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A B S T R A C T

The present research addresses the dynamic behaviour of an air spring with a pipeline connected
to a reservoir in a frequency range up to 400 Hz, in which structure-borne vibration transmission
may occur due to both the structural behaviour of the bellows and fluid dynamics in the
pneumatic circuit of the suspension. Based on experimental results, three frequency ranges are
distinguished where different resonances of the suspension appear: low (up to 30 Hz) due to
the air flow between the bellows and the surge reservoir, intermediate (30–150 Hz) due to the
formation of standing waves in the pipeline and high (beyond 150 Hz) due to the structural
dynamics of the bellows. A novel modelling technique to predict the dynamic behaviour of
the pneumatic system in all these frequency ranges is presented and validated: this consists of
an enhanced Finite Element Model (FEM) considering the structural properties of the bellows
and the effect of pressurised air in the bellows and in the reservoir, coupled to a model of
fluid exchange between the two main air volumes which is defined using a VUFLUIDECH
user subroutine developed in ABAQUS. The study focusses on the axial dynamic stiffness of
the pneumatic suspension, which plays a key role in determining the transmissibility of the
suspension. However, the mathematical model introduced in the paper is capable of predicting
also the vibration modes of the suspension in shear and rotation, which may be relevant in
some applications, e.g. when air springs are used in vehicle suspensions.

. Introduction

Pneumatic suspensions, also known as air spring suspensions, are widely considered as an effective solution for isolating
ibrations in vehicles and in industrial machinery [1–5]. A typical pneumatic suspension consists of three elements, the air spring or
ellows, a surge reservoir or auxiliary chamber and a pipeline [6]. The main element is the bellows, a cavity made by fibre reinforced
ubberlike elastomer. When the bellows is subjected to axial forces, the air volume in the chamber is compressed, resulting in a
ariation of pressure in the chamber which is propagated to the reservoir via the air inside the pipe. The increased pressure produces
decrease of the total air volume, thus providing a compliance effect. The static stiffness of the pneumatic suspension can be set to

he desired value through the proper choice of the total volume of the bellows and surge reservoir. However, pneumatic suspensions
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Nomenclature

�̄�𝑃𝑖 𝜏𝑖 Prony series parameters (–)
𝛥𝑝 Pressure harmonic waves (Pa)
�̇� Mass flow rate (kg s−1)
𝜆 Wavelength (m)
𝜇 Dynamic viscosity of the air (kg m−1 s−1)
𝜌 Density of the air (kg m−3)
𝐹
(

𝑤0
)

Fourier transform of the force signal
�̃�
(

𝑤0
)

Fourier transform of the excitation signal
0 Subscript for the air spring reference state
𝑏 Subscript for the air spring or bellows
ℎ Subscript for the high frequency range
𝑖 Subscript for the intermediate frequency range
𝑙 Subscript for the low frequency range
𝑝 Subscript for the pipeline
𝑟 Subscript for the reservoir
𝐶10, 𝐶20, 𝐶30 Coefficients of the Yeoh material model (Pa)
𝐹 Resulting force (N)
𝐺0 Initial shear modulus (Pa)
𝐺𝑠 Storage Modulus (Pa)
𝐺𝓁 Loss Modulus (Pa)
𝐺∞ Long-term shear modulus (Pa)
𝐼1 First invariant of the deviatoric strain
𝐾 Static stiffness of the pneumatic system (N m−1)
𝑘 Harmonic number (–)
𝐾∗ Dynamic stiffness of the pneumatic system (N m−1)
𝑛 Polytropic heat ratio of the air, n = 1 isothermal, n = 1,4 adiabatic (–)
𝑝 Pressure (Pa)
𝑝𝑚𝑎𝑥 Pressure amplitude (Pa)
𝑅 Specific gas constant (J kg−1 K−1)
𝑇 Temperature of the air inside the cavity (K)
𝑡 Time (s)
𝑈 Strain energy function
𝑢𝑝 Velocity of the air inside the pipe (m s−1)
𝑉 Total volume of the system (m3)
𝑤𝑘 Natural frequency (Hz)
𝑧 Vertical displacement (m)
𝑙𝑝 Loss coefficient due to singularities (–)
A𝑒 Effective area of the air spring (m2)
A𝑚 Excitation amplitude (m)
A𝑝 Effective area of the pipe (m2)
L𝑝 Length of the pipe (m)
w0 Excitation frequency (rad)

exhibit a frequency dependent behaviour, due to both structural dynamics of the bellows and fluid dynamics in the air volume, which
needs to be properly considered in order to ensure the satisfactory behaviour of the suspension.

Therefore, the design of pneumatic suspensions shall rely on accurate mathematical models, allowing to reproduce not only the
uasi-static but also the dynamic behaviour of all suspension components in an appropriate frequency range that, depending on the
pplication addressed, may be up to some hundred Hz. In this perspective, the prediction in the design stage of suspension resonances
alling in the frequency range of interest can be decisive. It is known that at low frequencies (0-20/30 Hz), the dynamic stiffness
f the pneumatic system shows a peak corresponding to a resonance of the pneumatic circuit seen as an equivalent mass-spring-
amper system, with air compressibility providing the stiffness effect, viscous fluidic resistance in the pipe providing the damping
erm and the mass of air flowing in the pipe representing the equivalent mass of the system [7]. This phenomenon is described by
2

oth mechanical-lumped parameter models [8–11] and thermodynamic models [6,12–17] that can be found in the literature. The
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value of the resonance frequency and the amplitude of the resonance peak are determined by some geometrical parameters such
as the volume of the reservoir, the diameter and length of the pipeline and the area of the orifice which is often included in the
pipe [1,6,11,16,18,19].

Regarding the modelling of the low frequency peak, both Berg’s model [9] and Vampire model [10], which is an extension
f the Nishimura model [8], include a mass representing the air inside the pipe. Alonso et al. included a variable orifice opening
aw which modifies the transmissibility of the suspension system to the previous mentioned mechanical models [11]. Moreover,
ocquier et al. [6] compared different pipe modelling methods applied to railway pneumatic system: (a) considering the air inside

he pipe as a constant moving mass and solving the motion equation, (b) expressing the air motion as a mass flow through a
ifferential equation, (c) adopting an algebraic equation neglecting the inertia of the air, (d) introducing a fluidic resistance given
y the ISO 6358 Standard and (e) as an equivalent mechanical model; they concluded that the use of the algebraic equation for
hort pipes can be sufficiently accurate. Quaglia and Sorli employed the fluidic resistance of ISO 6358 in a dimensionless model
f the pneumatic suspension [13]; Facchinetti et al. implemented a differential equation to evaluate the ride comfort in railway
ehicles [12]. Gao et al.proposed different definitions for the mass flow rate according to the inclusion of the orifice, the pipe or
he orifice–pipe group for a railway suspension system [16]. Toyokufu et al. also implemented a differential equation to predict the
ipeline influence in a heavy-duty bus [18]. Zhu et al. adopted the fluidic resistance model for short pipe or orifice connections
nd a mass flow considering the inertia for long pipes on a truck vehicle [14] and Nieto et al. developed a non-linear and linerized
neumatic system model with a restriction pipe coefficient for a 2-lobe convoluted air spring [15]. Recently, Zheng et al. describe,
ot only in the frequency domain (up to 20 Hz) but also in the time domain, the performance of the air spring with the reservoir
onnected with a pipeline or orifice by means of transmitted force response models with different excitation signals [17]. They also
ry to give a further explanation of the physical origin of this resonance by means of simulating the displacement and flow of the air
n the pipeline, and conclude that they are excited when the excitation frequency is close to the natural frequency of the pipe [20].

All the above mentioned studies are focused on the performance of the pneumatic system in a frequency range up to 20–30 Hz,
hilst a constant value of the dynamic stiffness is assumed for the suspension at higher frequencies, under the assumption that fluid
xchange between the bellows and the surge reservoir becomes negligible above this frequency and that the effect of structural
esonances in the bellows can be neglected [6,18].

Only few references address the dynamic behaviour of pneumatic suspensions at frequencies beyond 20 Hz, but they just consider
he effect of structural vibration modes of the air spring [21–23] whilst high-frequency effects in the pneumatic circuit are neglected.
urthermore, only two references present experimental results for a pneumatic suspension excited at frequencies higher than few
ens of Hertz [21,23]. The study of structural vibration of the bellows is based on Finite Element models combined with modal
nalysis. Single lobe convoluted air springs show vibration modes below 400 Hz [21,22] whilst structural resonances of rolling lobe
ir springs for railway applications are found below 200 Hz [23].

Nowadays, the latest research conducted in air spring pneumatic systems tends to include and explain the non-linear dynamic
ehaviour up to 20 Hz [20,24,25], highlighting the influence of bellows’ rubberlike material and of the connecting element between
he air spring and reservoir in the axial response of the air spring. Up to date, even if the dependency of excitation amplitude in the
irst resonant peak was observed [11], the non-linear behaviour of the material was included in the models considering the shear
ehaviour of the air spring, but not in models addressing the axial forces in the suspension [9,10].

The aim of this paper is to investigate the behaviour of a pneumatic suspension in a frequency range up to 400 Hz and provide
physical explanation for the observable phenomena, analysing the interaction between structural vibration of the bellows and

ressure waves in the pneumatic circuit of the suspension. To this aim, laboratory tests are performed on a small-size single
onvoluted air spring widely used for vibration isolation in industrial machinery. A mathematical model is proposed, consisting of an
nhanced finite element model developed in ABAQUS, which considers the non-linear elasticity and frequency-dependent behaviour
f the rubberlike material of the bellows, and, at the same time, models the thermodynamic processes in the air contained in the
ellows, reservoir and pipe. Furthermore, the presence of air spring resonances found from the experiments in an intermediate
requency range from 30 to 150 Hz is explained based on the features of the standing waves of air pressure variation taking place
n the pipe.

The paper is organised as follows: in Section 2 the experimental set-up is described and the results of tests are presented. Section 3
resents the enhanced FE model. In Section 4 the results of the proposed model are presented and compared to the experimental
esults. Finally, Section 5 provides the conclusions of this research.

. Experimental characterisation of the air suspension

The objective of this section is to describe the experimental tests performed to characterise the dynamic behaviour of a pneumatic
uspension system, and their results.

.1. Experimental setup

The dynamic behaviour of a pneumatic system is investigated experimentally in the 0–400 Hz frequency range. To this aim, a
onvoluted air spring (FS 40-6 CI manufactured by Contitech), widely used in machinery and tool applications, is tested using an
lastomeric-Testing System Instron MHF 25.

The test arrangement is shown in Fig. 1(a). The hydraulic testing machine includes an LVDT displacement sensor with range ±25
3

mm and a calibrated force sensor with range ±20 kN. A schematic representation of the pneumatic system is shown in Fig. 1(b) and
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Fig. 1. Test bench layout: (a) mounting of the air spring in the testing machine, (b) pneumatic circuit and sensors layout.

Table 1
Main characteristics of the pneumatic system.
Characteristic Value

Mounting height of the air spring (𝐻𝑏) 60–100 mm
Recommended nominal height of the air spring (𝐻90) 90 mm
Maximum diameter of the air spring 145 mm
Volume of the air spring (𝑉𝑏) 0.5 l
Air inlet of the air spring G 1/8
Volume of the reservoir (𝑉𝑟) 0.4–1,4–4 l
Length of the pipeline (𝐿𝑝) 0.5–1–2–4–8 m
Internal diameter of the pipeline (𝐷𝑝) 5 mm

Fig. 2. Internal shape of the tested air spring: (a) frontal view, (b) a cut of the diaphragm of the air spring and (c) internal reinforcements of the diaphragm.

its main characteristics are summarised in Table 1. The pneumatic system is fed by a central air supply system, and a check valve
is used to avoid unwanted over-pressure in the pneumatic circuit. The scheme also shows the position of two pressure transducers
𝑝𝑏 and 𝑝𝑟, measuring the pressure of air respectively in the pipe close to the connection to the air spring and in the reservoir.
Two companion temperature sensors (thermocouples type T), also shown in the scheme, are used to measure air temperature at the
same locations. In addition, a 3D scanner is used to derive the geometrical shape of the bellows for different pressures and mounting
heights. Fig. 2 depicts a photograph of a cut of the air spring diaphragm, where the rubber matrix is reinforced with two layers of
single-end twisted cord yarns oriented at 60◦ and −60◦.

Two test types are performed using the set-up: static tests and dynamic tests performed applying a swept-sine displacement at
one end of the spring. Static tests are aimed to define the relationship between the applied displacement and the resulting force in
quasi-static conditions when a displacement of ±5 mm is applied. Dynamic tests are instead aimed at characterising the dynamic
behaviour of the pneumatic suspension. By dividing the Fourier transform of the force signal 𝐹

(

𝑤
)

by the Fourier transform of the
4

0
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Table 2
Comparison between manufacturer data and experimental results for reaction force at working height of 90 mm and 70 mm.
90 mm mounting height

Pressure (bar) Manufacturer (kN) Experimental (kN) Deviation(%)

2 1 0.99 −1.0
3 1.5 1.46 −2.7
4 2.06 2.02 −3.8
5 2.62 2.48 −4.7

70 mm mounting height

Pressure (bar) Manufacturer (kN) Experimental (kN) Deviation (%)

2 1.4 1.4 −0.5
3 2.2 2.1 −4.5
4 2.94 2.83 −3.7
5 3.67 3.53 −3.8

excitation signal �̃�
(

𝑤0
)

, both evaluated at the excitation frequency 𝑤0, the frequency-dependent, complex-valued dynamic stiffness
of the pneumatic system 𝐾∗ is obtained [26]:

𝐾∗ (𝑤0
)

=
𝐹
(

𝑤0
)

�̃�
(

𝑤0
) . (1)

The real and imaginary parts of the complex-valued dynamic stiffness describe respectively the elastic and dissipative behaviour
f the pneumatic suspension. As shown below, the dynamic stiffness of the pneumatic suspension is strongly affected by internal
esonances of the system, so that at some frequencies known as the system’s resonances a peak of the dynamic stiffness is observed,
eading to a stiffer behaviour of the suspension. These internal resonances clearly affect the performance of the suspension in terms
f its ability to filter out disturbance from (e.g.) a motion applied at the base. Therefore, it is extremely important not only to define
xperimentally these resonances, but also to obtain a physical understanding of the structural and thermodynamic phenomena
roducing each resonance.

.2. Experimental results

The forces obtained from the experimental tests at different values of internal pressure and working height are compared with
he values provided by the manufacturer of the air spring. The results summarised in Table 2 are found to be in good agreement,
ith deviations below 5% for both analysed mounting heights, 70 mm and 90 mm respectively.

In order to explore the dynamic behaviour of pneumatic suspensions at high frequencies, a sensitivity analysis has been conducted
hat includes, in addition to the initial pressure (𝑃0) and excitation amplitude (𝐴𝑚), the mounting height of the air spring (𝐻𝑏), the
ipeline length (𝐿𝑝), and the auxiliary tank volume (𝑉𝑟) as factors.

Fig. 3 provides an overview of the system’s dynamic behaviour in terms of the trend with frequency of the modulus (absolute
alue) of the dynamic stiffness over the entire frequency range from 0 Hz to 400 Hz. Fig. 3(a) shows the influence of the working
ressure in the dynamics of the system; Fig. 3(b) the influence of the mounting height. Three different frequency ranges are defined
or the pneumatic system, denoted as low frequency range (zone I up to 30 Hz), intermediate frequency range (zone II between 30 and
50 Hz) and high frequency range (zone III beyond 150 Hz).

In the Low frequency range a single resonance is found (see Figs. 3, 4a,b and 5a), which is related to an exchange of air between the
ellows and the reservoir. This resonance is well reproduced by existing air spring models [6,10,12] and can be justified assuming
he air in the pipe behaves as an incompressible fluid. As shown in Figs. 4(a) and 5(a), an increase in the length of the pipe or in
he auxiliary volume increases the mass of the air volume, and hence moves the resonance to a lower frequency. The resonance
mplitude is only slightly affected by the length of the pipe, whereas it is increasing with increasing reservoir volumes and with
ecreasing mounting heights (see 4(b)). Thus, the amplitude of this resonance peak is mainly related with the volume difference
etween the two cavities, the air spring and the reservoir.

In the Intermediate frequency range, as shown in Fig. 4(c) and (d), several resonance peaks with small amplitude are found. In
egard of the number and features of these resonances, the length of the pipe plays a critical role and, in particular, the number of
esonance frequencies is increasing with the length of the pipe. The mounting height and the reservoir volume can be considered
s less important parameters, that slightly affect the amplitude of the resonance peaks but do not affect the resonance frequency
see Figs. 4(d) and 5(b)). This same effect was observed by Zhen et al. [20] in a lower frequency range 0–40 Hz, concerning the
irst peak (referred here as the low frequency peak): when the excitation frequency is close to the natural frequency of the pipe,
he air displacement and then the mass flow increase rapidly, resulting in an increase in pressure followed by the rise of reaction
orce and of the resultant dynamic stiffness of the system, an idea that was firstly mentioned by Toyofuku et al. in 1999 [18].To the
est of our knowledge, experimental evidence of resonances occurring in the Intermediate frequency range was not reported in the
iterature. The phenomena observed herein can be significant, under certain conditions, in different applications where pneumatic
5

uspensions are implemented, such as in the secondary suspension of railway vehicles [6].
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Fig. 3. Experimental FRF of the suspension system in terms of the modulus of the dynamic stiffness vs. frequency. Three frequency ranges can be distinguished:
Low (up to 30 Hz), Intermediate (30–150 Hz), High (beyond 150 Hz). (a) for different pipe lengths (0-0.5-1-2-4-8 m) and inner pressure (2 bar and 4 bar) values

ounted in the nominal height. (b) for different mounting heights (70 mm and 90 mm), pipe lengths (0-4-8 mm).

Finally, in the high frequency range one resonance is observed (see Figs. 3, 4e,f and 6) leading to a very large peak of the
ynamic stiffness: this resonance is caused by the structural vibration of the bellows. This resonance frequency is highly affected by
he internal tension in the bellows caused by air pressure, which produces a stiffening effect. Therefore, the resonance frequency
ncreases with the air pressure, whereas it is weakly affected by the length of the pipe and by the presence of the reservoir, see
ig. 4(e). In addition, as shown in Fig. 4(d), larger mounting heights increase the value of this resonant frequency of the bellows. It is
lso observed (see Fig. 6) that the amplitude of excitation affects both the amplitude and frequency of the resonance peak, denoting
non-linear structural behaviour of the bellows. This non-linearity is due to the non-linear behaviour of the rubber material used

o manufacture the bellows.

. Mathematical model of the pneumatic suspension

The mathematical model of the pneumatic suspension makes use of an enhanced finite element model defined in ABAQUS
omplemented by a numerical model of the pipeline. The model aims to reproduce both the static and dynamic behaviour of the
ir spring with a pipeline connected to a reservoir.

Finite element codes allow creating an accurate model in terms of geometry and representation of the physical phenomena taking
lace in the system, assuming the structural properties and dimensions of the air spring system are known. For that aim, the initial
hape of the flexible air spring is obtained though a 3D scanning of the bellows for different height and pressures. The generated
olume is compared with the manufacturer’s data. Concerning the material, the non-linear elastic and dynamic properties of the
lastomeric material are experimentally obtained.

The developed FEM model should be able to include both the reinforcing fibres in the bellows and the pressurised air inside
he suspension system, which plays a crucial role. Some FEM codes allow to define the air in the bellows as a fluid cavity instead
f a uniform surface pressure definition. Nevertheless, even if the cavities can be modelled as fluidic ones, air dynamics is not
onsidered in this type of model. Fluid-Structure Interaction (FSI) models are an alternative option in which fluid dynamics is
onsidered; however, in such models the inclusion of the fibre reinforced elastomeric material of the bellows is not straightforward
nd it is often not supported. In addition, the computational cost and time are significantly increased.
6
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a

Fig. 4. Experimental dynamic stiffness of the pneumatic suspension system for different pipeline lengths (a, c, d) and mounting heights (b, c d) distinguished
ccording to the value frequency Low (a, b), Intermediate (c, d), High (e, f).
7
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Fig. 5. Experimental dynamic stiffness of the pneumatic suspension system to analyse the reservoir volume in (a) Low and (b) Intermediate frequencies.

Fig. 6. Experimental dynamic stiffness of the pneumatic suspension system to analyse the excitation amplitude in High frequency.

In the present research, ABAQUS software is employed for the modelling of the pneumatic suspension. The methodology
mployed for the FE modelling of the bellow is based on a previous work [23], enhanced here with the addition of the pipeline and
eservoir, considering the non-linear material definition and extending the frequency range of the model up to 400 Hz. The coupling
etween the internal air pressure and the deformation of the bellows is done though a surface-based fluid cavity. The fibres of the
omposite material of the air spring’s diaphragm are incorporated as an embedded uniaxial reinforcement using rebar elements.
hese elements create an equivalent orthotropic layer parallel to the mid-surface of the shell thickness considering the geometry of
he fibres (diameter and spacing) oriented at 60◦ and -60◦, where the material of the fibres is defined as linear elastic. The model
lso includes a non-linear definition of the behaviour of the elastomeric material (more details are given in Section 3.1). Lastly, the
luid exchange between the cavities is governed by a user defined function VUFLUIDEXCH coded in FORTRAN (further information

can be found in Section 3.2).

3.1. Definition of the non-linear elastic and viscoelastic behaviour of elastomeric material

In order to define the non-linear elastic and non-linear dynamic response of the pneumatic suspension system to quasi-static and
harmonic excitations, the non-linear elastic and rate-dependent (viscoelastic) material properties of the elastomeric material must
be considered. In finite element models, the mechanical properties of the materials are defined through material models. These are
semi-empirical equations in which material behaviour is described using parameters that need to be identified by fitting the model
to the behaviour of the material as measured from tests on specimen. As the complexity of the model increases, more parameters
need to be included in the model, and model calibration becomes increasingly challenging. The specific characteristics or rubber
8

material that are taken into account in the present work are the non-linear elasticity and the frequency or rate-dependence.
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Most finite element codes consider the possibility of including quite directly these material definitions, by the use of hyperelastic
odels (in order to consider non-linear elastic behaviour) and linear viscoelastic models (in order to implement frequency dependent

ehaviour of the elastomeric material), respectively. However, modelling the effect of the dynamic behaviour of the elastomeric
aterial on excitation amplitude is not as straightforward and requires more complicated models to be implemented [27]. They

nclude parallel networks representing the elastic, viscoelastic (rate-dependence) and friction (amplitude-dependence) phenomena.
In this work, the quasi-static hyperelastic behaviour of the rubber material is defined according to the Yeoh model for nearly

ncompressible materials [28] This model is based on a phenomenological strain energy function (U) defined as a cubic function of
he first invariant 𝐼1 of the stress tensor:

𝑈 = 𝐶10
(

𝐼1 − 3
)

+ 𝐶20
(

𝐼1 − 3
)2 + 𝐶30

(

𝐼1 − 3
)3 , (2)

here 𝐶10, 𝐶20, 𝐶30 are the parameters of the model.
The rate-dependent behaviour of the bellows material is represented in the frequency domain using a Prony series representation

n which the shear modulus is defined as the sum of a constant term representing the long-term (i.e. quasi-static) value of the modulus
nd 𝑁 visco-elastic contributions described as Maxwell elements (viscous dashpot with serial stiffness) [29].

The complex-valued, frequency dependent shear modulus of the material is defined as:

𝐺(𝜔) = 𝐺𝑠(𝜔) + 𝑖𝐺𝓁(𝜔), (3)

𝐺𝑠(𝜔) = 𝐺0

[

1 −
𝑁
∑

𝑖=1
�̄�𝑃𝑖

]

+ 𝐺0

𝑁
∑

𝑖=1

�̄�𝑃𝑖 𝜏
2
𝑖 𝜔

2

1 + 𝜏2𝑖 𝜔2
; 𝐺𝓁(𝜔) = 𝐺0

𝑁
∑

𝑖=1

�̄�𝑃𝑖 𝜏𝑖𝜔

1 + 𝜏2𝑖 𝜔2
. (4)

𝐺∞ = 𝐺𝑂

[

1 −
𝑁
∑

𝑖=1
�̄�𝑃𝑖

]

,

with 𝑖 the imaginary unit, 𝐺𝑠(𝜔) the storage modulus and 𝐺𝓁(𝜔) the loss modulus, the two components of the modulus being
expressed as [30]:

𝐺𝑠(𝜔) = 𝐺0

[

1 −
𝑁
∑

𝑖=1
�̄�𝑃𝑖

]

+ 𝐺0

𝑁
∑

𝑖=1

�̄�𝑃𝑖 𝜏
2
𝑖 𝜔

2

1 + 𝜏2𝑖 𝜔2
; 𝐺𝓁(𝜔) = 𝐺0

𝑁
∑

𝑖=1

�̄�𝑃𝑖 𝜏𝑖𝜔

1 + 𝜏2𝑖 𝜔2
. (5)

In Eq. (5) 𝐺0, �̄�𝑃𝑖 and 𝜏2𝑖 are the parameters of the Prony series. Parameter 𝐺0 is the initial shear modulus when the material is
subjected to a step change of the shear strain, and is related to the long-term shear modulus 𝐺∞ by the relationship:

𝐺∞ = 𝐺𝑂

[

1 −
𝑁
∑

𝑖=1
�̄�𝑃𝑖

]

,

whilst parameters �̄�𝑃𝑖 and 𝜏2𝑖 are respectively the non-dimensional shear modula and the time constants of the 𝑁 Maxwell elements.
In order to identify the parameters of the elastomer material model, two kinds of tests material characterisation are performed

using an Instron 4467 and an Instron MHF 25 testing machines. Quasi-static tension [31], compression [32] and simple shear [33]
tests are performed on specimens, following the procedure stated in the standards, in order to obtain the non-linear elastic behaviour
of the material and the parameters of the hyperelastic model. Fig. 7 shows the set up of a compression, traction and simple shear
specimens. Fig. 8 compares the stress–strain curves from the experimental tests with the predictions of the Yeoh model implemented
in the FEM model: a very good agreement is observed between the two series of data.

A dynamic DMA (Dynamical mechanic analysis) frequency sweep is conducted in simple shear [34] to determine the frequency
or time-dependent storage and loss modulus and adjust the �̄�𝑃𝑖 and 𝜏𝑖 coefficients for each term in the Prony series.

It is worth remarking that the implemented material model does not consider the influence of the harmonic excitation amplitude
on the response when Frequency Response Functions are to be calculated. Yeoh’s hyperelastic model accounts for the non-linear
elastic behaviour neglecting frequency dependence effects, whereas the Prony series aims at reproducing the frequency dependence
of the material disregarding the influence of the amplitude. Based on the experimental results shown in Fig. 9, this is a good
approximation when elastomers are relatively soft (the trend is almost insensitive to the amplitude of deformation for NR50 in
Fig. 9b) but could lead to errors if more heavily filled elastomers are used, see the trend with amplitude for material NR70 in
Fig. 9b. As the air spring being modelled in this work is manufactured with a soft Shore A 50 natural rubber, the material model
adopted is acceptable.

3.2. Model of the pneumatic system

The air spring and the reservoir of the pneumatic system are represented in the FE model in ABAQUS by filled surface pneumatic
cavity elements, in which a membrane defines the cavity boundaries sharing the nodes with the structural elements and allowing
the calculation of the pressure inside the cavity and the volume of the cavity.

The air inside the two cavities is modelled as an ideal gas with molecular weight 0.0289 kg/mol, in which all heat transformations
are assumed to be polytropic. The heat capacity is defined via the Shomate equation with coefficients a = 28.11, b = 1.967e−3,
9

c = 4.802e−6, d = −1.966e−9 and e = 0 in the SI units and for a temperature range of 273-1800K [35]. Since the finite element
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Fig. 7. Set-up of rubber material characterisation tests: (a) Tension test, (b) Compression test, (c) Simple shear test.

Fig. 8. Stress-strain relation of the rubberlike material: (a) tension, (b) compression and (c) shear tests.

Fig. 9. Modulus of the dynamic stiffness for a shear DMA test of two hardness natural rubbers, referenced as NR50 (soft rubber) and NR70 (stiff rubber): (a)
for different excitation amplitudes, (b) for different excitation frequencies.
10
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model is solved in an explicit way, the heat exchange between the system and the surrounding environment allows the definition
of a generic polytropic index, corresponding to a transformation which is neither isothermal nor adiabatic.

The unknown values of air pressure in the two cavities are considered as two additional degrees of freedom of the FEM model,
ach one associated to the reference node of the corresponding cavity. These reference nodes are used to define the air flow in the
ipe connecting the two cavities. However, in ABAQUS no model is directly available for the pipe connecting the two air volumes.
herefore, a fluid exchange linking element is used, which defines the mass flow rate of the air in the pipe (�̇�) as a function of the
ressure difference between the two cavities (𝛥𝑝𝑏𝑟 = 𝑝𝑏 − 𝑝𝑟).

This fluid exchange linking element can be defined in the form of a lookup table or as a user defined function. The first option
ssumes that the amplitude of the dynamic excitation is sufficiently small so that the fluid equations can be linearised around the
uasi-static state of the fluid. In this way, however, it is impossible to describe the internal dynamics of the air inside the pipeline.
hat is why, in the present work the mass flow rate is defined using a VUFLUIDEXCH user-defined subroutine [36].

The user-defined routine assumes the air in the pipe behaves as a viscous incompressible fluid performing a mono-dimensional
ub-sonic flow. Under these assumptions, air velocity in the pipe (𝑢𝑝) is obtained using the following first-order, non-linear
ifferential equation [12]:

𝜌𝑝𝐿𝑝
𝑑𝑢𝑝
𝑑𝑡

= 𝑝𝑏 − 𝑝𝑟 −
32𝜇𝐿P

𝐷2
P

𝑢𝑝 −
1
2
𝑙p𝜌𝑝

|

|

|

𝑢𝑝
|

|

|

𝑢𝑝, (6)

where 𝐿𝑝 and 𝐷𝑝 are the length and diameter of the pipe, 𝑝𝑏 and 𝑝𝑟 are the pressures of the air spring and reservoir, 𝜌𝑝 is air density
in the pipe, 𝜇 is the dynamic viscosity of the air and 𝑙𝑝 are the local losses in the pipe due to singularities and friction losses derived
from the Darcy formula.

Air density inside the pipe is defined as the average of air density in the bellows and in the surge reservoir, respectively 𝜌𝑏 and
𝜌𝑟:

𝜌𝑝 =
𝜌𝑏 + 𝜌𝑟

2
= 1

2

(

𝑝𝑏
𝑅𝑇𝑏

+
𝑝𝑟
𝑅𝑇𝑟

)

, (7)

The mass flow rate in the pipe is defined as:

�̇� = 𝜌𝑝𝐴𝑝𝑢𝑝, (8)

ith 𝐴𝑝 the area of the cross-section of the pipe. Eqs. (6)–(8) altogether define the fluid exchange linking element. This set of
quations is solved in the user-defined routine using Euler’s explicit method.

It is worth noting that although most models proposed in the literature idealise the air as an incompressible fluid under the
ssumption of adiabatic transformations [12,13,20], Docquier [37] remarks the importance of considering the compressibility of
he air towards model accuracy. The proposed enhanced FEM includes the compressible behaviour of the air and the polytropic
eat exchange.

. Results

.1. Static results

In this section, the results of quasi-static tests are compared to the outputs of the FEM model described in Section 3 in terms
f the static stiffness of the air spring, defined as the real-valued ratio of the increment in the force produced by the spring over
he change of the working height, starting from a reference condition defined by a reference height and air pressure inside the
pring. These results are also compared to an estimate of the static stiffness obtained from an analytical model of the static airspring
ehaviour described below.

The ability of an air spring to support an axial load 𝐹 depends on its effective area (𝐴𝑒) and on the air pressure (𝑝), which
oth depend in turn on the vertical deflection of the bellows (𝑧). Often the inherent structural force of the composite bellows (F𝑏)
s neglected [13,37] but, for the air spring considered here, this term cannot be neglected due to the small and relatively stiff
onstruction of the bellows [20]. Therefore, the static axial force produced by the spring can be written as:

𝐹 = 𝑝(𝑧)𝐴𝑒(𝑝, 𝑧) + 𝐹𝑏(𝑧), (9)

Assuming small values of the deflection 𝑧, this equation can be linearised in the neighbourhood of a reference state, providing
he following analytical expression of the air spring stiffness 𝐾:

𝐾 = d𝐹
d𝑧

= 𝑝0
|

|

|

|

𝜕𝐴𝑒
𝜕𝑝

|

|

|

|𝑧0 ,𝑝0

d𝑝
𝑑𝑧

+ 𝑝0
|

|

|

|

𝜕𝐴𝑒
𝜕𝑧

|

|

|

|𝑧0 ,𝑝0
+ 𝐴𝑒(𝑝0, 𝑧0)

d𝑝
𝑑𝑧

+
d𝐹𝑏
𝑑𝑧

, (10)

where 𝑧0 and 𝑝0 are the values of deflection and air pressure in the reference state. The effective area and its gradients with respect
to pressure 𝑝 and deflection 𝑧 are obtained from manufacturer data, whilst the structural stiffness is experimentally measured.
Frequently, it is assumed that the stiffness due to the effective area gradient only depends on the air spring height [13,37], but in
small bellows the term related to the gradient of the effective area with respect to pressure 𝜕𝐴𝑒

𝜕𝑝 is not negligible. Moreover, the
gradient of air spring pressure with respect to air spring deflection d𝑝

d𝑧 is important in small bellows like the one considered here,
compared to larger ones often employed, for instance, in railway vehicles. This term can be expressed based on a state equation
11
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Table 3
Comparison of the static stiffness between experimental tests (EXP), FEM model (FEM) and mathematical equation (Math) for
nominal height of 90 mm of the air spring and without reservoir.
𝑝0 (bar) EXP (N/mm) FEM (N/mm) Deviation𝐹𝐸𝑀 (%) Math (N/mm) Deviation𝑀𝑎𝑡ℎ (%)

2 43.0 43.1 0.2 43.7 1.6
3 62.4 64.7 3.7 61.8 −1
4 77.7 76.7 −1.3 78.9 1.5
5 94.2 100.1 6.3 95.5 1.5

describing the evolution of the thermodynamic state for the air in the air spring: since the compression of the bellows changes the
internal volume of the air spring and affects both air pressure and temperature, the process can be described as polytropic with
generic index 𝑛:

𝑝𝑉 𝑛 = 𝑝0𝑉
𝑛
0 . (11)

Taking the derivative of Eq. (11) with respect to deflection 𝑧:
d𝑝
d𝑧

𝑉 𝑛
0 + 𝑛𝑝0𝑉

𝑛−1
0

d𝑉
d𝑧

= 0,

he gradient of air spring pressure with respect to air spring deflection is obtained as:
d𝑝
d𝑧

= −𝑛
𝑝0
𝑉0

d𝑉
d𝑧

. (12)

Introducing Eq. (12) in Eq. (10) and using data from the manufacturer for the effective area and its gradients, an analytical
xpression of the static air spring stiffness is obtained for a given reference state described by working height 𝑧0 and pressure 𝑝0.

The polytropic index 𝑛 is determined by the amount of heat exchanged with the surrounding environment: in case the deformation
of the air spring occurs over a sufficiently long time, the heat generated by air compression is fully transferred to the surrounding
environment and the process can be well approximated as being isothermal, 𝑛 = 1. If otherwise the deformation of the spring
takes place over a relatively short time, heat exchange with the environment is limited and the process can be approximated as
being adiabatic, so the polytropic index 𝑛 can be set to the specific heat ratio coefficient 𝛾. Usually, in a low frequency range
and particularly under quasi-static conditions, the air spring deformation process is assumed to be isothermal whereas at higher
frequencies the adiabatic assumption is used [37–39]. Pintado et al. performed experimental tests aimed at identifying the polytropic
index and found values close to 1 (isothermal) in the 0.1–1 Hz frequency range [40]. However, it should be noted that in this paper
a much wider frequency range, up to hundreds of Hz is addressed, so the results from [40] cannot be directly applied to the models
presented here. It should also be noted that Pintado et al. found different values of the polytropic index depending on the method
used to process their measurements to derive an estimate of the polytropic index, see Figs. 6 and 8 in their paper. In the present
work, air transformation process in the air spring is assumed to be polytropic in the FEM model and isothermal when Eq. (12) is
used.

Table 3 compares the measured static stiffness of the air spring (column ‘‘EXP’’), the value obtained from the Finite Element (FE)
model described in Section 3 (column ‘‘FEM’’) and the value obtained from Eqs. (10) and (12) (column ‘‘Math’’), for different values
of the pressure in the reference state 𝑝0 and considering the air spring not connected to a surge reservoir. The results provided by
the FE model and by the analytical expression are both in good agreement with the measured values, with deviations below 7% in
all cases and below 4% in most cases. An extended comparison of the stiffness values provided by the two models with the measured
stiffness is provided in Fig. 10 for different values of the ratio of the volume of the reservoir 𝑉𝑟 over the volume of the bellows 𝑉𝑏.
Also in this case, a very good agreement is observed.

4.2. Dynamic results

Fig. 11 gives an overview of the dynamic stiffness of the air spring mounted in the nominal height with a reservoir of 0.4 l and
a connecting pipe of 4 m. The proposed model accurately predicts the resonance frequencies of the suspension falling in the low
and high frequency ranges, and also provides an accurate prediction of the amplitude of the corresponding resonance peaks, with
deviations from the measured values below 6% and below 9% for the low and high frequency ranges respectively. However, the
detail of the diagram in the intermediate frequency range (30 to 150 Hz) shows that the model misses to reproduce the measurements
in terms of the small-amplitude resonance peaks taking place in this frequency range, which are due to the effect of standing waves
in the pipe, as further discussed in Section 4.2.2.

4.2.1. Results for the Low frequency range
The predictions of the FEM model for low frequency peaks have been compared to the experimental data and to the results

obtained from implementing the set of differential equations provided by Facchinetti et Al. [12] into the analysed small pneumatic
system. This last approach is denoted as the dynamic thermodynamic model.

As shown in Fig. 12, both models are able to predict the first resonance peak, which is due to air’s inertia in the auxiliary
12

volume (reservoir and pipeline). As summarised in Table 4, the frequency value is reproduced with very good accuracy, however,
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Fig. 10. Volume relation influence in the stiffness of the pneumatic system for a nominal height of the air spring of 90 mm.

Fig. 11. Comparison between the experimental and simulated dynamic stiffness of the pneumatic suspension system.

he dynamic stiffness value at resonance is predicted by the two models to a slightly lower accuracy, with errors always below 9%
nd mostly below 6%. The frequency sample for the experimental tests and the mathematical approach is 1 Hz, whereas it is 0.5 Hz
or the FEM model. The presence of an anti-resonance of the dynamic stiffness is also clearly visible in the experimental results shown
n Fig. 12 and is well reproduced by the FEM model, whereas it is reproduced to a lesser degree of accuracy by the thermodynamic
odel. This is due to the fact that the FEM model considers the frequency-dependent behaviour of the rubber-like material of

he bellows and also describes state transformations in the air inside the suspension as a general polytropic process, whereas
he thermodynamic model neglects the frequency-dependent behaviour of the bellows and approximates heat transformations to
diabatic.

.2.2. Results for the Intermediate frequency range
The resonance peaks observed in this frequency range are due to the formation of standing waves in the air inside the pipe.

ig. 13 illustrates this phenomenon: the standing wave (𝛥𝑝) is considered as the interference of two harmonic pressure waves 𝛥𝑝𝑏
and 𝛥𝑝𝑟) having the same amplitude (𝑝𝑚𝑎𝑥) and wavelength (𝜆), which are reflected at both ends of the pipeline. The ends of the
pipeline are the bellows to one side and the reservoir to the other side.
13
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Fig. 12. Comparison between experimental and simulated pneumatic system performance for low frequency range and 2 bar pressure.

Table 4
Comparison of the low resonance frequency between experimental (Exp), mathematical (Math) and FEM models for nominal
height of 90 mm of the air spring with reservoir for different pipeline lengths and reference pressure 𝑃0 = 2 bar.
Resonance frequency (Hz)

𝐿𝑝 (m) Exp (Hz) Math (Hz) Deviation𝑀𝑎𝑡ℎ (%) FEM (Hz) Deviation𝐹𝐸𝑀 (%)

2 12.0 12.0 0.0 12.0 0.0
4 9.0 9.0 0.0 8.5 −6.0
8 6.0 6.0 0.0 6.0 0.0

Dynamic stiffness in resonance condition (N/mm)

𝐿𝑝 (m) Exp (N/mm) Math (N/mm) Deviation𝑀𝑎𝑡ℎ (%) FEM (N/mm) Deviation𝐹𝐸𝑀 (%)

2 73.6 69.2 −6 71.5 −2.8
4 78.4 71.7 −8.2 73.8 −5.5
8 78 71.45 −8.4 73.8 −5.4

Fig. 13. Layout of the modelling of the pipeline in medium frequency: (a) summary outline and (b) wave shape.

Air pressure in the pipe is governed by the classic partial derivative differential equation describing the propagation of a pressure
perturbation in a one-dimensional domain [41]. The solution of this equation is the sum of two pressure waves 𝛥𝑝𝑏 and 𝛥𝑝𝑟 moving
across the pipe in opposite directions:

𝛥𝑝𝑏(𝑥, 𝑡) = 𝑝𝑚𝑎𝑥𝑠𝑖𝑛(
2𝜋𝑥
𝜆

+𝑤𝑡)

𝛥𝑝𝑟(𝑥, 𝑡) = 𝑝𝑚𝑎𝑥𝑠𝑖𝑛(
2𝜋𝑥
𝜆

−𝑤𝑡).
(13)

The superimposition of the two travelling waves is a standing wave in the form:

𝛥𝑝(𝑥, 𝑡) = 𝛥𝑝 + 𝛥𝑝 = 2𝑝 𝑠𝑖𝑛( 2𝜋𝑥 )𝑐𝑜𝑠(𝑤𝑡). (14)
14
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Table 5
Intermediate resonance frequencies, from the stationary wave equation Eq. (16) (Wave Eq.) and from the experimental results
results (EXP).
Length (m) EXP (Hz) Wave Eq. (Hz) Error (%)

2 84 - 146 84 - 158 0 - 8
4 43 - 84 - 126 - 146 44 - 86 - 128 - 170 2 - 2 - 2 - 16
8 23 - 43 - 64 - 84 - 105 23 - 44 - 65 - 86 - 107 0 - 2 - 2 - 2 - 2

As the pipeline connects two relatively large air volumes at its extremities, i.e. the bellows and the reservoir, the spatial gradient
f air pressure takes zero value at both ends of the pipe:

|

|

|

|

𝜕𝛥𝑝
𝜕𝑥

|

|

|

|𝑏
=
|

|

|

|

𝜕𝛥𝑝
𝜕𝑥

|

|

|

|𝑟
= 0.

Considering the above boundary conditions, the wavelengths 𝜆𝑘 of the pressure standing waves that can be established in the
pipe are obtained as the integer sub-multiples of the length of the pipe 𝐿𝑝:

𝜆𝑘 =
2𝐿𝑝

𝑘
(15)

with 𝑘 the harmonic number of the standing wave. Fig. 13b shows the shape of the standing wave for the three lowest values of
the harmonic number.

As the wavelength can be written as the speed of sound (𝑉𝑠) divided by the frequency, the resonance frequencies for a pipeline
having length (𝐿𝑝), and therefore the resonance frequencies of the pneumatic system in the Intermediate frequency range (𝑤𝑘,𝑖𝑛𝑡),
can be calculated as:

𝑤𝑘,𝑖𝑛𝑡 = 2𝜋
𝑘𝑉𝑠
2𝐿𝑝

. (16)

Table 5 shows that this equation provides a good prediction of the resonance frequencies found from the measured dynamic
tiffness of the pneumatic suspension, with errors below 2% except for the mode corresponding to the experimental value of 146 Hz
or pipe length 4 m, where the error is 16%. It should be noted however that Eq. (16) only provides information about the resonance
requency, whilst the peak value of the dynamic stiffness should be derived from a more complex model which is a topic for a future
xtension of this work. Nevertheless, comparing the resonance peak amplitude of these intermediate peaks with the ones in low and
igh frequencies (see Fig. 3), for the given application, they are found to have very small effect on the dynamic behaviour of the
uspension.

However, this resonance effect can be significant in other types of air springs. Mendia-Garcia et al. [23] states, for instance,
hat the first vibration modes of a rolling lobe bellows employed in railway vehicles occur below 100 Hz, and may overlap with
esonances from the standing waves in the pipe, which would then have a significant effect on the overall dynamic behaviour of
he pneumatic suspension in the intermediate and high frequency ranges.

.2.3. Results for the High frequency range
Lastly, Fig. 14 shows the comparison between the measured dynamic stiffness in the High frequency range (from 150 to 400 Hz)

nd the predictions from the FEM model. The FEM model accurately predicts the FRF of the air spring for different values of the
ominal pressure. The model captures the effects on the dynamic stiffness of the suspension caused by the first vertical structural
ibration mode of the air spring. The modal shape of this vibration mode is also shown in Fig. 14. It should be noted that in the
EM model, the reinforced rubber-like composite material is defined as a hyperelastic and linear viscoelastic material. Therefore,
he FEM model cannot capture the dependence of the dynamic stiffness on the amplitude of height variation applied.

In addition, the validated FEM model can also predict the frequency and modal shape of additional vibration modes in any
irection, not only the axial or vertical modes. For instance, Table 6 summarises the first six modes of the system for different
alues of the reference pressure. Unfortunately, since the measurements are obtained from a pure axial excitation, the effect of
hese additional resonances is not visible in the measured dynamic stiffness, so it is not possible to compare these predictions from
he FEM model with corresponding experimental data. According to the results from the FEM model, the considered air spring has
t least 48, 23 and 17 vibration modes below 1000 Hz for inner pressure of 0, 2 and 4 bar, respectively.

. Conclusions

In this paper, the dynamic performance of a pneumatic suspension consisting of an air spring connected via a pipeline to a surge
eservoir is experimentally analysed and simulated by means of an enhanced FEM model and simplified analytical models. The
resent study extends significantly previous experimental and modelling investigations of pneumatic suspensions which, to the best
nowledge of the authors, were mostly confined to a frequency range up to 30–40 Hz, whereas the frequency range addressed in
his work is up to 400 Hz, thus covering the entire frequency range which is relevant to structure-borne vibration transmission. By
xtending the frequency range addressed, the existence of new resonances is found and their relationship to the physical parameters
15

f the pneumatic suspension is explained. Furthermore, the proposed modelling approach provides results that are in very good
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Fig. 14. Comparison between experimental and simulated air spring alone frequency response function.

Table 6
Eigenfrequencies and vibration modes of the air spring as predicted by the FEM model for
different values of the reference pressure.

quantitative agreement to the experiments in terms of the resonance frequencies and values of the dynamic stiffness of the suspension
at different resonances.

Based on a comprehensive experimental characterisation of the air spring suspension, the resonances of the suspension are
categorised as belonging to three distinct frequency ranges: low frequency (0–30 Hz), intermediate frequency (30-150 Hz), high
frequency (beyond 150 Hz), where the major conclusions drawn from this study are:

• low frequency : in this frequency range one single resonance is found, which is due to the motion of air as an incompressible
fluid in the pipe connecting the bellows to the reservoir. This resonance is also found using other models available in the
literature [6,8–17] but the FEM model presented in this work allows a more accurate prediction of the anti-resonance taking
16
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place at a frequency slightly lower than the resonance, see Fig. 12. Regarding the effect of system parameters, the single
resonance frequency found in the low-frequency range is decreasing with increasing volume of the surge reservoir whilst a
change in the reference pressure does not affect the resonance frequency but increases the overall stiffness of the suspension.
In addition, the resonance frequency is slightly affected by the nominal working height of the air spring, with smaller height
values producing higher values of the natural frequency.

• intermediate frequency : the resonances experimentally observed in this frequency range are related to the formation of standing
waves in the pipe. The values of these natural frequencies are well predicted by a simple formula based on the relationship
between the frequency and wavelength of the standing waves. Therefore, the only design parameter of the pneumatic
suspension affecting these resonance frequencies is the length of the pipeline. Smaller mounting heights slightly amplify the
amplitude of the resonance peaks.

• high frequency : the resonances taking place in this frequency range are related to the structural dynamic behaviour of the
bellows. One single vibration mode, namely the first vertical mode of the bellows, mainly affects the dynamic stiffness of
the suspension in the frequency range up to 400 Hz. The dynamic stiffness and the modal shape of the vibration modes
are predictable with the FEM model. Both these quantities are highly dependent on the structural and material properties
of the bellows. It should be noted that the elastomer material model considered in this work does not include non-linear
viscoelasticity and, thus, the small differences found in the dynamic stiffness measured at different amplitudes of excitation
are not reproduced by the FEM model.

This paper contributes to the further understanding of the dynamic behaviour of an air spring with a reservoir connected by a
ipe. The proposed methodology can be applied in the design stage of pneumatic suspensions by choosing the geometry, materials,
ipeline, and reservoir that provide the desired dynamic response for the intended application, covering a frequency range not
ddressed by previously published models.
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