 296 of [37])

(2.45) (u− uλ)
+ ∈ H1(RN ).

Moreover, u ∈ C(RN ), and consequently

(2.46) (u− uλ)
+ ∈ C(RN ).

In addition, u = uλ along ∂Σλ. From this fact, (2.45) and (2.46), we obtain that

(2.47) (u− uλ)
+χΣλ

∈ H1
0 (Σλ) ⊂ H1(RN ),

see e.g. [13, Theorem 9.17]. Similarly,

(2.48) (u− uλ)
−χRN\Σλ

∈ H1(RN ).
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We also observe that

wλ = (u− uλ)
+χΣλ

+ (u− uλ)
−χRN\Σλ

.

From this, (2.47) and (2.48), we obtain (2.44), as desired.
Furthermore, we claim that

(2.49) wλ ≡ 0 in R
N \ (Ωλ ∪Qλ(Ωλ)) ⊂ R

N \ Ω.

Indeed, if x ∈ Σλ\Ωλ, then wλ(x) = (0−uλ(x))
+ = 0. If instead x ∈ Qλ(Σλ\Ωλ),

then x̄ ∈ Σλ \ Ωλ and accordingly

0 = wλ(x̄) = (u(x̄)− uλ(x̄))
+ = (uλ(x)− u(x))+.

This gives that uλ(x) ≤ u(x), and therefore wλ(x) = (u(x)− uλ(x))
− = 0.

From these observations, we obtain (2.49). Then, (2.44) and (2.49) give that
we can take wλ as an admissibile test function in (2.3). In this way, we obtain

(2.50) B(u,wλ) =

∫

RN

f(u(x))wλ(x) dx.

Similarly,

(2.51) B(uλ, wλ) =

∫

RN

f(uλ(x))wλ(x) dx.

Subtracting (2.51) to (2.50), and recalling (2.1), we get
∫

RN

〈∇(u− uλ),∇wλ〉 dx

+

∫∫

R2N

((u(x) − uλ(x))− (u(y)− uλ(y)))(wλ(x)− wλ(y))

|x− y|N+2s
dx dy

=

∫

RN

(

f(u(x))− f(uλ(x))
)

wλ(x) dx.

(2.52)

Now, we use formula (3.9) in [38], which gives that
∫∫

R2N

(

(u(x) − uλ(x))− (u(y)− uλ(y))
)

(wλ(x)− wλ(y))

|x− y|N+2s
dx dy

≥

∫∫

R2N

|wλ(x)− wλ(y)|
2

|x− y|N+2s
dx dy ≥ 0.

Using this information into (2.52), and recalling (2.49), we obtain that
∫

RN

〈∇(u− uλ),∇wλ〉 dx ≤

∫

RN

(

f(u(x))− f(uλ(x))
)

wλ(x) dx

=

∫

RN

f(u(x))− f(uλ(x))

u(x)− uλ(x)

(

u(x)− uλ(x)
)

wλ(x) dx

=

∫

RN

f(u(x))− f(uλ(x))

u(x)− uλ(x)
w2
λ(x) dx

=

∫

Ωλ∪Q(Ωλ)

f(u(x))− f(uλ(x))

u(x)− uλ(x)
w2
λ(x) dx.

(2.53)

We also notice that, thanks to (2.49),
∫

RN

〈∇(u− uλ),∇wλ〉 dx =

∫

RN

|∇wλ|
2 dx =

∫

Ωλ∪Q(Ωλ)
|∇wλ|

2 dx.
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From this and (2.53), we deduce that
∫

Ωλ∪Q(Ωλ)
|∇wλ|

2 dx ≤

∫

Ωλ∪Q(Ωλ)

f(u(x))− f(uλ(x))

u(x)− uλ(x)
w2
λ(x) dx

≤ C

∫

Ωλ∪Q(Ωλ)
|wλ|

2 dx,

(2.54)

for some constant C > 0, depending on f and ‖u‖L∞(Ω).
Now, using Lemma 2.10 in [9], we obtain that

(2.55)

∫

Ωλ∪Q(Ωλ)
|∇wλ|

2 dx ≤ C|Ωλ ∪Q(Ωλ)|
1/N

∫

Ωλ∪Q(Ωλ)
|∇wλ|

2 dx,

uo to renaming C, which possibly depends also on N . As a consequence, if λ is
sufficiently close to −1, we see that

C|Ωλ ∪Q(Ωλ)|
1/N <

1

2
,

which, combined with (2.55), gives that
∫

Ωλ∪Q(Ωλ)
|∇wλ|

2 dx = 0,

provided that λ is sufficiently close to −1. From this and the Poincaré inequal-
ity we get that wλ ≡ 0 in Ωλ ∪ Qλ(Ωλ) if λ is sufficiently close to −1, which,
recalling (2.43), implies that

(2.56) u ≤ uλ in Ωλ,

if λ is sufficiently close to −1. As a matter of fact, formula (2.49) also gives

(2.57) u ≤ uλ in Σλ \ Ωλ.

Now, we define the set

Λ0 :=
{

λ ∈ (−1, 0) : u ≤ ut in Ωt for every t ∈ (−1, λ]
}

.

In light of (2.56), the following quantity is well defined:

(2.58) λ := supΛ0.

The goal is now to prove that

(2.59) λ = 0.

For this, we recall the definition of vλ in (2.41), and we observe that, since u is
continuous in Ω,

vλ ≥ 0, in Ωλ.

This and (2.57) imply that

vλ ≥ 0, in Σλ.

As a consequence, by Lemma 2.7 and Proposition 2.6 (applied here withH := Σλ,
U := Ωλ and v := vλ), we have that

vλ > 0, in Ωλ.

Now, we consider a compact set K ⊂ Ωλ (to be chosen later on), and we notice
that for τ > 0 small enough, we have that

(2.60) vλ+τ > 0 in K (for all τ ∈ (0, τ )).



MIXED LOCAL AND NONLOCAL OPERATORS 15

Now, for every fixed τ ∈ (0, τ ), we consider the function wλ+τ defined as in (2.43)

(with λ := λ+ τ). We notice that, thanks to (2.44) and (2.49), we can take wλ+τ
as an admissibile test function in (2.3), obtaining that

B(u,wλ+τ ) =

∫

RN

f(u(x))wλ+τ (x) dx and

B(uλ+τ , wλ+τ ) =

∫

RN

f(uλ+τ (x))wλ+τ (x) dx.

From here, we repeat the same argument in (2.52)–(2.54) to find that
∫

Ω
λ+τ

∪Q(Ω
λ+τ

)
|∇wλ+τ |

2 dx ≤ C

∫

Ω
λ+τ

∪Q(Ω
λ+τ

)
|wλ+τ |

2 dx,

for some constant C > 0, depending on f and ‖u‖L∞(Ω).
From this, recalling (2.60), we obtain that

∫

Ω
λ+τ

∪Q(Ω
λ+τ

)
|∇wλ+τ |

2 dx ≤ C

∫

(Ω
λ+τ

\K)∪Q(Ω
λ+τ

\K)
|wλ+τ |

2 dx.

Hence, making again use of Lemma 2.10 in [9], we get

∫

Ω
λ+τ

∪Q(Ω
λ+τ

)
|∇wλ+τ |

2 dx

≤ C |(Ωλ+τ \K) ∪Q(Ωλ+τ \K)|1/N
∫

(Ω
λ+τ

\K)∪Q(Ω
λ+τ

\K)
|∇vλ+τ |

2 dx,

(2.61)

up to relabeling C > 0 (which may also depend on N). Now we choose the
compact K big enough and the number τ small enough such that

C |(Ωλ+τ \K) ∪Q(Ωλ+τ \K)|1/N < 1.

Using this information into (2.61), we conclude that
∫

Ω
λ+τ

∪Q(Ω
λ+τ

)
|∇wλ+τ |

2 dx = 0.

From this and the Poincaré inequality, we find that wλ+τ ≡ 0 in Ωλ+τ , hence

u ≤ uλ+τ in Ωλ+τ ,

for every τ ∈ (0, τ ), provided τ > 0 is small enough. This yields a contradiction
with (2.58), from which we conclude that (2.59) holds true, as desired.

In particular, from (2.59) we see that, for all λ ∈ (−1, 0) and all x ∈ Ωλ,

(2.62) u(x) ≤ uλ(x) = u(2λ− x1, x2, · · · , xN ).

Consequently,

(2.63) u(x) ≤ u(−x1, x2, · · · , xN ),

for all x ∈ Ω ∩ {x1 < 0}. In the same way, sliding the moving plane from right
to left, one sees that, for all x ∈ Ω ∩ {x1 > 0}, one has

u(x) ≤ u(−x1, x2, · · · , xN ).

This implies that
u(−x1, x2, · · · , xN ) ≤ u(x),
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for all x ∈ Ω ∩ {x1 < 0}. From this and (2.63), we conclude that

u(x) = u(−x1, x2, · · · , xN ),

for all x ∈ Ω, which says that u is symmetric with respect to {x1 = 0}.
Furthermore, from (2.62) it plainly follows that u is increasing in the x1-direc-

tion in Ω ∩ {x1 < 0}. The proof of Theorem 1.1 is thereby complete. �

3. One-dimensional symmetry and proof of Theorem 1.2

In this section we provide the proof of Theorem 1.2. For this, we indicate the
points x ∈ R

N by

(y, t), with y ∈ R
N−1 and t ∈ R.

Moreover, we consider the functional space

(3.1) X := C3(RN ) ∩W 4,∞(RN ).

We point out that, if u ∈ X, it is possible to compute Lu in the classical sense,
that is, Lu(x) is well-defined for all x ∈ R

N .
We shall derive Theorem 1.2 from the abstract approach developed in [31]. To

this end, we check that the assumptions introduced in [31] are satisfied in our
setting. We list these assumptions here for the convenience of the reader:

(H1): if ϕ ∈ X satisfies Lϕ = f(ϕ) in R
N , then there exists an operator L̃,

acting on a suitable space of functions X̃ ⊆ C(RN ) which is translation-

invariant1, such that ∂νϕ ∈ X̃ for any unit vector ν ∈ R
N and

L̃(∂νϕ) = f ′(ϕ) ∂νϕ on R
N ;

(H2): if ϕ ∈ X is a solution of (1.4), if {zk}
∞
k=1 is an arbitrary sequence of

points in R
N (possibly unbounded) and if

ϕk := ϕ(· + zk) for any k ∈ N,

then there exists a function ϕ0 ∈ X such that, up to a sub-sequence,

lim
k→∞

ϕk(x) = ϕ0(x),

lim
k→∞

∇ϕk(x) = ∇ϕ0(x)

and lim
k→∞

Lϕk(x) = ϕ0(x),

for all x ∈ R
N ;

(H3): if w ∈ X̃ satisfies L̃w + c(x)w = 0 in R
N , with

w(y, t) ≥ 0 if |t| ≤ M and c(y, t) ≥ κ if |t| ≥ M

for some constants M, κ > 0, then

w(x) ≥ 0 for all x ∈ R
N ;

(H4): if ϕ ∈ X and if w ∈ X̃ satisfies L̃w = f ′(ϕ)w in R
N , then

{

w ≥ 0 in R
N ,

w(0) = 0,
=⇒ w ≡ 0 on R

N ;

1A (non-void) set V ⊆ C(RN ) is translation-invariant if, for every function ϕ ∈ V and every
point y ∈ R

N , the ‘translated’ function x 7→ ϕ(x+ y) belongs to V .
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(H5): given µ− < µ+ ∈ R, if U ⊆ R
N is an open set contained in

S := {x = (y, t) ∈ R
N : t ≤ µ− or t ≥ µ+}

and if v ∈ X satisfies Lv + c(x)v = 0 in R
N , with

v(x) ≥ in R
N \ U and c(x) ≥ κ on U

for some constant κ > 0, then

v(x) ≥ 0 for all x ∈ R
N ;

(H6): if ϕ ∈ X and if v ∈ X satisfies Lv = f(v + ϕ)− f(v) in R
N , then

{

v ≥ 0 in R
N ,

v(0) = 0,
=⇒ v ≡ 0 on R

N .

The next lemmata establish the validity of (H1)—(H6) in our setting.

Lemma 3.1 (Validity of (H1)). For every ϕ ∈ X and every unit vector ν ∈ R
N ,

one has

(3.2) L(∂νϕ) = ∂ν
(

Lϕ).

In particular, assumption (H1) is fulfilled with the choices

(3.3) L̃ := L

and

(3.4) X̃ := C2(RN ) ∩W 3,∞(RN ).

Proof. First of all, if X is as in (3.1) and X̃ is as in (3.4), we obviously have that,
for every ϕ ∈ X and every unit vector ν ∈ R

N ,

∂νϕ ∈ X̃ and −∆(∂νϕ) = ∂ν(−∆ϕ).

Moreover, since X ⊆ W 3,∞(RN ), we can use formula (4.1) in [31], obtaining that

(−∆)s(∂νϕ) = ∂ν
(

(−∆)sϕ).

Gathering together these facts, we obtain (3.2), as desired. As a result, with the
choices in (3.3) and (3.4), assumption (H1) is obviously satisfied. �

We point out that the space X̃ ⊇ X is ‘good’ for dealing with L. Indeed,
since any function u ∈ X̃ has bounded derivatives up to second order, we can
compute Lu pointwise in R

N .

Lemma 3.2 (Validity of (H2)). Let X̃ be as in (3.4). Let ϕ ∈ X̃ and {zk}
∞
k=1 be

a sequence of points in R
N (possibly unbounded). Let also

(3.5) ϕk := ϕ(·+ zk) for any k ∈ N.

Then, there exists a function ϕ0 ∈ X such that, up to a sub-sequence,

lim
k→∞

ϕk(x) = ϕ0(x),(3.6)

lim
k→∞

∇ϕk(x) = ∇ϕ0(x)(3.7)

and lim
k→∞

Lϕk(x) = Lϕ0(x),(3.8)

for all x ∈ R
N . In particular, assumption (H2) is fulfilled.
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Proof. We observe that, since ϕ ∈ X̃, the sequences

{Dαϕk}
∞
k=1

are equi-continuous and equi-bounded on R
N , for every multi-index α ∈ N

N sa-
tisfying 0 ≤ |α| ≤ 2. As a consequence, Arzelà-Ascoli’s Theorem ensures the
existence of some function ϕ0 ∈ X such that (up to a sub-sequence)

(3.9) lim
k→∞

Dαϕk = Dαϕ0 locally uniformly in R
N ,

for every α ∈ N
N with |α| ≤ 2. Hence, (3.6) and (3.7) plainly follows from (3.9).

We also deduce from (3.9) that

(3.10) lim
k→∞

∆ϕk(x) = ∆ϕ0(x) locally uniformly in R
N .

We now claim that

(3.11) lim
k→∞

(−∆)sϕk(x) = (−∆)sϕ0(x) for every x ∈ R
N .

To prove it, for any x ∈ R
N and for any k ∈ N, we set

Ik(z) :=
ϕk(x+ z)− ϕk(x− z)− 2ϕk(x)

|z|N+2s
for any z 6= 0.

On account of (3.9), we have that

(3.12) lim
k→∞

Ik(z) =
ϕ0(x+ z)− ϕ0(x− z)− 2ϕ0(x)

|z|N+2s
for all z 6= 0.

Moreover, recalling the definition of ϕk in (3.5), we see that, for every z 6= 0,

|Ik(z)| =

∣

∣ϕk(x+ z) + ϕk(x− z)| − 2ϕk(x)
∣

∣

|z|N+2s

≤ max
|α|=2

‖Dαϕk‖L∞(RN )
1

|z|N+2s−2
χ{0<|z|≤1}

+ 4‖ϕk‖L∞(RN )
1

|z|N+2s
χ{|z|>1}

= max
|α|=2

‖Dαϕ‖L∞(RN )
1

|z|N+2s−2
χ{0<|z|≤1}

+ 4‖ϕ‖L∞(RN )
1

|z|N+2s
χ{|z|>1}.

(3.13)

Now, since ϕ ∈ X̃, we have that

g(z) := max
|α|=2

‖Dαϕ‖L∞(RN )
1

|z|N+2s−2
χ{0<|z|≤1}

+ 4‖ϕ‖L∞(RN )
1

|z|N+2s
χ{|z|>1} ∈ L1(RN ).

From this, (3.12) and (3.13) we deduce that we can apply the Dominated Con-
vergence Theorem to conclude that, for any x ∈ R

N ,

lim
k→∞

∫

RN

ϕk(x+ z)− ϕk(x− z)− 2ϕk(x)

|z|N+2s
dz

=

∫

RN

ϕ0(x+ z)− ϕ0(x− z)− 2ϕ0(x)

|z|N+2s
dz.
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This proves (3.11). From (3.10) and (3.11), recalling (1.1), we obtain (3.8).

Finally, since X ⊂ X̃, we deduce that assumption (H2) is fulfilled, thus completing
the proof of Lemma 3.2. �

Lemma 3.3 (Validity of (H3) and (H5)). Let X̃ be as in (3.4). Let w ∈ X̃ satisfy

(3.14) Lw + c(x)w = 0 in R
N ,

with

(3.15) w(x) ≥ 0 in R
N \ U and c(x) ≥ κ on U

for some open set U ⊆ R
N and some constant κ > 0. Then

(3.16) w(x) ≥ 0 for all x ∈ R
N .

In particular, assumptions (H3) and (H5) are fulfilled with the choice in (3.3).

Proof. Arguing by contradiction, we suppose that m := infRN w < 0, and we
choose a sequence of points {zk}

∞
k=1 in R

N satisfying

(3.17) lim
k→∞

w(zk) = m.

Since m < 0, it is not restrictive to assume that

(3.18) w(zk) ≤
m

2
< 0 for all k ∈ N.

As a consequence, also in light of (3.15), for every k ∈ N we have

(3.19) zk ∈ U and c(zk) ≥ κ > 0.

Now, thanks to (3.14), from (3.18) and (3.19) we deduce that

Lw(zk) = −c(zk)w(zk) ≥ −
mκ

2
> 0, for all k ∈ N.

In particular, setting wk := w(· + zk), we obtain

(3.20) Lwk(0) ≥ −
mκ

2
> 0, for all k ∈ N.

On the other hand, since w ∈ X̃, from Lemma 3.2 we infer the existence of some
function w0 ∈ X̃ such that (up to a sub-sequence)

(3.21) lim
k→∞

wk(x) = w0(x) and lim
k→∞

Lwk(x) = Lw0(x),

for every fixed x ∈ R
N . By taking the limit as k → ∞ in (3.20), we then get

(3.22) Lw0(0) ≥ −
mκ

2
> 0.

Now, we observe that, on account of (3.17) and (3.21), one has

w0(0) = lim
k→∞

wk(0) = lim
k→∞

w(zk) = m = inf
RN

w ≤ w(x+ zk) = wk(x),

for every x ∈ R
N and every k ∈ N. As a consequence,

w0(0) ≤ w0(x) for every x ∈ R
N ,

and thus x = 0 is a minimum point for w0 in R
N . In particular,

∆w0(0) ≥ 0 and − (−∆)sw0(0) = P.V.

∫

RN

w0(x)− w0(0)

|x|N+2s
dx ≥ 0.

Therefore, recalling (1.1), this implies that Lw0(0) ≤ 0, which is is in contradic-
tion with (3.22). This completes the proof of (3.16).
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We point out that, with the choice in (3.3), from the first part of Lemma 3.3
we obtain the validity of assumption (H3). Indeed, for this, it is enough to apply
the first part of Lemma 3.3 with

U :=
{

x = (y, t) ∈ R
N s.t. |t| ≥ M

}

,

for some M > 0. Furthermore, from the first part of Lemma 3.3 we also obtain
the validity of assumption (H5), by simply observing that X ⊂ X̃. �

Lemma 3.4 (Validity of (H4) and (H6)). Let X̃ be as in (3.4). Let c : RN×R → R

be any function satisfying

(3.23) c(x, 0) = 0 for every x ∈ R
N .

Let w ∈ X̃ satisfy

(3.24) Lw + c(x,w) = 0 in R
N .

Then

(3.25)

{

w ≥ 0 in R
N ,

w(0) = 0,
=⇒ w ≡ 0 on R

N .

In particular, assumptions (H4) and (H6) are fulfilled with the choices in (3.3)
and (3.4).

Proof. We observe that, thanks to the assumptions in (3.25), x = 0 is a minimum
point for w in R

N . As a consequence, we have that

(3.26) ∆w(0) ≥ 0 and − (−∆)sw(0) = P.V.

∫

RN

w(x)

|x|N+2s
dx ≥ 0.

On the other hand, by (3.23) and (3.24), and recalling also that w(0) = 0, we get

0 = c(0, 0) = c(0, w(0)) = −Lw(0) = ∆w(0) − (−∆)sw(0) ≥ −(−∆)sw(0).

Gathering together this and (3.26), we conclude that

0 = −(−∆)sw(0) = P.V.

∫

RN

w(x)

|x|N+2s
dx.

Since w ≥ 0 in R
N , we deduce that w ≡ 0 on the whole of RN , which completes

the proof of the claim in (3.25).

Now, we check the validity of assumption (H4). For this, recalling (3.3)
and (3.4), we take ϕ ∈ X and we define

c(x,w) := −f ′(ϕ(x))w.

We observe that c satisfies (3.23). Hence, we can apply the first part of Lemma 3.4
to obtain that (H4) is satisfied. Finally, in order to show the validity of assump-
tion (H6), given ϕ ∈ X, we define

c(x,w) := f(ϕ(x) + w)− f(ϕ(x)).

This function satisfies (3.23). As a consequence of this and of the inclusion X ⊆ X̃,
we deduce (H6) from the first part of Lemma 3.4. �

Thanks to these statements, we can now prove Theorem 1.2:
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Proof of Theorem 1.2. On account of Lemmata 3.1, 3.2, 3.3 and 3.4, we know
that the assumptions in (H1)—(H6) are fulfilled in the setting of Theorem 1.2.
Moreover, since u ∈ X, we have that

‖u‖C1,β(RN ) is finite for all β ∈ (0, 1).

From these considerations and (1.3), we have that the assumptions of Theorem 1.1
in [31] are satisfied. Hence, from Theorem 1.1 in [31] we have that there exists
some function u0 : R → R such that (1.5) holds true. �
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[5] M.T. Barlow, R. F. Bass, C. Gui, The Liouville property and a conjecture of De Giorgi,
Comm. Pure Appl. Math. 53(8) (2000), 1007–1038. 3

[6] B. Barrios, L. Montoro, B. Sciunzi, On the moving plane method for nonlocal problems in
bounded domains, J. Anal. Math. 135(1) (2018), 37–57. 2

[7] H. Berestycki, F. Hamel, R. Monneau, One-dimensional symmetry of bounded entire solu-
tions of some elliptic equations, Duke Math. J. 103(3) (2000), 375–396. 3

[8] S. Biagi, S. Dipierro, E. Valdinoci, E. Vecchi, Mixed local and nonlocal elliptic operators:
regularity and maximum principles, preprint. 1

[9] S. Biagi, E. Valdinoci, E. Vecchi, A symmetry result for cooperative elliptic systems with
singularities, to appear in Publ. Math. 14, 15

[10] I. H. Biswas, E.R. Jakobsen, K.H. Karlsen, Viscosity solutions for a system of integro-
PDEs and connections to optimal switching and control of jump-diffusion processes, Appl.
Math. Optim. 62 (2010), no. 1, 47–80. 1

[11] I. H. Biswas, E.R. Jakobsen, K.H. Karlsen, Difference-quadrature schemes for nonlinear
degenerate parabolic integro-PDE, SIAM J. Numer. Anal. 48 (2010), no. 3, 1110–1135. 2

[12] D. Blazevski, D. del-Castillo-Negrete, Local and nonlocal anisotropic transport in reversed
shear magnetic fields: Shearless Cantori and nondiffusive transport, Phys. Rev. E 87 (2013),
063106. 2

[13] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Univer-
sitext. Springer, New York (2011). 12
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