
Computer Science Review 54 (2024) 100682

A
1
n

Contents lists available at ScienceDirect

Computer Science Review

journal homepage: www.elsevier.com/locate/cosrev

Review article

Resilience of deep learning applications: A systematic literature review of
analysis and hardening techniques
Cristiana Bolchini ∗, Luca Cassano, Antonio Miele
Politecnico di Milano, Dip. Elettronica, Informazione e Bioingegneria, P.zza L. da Vinci, 32, Milan, 20133, Italy

A R T I C L E I N F O

Keywords:
Convolutional Neural Network
Deep Learning
Deep Neural Network
Fault tolerance
Resilience analysis
Hardening
Hardware faults

A B S T R A C T

Machine Learning (ML) is currently being exploited in numerous applications, being one of the most effective
Artificial Intelligence (AI) technologies used in diverse fields, such as vision, autonomous systems, and the
like. The trend motivated a significant amount of contributions to the analysis and design of ML applications
against faults affecting the underlying hardware. The authors investigate the existing body of knowledge on
Deep Learning (among ML techniques) resilience against hardware faults systematically through a thoughtful
review in which the strengths and weaknesses of this literature stream are presented clearly and then future
avenues of research are set out. The review reports 85 scientific articles published between January 2019 and
March 2024, after carefully analysing 222 contributions (from an initial screening of eligible 244 publications).
The authors adopt a classifying framework to interpret and highlight research similarities and peculiarities,
based on several parameters, starting from the main scope of the work, the adopted fault and error models, to
their reproducibility. This framework allows for a comparison of the different solutions and the identification
of possible synergies. Furthermore, suggestions concerning the future direction of research are proposed in the
form of open challenges to be addressed.

Contents

1. Introduction .. 2
2. Methodology ... 2

2.1. Research design ... 2
2.2. Research method.. 3
2.3. Classification framework ... 4

3. The state of the art .. 5
3.1. Resilience analysis .. 5

3.1.1. Application-level methodologies .. 6
3.1.2. Hardware-level methodologies... 7
3.1.3. Cross-layer methodologies ... 8
3.1.4. Custom methods .. 9

3.2. Hardening strategies ... 9
3.2.1. Redundancy-based techniques ... 9
3.2.2. Deep Learning (DL) algorithm-aware techniques ... 11

4. Insights, challenges and opportunities.. 14
5. Concluding remarks ... 16

Declaration of competing interest .. 16
Data availability .. 16
References... 19
∗ Corresponding author.
E-mail addresses: cristiana.bolchini@polimi.it (C. Bolchini), luca.cassano@polimi.it (L. Cassano), antonio.miele@polimi.it (A. Miele).
https://doi.org/10.1016/j.cosrev.2024.100682
Received 9 May 2024; Received in revised form 9 September 2024; Accepted 20 Se
vailable online 21 October 2024
574-0137/© 2024 The Authors. Published by Elsevier Inc. This is an open access art
c-nd/4.0/).
ptember 2024

icle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://www.elsevier.com/locate/cosrev
https://www.elsevier.com/locate/cosrev
mailto:cristiana.bolchini@polimi.it
mailto:luca.cassano@polimi.it
mailto:antonio.miele@polimi.it
https://doi.org/10.1016/j.cosrev.2024.100682
https://doi.org/10.1016/j.cosrev.2024.100682
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

C. Bolchini et al.

r

a

a
a
p

f

c
a
d
p

t

D
A
s
h
h

v

s

r

Computer Science Review 54 (2024) 100682
1. Introduction

The widespread adoption of Machine Learning (ML) in
safety/mission-critical systems motivated a great attention towards the
esilience of such complex systems against the occurrence of faults in

the underlying hardware. Among all ML techniques, Deep Learning
(DL) is the one that the research community is mainly focusing its
ttention on, also in terms of reliability issues. In fact, DL is widely

used for vision and perception functionalities, which are particularly
relevant for implementing human-assisting tasks (e.g., advanced driver-
assistance systems), and it represents the enabling technology for
autonomous behaviours (e.g., unmanned aerial vehicles or rovers). DL
consists of a set of specific Artificial Neural Network (ANN) models
where multiple layers of processing are used to extract progressively
higher level features and information from raw data, such as images
taken from cameras [1]. Adopting the classification proposed in [2],
faults can occur in (i) input data, (ii) software, and (iii) hardware
, possibly causing the application to behave differently from what
is expected. Faults on input data may derive from defective/broken
sensors and devices, noise, as well as from adversarial attacks. Faults
in software usually originate from bugs or aggressive implementations.
Finally, faults in hardware may be caused by radiation, voltage over-
scaling, and ageing or in-field permanent stuck-at failures [3]. When
ddressing hardware faults, the underlying assumption is that the DL
pplication has been designed and implemented to achieve the best
erformance (in terms of accuracy of the prediction tasks) with respect

to requirements and constraints, and the input data is genuine. In
this work we focus on hardware faults and we investigate analysis
and design methods and tools to evaluate and possibly improve the
reliability of DL algorithms and applications against this source of
ailure. We adopt the taxonomy of dependability attributes defined

in [4], focusing on internal hardware faults that impact system func-
tionality. We use the term resilience (a synonym of fault tolerance)
because most analysis and hardening techniques target the ability
to mitigate the effects of the faults. To avoid confusion, we do not
adopt the term reliability, which, in the context of DL and Artificial
Intelligence (AI) in general often means the ability to produce correct
results, rather than ensuring correct service even when faults occur.
Additionally, we also include approaches dealing with robustness, when
they address resilience against internal hardware faults and not to the
algorithm correctness or the ability to function correctly even when
facing external faults, such as adversarial attacks in a security context.
Moreover, although the design and training processes have an impact
on the performance of the final implementation resilience, such facets
are here considered only when they are associated with the possibility
to mitigate hardware fault effects.

On this topic the body of knowledge is quite rich, and a very de-
tailed analysis has been presented in [5], where the author introduces
a comprehensive and extensive synthesis of analysis and hardening
methods against faults affecting hardware platforms running ANN ap-
plications. The contribution details the various adopted fault models,
the fault simulation/injection and emulation strategies presented in
literature at that time, as well as the proposed solutions to make the
AI resilient against the analysed faults/errors. A similar contribution
is given by [6], where the authors analyse how faults in Deep Neural
Network (DNN) accelerators such as Graphic Processing Units (GPUs)
and Field Programmable Gate Arrays (FPGAs), affect the executed
application. The analysis framework takes into account the different
sources of faults and possible fault locations, and a few final consid-
erations mention hardening solutions. The most recent contribution
reporting part of the body of work on DL resilience is [7], analysing
some recent research and results focused on resilience assessment,
overing contributions before 2023. The authors introduce the context
nd detail the fault analysis strategies and methods adopted when
ealing with DL applications, reporting some novel solutions. These
apers serve not only as a reference to prominent research up to that
2
Fig. 1. Number of contributions on the domain of interest per year, in the considered
ime frame.

time instant, but also provide a concise explanation of the various
existing techniques. To complete the scenario overview, three recent
contributions that briefly discuss the state of the art and focus also on
possible research challenges and opportunities are the works presented
in [2,8,9], sometimes embracing also security-related considerations.

As Fig. 1 shows, the community is very active and the contributions
of the last four years introduce new relevant elements and insights,
motivating, in our opinion, a new review. Differently from previous
surveys in this field, though, this contribution aims at analysing also
the scientific research community active on the topic to gather insights,
challenges and observed trends that go beyond the technical aspects,
with a different perspective.

Given the breadth of the domain and the many different facets, we
define a boundary based on (i) the time window of the publication,
selecting only those included in the Jan. 2019 - Mar. 2024 window, to
better frame the discussion; (ii) the adopted fault model, by including
only contributions that cover transient and permanent faults; (iii) the
L algorithm, by excluding works that strictly depend on the specific
NN architecture (e.g., spiking neural networks, vision transformers),
o that the presented solutions can be broadly adopted; and (iv) the
ardware platform running the application, by including CPUs and
ardware accelerators, such as GPUs and FPGAs.

The rest of the paper is organised as follows (see Fig. 2). Section 2
introduces the adopted search methodology aligned with the boundary
of the domain previously mentioned, and the classification framework
defined to analyse the available contributions. Section 3 reports the
arious contributions, characterised according to the defined analysis

framework, briefly summarising the most relevant aspects. Section 4
draws some considerations on the overall state of the art, highlighting
open challenges and opportunities, while Section 5 concludes the paper.

2. Methodology

Before presenting the proposed classification framework and the
elected contributions, we here introduce the adopted search and se-

lection process.

2.1. Research design

This study aims at conducting a systematic literature review to
explore the current state of the art in the design and analysis of resilient
DL applications against hardware faults and to observe the present
esearch trends in this context. The purpose is to get an up-to-date

overview of the available solutions, also identifying the open challenges
and possible opportunities in the field. To this end we performed a
thorough search and designed an analysis framework to classify the
numerous contributions.

C. Bolchini et al.

f

a
u
m
w
a
M
c
T
t
p
e
s
e
s
v

Computer Science Review 54 (2024) 100682
Fig. 2. Paper organisation.
Table 1
The implemented search strings.

1 (‘‘soft error’’ OR ‘‘resilien*’’ OR ‘‘dependab*’’ OR ‘‘fault toleran*’’ OR ‘‘reliab*’’ OR robust
OR ‘‘harden*’’)

2 (‘‘Deep Learning’’ OR DL OR ‘‘Machine Learning’’ OR ML)
3 (‘‘Convolutional Neural Network’’ OR ‘‘Convolutional Neural Network’’ OR CNN OR ‘‘Deep

Neural Network’’ OR DNN)
4 (‘‘soft error’’ OR fault OR ‘‘Single Event Upset’’ OR SEU)
Table 2
The selected databases and formulated search strings.

Database Search string

Scopus TITLE-ABS-KEY ((‘‘Resilien*’’ OR ‘‘Fault toleran*’’ OR ‘‘Robust*’’ OR ‘‘Dependab*’’ OR
‘‘Reliab*’’) AND (‘‘CNN’’ OR ‘‘DNN’’ OR ml OR ‘‘Convolutional Neural Network’’ OR ‘‘Deep
Neural Network’’) AND (‘‘Soft error’’ OR seu OR fault)) AND PUBYEAR > 2018 AND (
EXCLUDE (SUBJAREA,‘‘PHYS’’) OR EXCLUDE (SUBJAREA,‘‘MATH’’) OR EXCLUDE (
SUBJAREA,‘‘ENER’’) OR EXCLUDE (SUBJAREA,‘‘MATE’’) OR EXCLUDE (SUBJAREA,‘‘DECI’’)
OR EXCLUDE (SUBJAREA,‘‘CHEM’’) OR EXCLUDE (SUBJAREA,‘‘EART’’) OR EXCLUDE (
SUBJAREA,‘‘BIOC’’) OR EXCLUDE (SUBJAREA,‘‘CENG’’) OR EXCLUDE (SUBJAREA,‘‘ENVI’’)
OR EXCLUDE (SUBJAREA,‘‘MULT’’) OR EXCLUDE (SUBJAREA,‘‘SOCI’’) OR EXCLUDE (
SUBJAREA,‘‘NEUR’’) OR EXCLUDE (SUBJAREA,‘‘MEDI’’) OR EXCLUDE (SUBJAREA,‘‘BUSI’’)
OR EXCLUDE (SUBJAREA,‘‘HEAL’’) OR EXCLUDE (SUBJAREA,‘‘AGRI’’)) AND (EXCLUDE (
LANGUAGE,‘‘Chinese’’) OR EXCLUDE (LANGUAGE,‘‘French’’)) AND (EXCLUDE (
EXACTKEYWORD,‘‘Diagnos’’))

WOS ((TI=(‘‘Resilien*’’ OR ‘‘Fault toleran*’’ OR ‘‘Robust*’’ OR ‘‘Dependab*’’ OR ‘‘Reliab*’’) OR
AK=(‘‘Resilien*’’ OR ‘‘Fault toleran*’’ OR ‘‘Robust*’’ OR ‘‘Dependab*’’ OR ‘‘Reliab*’’)) AND
(TI=(‘‘CNN’’ OR ‘‘DNN’’ OR ML OR ‘‘Convolutional Neural Network’’ OR ‘‘Deep Neural
Network’’ OR ML OR ‘‘Machine Learning’’ OR DL OR ‘‘Deep Learning’’) OR AK=(‘‘CNN’’ OR
‘‘DNN’’ OR ML OR ‘‘Convolutional Neural Network’’ OR ‘‘Deep Neural Network’’ OR ML OR
‘‘Machine Learning’’ OR DL OR ‘‘Deep Learning’’)) AND (TI=(‘‘Soft error’’ OR SEU OR fault)
OR AK=(‘‘Soft error’’ OR SEU OR fault)))
2.2. Research method

To gather the contributions within the area of interest, we started
rom Scopus and Web of Science to collect papers that appeared in

renowned venues (both journals and conferences), delimiting the time
span between January 2019 and March 2024, and excluding all topic
areas and keywords that would surely lead to not relevant publications.
Tables 1 and 2 report the desired search strings and the actual ones in
the mentioned repositories.

The searches returned a very high number of contributions (2163)
nd we adopted the process reported in Fig. 3 to filter out clearly
nrelated contributions and to include other ones through reference
ining and snowballing also on other search engines. More precisely,
e initially excluded contributions (filter 1⃝) based on the title, the
bstract and the keywords. Indeed many results referred to the use of
L/DL for resilience and diagnosis, sometimes applied to out-of-scope

ontexts (e.g., power/transmission lines or not ML/DL applications).
hrough snowballing and reference mining we added new contribu-
ions, leading to a batch of 244 papers we read. Further filtering took
lace (filter 2⃝) based on the strength of the contribution (paper length
qual or greater than 4 pages and/or venue) and the existence of a
ubsequent more mature/complete publication (222 papers, dubbed
ligible). Finally, we selected a set of 85 papers considered as the review
ources (filter 3⃝) to have contributions presenting solutions of general

alidity, possibly excluding too specific scenarios or narrow case study.

3
Fig. 3. Flow diagram presenting the retrieval and screening process of the literature
following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) process.

C. Bolchini et al.

t
e

m
t
t
c
o
a
i
i
c
s
m
a
c

t
p

Computer Science Review 54 (2024) 100682
Table 3
Search methodology details.

Keywords: soft error, resilience, dependable, fault tolerance, reliable, robust AND
DL, CNNs, DNNs

Repositories: IEEE, ACM, Elsevier, Springer

Search engines: Google scholar, Semantic scholar, Scopus, Web of Science, lens.org, DBLP

Publication years: January 2019 – March 2024

Search outcome: 2163

analysed contributions: 222

Reported contributions: 85

Novel technical contributions: 76
Fig. 4. The primary axes of the adopted classification framework, with a few sample values.
p

t
f
w
a
p
s
m
F
a

f
m

e

6 out of the 85 documents are surveys or position papers, 2 are tools
not specific to resilience analysis/hardening, thus we actually analyse
and classify 76 papers, presenting novel contributions on the topic
of interest. The characteristics of the search method as well as the
outcomes are summarised in Table 3. The spreadsheet file with all
the raw bibliographic data analysed during this systematic literature
review process can be downloaded from https://github.com/D4De/dl_
resilience_survey.

2.3. Classification framework

We have defined an analysis framework to carry out a rigorous
classification of the selected papers. Fig. 4 sketches the primary axes of
his analysis framework, being a set of relevant aspects for the consid-
red topic, i.e., system’s resilience, and the referred application scenario,

i.e., DL applications. A brief description of all the considered aspects,
further synthesised in Table 4, is given in the following paragraphs.

Scope. The primary element adopted to organise the contributions is
the main goal of the presented solutions, broadly aggregated into two

ain classes; analysis and hardening methods. Contributions devoted to
he development of techniques and tools to evaluate the resilience of
he application against hardware faults belong to the analysis methods
lass, those that present new approaches to enhance the capabilities
f the system to detect and mitigate the effects of hardware faults
re included in the hardening methods class. Indeed some contributions
ntroduce innovative strategies to evaluate resilience and exploit such
nformation to tailor a hardening method; these methods have been in-
luded in the category they provide the strongest contribution. Finally,
ome publications explore the application of either traditional or recent
ethods to specific study cases, reporting outcomes and limitations,

nd experiences others might benefit from; we classified them in the
ustom methods group.

Abstraction level. Common to many fields of the digital systems’ design
area, approaches work at different levels of abstraction, within the
entire hardware/software stack from the technological level to the
application one. Moreover, multiple other aspects are highly dependent
on the adopted abstraction level, therefore we prioritised it and iden-
ified the following six values, based on the main system element the
roposed methods work on:

• Device – physical device,
 s

4
• Logic – logic netlist.
• Register-Transfer Level (RTL) – architectural description at RTL

level,
• Microarchitecture – hardware schema described in the Instruction

Set Architecture (ISA),
• Algorithm – software elements within the implementation of the

single DL operators,
• Application – software elements in the dataflow graph of the DL

model.

Hardware platform. The type of misbehaviour caused by faults affecting
the hardware in the application execution is highly dependent on
the underlying platform. Therefore, another key aspect in the anal-
ysis framework is the hardware platform where the DL application
is executed. Frequently adopted platforms are the GPUs and custom
hardware accelerators, implemented on FPGA or ASIC; the CPU is used
only in a few contributions, while the Tensor Processing Unit (TPU) is
increasingly receiving interest (e.g., the NVDLA platform [10]). As we
will see, some contributions, especially when acting at the application
abstraction level, will not consider any specific hardware, thus being
latform independent or platform-agnostic.

Fault model. Every reliability study has a fundamental element driv-
ing the discussion, that is the source of the anomalous behaviour
he proposed approach is addressing. The reference abstraction level
or the definition of the fault model is the logic/architecture one,
here literature defines permanent models, such as the stuck-at faults,
nd transient ones, such as Single Event Upset (SEU). Some of the
roposed methods work at the application level, not referring to a
pecific hardware platform; it is therefore not possible to identify the
echanisms causing the anomaly in the expected values/behaviour.

or these contributions we added a functional fault model, transient
nd/or permanent, according to the authors’ specification.

Since many of the analysed works act at a higher abstraction level,
ault models are generally abstracted to derive the corresponding error
odels.

Error model. An error model describes the effects of the considered
fault model at the selected abstraction level, and it affects one of the
lements of the abstraction level. When working at device level or

RTL, the relationship between fault and error are quite straightfor-
ward, when moving to higher abstraction levels, such a relationship is
ometimes part of the contribution (for resilience analysis methods),

https://github.com/D4De/dl_resilience_survey
https://github.com/D4De/dl_resilience_survey
https://github.com/D4De/dl_resilience_survey

C. Bolchini et al.

a
e
c
A
i
D
a

p
m
a
a
i
t
a

w
a

e

t
t
r
v
c
a
o

a
o
a
t

h
a

c

Computer Science Review 54 (2024) 100682
sometimes omitted. Indeed, when adopting a functional fault model
s previously discussed, fault and error models tend to be a unique
lement. Nevertheless, the error model is characterised by the specific
orrupted location which, once more, depends on the abstraction level.
t device, RTL and microarchitectural levels, fault locations typically

nclude registers and memory elements storing processed data and the
L model weights. At a higher levels of abstraction, error locations may
lso include parameters as single weights and bias constants, or data

values, and even more complex data structures such as the outputs
of the various neurons or the intermediate tensors produced by the
layers in the DL model. Therefore, we identify the following corrupted
values: (i) register/memory element, (ii) parameter, (iii) data value,
(iv) neuron output, (v) layer output.

ML framework. The design of DL applications is generally performed
in specific ML frameworks guiding and easing this type of activity by
roviding ML operators already implemented, and algorithms to auto-
ate the training and testing of the models. TensorFlow and PyTorch

re examples of such frameworks. Several reliability studies and tools
re developed and tailored for the specific ML framework, to enable the
ntegration of the resilience activity in the design flow and to exploit
he elements it provides. This axis of the classification collects this
spect when specific to the proposed solution.

Tool support. The availability of open-source tools is indeed beneficial
to the entire scientific community, to foster further developments as
well as fair comparisons. Our framework includes also this aspect, to
indicate whether the authors make available the developed software to
perform the presented analysis/hardening solutions. The list of urls of
the available software is reported in the last part of the paper.

Reproducibility. Similarly to the previous aspect, we deemed relevant
to be able to reproduce the outcomes of the study, in the future, to
present a comparative analysis for supporting new solutions. To this
end, we marked entries with a positive answer when the software is
available or the adopted method is discussed in details allowing for it
to be replicated.

Analysis and hardening approaches can be further characterised
ith respect to the specific proposed solutions, namely the depend-
bility attribute, injection method and analysis output in the former

approaches, target outcome, hardening technique and hardening strat-
gy in the latter. They are discussed in the following and summarised

in Tables 5 and 6, respectively.

Dependability attribute. The various analysis approaches may focus on
he evaluation of different attributes falling under the umbrella of
he dependability; generally, works use to quantitatively analyse a
eliability metric. In the considered scenario, further works analyse the
ulnerability to faults of the various layers, operators or parameters
omposing the DL model. Thus, the considered dependability attribute is
nother characterising aspect for the reviewed papers, that includes in
ur work the following values1:

• reliability - the continuity of correct service [4],
• safety - the absence of catastrophic consequences on the user(s)

and the environment [4], and
• vulnerability factor - the measure the likelihood that a fault in

a hardware component will lead to an observable error at the
system level [11].

1 We referred to the term used by the authors of the contribution, merg-
ing including fault tolerance in the reliability class, as motivated in the
introduction.
 t

5
Injection method. The vast majority of the analysed contributions rely
on fault/error injection methods to perform the resilience analysis, and
the specific one depends on the abstraction level of the work. Here we
list the following values to include all included studies:

• Radiation tests – the final system is irradiated with nuclear parti-
cles.

• Fault emulation – faults are emulated on the target hardware
platform.

• Error simulation – processed data are corrupted during the ex-
ecution of the software running non-necessarily on the target
platform.

Analysis output. When performing a resilience analysis, two main types
of outcomes are typically reported: (i) a quantitative measure adopted
s a figure of merit, or (ii) a qualitative evaluation of the solution, based
n various considerations. Sometimes, based on the analysis results,
lso guidelines for hardening the system are provided, often targeting
he mitigation of the most susceptible elements in the analysed DL

model. In the set of selected papers, all contributions on analysis
methods report a quantitative output and eventually some hardening
guidelines, that is what we report in the final synthesis.

Reliability property. Hardening approaches can be classified w.r.t. the
reliability property the final system will exhibit, that in the present set
of studies is either fault detection or fault tolerance.

Hardening technique. In the DL scenario, as in other contexts, often
the hardening process relies on redundancy-based techniques. Some
approaches adopt the classical techniques, such as Duplication with
Comparison (DWC) possibly coupled with re-execution, Triple Modular
Redundancy (TMR), N-Modular Redundancy (NMR) and Error Correct-
ing Code (ECC). Other works apply Algorithm-Based Fault Tolerance
(ABFT) or Algorithm-Based Error Detection (ABED) techniques within
the single DL operator, being the algorithm generally based on matrix
multiplications. Finally, a last class of works exploits specific charac-
teristics of the DL models, such as the adoption of fault-aware training
strategies to exploit the intrinsic information redundancy in DL models
to deal with the effects of a fault.

Hardening strategy. Finally, various strategies can be adopted aimed at
reducing the overhead of hardening redundancies. In particular, apart
from the application of a technique to the entire application, selective
ardening is used to protect only the most critical portion of the system
nd approximation strategies can be used to limit the overheads of

redundant application replicas. Finally, some solutions design specific
versions of DL operators to obtain at their output a resilient result.

A detailed list of the collected values for each one of the framework
axes is reported in Tables 4 and 5. Indeed the framework can be
extended in the future to include new relevant axes, and the values
can always be incremented to cover newly reviewed solutions.

3. The state of the art

We classified the reviewed papers primarily based on their main
ontribution, organising them into analysis methods and hardening

ones; studies tackling both aspects have been included in the group
associated with the predominant contribution.

3.1. Resilience analysis

This first class of works includes approaches for the analysis of
the resilience of digital systems running DL applications w.r.t. the
occurrence of faults. To further characterise them, we consider the
abstraction level they work at, namely application-level, hardware-level
or cross-layer.

Application-level methodologies aim at analysing the resilience of
he DL engine ignoring the underlying hardware platform. Therefore,

C. Bolchini et al.

t
o
a
e
a
a
d
h
a
t
e
a
o

t
o
o
a
f
s
h
s
l
c
m

Computer Science Review 54 (2024) 100682
Table 4
Taxonomy axes.

Classification Axis Description Values

Scope The focus of the approach Analysis (A), Hardening (H) or both (B)

Abstraction level The abstraction level
methodologies/solutions work at

Device (DEV), Logic (LOG), RTL, Microarchitectural (ISA),
Algorithm (ALG), Application (APP)

Architectural platform The hardware where the application is
executed. Affects the fault/error model, the
abstraction level, etc.

CPU, GPU, TPU, FPGA, or any (in case of high abstraction-level
methodologies)

Fault model The source of the anomalous behaviour Stuck-at (SA), Single Event Upset (SEU), permanent functional
(PFunc), transient functional (TFunc)

Error model The effects of the fault at the selected
abstraction level, identifying the corrupted
element

register/memory element (REG), parameter (P), data value (DV),
neuron output (NO), layer output (LO)

ML Framework The exploited software ML framework, if
specified

TensorFlow (TF, [12]), PyTorch (PT, [13]), Keras (KE, [14]),
Darknet (DK, [15]), Caffe (CA, [16]), TensorRT (TR, [17]), cuDNN
(cu [18]), N2D2 (ND [19]), FINN (FI [20]), CMSIS-NN (CM [21]),
CMix-NN (CN [22])

Tool support Tools released Yes/No

Reproducibility The possibility to replicate/compare against Yes/No
Table 5
Analysis studies: further classification.

Classification Axis Description Values

Dependability attribute Attribute of interest Reliability (Re), Safety (Sa), Vulnerability factor (VF)
Injection method Fault injection method Radiation (Ra), Emulation (Em), Simulation (Si), Analytical (An)
Output Kind/type of output of the analysis Quantitative metrics (QM), Hardening guidelines (HG)
Table 6
Hardening studies: further classification.

Classification Axis Description Values

Reliability property Aim of the hardening Fault detection (FD), Fault tolerance (FT)

Strategy Type of action Full, Selective (Sel), Specific (Spec), Approximated (Ax)

Technique Adopted technique Duplication with Comparison (DWC), Triple Modular
Redundancy (TMR), N-Modular Redundancy (NMR), DWC
+ Re-Execution (D+R) Algorithm-Based Fault
Tolerance (ABFT), Algorithm-Based Error
Detection (ABED), Error Correcting Code (ECC),
Checkpointing (CHK), DL algorithm-aware (DL)
t
s
t
s
o
a

p

M
c
t
c

such works consider the engine at the dataflow graph-level and study
he impact of errors corrupting the weights of the model, the output
f the operators, or the variables within the operators’ execution. The
dvantages of these methodologies are (i) the possibility to apply them
arly in the design process, as soon as the DL engine has been designed
nd trained; (ii) easiness of the deployment (no hardware prototypes
nd/or instrumentation is required); and (iii) the opportunity to work
irectly on the actual DL engine that will then be used. On the other
and, the solutions may suffer from poor accuracy because of the
bstract adopted error models. It is vital for application-level analyses
o properly work that the adopted error models actually capture the
ffects that the faults in the hardware platform cause in the executed
pplication otherwise inconsistent and only partially useful results are
btained.

Hardware-level methodologies exploit hardware-level fault injec-
ion platforms (mainly by emulating SEUs in the configuration memory
f FPGAs or in the registers of GPUs) to accurately emulate the effects
f faults in the hardware where the DL model will be executed. These
pproaches are highly accurate because of the ability of reproducing the
aulty behaviour, and are time-wise more sustainable than simulation
olutions, since fault injection can be executed at speed. On the other
and, these approaches are generally hard to be deployed, demanding
pecific hardware-level skills that a design team specialised in DL may
ack. Moreover, the application of resilience analyses belonging to this
lass are typically carried out late in the design process, thus making

odifications expensive. t

6
Finally, cross-layer methodologies try to bring together the advan-
ages of the previous methodologies by splitting the analysis into two
teps. First, a hardware platform-specific fault injection or radiation
esting activity is performed on a portion of the DL engine under analy-
is or on the single operators. In this way the actual effects of the faults
ccurring into an FPGA, a GPU or a CPU while accelerating/executing
 DL engine are captured. Then, the observed effects are used to feed

a higher-level analysis/simulation engine to observe how these effects
ropagate through the subsequent layers of the model and if and how

they affect the final output.
An additional group gathers a number of works that serve as custom

solutions, because they apply to a specific DLs model, or actually report
application case studies, presenting interesting results that are though
specifically tailored for the discussed context. A brief description of
contributions that belong to this class and to the above mentioned
groups follows.

3.1.1. Application-level methodologies
The paper in [23] presents one of the first tools for the resilience

analysis of Convolutional Neural Networks (CNNs) by performing error
injection at application level. The tool, developed within the Darknet

L framework, allows to corrupt the weights in the CNN model and to
arry out error simulation campaigns. The goal of the tool is to analyse
he safety of the DL applications; in particular, single experiments are
lassified as masked, observed safe and observed unsafe; a threshold set

o +/−5% is used to analyse the difference between the top ranked

C. Bolchini et al.

i

D

D

t

s
r
t
t
p
t
b
s

m
i
t
s

p

H
s

s
r
T
a

a
t
a
d
h
a

t

f
v
a
a
t

p
l
(
l
r
t

a
F
f
e

Computer Science Review 54 (2024) 100682
percentage in the erroneous result and the golden counterpart, and
to determine the safe/unsafe class the corrupted output belongs to.
The paper considers permanent faults affecting the CNN weights, not
whatsoever relating these permanent functional faults to realistic faults
n the underlying hardware running the application.

BinFI and TensorFI, presented in [24,25] respectively, are two
subsequent contributions from the same research group, who, among
other works, designed, developed and distributed two fault injection
frameworks to evaluate ML systems resilience. BinFI identifies safety-
critical bits in ML applications, while TensorFI analyses the effects
of hardware and software faults that occur during the execution of
TensorFlow programs. The paper in [26] presents TensorFI+, an ex-
tension of the TensorFI environment. In particular, TensorFI+ supports
TensorFlow 2 models, allowing to analyse also non-sequential models
by corrupting the output of the layers. An interesting feature of the
framework is the possibility to inject faults during the training phase
of the CNN.

PyTorchFI (presented in [27]) is an error simulation engine for
NNs that exploits the PyTorch framework. The tool allows to emulate

faults by injecting perturbations in the weights and neurons of the
convolutional layers of DNNs; the injected perturbations are functional
errors, therefore no specific hardware architecture is considered. The
analysis can be run on either CPUs or GPUs. A similar approach is
implemented by Ares [28], an application-level error simulator for

NNs.2 Again, the tool supports the simulation of perturbations mod-
elling faults affecting the weights, the activation functions and the state
of the neurons. Several observations and guidelines are also drawn in
he paper: (i) the resilience of DNNs is strongly influenced by the data

type and quantisation of the weights; (ii) some classes are more likely
to be mispredicted than others; (iii) faults in the weights are more likely
to cause a misprediction than those in the activation functions; and, (iv)
the more weights are reused the higher the failure probability.

An analytical model called SERN is proposed in [29] for the re-
ilience analysis of CNNs w.r.t. soft errors affecting the weights. The
esults obtained by SERN are then validated against a set of fault injec-
ion experiments. In particular, by exploiting the proposed framework,
he authors analyse the impact of the occurring faults w.r.t. (i) the
osition of the affected bit within the stored value and (ii) the size of
he stored value itself. The authors further propose to harden the CNN
y protecting the most significant bits of the weights via ECC and by
electively duplicating the first convolutions layers of the network.

The work in [30] addresses the problem of how to define a sig-
nificant fault injection campaign. In particular, the paper presents a

ethodology for statistical fault injection aimed at sizing the fault
njection campaign and selecting the most appropriate fault locations
o achieve statistically significant results. The proposed method is
pecifically tailored to evaluate the weights of the CNN models.

When working at this abstraction level, the attention is focused
on the performance and behaviour of the DNN with respect to dif-
ferent implementation strategies, when a fault corrupts its elements.
Studies [31–33] explore the effects of quantisation, compression and
runing on resilience. In particular, [31] explores the impact of tran-

sient faults on compressed DNNs with respect to different pruning rates
and data precision. The adopted fault model is the single bit flip on ran-
dom live values stored in latches or registers, and the authors develop
a fault injection framework dubbed TorchFI to emulate such effects.
The main outcomes of this work are: (i) 16-bit integer quantisation can
mitigate the overall error propagation w.r.t. the 32-bit floating-point
baseline; (ii) while 16-bit quantisation increases resilience, the more
aggressive 8-bit quantisation can produce a resilience drop; and (iii)
pruned networks being smaller and faster will be less prone to faults,

2 The tool is dated 2018, outside the boundary of this investigation.
owever, we included it, because it is adopted in several of the analysed

tudies.
7
therefore possibly achieving a better resilience. Similar quantisation
trategies are explored in [32], proposing a simulator for evaluating the
esilience of DNNs based on the frameworks of Keras and Tensorflow.
he targeted fault model includes SEUs in the inputs, in the weights
nd in the output of the operators. Finally, the work presented in [33]

discusses a simulation analysis for understanding the fault resilience
of compressed DNN models as compared to uncompressed ones. Sim-
ulation is then used to study the resilience of pruned and quantised
DNNs w.r.t. not pruned and not quantised ones. The results presented in
the paper demonstrate that, on the one hand, pruning does not impact
the resilience of the DNN while, on the other hand, data quantisation
largely increases it.

Another neural network element being tailored during the design
nd implementation of a system is the type of data, similarly to quan-
isation. Approximation can be adopted to leverage model accuracy
nd implementation costs (e.g., execution time, hardware resource
emand and power consumption). Since such representation choice
as an impact on resilience, some studies investigate this aspect. The
uthors in [34] exploit the application-level error simulator presented

in [23] to analyse the safety w.r.t. the occurrence of permanent faults
in the weights of two different CNNs when varying the data type.
Both floating point and fixed point data types at different precision
levels are considered. The conclusions are that the most resilient data
type and precision level depend on the specific model; moreover, the
paper suggests to select the most suited solution by trading safety and
memory footprint of the various alternatives. Finally, the same authors
have also analysed in [35] the resilience of the novel POSIT data
types, specifically defined for AI computations, by means of the fault
injection approach presented in [30]. Experimental results demonstrate
how POSIT data types are less resilient than fixed point integer data
ypes using a reduced precision.

The authors of [36] use an ad-hoc designed ML algorithm to build a
vulnerability model of the parameters of the DNN. To reduce the number
of required fault injection experiments to analyse the effects of bit
lips, empirical considerations are introduced on the importance of the
arious bits within the value representation, both in the floating point
nd in the fixed point cases. The authors evaluate the benefits/loss of
ccuracy with respect to injecting faults in all locations showing that
he outcome offers good opportunities.

3.1.2. Hardware-level methodologies
Libano and others investigates in various studies the resilience of

CNNs accelerated onto FPGAs by means of both radiations tests and
fault emulation. In particular, in [37] radiation testing experiments are
erformed to analyse the impact of data precision and degree of paral-
elism on the resilience of the network. The conclusions of the study are:
i) lower precision means less hardware resources and consequently
ower fault probability; and (ii) more parallelism means more hardware
esources but also faster execution thus, the best performance-resilience
rade-off is reached with the highest achievable degree of parallelism.

An analysis of the effects of SEUs in Binarised Neural Networks
(BNNs) accelerated onto SRAM-based FPGAs is presented in [38]. The
uthors exploit the Xilinx FINN framework to build the BNN and the
PGA Reliability Evaluation through JTAG (FREtZ) framework for the
ault injection activity. The outcome of such logic-level fault injection
xperiment is subsequently exploited to carry out an in-depth layer-per-

layer analysis of the effects of the faults on the accuracy of the network.
The results of this study show that BNNs are inherently resilient to soft
errors.

Additional examples of fault resilience analysis of CNNs accelerated
onto FPGA devices are presented in [39,40]. In the former the authors
explore alternative quantised designs and compare them against a
classical TMR to evaluate costs and benefits. In the latter, the authors
consider permanent stuck-at faults and explore their effects, investi-
gating four popular CNNs, including Yolo. The analysis shows that
hardware faults can cause both system exceptions, such as system

C. Bolchini et al.

e
a
v

p
e
c
w
p
o
a
e
(

s
t

n

a
t
t
t
t

h

i
t
i
g

D
p

t

e

i

Computer Science Review 54 (2024) 100682
stall and abnormal runtime, and prediction accuracy loss. A custom
valuation metric based on accuracy loss is exploited, also taking into
ccount system exception probability; the nominal and TMR-protected
ersions are analysed and compared against.

Another analysis for CNNs accelerated onto FPGA devices is pre-
sented in [41], where the focus is on investigating the impact of various
runing techniques on the resilience of the network. Several inter-
sting considerations are drawn: (i) removing filters that marginally
ontribute to the final classification increases the resilience of the CNN
.r.t. fault in the configuration memory; (ii) networks with higher
runing rates are more resilient to errors affecting the weights; and (iii)
nly a small percentage of weights (about 30%) can (when corrupted)
ctually modify the behaviour of the network and the percentage is
ven smaller if we consider the ability of causing an accuracy loss
about 14%). The work in [42] extends previous analyses by consider-

ing also BRAM to better focus on the various elements’ susceptibility,
to later apply a TMR-based selective hardening strategy.

A broad contribution to this class of solutions comes from Rech’s
team, analysing the resilience to SEUs when executing DL applications
on GPUs. In particular, in [43], radiation tests are used to cause
realistic SEUs in the target device; then, they complement the first set
of experiments with microarchitectural-level fault injection by means
of the SASSIFI tool, to collect a more extensive set of results. In
the experiments, various versions of the same CNN applications are
analysed, including the nominal versions and the versions hardened by
means of ECCs and ABFT strategies applied to the convolutional layer.
In a subsequent work [44], the same research team evaluates with a
imilar approach the resilience of Google’s TPU by means of radiation
esting. The most interesting aspect of this work is the definition of a set

of error models in terms of the spatial patterns of the erroneous values
in the output tensor of the convolution operator.

The work in [45] presents a strategy to estimate the criticality of
Processing Elements (PEs) in a systolic array with respect to faults
that may permanently affect one of them, by building and training a
eural twin. The aim is to simplify the complexity (in terms of time) to

analyse faults’ effects with respect to solutions based on fault injection
(as the authors did in the past) by using a trained model of the PE.
The analysis on the single element offers the expected advantages
and coherence with the PE real fault/error behaviour, however the
possibility to generalise and transfer the model to the rest of the PEs
is still to be investigated. Finally, also the work in [46] focuses on the
resilience of systolic arrays. The approach designs a RTL simulator to
inject stuck-at faults both in the weights and in the processed data
and uses it to evaluate various architectural configurations w.r.t. the
achieved performance and resilience. Experiments are executed on a
very simple LeNet CNN.

3.1.3. Cross-layer methodologies
Fidelity [47] is an accurate logic-level error simulator for DNNs

ccelerated via custom circuits. By exploiting a deep knowledge of
he regular structure of DNN hardware accelerators, Fidelity is able
o reproduce and track in software the effects of SEUs occurring in
he underlying hardware platform and affecting both the weights and
he neurons. Moreover, based on the application of Fidelity to a set

of large networks the authors draw the following considerations: (i)
not only the weights but also neurons and neuron scheduling highly
affects the resilience of the network; (ii) the adopted data precision
as an impact on the resilience; and, (iii) the larger the perturbation

in the output of the neuron, the more likely the network suffers from a
mis-classification. An evolution of the same method and tool has been
later presented in [48], carried out on the NVDLA architecture [10], to
nvestigate the effects of hardware faults (namely, SEUs but applicable
o other models) on training performance and accuracy. A detailed
nvestigation is carried out, leading to valuable insights that can also be
eneralised to different platforms. Based on the outcomes, the authors
8
propose a hardening solution exploiting a tailored partial re-execution
of training runs when a problem is detected.

The work in [49] presents an analysis framework aimed at predict-
ing the propagation of SEUs affecting the registers of a CPU executing
a CNN. The SIMICS system simulator is employed to simulate the CPU
and the executed CNN; corruptions in the CPU registers are introduced
to simulate SEUs. A small set of fault simulation experiments are first
performed to extract data that are later used to train a Generative
Adversarial Network (GAN). The GAN represents the actual core of the
methodology since, after its training, it is used to predict, layer by layer,
the percentage of faults that will be masked, those that will cause a
crash and the ones that will lead to a Silent Data Corruption (SDC).

The work in [50] presents another cross-layer error simulation
framework; the approach is developed for a specific working scenario
considering a microprocessor-based system running CNNs, focusing on
faults affecting the RAM chip. The proposed approach is based on
radiation experiments aimed at systematically analysing the effects of
the faults to build application-level error models, defined in terms of
data corruption patters and occurrence frequencies; such models are
specifically devoted to corrupt CNN parameters, such as weights and
bias constants. These models are integrated into an in-house error
simulator offering the possibility to run CNN resilience analysis at the
application level, and, therefore, on any platform, without the need of
actually deploying the CNN on the target architecture. The framework
is used to evaluate the resilience of various implementations of the
LeNet-5 CNN obtained by using different data types, with different
precisions. A three-level resilience analysis environment is proposed
in [51]. The first step is a profiling where each instruction of the

L model under analysis is associated with information such as in-
ut values, output result and opcode by means of NVBit [52]. As a

second step, the microarchitectural fault injection for GPUs (called
FlexGripPlus [53]) is employed to characterise the effects of SEUs
affecting the microarchitectural resources of the GPU cores while they
are executing a single layer of the CNN. Finally, the observed erroneous
behaviours are fed into a software-level fault simulation environment
o analyse how faults propagate among the layers of the CNN. This

enables a detailed analysis of the vulnerability factor of every layer in
the considered CNN.

The work in [54] presents a cross-layer framework for the analysis
of CNN sensitivity against faults. The framework consists of a CPU
xecuting the CNN and an FPGA-based accelerator implementing the

operator where faults are injected; the actual fault injection is realised
by bit-flipping the content of the configuration memory of the FPGA
device.

CLASSES [55] is a cross-layer error simulation framework developed
n the TensorFlow ML framework. The tool is provided with a method-

ological approach to define error models starting from microarchi-
tecture-level fault injection. More precisely, the method runs a pre-
liminary fault injection campaign for each type of ML operator on
the target architectural platform; then, corrupted output tensors are
analysed to identify recurrent spatial patterns of erroneous values and
their frequency. Thus, error models are defined for each one of these
ML operators in terms of an algorithmic description of how the output
tensor of the operator should be modified according to the observed
spatial patterns. Error models are stored in a repository used by the
application-level error simulator that runs the entire CNN model and
injects errors on selected intermediate tensors produced by any opera-
tor. Since the error model captures the effects of the fault corrupting the
target architecture, error simulation is performed at application level,
on any machine, without the need to deploy the application on the
target final hardware. The paper demonstrates the effectiveness of the
tool and the companion approach in the scenario of Yolo CNN executed
on a GPU, however, the approach is general and can be employed for
any architecture and CNN model. The susceptibility to SEUs of the
General Matrix Multiplication (GEMM), Fast Fourier Transform (FFT)
and Winograd’s convolution implementations has been studied in [56]

C. Bolchini et al.

C
f
R
i
g
f
D
t
e

h
a
o

o
a
c
T

a
o
t
t
t

c
l
c
p
a
o
m
p

a
c
a
h
p
r

h
c
a
b
a
T
a

m

Computer Science Review 54 (2024) 100682
by exploiting CLASSES. The authors first characterise the effects of
the SEUs affecting the GPU while executing the convolution operators;
then, they analyse how the occurred faults impact on the overall
CNN accuracy. The remarkable outcome of the analysis is that the
GEMM-based convolution is the most resilient one against SEUs.

Similarly, SiFI-AI, presented in [57], is a hybrid simulation envi-
ronment that combines PyTorch inference with a cycle-accurate RTL
simulator of SEUs in the registers of TPUs. saca-Fi [58] works at
the same abstraction level and consists of an execution simulator, a
fault injection module, and a resilience analysis framework to anal-
yse both transient and permanent faults in the registers, providing
an Architecture Vulnerability Factor (AVF) evaluation. Based on the
outcome of the analysis, as case studies, the authors propose to harden
the most sensitive registers and data parts by means of ECC codes.

[59] presents FireNN; it is a cross-layer resilience analysis engine
for CNNs accelerated onto FPGAs. The tool allows to study how SEUs
occurring either in the CNN weights or in the layers output affect the
CNN output. More precisely, the entire CNN is executed in software
by means of the PyTorch framework while the CNN operator cons the
target for the fault injection in transferred onto the FPGA device. Once
the operator has been configured in the FPGA, the fault is injected and
the (possibly corrupted) operator output is collected and then fed to
the subsequent operators that, again, are executed in software.

LLTFI [60] supports framework-agnostic fault injection in both
/C++ programs and ML applications written using any high-level ML

ramework. It uses LLVM to compile the DNN model in the Intermediate
epresentation (IR) targeted for CPU platform, that is used for fault

njection activities. In this way, the tool supports injection at the
ranularity of single IR instructions, allowing also to observe at a
ine-grain level the error propagation among the various parts of the
NN. Based on these capabilities, LLTFI provides guidelines and metrics

o drive the selective instruction hardening, as demonstrated by the
xperimental activities discussed in the paper.

A framework, called DeepAxe, for the analysis and the design space
exploration of the effects of approximation and the trade-off between
area occupation and reliability is presented in [61]. DeepAxe targets
DNN accelerators implemented onto FPGAs. The framework starts with
a Keras description of the DNN that is used to measure the ground-
truth accuracy. Then, the Keras model is translated into C and fault
simulation is performed to measure the reliability of the model. Finally,
igh-level synthesis is applied to obtain the hardware description, and
pproximation is applied thus allowing to evaluate the area occupation
f the final circuit.

3.1.4. Custom methods
The paper in [62] from NVIDIA analyses the reliability and safety

f a CNN (executed on a GPU) for object detection in the automotive
pplication domain. Both fault simulation and radiation testing are
arried out. It is one of the few papers where safety issues (Failure in
ime in particular) are taken into account. The paper highlights how

the use of ECCs for the protection of the content of the memory of
the GPU increases the reliability of the system. On the other hand, the
paper also states that ECC protection is not enough and that periodic
structural tests are recommended to mitigate risks due to SEUs.

The impact of SEUs occurring in the weights on the accuracy of
CNNs is analysed in [63] via an ad-hoc designed fault simulation frame-
work. GoogleNet, Alexnet, VGG16, and SqueezeNet are considered in
the analysis and the target hardware platform is a GPU. The analysis is
carried out targeting three aspects: (i) data representation (fixed point
versus floating point values), (ii) position of the corrupted bit within
the value, and (iii) position of the corrupted layer within the network.
The outcome of the analysis refers that (i) CNNs using fixed point values
are much more resilient than the ones using floating point values, (ii)
faults occurring in the exponent of floating point CNNs have the biggest
impact on resilience (as expected), and (iii) the last layer of the network

are the ones having the biggest impact on its resilience.

9
The works in [64,65] deal with two different case studies, analysing
nd improving the resilience of ResNet and GoogLeNet implemented
n GPUs, respectively. In both cases the context is very specific such
hat, as the authors state, it is not possible to generalise the outcomes
hat, thus, can actually be exploited only in similar application con-
exts. Layer and kernel vulnerability is analysed by performing a fault

injection campaign via SASSIFI, to identify the most vulnerable aspects
of the implemented model. In [64] the authors also selectively harden
some of the kernels that exhibited high vulnerability, by triplicating
them and voting the output.

The paper in [66] presents an analysis of the resilience against
SEUs affecting the weights of the LeNet5 CNN applied to the MNIST
dataset. Based on the results of this analysis the authors draw several
onsiderations: (i) faults affecting the convolutional layers are more
ikely to cause a significant accuracy drop than faults affecting the fully
onnected layers; (ii) the faults affecting the exponent of the floating
oint values used to represent the weights have the largest effect on the
ccuracy of the CNN; (iii) the use of Sigmoid operators instead of ReLU
nes decreases the resilience of the CNN; and (iv) average pooling is
ore capable of preventing the propagation of faults compared to max
ooling.

In [67] the reliability and safety analysis of a systolic array against
stuck-at faults occurring in the datapath, i.e., weights, bias, multiplier,
and accumulator units, is presented. The analysed faults are classified
based on the severity of the effects they cause on the output of the
systolic array. Based on such analysis, the paper additionally presents
two algorithms for test pattern generation meant to detect the most crit-
ical faults. Similarly, a simulation analysis of the effects of permanent
faults in the datapath occurring during the training of TPUs has been
presented in [68]. The authors observe three possible effects: faults that
re totally masked, faults that cause NaN/Inf values and faults that
ause a sharp accuracy degradation. Finally a simple fault detection
nd reaction scheme is proposed: a training iteration is discovered to
ave suffered from a fault as soon as the training loss value exceeds a
re-configured bound; then, the two most recent training iterations are
e-executed to recover from the fault.

3.2. Hardening strategies

The second class of reviewed works includes approaches for the
ardening of systems running DL applications w.r.t. effects of faults
orrupting the underlying hardware. These works focus on handling
nd mitigating SDCs, constituting the most dangerous effect of faults,
ecause it is not detected by the system; a few contributions deal
lso with the recovery from Detected Unrecoverable Errors (DUEs).
his class of works can be further partitioned into (i) approaches
pplying classical redundancy-based hardening strategies, and (ii) de-

sign strategies exploiting peculiar characteristics of DL models. One
of the main challenges in the hardening process is the fact that DL
applications are compute intensive; therefore selective or approximated
techniques are generally defined when considering redundancy-based
strategies, to limit overheads. Moreover, DL models are internally
redundant and presents specific peculiarities that can be exploited to
introduce a degree of intrinsic resilience to faults in the designed
applications. This second group of works exploits these properties to
define resilience-driven design methods.

3.2.1. Redundancy-based techniques
The work in [69] proposes two complementary selective hardening

techniques for introducing fault tolerance in DL systems acting at
application level, without targeting any specific architecture. The first
technique works at design time to identify the most vulnerable feature

aps. This vulnerability analysis is performed by means of metrics to
estimate (i) the probability of activation of a fault while processing a
feature map, and (ii) the probability of propagation of the generated

error to the primary outputs of the CNN. Then, most vulnerable feature

C. Bolchini et al.

r
w
o
t
T
t
e
r
e
P

p
c
a
i

a
b
c
T
f
f
c
a

b

c

t
c
u
o
o

t
t

i

n
t
s
s
a
o

t
m
c
f

a
o
T
b
d

i

Computer Science Review 54 (2024) 100682
maps are hardened by means of DWC, and, in the case of mismatch,
e-execution is performed at run-time. The second proposed technique
orks at run-time and monitors with an ABED approach the outputs
f each CNN inference. In particular, two metrics are used to classify
he outputs as suspicious, and if needed, a re-execution is triggered.
hese two metrics are defined based on empirical observations showing
hat, when considering a CNN for classification activities, the differ-
nce between the top two confidence classes exhibits a strong inverse
elationship with the occurrence of a mis-classification. The extensive
xperimental evaluation of the proposed techniques is performed in
yTorchFI, by the same authors, and is architecture agnostic.

The work in [70] proposes a hardening approach based on se-
lective application of classical redundancy-based techniques against
both transient faults in computations and permanent faults in the
memory storing the weights. The approach exploits techniques for
explainable AI to identify the most susceptible locations in the CNN
at the granularity of the single weight, and neurons in the feature map
whose corruption will possibly cause a mis-classifications with a high
robability. Then, ECCs and TMR are selectively applied to the most
ritical weights and neurons, respectively. Even if the approach works
t the application level and is prototyped in the PyTorch framework, it
s particularly tailored for DNNs designed by using a low data precision,

generally accelerated in hardware.
The authors in [71] develop a so-called Resilient TensorFlow frame-

work, obtained by adding to TensorFlow a set of fault-aware imple-
mentations of its base operators, to address SEUs occurring in the
underlying GPU device. Each new operator is implemented to execute
 thread-level TMRed version of the nominal counterpart. Then, thread
locks are opportunistically scheduled and distributed on the GPU
ores to avoid a single fault to corrupt multiple redundant threads.
he proposed approach is validated by means of both application-level
ault simulation, by means of TensorFI, and microarchitectural-level
ault emulation, by means of NVBitFI [72]. An interesting further
ontribution is the introduction of the Operation Vulnerability Factor,
 metric used to evaluate the resilience of operations, to validate the

proposed solution. In our opinion, the metric could be adopted to
compare different solutions focused on hardening the single operator.

The work in [73] puts together various preliminary contributions
y the same research group on hardening CNNs executed on ARM

CPUs. In particular, they evaluate through simulated fault injection
at microarchitectural level, by means of the SOFIA tool [74], the
resilience of various implementations of the same CNN with different
data precision models (integers at 2, 4, and 8 bits). Based on the
results, they harden the CNNs via two different techniques: (i) a partial
TMR applied at instruction level on sub-parts of the application, or
(ii) an ad-hoc allocation of variables to registers. The idea at the
basis of the second technique is that minimising the number of used
memory elements reduces the area exposed to radiations and therefore
system resilience improves, here measured in terms of Mean Work
To Failure (MWTF). The experimental analysis is performed on the
MobileNet CNN. An evaluation of the proposed lightweight technique
under neutron radiation is presented in [75].3

The work in [76] proposes a selective hardening approach for
CNNs. First, the approach uses the CLASSES error simulator [55] to
haracterise the vulnerability against SEUs of each layer in the CNN.

This metric is defined as the percentage of faults corrupting the single
layer causing the final CNN output to be functionally different from
he golden one, i.e., unusable as defined in [77]. As an example, when
onsidering an image classification task, the output of the CNN is
sable when the input image is correctly classified, even if the actual
utput percentage values are slightly different from the golden ones;
n the other hand, the output is unusable when the output percentage

values are highly corrupted thus causing a mis-classification of the

3 In Table 8 we only report the latest, inclusive contribution.
 B

10
input image. Then, the overall resilience of the CNN is computed by
combining the layers’ vulnerability factors. The approach performs an
optimisation of the hardening based on a selective layer duplication to
co-optimise the overall resilience of the CNN and its overall execution
ime. The approach is applied to a set of 4 different CNN applications
argeting a GPU device.

Another example of application-level selective hardening approach
s the strategy in [78], that exploits a resilience score previously defined

in [79] to rank neurons in the model; then, the approach prunes
eurons classified as non-critical to reduce memory footprint, and
riplicates neurons classified as critical to improve model resilience. The
trategy is implemented in the PyTorch framework without targeting a
pecific hardware platform, and the resilience of the system is evaluated
gainst errors randomly modifying or setting to zero the output values
f the single neurons.

SHIELDeNN [80] and STMR [81] are two similar approaches, tar-
geting BNNs implemented on FPGAs. Both tools perform a preliminary
vulnerability analysis of the parameters of the BNN (in particular,
weights and activation functions) to identify the most critical ones;
this analysis is based on in-house fault simulators. Then, selective TMR
is applied to the most critical parameters, at the granularity of entire
layers in [80] and individual channels in [81]. Although both works
arget FPGA devices, they only harden against faults affecting the data
emory storing BNN parameters, neglecting faults affecting the device

onfiguration memory, whose corruption actually leads to a modified
unctionality.

Still targeting FPGAs, [82] presents a methodology for achieving a
lightweight fault tolerance for CNNs. The idea is to avoid the classi-
cal TMR scheme by adopting an approximated NMR-based approach;
instead of having three exact replicas of the CNN plus a voter, the
proposed methodology exploits the so-called ensemble learning, an ap-
proach used in DL for increasing model accuracy. In particular, the
technique introduces a number of redundant CNNs, that are simpler
and smaller than the original one. During the training phase each CNN
learns a subset of the problem; then, during testing/deployment all CNN
output responses are merged by a combiner module that produces the
final output as the original CNN would have computed. The methodol-
ogy is applied to various versions of the ResNet CNN and the resilience
evaluation is performed by means of a fault injector corrupting the
FPGA configuration memory.

The work in [83] targets a hardware accelerator organised as a
dataflow architecture for ML acceleration. The strategy exploits com-
puting elements in the architecture currently having as activation value
a zero or an identical value of a neighbour computing element; the
aim is to duplicate the same computation of the neighbour element.
Additional logic is introduced into the architecture to manage on-the-
fly duplication of the computations, to check results and, if needed,
to re-execute faulty elaborations. The advantage of the approach is
to benefit from the massively parallel nature of the considered ML
ccelerator to introduce computation replicas at execution level with-
ut extending the architecture with additional computing elements.
he architecture is experimentally validated onto an FPGA device
y performing emulated fault injection in the registers of the RTL
escription.

[84] introduces several ABFT schemes to detect and correct errors
in the convolutional layers during the inference process; to this end
the authors develop in the Caffe framework a soft error detection library
for CNNs, FT-Caffe. The approach is based on the adoption of checksum
schemes and layer-wise optimisations, opportunely calibrated by means
of a workflow that provides error detection and then error correction.
Being it a runtime method, performance degradation is traded against
fault resilience. Application-level error simulation is used by means of
an in-house tool to evaluate the approach.

Two ABED techniques are proposed in [85,86] for linear layers,
.e., convolutional and fully-connected layers, targeting GPU devices.
oth works are based on computation and checksum validation in

C. Bolchini et al.

t
l
p
f
o
i

e
e
o
m

c
A
m
a
s

f
t
i
p
a
a

o
v

o
a
c

D
i
v

c

e
a

i

q
a
c
a
a
P
a
c
t

w

r

p

o

r

p
d
t
o
i
t
t
t

Computer Science Review 54 (2024) 100682
matrix multiplication algorithms. The approach in [85] considers quan-
ised models and is implemented in CUDA, using also the cuDNN
ibrary; the other layers are protected by traditional DWC. The ex-
erimental evaluation is performed through microarchitectural-level
ault emulation by injecting single bit-flips in the layer inputs and
utputs and weights, and through radiation testing. The approach
n [86] defines two different checksum strategies: (i) a global one,

being a refined version of the classical hardening scheme for matrix
multiplication, and (ii) a thread-level one, where the classical scheme
is redesigned to aggressively use the GPU tensor cores. A design-time
profiling approach, called intensity-guided ABFT, is used to decide, for
ach CNN layer, which strategy is the most efficient one in terms of
xecution time. The paper presents only an experimental evaluation
f the performance of the proposed approach, neglecting reliability
easures.

It is worth mentioning another similar ABED strategy based on
hecksums [87], applicable to convolutional and fully-connected layers.
s for the previous contributions, the authors propose a hardware
odule to accelerate computation and checksum validation. The evalu-

tion is again performed at the application level within a custom error
imulation environment developed in Keras and Tensorflow.

A hardening methodology based on a selective ECC application,
dubbed harDNNing, is presented in [88]. The framework first performs
ault injection experiments in the parameters of the various layers of
he DNN model. As a second step, based on the results of these fault
njections, ML models are trained to predict the criticality of all the
arameters and of all the bits within a single parameter. Finally, ECC
re selectively inserted to protect the previously identified critical bits
nd critical parameters, thus achieving low-overhead fault tolerance.

An analytical model to study the propagation of SEUs affecting the
weights of a CNN is proposed in [89]. The authors define the concept
f SEU-Induced Parameter Perturbation (SIPP) as the modification of the
alue of a CNN weight caused by an SEU. Once the possible SIPPs have

been identified, the authors study if and how they propagate to the
utput of the CNN and, based on this analysis, the most critical weights
re identified. As a final step, TMR or ECC are applied to the most
ritical weights to increase the resilience of the CNN.

3.2.2. DL algorithm-aware techniques
Paper [90] introduces Ranger, a fault correction technique identi-

fying and modifying values presenting a deviation from the nominal
ones, presumably due to the occurrence of transient faults in the
processed data. The intuition at the basis of this technique, previously
discussed in the paper presenting BinFI [24], is that each layer in a

NN model produces in output tensors containing elements included
n a specific value range. Moreover, if a SEU generates a corrupted
alue in the output tensor sensibly different from its nominal range,

there is a high probability that this will cause the DNN to generate
an erroneous output, an event that does not occur when the corrupted
values is anyway within the nominal range. Thus, the proposed low-cost
technique consists in introducing on the output of selected DNN layers a
new operator that clips those output values that are outside identified
restriction bounds. The proposed idea is implemented in TensorFlow
and evaluated by means of TensorFI.

Paper [91] presents a technique very similar to Ranger. The paper
onsiders permanent faults in the weights of the DNN and defines

a novel clipped version of the ReLU activation function, replacing
output values larger than a given threshold with a 0. A methodology is
proposed to identify a proper threshold capable of identifying possible
faults causing out-of-range corrupted values and at the same time
limiting the negative impact of this new operator on the accuracy of
the overall DNN. The experimental evaluation is carried out by means
of an in-house error simulator developed in PyTorch.

The work in [92] proposes yet another value range limiting strat-
gy, implemented by modifying the activation function to perform
 clipping against a threshold. Based on the limitations of previous
 e

11
efforts in the same direction, the authors employ a fine-grained neuron-
wise activation function, to be determined in a supplementary training
phase, that follows the traditional accuracy training. To this end, the
work proposes a two-steps framework that supports the design and
implementation of a resilient DNN. The authors analyse the final imple-
mentation against memory faults, that is weights and biases of different
layers, as well as parameters of activation functions. An in-house
error simulator is developed in PyTorch for running an experimental
evaluation. Results are compared against hardening solutions proposed
n [90,91], showing an improvement.

Few other papers present alternative strategies to address faults
causing high-magnitude errors. For instance, the work in [93] combines
uantisation tailored on the parameter distribution at each DNN layer
nd a training method considering a specific loss function, optimisti-
ally exploiting the selected quantisation scheme not to decrease the
ccuracy while pursuing a high resilience. This approach, validated in
n ad-hoc application level error simulation framework developed in
yTorch, outperforms two different strategies proposed by the same
uthors and a state-of-the-art approach based on explicit value range
lipping [91]. Another work exploiting the statistical distribution of the
ensor values is proposed in [94]; it defines thresholds for localising

and suppressing errors. The technique is coupled with state-of-the-art
checksum strategies for error detection. The authors in [95] also exploit
the statistical distribution of the values in the output of the DNN, before
applying the final softmax normalisation, to detect outliers, which
represent a suspicious symptom of a fault corrupting the system.

In this class of papers, we found papers that optimise the memory
overhead introduced by the application of ECC to the DNN weights
by exploiting peculiar properties and characteristics of DNN models.
As an example, the study in [96] proposes a novel training scheme,
namely Weight Distribution Oriented Training (WOT), to regularise the

eight distribution of CNNs so that they become more amenable for
protection by encoding without incurring in overheads. The idea is to
exploit the fact that weights in a well-trained CNN are small number,
equiring a few bits to be represented with respect to the available ones.

Therefore, part of the bits are used to hold the ECC, effectively using
a 8-bit quantisation strategy for the weights, to use the remaining bits
for the checksum. The evaluations is performed at application level by
means of a custom fault simulation method in PyTorch. Another similar
work is presented in [97] where a Double Error Correcting code based
on parity is adopted to protect weights against stuck-at faults. The
roposed approach, prototyped in Keras, outperforms the one in [96].

Finally, other papers follow the same path, also broadening the field
f analysis. As an example the authors in [98] continue the analysis

of the resilience of the various data types by considering the recently
introduced Brain-Float 16 (bf16) format; since this data type is obtained
by removing 16 bits from the mantissa of the standard 32 bit floating
point, it presents a higher vulnerability to faults. Based on the resilience
analysis, the authors define another similar coding scheme for the
weights of the model. In particular, to avoid any memory overhead,
a parity code is applied by using the Least Significant Bit (LSB) of each
word as the checking bit; the intuition is that a change in the LSB
marginally affects the model accuracy. Then, when a parity error is
detected, the entire weight is set to zero; in fact, as studied in [99],
a change of a single weight to zero generally does not affect the DNN
esult.

A novel hardening paradigm, dubbed fault-aware training is pro-
osed in [100,101]. The idea behind this technique is to inject faults
uring the training process to force the CNN to learn how to deal with
he occurrence of faults at inference time. This promising technique,
n the one hand, enables a low-cost hardening, but, on the other hand,
t poses new challenges to the designer. Indeed, it is vital to identify
he proper amount of faults to be presented to the CNN during the
raining phase; a high number could increase resilience, introducing
he side-effect of preventing training convergence and producing an

xcessively large CNN. A reduced number of faults will result in a quick

C. Bolchini et al.

p
t
e
a
a
F

T
t
i

i

p
t
d
s
s

f
C
a
f
f
l
m
i
t
s

o
s

f

s

i
p

Computer Science Review 54 (2024) 100682
Table 7
Contributions according to their type.

Resilience analysis
Application-level methodologies

Error simulation [23–36]
Hardware-level methodologies

Radiation testing [37,42–44]
Fault injection [38–43]
Error simulation [45,46]

Cross-level methodologies
Radiation testing [50]
Fault injection [54–56,58,59]
Error simulation [47–51,55–57,60,61]

Case studies
Radiation testing [62]
Fault injection [64,65]
Error simulation [62,63,66–68]

Hardening strategies
Redundancy-based techniques

DWC [76,85]
TMR [70,71,75,78,80,81,89]
NMR [82]
D+R [69,105]
ABFT [84,94,106]
ABED [69,84–87,107]
ECC [70,88,89,96–98]
CHK [83,105]

DL algorithm-aware techniques
Value type/distribution analysis [90–92,94,95,97] [105,106]
Fault-aware training [96,100,101,103,104,107]

but possibly ineffective training. In the paper the newly proposed fault-
aware training is coupled with two additional CNN model modifications
aimed at mitigating high-magnitude errors: (i) replacing the standard
ReLU activation with its clipped counterpart, ReLU6 (originally pro-
osed in [102]); and (ii) re-ordering the layers in the CNN such
hat ReLU6 is always executed before batch normalisation. The paper
valuates the proposed approach by considering a GPU target device
nd by using both microarchitectural fault injection (via NVbitFI) and
pplication level error simulation (via a Python-based in-house tool).
ault-aware training is also investigated in [103], where the authors

introduce specific loss functions and training algorithm to deal with
multiple bit errors. The evaluation is carried out at the application level
by not considering any specific hardware platform.

Fault-aware weight re-tuning for fault mitigation is proposed in [104].
The authors first analyse the resilience against permanent faults of a
Multiply and Accumulate (MAC) structure generally used in GPUs and

PUs. In particular, the authors analyse how the structure is sensitive
o SA faults a CNN is w.r.t. (i) the degree of approximation adopted
n the employed multipliers; (ii) the position of the faulty bit in the

corrupted value; and (iii) the position of the layer affected by the fault
n the whole CNN. The authors propose to prune the weights that are

mapped on the corrupted bits and that are thus going to be affected
by the SA faults (previously identified through post-production test
rocedures). Once such pruning has been carried out, re-training of
he CNN is performed. The experimental evaluation is performed by
esigning a systolic array architecture based on the considered MAC
tructure. Fault injection campaigns are run with an in-house error
imulator in TensorFlow.

The work in [105] first performs a systematic analysis of the
Program Vulnerability Factor (PVF) of the various instructions of an
ARM CPU executing DL applications. Experiments are performed by
means of a fault emulation tool corrupting the ISA registers by means
of the on-chip debugging interface. Then, it defines two techniques to
harden the considered system against SDCs: (i) selective kernel-level
DWC with re-execution, and (ii) a symptom-based technique checking
all values of the intermediate results against a given threshold to trigger
a re-execution when a value is above it. This second technique is based
on the same intuition of the range restriction strategies discussed above
(e.g., [90,91]). Finally, the paper considers the adoption of kernel-level
12
check-pointing to recover from crashes or other DUE. In a subsequent
work [97], the same authors note that output values of a DNN layer
present a regular data distribution that can be analysed at runtime to
compute, during the inference process, the two thresholds to be used
for the range restriction technique.

[107] focuses on a different perspective with respect to all previous
contributions: the impact of faults during model training. An in-house
error simulator is defined within the Caffe framework to inject bit-
lips in the variables to simulate SEUs affecting the High Performance
omputing system running the training procedure. Outcomes of such
n analysis are that (as already emerged in other works for errors af-
ecting floating point values and layers) (i) most training failures result
rom higher order bit flipping in the exponents, and (ii) convolutional
ayers are more failure prone. Moreover, the authors highlight how
onitoring the value of the loss function among the various training

terations is an effective signal to detect most of the SDCs causing a
raining failure. Based on this observation, an ad-hoc error detection
trategy is defined for training against failures due to SEUs.

A mitigation methodology without redundant hardware and with-
ut model retraining for permanent faults is systolic arrays is pre-
ented in [106]. The method exploits fault maps generated during

post-fabrication testing to arrange significant data to MACs with fewer
aults. Moreover, the authors propose to compensate the effect of a fault

by correcting the faulty value substituting it with the value of the sign
(they call this technique sign compensation).

The adoption of the two identified main classes, namely resilience
analysis and hardening strategies, to partition the reviewed contributions
allows us to organise them based on the main focus of the novelty of the
presented solution. Table 7 offers a bird’s-eye view of this classification
and summarises the outcome.

As mentioned, the classification framework we define allows us
to capture the elements we deem more relevant emerging from the
reviewed contribution, thus providing a guide in identifying pertinent
state-of-the-art proposals to build upon or to compare against. Table 8
collects the 76 entries of the analysed papers for an easy access to the
information.

Another classification perspective that may be of interest maps the
reviewed analysis or/and hardening techniques to the DL task and
the DL model they are applied to. While some contributions compare
their results against other solutions, this is not the most common case.
Furthermore, results are significantly related to the adopted application
context (e.g., DL task, considered dataset) and should be re-evaluated
for different ones. However, it can be of interest to be able to identify
what solutions have been already applied to a specific application
context. Table 9 synthesises the application context per contribution,
reporting the DL task and specific model; considering also the dataset
elected for each model resulted in too a fragmented and heterogeneous

map to be useful. For the same reason, we collapsed all alternative
designs of the same model in a single item (e.g., ResNet-18, ResNet-50,
ResNet-101, etc. have been collapsed in a single item named ResNet).
Moreover, the table includes a column for each DL model adopted at
least in two papers, all remaining models considered only once have
been listed in the others column. Finally, for the sake of completeness,
for each paper we report all used models including those not analysed
in this work (e.g., transformers).

As we can notice, most contributions focus on DL models performing
mage classification. Some models, as ResNet or VGG, represent very
opular case studies. A few works consider less-known, very specific

models and frequently, authors define simple custom DL models to
evaluate the proposed technique (see the custom column); inevitably,
this reduces the generality and the reproducibility of the performed
experiments.

Finally, Table 10 collects the information on the available software
presented in the works listed in Table 8 and commented in the ‘‘Tool
support’’ column.

C. Bolchini et al. Computer Science Review 54 (2024) 100682
Table 8
Contribution classification.

Paper Scope Abs. HW Fault Error ML Tool Rep. Analysis Hardening
Lev. Plat. Model Model Fram. Dep. Inject Out Rel. Tech. Str.

Attr. Meth. Pro.

[28] A APP any PFunc/TFunc P/DV/NO KE Yes Yes Re Si a – – –
[23] A APP any PFunc P DK No Yes Sa Si HG – – –
[24] A APP any TFunc LO TF Yes Yes Re Si – – –
[25] A APP any TFunc LO/P TF Yes Yes Re Si – – –
[26] A APP any TFunc LO KE Yes Yes Re Si – – –
[27] A APP any PFunc/TFunc P/NO PT Yes Yes Re Si – – –
[29] A APP any TFunc P KE/TF No No VF/Re Si FD/FT Sel ECC+DWC
[30] A APP any SA P – No No Re Si – – –
[31] A APP any PFunc/TFunc LO PT No No Re Si HG – – –
[32] A APP any PFunc/TFunc LO/P/NO KE/TF No No Re Si – – –
[33] A APP any TFunc DV PT No No Re Si – – –
[34] A APP any SA P DK No No Re Si – – –
[35] A APP any SA P – No No Re Si – – –
[36] A APP any PFunc/TFunc P/LO – No No Re Si – – –
[37] A DEV FPGA SEU/SET REG TF No No Re Ra HG – – –
[38] A RTL FPGA SEU REG FI No No VF Em – – –
[39] A DEV/RTL FPGA SEU REG – No No Re Em – – –
[40] A RTL FPGA SA REG – Yes Yes Re Em – – –
[41] A RTL FPGA SEU REG – No No Re Em HG – – –
[42] A RTL FPGA SEU REG – No No Re Ra/Em HG – – –
[43] A DEV/ISA/ALG GPU SEU REG DK No No Re Ra/Em FT Spec ECC/ABFT
[44] A DEV TPU SEU REG TF No No Re Ra – – –
[45] A RTL TPU SA REG PT No No Re Si – – –
[46] A ISA TPU SA P/DV ND No No Re Si – – –
[47] A RTL/APP TPU SEU REG TF Yes Yes Re Si HG – – –
[48] A RTL/APP TPU SEU REG TF Yes Yes Re Si HG FT Spec D+R
[49] A ISA/APP CPU SEU REG – No No VF Si – – –
[50] A DEV/APP CPU SEU/SA REG ND No No Re Ra/Si – – –
[51] A ISA/APP GPU SA REG – No No Re Si – – –
[54] A RTL/APP FPGA SEU REG – No No Re Em – – –
[55] A ISA/APP GPU SEU REG TF Yes Yes VF/Re Em/Si – – –
[56] A ISA/APP GPU SEU REG TF No No Re/VF Em/Si HG – – –
[57] A RTL/APP TPU SEU REG PT No No VF Si HG – – –
[58] A RTL/APP TPU SEU/SA REG KE Yes Yes VF/Re Em HG – – –
[59] A RTL/APP FPGA SEU REG PT No No Re Em – – –
[60] A ISA/APP CPU SEU REG any Yes Yes Re/VF Si HG – – –
[61] A RTL/APP FPGA SEU REG KE No No Re Si – – –
[62] A DEV/RTL/APP GPU SEU REG TR No No Re/Sa Ra/Si – – –
[63] A APP any TFunc P CA Yes Yes Re Si HG – – –
[64] A ISA/APP GPU SEU REG DK No Yes VF/Re Em FT Sel TMR
[65] A ISA/APP GPU SEU REG DK No Yes VF/Re Em – – –
[66] A APP any TFunc P – No No Re Si HG – – –
[67] A RTL/APP TPU SA REG KE No No Re/VF/Sa Si – – –
[68] A RTL/APP TPU SA REG – No No VF Si HG FD/FT Full DL

[69] H APP any SEU NO PT No No VF Si FT Sel D+R/ABED
[70] H APP any SEU/SA P/DV PT Yes Yes – – – FT Sel TMR/ECC
[71] H ALG GPU SEU REG/LO TF No No – – – FT Ex TMR
[75] H ISA/ALG CPU SEU REG CN No No Rel Si FT Sel TMR/DL
[76] H ISA/APP GPU SEU LO TF No Yes VF/Re Em/Si FD Sel DWC
[78] H APP any TFunc NO PT No No – – – FT Sel TMR
[80] H APP FPGA SEU P FI No No VF Em FT Sel TMR
[81] H APP FPGA SA P FI No No VF Em FT Sel TMR
[82] H APP FPGA SEU REG – No No – – – FT Ax NMR
[83] H RTL TPU SEU REG – No No – – – FT Sel D+R
[84] H ALG any SEU LO CF No Yes – – – FD/FT Spec ABED/ABFT
[85] H ALG GPU SEU REG/LO/P cu No No – – – FD Spec ABED/DWC
[86] H ALG GPU SEU DV – No No – – – FD Spec ABED
[87] H ALG any SEU P/LO KE/TF No No – – – FD Spec ABED
[88] H APP any SEU P – No No VF Em HG FT Sel ECC
[89] H APP any SEU P – No No VF An HG FT Sel ECC/TMR
[90] H APP any SEU DV TF Yes Yes – – – FT Full DL
[91] H APP any Pfunc P PT No Yes – – – FT Full DL
[92] H APP any SEU P PT No No – – – FT Full DL
[93] H APP any Pfunc P/LO PT No No – – – FT Full DL
[94] H APP any Pfunc P/LO PT No No – – – FT Full ABEF/DL
[95] H APP any SA P – No No – – – FT Full DL
[96] H APP any SEU P PT No No – – – FT Spec ECC/DL
[97] H APP any SA P KE No No – – – FT Spec ECC/DL
[98] H APP any SEU P ND No Yes Re Si FD/FT Spec ECC/DL
[100] H APP GPU SA P PT No No – – – FT Full DL
[101] H APP GPU SEU REG/LO – No No – – – FT Full DL

(continued on next page)
13

C. Bolchini et al. Computer Science Review 54 (2024) 100682
Table 8 (continued).
Paper Scope Abs. HW Fault Error ML Tool Rep. Analysis Hardening

Lev. Plat. Model Model Fram. Dep. Inject Out Rel. Tech. Str.
Attr. Meth. Pro.

[103] H APP any SEU P/NO – No No – – – FT Full DL
[104] H RTL/APP TPU SA REG TF No No VF/Re Si FT Full DL
[105] H ISA/APP CPU SEU REG CM No No Re/VF Em FT Sel D+R/DL/CHK
[107] H APP any SEU P/DV CF No No Re Si FD Spec ABED/DL
[106] H ALG TPU SA P/LO – No No – – – FT Spec ABFT/DL

a QM is always present and therefore omitted, we only report HG when applicable.
4. Insights, challenges and opportunities

The high number of pertinent contributions in the last four years
(i.e., 244 authored by more than 400 scientists) shows a dynamic
context, that in this decade has been fostering interesting and relevant
outcomes, characterised by some common aspects, that we summarise
in the following, together with open challenges and opportunities
(beyond the ones highlighted by [2]).

Trend The number of contributions in the years has been increasing
(as Fig. 1 shows) if we consider that the spectrum of analysis
and design targets has grown and the works reported in the
chart cover only a limited research area (the one included in
this survey) with respect to the total.

DL design impact on resilience Numerous are the studies that ex-
plore how different DL design choices – from data type, to
data quantisation, from pruning to compression – affect the
resulting network resilience to faults corrupting both stored data
(e.g., weights, neuron output) and manipulation (e.g., convolu-
tion output). Such impact, though, is heavily and strictly related
to the specific adopted DL solution, and although some general
considerations are drawn, there is no ‘‘one ground truth that
applies to every case’’ so that, in our opinion, every time a
DL application has to be deployed in a safety/mission-critical
application domain, analysis and hardening solutions need to be
specifically tailored. To this end, approaches providing usable
tools and methods to analyse and harden a DL application seem
to be of great interest.

Global techniques’ comparison New hardening techniques are usu-
ally presented and applied to a selected application ‘‘context’’
defined by the task the DL application targets, the used input
dataset, the adopted representation. The effectiveness of the
technique and the quality of the outcome could vary when
applied to a different application context, therefore it is not
straightforward to compare different techniques and make a
global ranking; given an application ‘‘context’’ all compatible
techniques should be applied to be able to make an educated se-
lection. Challenge: application of a new technique to a differen-
tiated set of application contexts, highlighting whether the con-
text has a significant impact on the outcomes and thus support-
ing possible adopters in the selection of the most appropriate
solution.

Metrics For both the analysis and hardening strategies, most contri-
butions can be partitioned into two classes, those evaluating re-
silience with respect to conventional reliability metrics, such as
Mean Time To Failure, Failures in Time , Architecture Vulnera-
bility Factor, Program Vulnerability Factor, Kernel Vulnerability
Factor or the Silent Data Corruption rate (e.g., [43]) and those
who adopt an application-aware metric, more closely related
to the specific and special context, such as usable/not usable
(e.g., [73,77]). Both classical and innovative figures of merit
are adopted or defined, leading to numerous alternative visions.
Some of the best contributions report comparative results that
14
allow the reader to identify benefits and potentials of the new
discussed solutions, but the rich set of different quantitative
metrics makes the task not an easy one. Challenge: although
the choice of the adopted metric depends on the application
context, future efforts could go in the direction of reporting
always the results also with respect to a commonly adopted
metric, to enable fair comparisons.

Cross-layer strategies The complexity of the hardware platforms able
to efficiently execute heavy ML/DL applications, and that of
the applications themselves, initially led to contributions that
worked either at the architecture level (working on faults),
or at the application level (working on errors). However, the
gap between these levels and the necessity to maintain a cor-
respondence between faults and errors to provide a reliable
susceptibility/resilience evaluation are spurring cross-layer ap-
proaches that explore and support such a fault-error relation.

Fault injection tools and their availability Considering the applica-
tion context and the involved elements, fault injection is a
critical task with respect to (i) the experiment time, (ii) the
controllability/observability aspects, and (iii) the adherence of
the injected errors to the underlying realistic faults. Specifi-
cally targeting the domain of interest, several fault injection
tools have been recently proposed, working from the archi-
tectural level [24,47,60,72] to the application one [25,27,28],
or cross-layer [55,59]. Although several of them are available
(see Table 10 for the available open-source software packages),
when developing hardening techniques and strategies, propri-
etary fault injection solutions are devised, sometimes to drive
a selective hardening policy based on the analysis outcomes.
Challenge: an ecosystem of available tools working at different
abstraction levels, on different platforms could indeed allow for
a systemic effort to tackle DL resilience for present and future
challenges.

Reproducible research One of the critical activities when develop-
ing new methods is the evaluation of their performance with
respect to existing ones, to motivate the introduction of yet
another approach. Often, the comparison is carried out against
the vanilla solution, the baseline implementation without any
sort of hardening. Indeed, only a few contributions (besides
the ones proposing a new tool) share and make public their
software/data. Challenge: encourage reproducible research to
foster stronger contributions, as well as the possibility to move
towards an integrated ecosystem of solutions for the differ-
ent hardware/software/application variants. As an example,
an available benchmark suite that offers for the various hard-
ware/software/application contexts a reference to (i) compare
solutions, and (ii) support the integration of complementary
approaches , could be a valuable asset for the community.

Community There are a number of very active research groups on the
topic, that are steadily contributing to the discussion. To visu-
ally get an overview of such a community, the awareness and

C. Bolchini et al. Computer Science Review 54 (2024) 100682
Table 9
Contributions classification with respect to the application context: DL task and net.

Image Classification Regression Object Others

detection

Pa
pe

r

Re
sN

et

VG
G

Le
N

et

Al
ex

N
et

M
ob

ile
N

et

Sq
ue

ez
eN

et

De
ns

eN
et

Go
og

le
N

et

In
ce

pt
io

n

Sh
uf

fle
N

et

Cu
st

om

Da
ve

Co
m

m
a.

ai

Yo
lo

An
al

ys
is

[28] ✓ ✓ ✓ TiGRU (Speech Classification)
[23] ✓

[24] ✓ ✓ ✓ ✓ ✓ ✓ kNN (Image Classification)
[25] ✓ ✓ ✓ ✓ ✓ ✓ RNN (Image Classification) – U-net (Image Segmentation)
[26] ✓ ✓ ✓ ✓ ✓ Xception (Image Classification)
[27] ✓ ✓ ✓ ✓ ✓ ✓ ✓

[29] ✓ ✓ ✓ ✓

[30] ✓ ✓

[31] ✓ ✓

[32] ✓ ✓ ✓ ✓

[33] ✓ ✓

[34] ✓ ✓

[35] ✓

[36] ✓ ✓

[37] ✓

[38] ✓

[39] ZynqNet (Image Classification)
[40] ✓ ✓ LSTM (Voice Processing) – DCGAN (Image Generation)
[41] ✓ ✓ ✓

[42] ✓

[43] ✓ ✓ R-CNN (Object Detection)
[44] ✓ ✓ ✓ SSD (Object Detection)
[45] ✓

[46] ✓

[47] ✓ ✓ ✓ ✓ Transformer (Language Processing)
[48] ✓ ✓ ✓ EfficientNet, NFNet (Image Classification) – Transformer (Language Processing)
[49] RNN (Control)
[50] ✓

[51] ✓

[54] ✓

[55] ✓ ✓ ✓

[56] ✓ ✓ ✓

[57] ✓ ✓

[58] ✓ ✓ ✓

[59] ✓

[60] ✓ ✓ ✓ ✓ ✓ ✓

[61] ✓ ✓ ✓

[62] NVIDIA-DriveWorks (Object Detection)
[63] ✓ ✓ ✓ ✓

[64] ✓

[65] ✓

[66] ✓

[67] ✓

[68] ✓ ✓ Transformer (Language Processing)

H
ar

de
ni

ng

[69] ✓ ✓ ✓ ✓ ✓ ✓ ✓

[70] ✓

[71] ✓ ✓ ✓

[75] ✓

[76] ✓ ✓ ✓ PilotNet (Image Classification)
[78] ✓ ✓

[80] ✓ ✓

[81] ✓

[82] ✓

[83] ✓ ✓ ✓

[84] ✓ ✓ ✓ ✓

[85] ✓ ✓

[86] ✓ ✓ ✓ ✓ ✓ ✓ Coral, Roundabout, Taipei, Amsterdam (Video Processing) – DLRM (Recommendation)
[87] ✓

[88] ✓ ✓

[89] ✓ ✓ NIN (Image Classification)
[90] ✓ ✓ ✓ ✓ ✓ ✓ ✓

[91] ✓ ✓

[92] ✓ ✓ ✓

[93] ✓ ✓ ✓ ✓

[94] ✓ ✓

[95] ✓

[96] ✓ ✓ ✓

[97] ✓ ✓ ✓ ✓

(continued on next page)
15

C. Bolchini et al. Computer Science Review 54 (2024) 100682
Table 9 (continued).
Image Classification Regression Object Others

detection

Pa
pe

r

Re
sN

et

VG
G

Le
N

et

Al
ex

N
et

M
ob

ile
N

et

Sq
ue

ez
eN

et

De
ns

eN
et

Go
og

le
N

et

In
ce

pt
io

n

Sh
uf

fle
N

et

Cu
st

om

Da
ve

Co
m

m
a.

ai

Yo
lo

[98] ✓ ✓ ✓

[100] ✓

[101] ✓

[103] ✓ ✓ ✓

[104] ✓ ✓ ✓ ✓

[105] ✓ ✓ ✓

[107] ✓ ConvNet, LRCN (Image Classification)
[106] ✓
Table 10
Open-source software made available from the works presented in Table 8 (Tool support).

Ref. Name url

[28] Ares github.com/alugupta/ares
[24] BinFI github.com/DependableSystemsLab/TensorFI-BinaryFI
[25] TensorFI2 github.com/DependableSystemsLab/TensorFI2
[26] TensorFI+ github.com/sabuj7177/TensorFIPlus
[27] PyTorchFI github.com/PyTorchfi/PyTorchfi
[40] github.com/ICT-CHASE/fault-analysis-of-FPGA-based-NN-accelerator
[47] FIdelity github.com/silvaurus/FIdelityFramework
[48] FIdelityTraining https://github.com/YLab-UChicago/ISCA_AE
[55] CLASSES github.com/D4De/classes
[58] saca-FI github.com/One-B-Tree/Saca-FI-A-microarchitecture-level-fault-injection-framework-for-CNN-accelerator
[60] LLTFI github.com/DependableSystemsLab/LLTFI
[63] github.com/cypox/CNN-Fault-Injector
[70] github.com/Msabih/FaultTolerantDnnXai
[90] Ranger github.com/DependableSystemsLab/Ranger
relationships among the research groups, as well as the typical
venues where the topic is presented and discussed, we exploited
VOSviewer [108]. On the 222 papers considered eligible we ex-
plored co-authorship, shown in Fig. 5. The analysis identifies 86
authors having authored at least 3 papers on the topic, belonging
to 14 clusters (research groups). Links between nodes represent
a co-authorship. Bibliographic coupling on the same data set is
reported in Fig. 6, highlighting similar specific interests based
on citations. We also explore the publication venues, shown in
Fig. 7, reporting the venues where the included contributions
have been published, highlighting the number of documents and
the cross-references through links. Finally, we analyse the set of
85 included papers highlighting cross-citations and the number
of citations per document to get insights on other scientists’
awareness. The emerging view is reported in Fig. 8.

Synergy opportunity This work, as well as past literature review
analyses, shows that ML resilience, and DL in the specific,
against faults affecting the underlying hardware is a research
area exhibiting many challenges and facets, setting an opportu-
nity for creating a synergy in the research community towards
the development of an ecosystem of methods and tools that
can tackle the different facets of DL resilience against hardware
faults.

5. Concluding remarks

This paper collects and reviews the most recent literature (since
2019) on the analysis and design of resilient DL algorithms and appli-
cations against faults in the underlying hardware. The analysis includes
85 studies focused on methods and tools dealing with the occurrence
of transient and permanent faults possibly causing the DL application
16
to misbehave. Through a detailed search and selection process we
reviewed the contributions and analysed them with respect to a clas-
sification framework supporting the reader in the identification of the
most promising works based on the area of interest (e.g., with respect
to the adopted fault model, error model or DL framework). The aim is
twofold; (i) mapping the active research landscape on the matter, and
(ii) classifying the contributions based on various parameters deemed
of interest to support the interested reader in finding the relevant
information they might be looking for (e.g., similar studies, solutions
that might be applied, etc.). The study emphasises the breadth of the
research and actually defines some boundaries to limit the included
contributions, focusing on DL applications and the most commonly
adopted fault models, leaving other facets (e.g., spiking neural net-
works, vision transformers, manufacturing and process-variation faults)
to future studies. Some insights and overall considerations are also
drawn; the vibrant research on this topic and the broad spectrum
of challenges calls, in our opinion, towards the development of an
ecosystem of solutions that offer a support in the implementation of
resilient DL applications.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

https://github.com/alugupta/ares
https://github.com/DependableSystemsLab/TensorFI-BinaryFI
https://github.com/DependableSystemsLab/TensorFI2
https://github.com/sabuj7177/TensorFIPlus
https://github.com/PyTorchfi/PyTorchfi
https://github.com/ICT-CHASE/fault-analysis-of-FPGA-based-NN-accelerator
https://github.com/silvaurus/FIdelityFramework
https://github.com/YLab-UChicago/ISCA_AE
https://github.com/D4De/classes
https://github.com/One-B-Tree/Saca-FI-A-microarchitecture-level-fault-injection-framework-for-CNN-accelerator
https://github.com/DependableSystemsLab/LLTFI
https://github.com/cypox/CNN-Fault-Injector
https://github.com/Msabih/FaultTolerantDnnXai
https://github.com/DependableSystemsLab/Ranger

C. Bolchini et al.

Fig. 5. Co-authorship analysis with ‘‘authors’’ as the unit of analysis. In this analysis, the minimum number of documents for each author is 3, and the number of resulting authors
is 86, grouped in 14 clusters, accordingly. Node size depends on the number of documents and the connecting lines between them indicate the collaboration between authors.
The colour spectrum represents the average number of citations.

Computer Science Review 54 (2024) 100682

17

C. Bolchini et al.

Fig. 6. Bibliographic coupling using ‘‘authors’’ as the unit of analysis. In this analysis, the minimum number of documents for each author is 3, and the number of selected authors
is 86, grouped in 14 clusters, accordingly. Node size depends on the number of documents and the connecting lines between them indicate cross-referencing of the authored
papers, mapping both topic similarity and awareness. The colour spectrum represents the average number of citations.

Fig. 7. Eligible studies: analysis of the publication venues with respect to the number of papers at such a venue. A link between two items means that one of them cites the other
and the colour spectrum represents the average number of citations.

Computer Science Review 54 (2024) 100682

18

C. Bolchini et al. Computer Science Review 54 (2024) 100682
Fig. 8. Included studies (reported in Table 8): citations counts indicating the most cited literature and the cross-reference among them. Node size depends on the number of
citations and the connecting lines between them indicate the reference in the bibliography.
References

[1] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature (521) (2015) 436–444,
http://dx.doi.org/10.1038/nature14539.

[2] Z. Wan, K. Swaminathan, P.-Y. Chen, N. Chandramoorthy, A. Raychowdhury,
Analyzing and improving resilience and robustness of autonomous systems, in:
Proc. Int. Conf. Computer-Aided Design, 2022, pp. 1–9, http://dx.doi.org/10.
1145/3508352.3561111.

[3] E. Cheng, Daniel-Mueller-Gritschneder, J. Abraham, P. Bose, A. Buyuktosunoglu,
D. Chen, H. Cho, Y. Li, U. Sharif, K. Skadron, M. Stan, U. Schlichtmann, S.
Mitra, INVITED: Cross-layer resilience: Challenges, insights, and the road ahead,
in: Proc. Design Automation Conference, 2019, pp. 1–4, http://dx.doi.org/10.
1145/3316781.3323474.

[4] A. Avizienis, J.-C. Laprie, B. Randell, C. Landwehr, Basic concepts and taxonomy
of dependable and secure computing, IEEE Trans. Dependable Secure Comput.
1 (1) (2004) 11–33, http://dx.doi.org/10.1109/TDSC.2004.2.

[5] S. Mittal, A survey on modeling and improving reliability of DNN algorithms
and accelerators, J. Syst. Archit. 104 (2020) 101689, http://dx.doi.org/10.
1016/j.sysarc.2019.101689.

[6] Y. Ibrahim, H. Wang, J. Liu, J. Wei, L. Chen, P. Rech, K. Adam, G. Guo, Soft
errors in DNN accelerators: A comprehensive review, Microelectron. Reliabil.
115 (2020) 113969, http://dx.doi.org/10.1016/j.microrel.2020.113969.

[7] A. Ruospo, E. Sanchez, L. Matana Luza, L. Dilillo, M. Traiola, A. Bosio, A survey
on deep learning resilience assessment methodologies, Computer 56 (2) (2023)
57–66, http://dx.doi.org/10.1109/MC.2022.3217841.

[8] J.J. Zhang, K. Liu, F. Khalid, M.A. Hanif, S. Rehman, T. Theocharides, A.
Artussi, M. Shafique, S. Garg, INVITED: Building robust machine learning
systems: Current progress, research challenges, and opportunities, in: Proc.
Design Automation Conf., 2019, pp. 1–4, http://dx.doi.org/10.1145/3316781.
3323472.

[9] M.A. Hanif, M. Shafique, Dependable deep learning: Towards cost-efficient
resilience of deep neural network accelerators against soft errors and permanent
19
faults, in: Proc. Int. Symp. on-Line Testing and Robust System Design, 2020,
pp. 1–4, http://dx.doi.org/10.1109/IOLTS50870.2020.9159734.

[10] NVDLA open source project, 2018, URL http://nvdla.org/primer.html,
(Accessed: 2024-04-15).

[11] S.S. Mukherjee, C.T. Weaver, J. Emer, S.K. Reinhardt, T. Austin, Measuring
architectural vulnerability factors, IEEE Micro 23 (6) (2003) 70–75, http:
//dx.doi.org/10.1109/MM.2003.1261389.

[12] TensorFlow, https://www.tensorflow.org, (Accessed: 2023-05-05).
[13] S. Imambi, K.B. Prakash, G.R. Kanagachidambaresan, PyTorch, Springer Inter-

national Publishing, Cham, 2021, pp. 87–104, http://dx.doi.org/10.1007/978-
3-030-57077-4_10.

[14] A. Gulli, S. Pal, Deep Learning with Keras, Packt Publishing Ltd, 2017.
[15] DarkNet, https://pjreddie.com/darknet, Accessed: 2023-05-05.
[16] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadar-

rama, T. Darrell, Caffe: Convolutional architecture for fast feature embedding,
in: Proc. Int. Conf. Multimedia, 2014, pp. 675–678, http://dx.doi.org/10.1145/
2647868.2654889.

[17] NVIDIA, TensorRT, https://developer.nvidia.com/tensorrt, Accessed: 2023-03-
10.

[18] NVIDIA, cuDNN, https://developer.nvidia.com/cudnn, Accessed: 2023-05-05.
[19] CEA List, N2D2, 2019, https://github.com/CEA-LIST/N2D2, (Accessed: 2023-

03-10).
[20] Y. Umuroglu, N.J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre,

K. Vissers, FINN: A framework for fast, scalable binarized neural network
inference, in: Proc. Int. Symp. Field-Programmable Gate Arrays, 2017, pp.
65–74, http://dx.doi.org/10.1145/3020078.3021744.

[21] CMSIS-NN, https://www.keil.com/pack/doc/CMSIS/NN/html/index.html, (Ac-
cessed: 2023-05-05).

[22] A. Capotondi, M. Rusci, M. Fariselli, L. Benini, CMix-NN: Mixed low-precision
CNN library for memory-constrained edge devices, IEEE Trans. Circuits Syst. II:
Express Briefs 67 (5) (2020) 871–875, http://dx.doi.org/10.1109/TCSII.2020.
2983648.

http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1145/3508352.3561111
http://dx.doi.org/10.1145/3508352.3561111
http://dx.doi.org/10.1145/3508352.3561111
http://dx.doi.org/10.1145/3316781.3323474
http://dx.doi.org/10.1145/3316781.3323474
http://dx.doi.org/10.1145/3316781.3323474
http://dx.doi.org/10.1109/TDSC.2004.2
http://dx.doi.org/10.1016/j.sysarc.2019.101689
http://dx.doi.org/10.1016/j.sysarc.2019.101689
http://dx.doi.org/10.1016/j.sysarc.2019.101689
http://dx.doi.org/10.1016/j.microrel.2020.113969
http://dx.doi.org/10.1109/MC.2022.3217841
http://dx.doi.org/10.1145/3316781.3323472
http://dx.doi.org/10.1145/3316781.3323472
http://dx.doi.org/10.1145/3316781.3323472
http://dx.doi.org/10.1109/IOLTS50870.2020.9159734
http://nvdla.org/primer.html
http://dx.doi.org/10.1109/MM.2003.1261389
http://dx.doi.org/10.1109/MM.2003.1261389
http://dx.doi.org/10.1109/MM.2003.1261389
https://www.tensorflow.org
http://dx.doi.org/10.1007/978-3-030-57077-4_10
http://dx.doi.org/10.1007/978-3-030-57077-4_10
http://dx.doi.org/10.1007/978-3-030-57077-4_10
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb14
https://pjreddie.com/darknet
http://dx.doi.org/10.1145/2647868.2654889
http://dx.doi.org/10.1145/2647868.2654889
http://dx.doi.org/10.1145/2647868.2654889
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/cudnn
https://github.com/CEA-LIST/N2D2
http://dx.doi.org/10.1145/3020078.3021744
https://www.keil.com/pack/doc/CMSIS/NN/html/index.html
http://dx.doi.org/10.1109/TCSII.2020.2983648
http://dx.doi.org/10.1109/TCSII.2020.2983648
http://dx.doi.org/10.1109/TCSII.2020.2983648

C. Bolchini et al. Computer Science Review 54 (2024) 100682
[23] A. Bosio, P. Bernardi, A. Ruospo, E. Sánchez, A reliability analysis of a deep
neural network, in: Proc. Latin American Test Symp., 2019, pp. 1–6, http:
//dx.doi.org/10.1109/LATW.2019.8704548.

[24] Z. Chen, G. Li, K. Pattabiraman, N. DeBardeleben, BinFI: An efficient fault
injector for safety-critical machine learning systems, in: Proc. Int. Conf. High
Performance Computing, Networking, Storage and Analysis, 2019, pp. 1–23,
http://dx.doi.org/10.1145/3295500.3356177.

[25] N. Narayanan, Z. Chen, B. Fang, G. Li, K. Pattabiraman, N. Debardeleben, Fault
injection for TensorFlow applications, IEEE Trans. Dependable Secure Comput.
20 (4) (2023) 2677–2695, http://dx.doi.org/10.1109/TDSC.2022.3175930.

[26] S. Laskar, M.H. Rahman, B. Zhang, G. Li, Characterizing deep learning neural
network failures between algorithmic inaccuracy and transient hardware faults,
in: Proc. Pacific Rim Int. Symp. Dependable Computing, 2022, pp. 54–67,
http://dx.doi.org/10.1109/PRDC55274.2022.00020.

[27] A. Mahmoud, N. Aggarwal, A. Nobbe, J.R.S. Vicarte, S.V. Adve, C.W. Fletcher, I.
Frosio, S.K.S. Hari, PyTorchFI: A runtime perturbation tool for DNNs, in: Proc.
Int. Conf. Dependable Systems and Networks Workshops, 2020, pp. 284–291,
http://dx.doi.org/10.1109/DSN-W50199.2020.00014.

[28] B. Reagen, U. Gupta, L. Pentecost, P. Whatmough, S.K. Lee, N. Mulholland,
D. Brooks, G. Wei, Ares: A framework for quantifying the resilience of Deep
Neural Networks, in: Proc. Design Automation Conf., 2018, pp. 1–6, http:
//dx.doi.org/10.1145/3195970.3195997.

[29] L. Ping, J. Tan, K. Yan, SERN: Modeling and analyzing the soft error reliability
of convolutional neural networks, in: Proc. Great Lakes Symp. VLSI, 2020, pp.
445–450, http://dx.doi.org/10.1145/3386263.3406938.

[30] A. Ruospo, G. Gavarini, C. de Sio, J. Guerrero, L. Sterpone, M.S. Reorda, E.
Sanchez, R. Mariani, J. Aribido, J. Athavale, Assessing convolutional neural
networks reliability through statistical fault injections, in: Proc. Design, Au-
tomation & Test in Europe Conference & Exhibition, 2023, pp. 1–6, http:
//dx.doi.org/10.23919/DATE56975.2023.10136998.

[31] B.F. Goldstein, S. Srinivasan, D. Das, K. Banerjee, L. Santiago, V.C. Ferreira,
A.S. Nery, S. Kundu, F.M. França, Reliability evaluation of compressed deep
learning models, in: Proc. Latin American Symp. Circuits & Systems, 2020, pp.
1–5, http://dx.doi.org/10.1109/LASCAS45839.2020.9069026.

[32] Y.-Y. Tsai, J.-F. Li, Evaluating the impact of fault-tolerance capability of deep
neural networks caused by faults, in: Proc. Int. System-on-Chip Conf., 2021, pp.
272–277, http://dx.doi.org/10.1109/SOCC52499.2021.9739383.

[33] M. Sabbagh, C. Gongyex, Y. Fei, Y. Wang, Evaluating fault resiliency of
compressed deep neural networks, in: Proc. Int. Conf. Embedded Software and
Systems, 2019, pp. 1–7, http://dx.doi.org/10.1109/ICESS.2019.8782505.

[34] A. Ruospo, E. Sanchez, M. Traiola, I. O’Connor, A. Bosio, Investigating data
representation for efficient and reliable Convolutional Neural Networks, Mi-
croprocess. Microsyst. 86 (2021) 104318, http://dx.doi.org/10.1016/j.micpro.
2021.104318.

[35] G. Gavarini, A. Ruospo, E. Sanchez, On the resilience of representative and
novel data formats in CNNs, in: Proc. Int. Symp. Defect and Fault Tolerance in
VLSI and Nanotechnology Systems, 2023, pp. 1–6, http://dx.doi.org/10.1109/
DFT59622.2023.10313551.

[36] Y. Zhang, H. Itsuji, T. Uezono, T. Toba, M. Hashimoto, Estimating vulnerability
of all model parameters in DNN with a small number of fault injections, in:
Proc. Design, Automation & Test in Europe Conference & Exhibition, 2022, pp.
60–63, http://dx.doi.org/10.23919/DATE54114.2022.9774569.

[37] F. Libano, P. Rech, B. Neuman, J. Leavitt, M. Wirthlin, J. Brunhaver, How
reduced data precision and degree of parallelism impact the reliability of
convolutional neural networks on FPGAs, IEEE Trans. Nucl. Sci. 68 (5) (2021)
865–872, http://dx.doi.org/10.1109/TNS.2021.3050707.

[38] I. Souvatzoglou, A. Papadimitriou, A. Sari, V. Vlagkoulis, M. Psarakis, Ana-
lyzing the single event upset vulnerability of binarized neural networks on
SRAM FPGAs, in: Proc. Int. Symp. Defect and Fault Tolerance in VLSI and
Nanotechnology Systems, 2021, pp. 1–6, http://dx.doi.org/10.1109/DFT52944.
2021.9568280.

[39] H.-B. Wang, Y.-S. Wang, J.-H. Xiao, S.-L. Wang, T.-J. Liang, Impact of single-
event upsets on convolutional neural networks in xilinx zynq FPGAs, IEEE
Trans. Nucl. Sci. 68 (4) (2021) 394–401, http://dx.doi.org/10.1109/TNS.2021.
3062014.

[40] D. Xu, Z. Zhu, C. Liu, Y. Wang, S. Zhao, L. Zhang, H. Liang, H. Li, K.-T. Cheng,
Reliability evaluation and analysis of FPGA-based neural network acceleration
system, IEEE Trans. Very Large Scale Integr. Syst. 29 (3) (2021) 472–484,
http://dx.doi.org/10.1109/TVLSI.2020.3046075.

[41] Z. Gao, S. Gao, Y. Yao, Q. Liu, S. Zeng, G. Ge, Y. Wang, A. Ullah, P. Reviriego,
Systematic reliability evaluation of FPGA implemented CNN accelerators, IEEE
Trans. Dev. Mater. Reliabil. 23 (1) (2023) 116–126, http://dx.doi.org/10.1109/
TDMR.2023.3235767.

[42] H. Tian, Y. Ibrahim, R. Chen, C. Jin, S. Shi, J. Xing, J. Li, L. Chen, Evaluation
of SEU impact on convolutional neural networks based on BRAM and CRAM in
FPGAs, Microelectron. Reliabil. 144 (2023) 114974, http://dx.doi.org/10.1016/
j.microrel.2023.114974.

[43] F. F. dos Santos, P.F. Pimenta, C.B. Lunardi, L. Draghetti, L. Carro, D.R. Kaeli, P.
Rech, Analyzing and increasing the reliability of convolutional neural networks
on GPUs, IEEE Trans. Reliabil. 68 (2) (2019) 663–677, http://dx.doi.org/10.
1109/TR.2018.2878387.
20
[44] R.L. Rech Junior, S. Malde, C. Cazzaniga, M. Kastriotou, M. Letiche, C. Frost, P.
Rech, High energy and thermal neutron sensitivity of google tensor processing
units, IEEE Trans. Nucl. Sci. 69 (3) (2022) 567–575, http://dx.doi.org/10.1109/
TNS.2022.3142092.

[45] A. Chaudhuri, C.-Y. Chen, J. Talukdar, S. Madala, A.K. Dubey, K. Chakrabarty,
Efficient fault-criticality analysis for AI accelerators using a neural twin, in:
Proc. Int. Test Conf., 2021, pp. 73–82, http://dx.doi.org/10.1109/ITC50571.
2021.00015.

[46] S. Pappalardo, A. Ruospo, I. O’Connor, B. Deveautour, E. Sanchez, A. Bosio,
Resilience-performance tradeoff analysis of a deep neural network accelerator,
in: Proc Int. Symp. Design and Diagnostics of Electronic Circuits and Systems,
2023, pp. 181–186, http://dx.doi.org/10.1109/DDECS57882.2023.10139704.

[47] Y. He, P. Balaprakash, Y. Li, Fidelity: Efficient resilience analysis framework
for deep learning accelerators, in: Proc. Int. Symp. Microarchitecture, 2020,
pp. 270–281, http://dx.doi.org/10.1109/MICRO50266.2020.00033.

[48] Y. He, M. Hutton, S. Chan, R. De Gruijl, R. Govindaraju, N. Patil, Y. Li,
Understanding and mitigating hardware failures in deep learning training
systems, in: Proc. Int. Symp. Computer Architecture, 2023, http://dx.doi.org/
10.1145/3579371.3589105.

[49] T. Liu, Y. Fu, X. Xu, W. Yan, A cross-layer fault propagation analysis method
for edge intelligence systems deployed with DNNs, J. Syst. Archit. 116 (2021)
102057, http://dx.doi.org/10.1016/j.sysarc.2021.102057.

[50] L. Matana Luza, A. Ruospo, D. Soderstrom, C. Cazzaniga, M. Kastriotou, E.
Sanchez, A. Bosio, L. Dilillo, Emulating the effects of radiation-induced soft-
errors for the reliability assessment of neural networks, IEEE Trans. Emerg.
Top. Comput. 10 (4) (2022) 1867–1882, http://dx.doi.org/10.1109/TETC.2021.
3116999.

[51] J.E. Rodriguez Condia, J.-D. Guerrero-Balaguera, F.F. Dos Santos, M.S. Reorda,
P. Rech, A multi-level approach to evaluate the impact of GPU permanent
faults on CNN’s reliability, in: Proc. Int. Test Conf., 2022, pp. 278–287, http:
//dx.doi.org/10.1109/ITC50671.2022.00036.

[52] O. Villa, M. Stephenson, D. Nellans, S.W. Keckler, NVBit: A dynamic bi-
nary instrumentation framework for NVIDIA GPUs, in: Proc. Int. Symp.
Microarchitecture, 2019, pp. 372–383, http://dx.doi.org/10.1145/3352460.
3358307.

[53] J.E.R. Condia, B. Du, M. Sonza Reorda, L. Sterpone, FlexGripPlus: An improved
GPGPU model to support reliability analysis, Microelectron. Reliabil. 109 (2020)
113660, http://dx.doi.org/10.1016/j.microrel.2020.113660.

[54] K. Chen, X. Chen, Y. Zhang, Z. Zhang, A rapid evaluation technology for SEU in
convolutional neural network circuits, in: Proc. Int. Conf. Circuits and Systems,
2021, pp. 19–23, http://dx.doi.org/10.1109/ICCS52645.2021.9697197.

[55] C. Bolchini, L. Cassano, A. Miele, A. Toschi, Fast and accurate error simulation
for CNNs against soft errors, IEEE Trans. Comput. 72 (4) (2023) 984–997,
http://dx.doi.org/10.1109/TC.2022.3184274.

[56] C. Bolchini, L. Cassano, A. Miele, A. Nazzari, D. Passarello, Analyzing the relia-
bility of alternative convolution implementations for deep learning applications,
in: Proc. Int. Symp. Defect and Fault Tolerance in VLSI and Nanotechnology
Systems, 2023, pp. 1–6, http://dx.doi.org/10.1109/DFT59622.2023.10313558.

[57] J. Hoefer, F. Kempf, T. Hotfilter, F. Kreß, T. Harbaum, J. Becker, SiFI-AI:
A fast and flexible RTL fault simulation framework tailored for AI models
and accelerators, in: Proc. Great Lakes Symp. VLSI, 2023, pp. 287–292, http:
//dx.doi.org/10.1145/3583781.3590226.

[58] J. Tan, Q. Wang, K. Yan, X. Wei, X. Fu, Saca-FI: A microarchitecture-level
fault injection framework for reliability analysis of systolic array based CNN
accelerator, Future Gener. Comput. Syst. 147 (2023) 251–264, http://dx.doi.
org/10.1016/j.future.2023.05.009.

[59] C. De Sio, S. Azimi, L. Sterpone, FireNN: Neural networks reliability evaluation
on hybrid platforms, IEEE Trans. Emerg. Top. Comput. 10 (2) (2022) 549–563,
http://dx.doi.org/10.1109/TETC.2022.3152668.

[60] U.K. Agarwal, A. Chan, K. Pattabiraman, LLTFI: Framework agnostic fault
injection for machine learning applications (tools and artifact track), in: Proc.
Int. Symp. Software Reliability Engineering, 2022, pp. 286–296, http://dx.doi.
org/10.1109/ISSRE55969.2022.00036.

[61] M. Taheri, M. Riazati, M.H. Ahmadilivani, M. Jenihhin, M. Daneshtalab, J. Raik,
M. Sjödin, B. Lisper, DeepAxe: A framework for exploration of approximation
and reliability trade-offs in DNN accelerators, in: Proc. Int. Symp. Quality
Electronic Design, 2023, pp. 1–8, http://dx.doi.org/10.1109/ISQED57927.2023.
10129353.

[62] A. Lotfi, S. Hukerikar, K. Balasubramanian, P. Racunas, N. Saxena, R. Bramley,
Y. Huang, Resiliency of automotive object detection networks on GPU archi-
tectures, in: Proc. Int. Test Conf., 2019, pp. 1–9, http://dx.doi.org/10.1109/
ITC44170.2019.9000150.

[63] M.A. Neggaz, I. Alouani, S. Niar, F. Kurdahi, Are CNNs reliable enough for
critical applications? an exploratory study, IEEE Des. Test 37 (2) (2019) 76–83,
http://dx.doi.org/10.1109/MDAT.2019.2952336.

[64] Y. Ibrahim, H. Wang, M. Bai, Z. Liu, J. Wang, Z. Yang, Z. Chen, Soft error
resilience of deep residual networks for object recognition, IEEE Access 8 (2020)
19490–19503.

http://dx.doi.org/10.1109/LATW.2019.8704548
http://dx.doi.org/10.1109/LATW.2019.8704548
http://dx.doi.org/10.1109/LATW.2019.8704548
http://dx.doi.org/10.1145/3295500.3356177
http://dx.doi.org/10.1109/TDSC.2022.3175930
http://dx.doi.org/10.1109/PRDC55274.2022.00020
http://dx.doi.org/10.1109/DSN-W50199.2020.00014
http://dx.doi.org/10.1145/3195970.3195997
http://dx.doi.org/10.1145/3195970.3195997
http://dx.doi.org/10.1145/3195970.3195997
http://dx.doi.org/10.1145/3386263.3406938
http://dx.doi.org/10.23919/DATE56975.2023.10136998
http://dx.doi.org/10.23919/DATE56975.2023.10136998
http://dx.doi.org/10.23919/DATE56975.2023.10136998
http://dx.doi.org/10.1109/LASCAS45839.2020.9069026
http://dx.doi.org/10.1109/SOCC52499.2021.9739383
http://dx.doi.org/10.1109/ICESS.2019.8782505
http://dx.doi.org/10.1016/j.micpro.2021.104318
http://dx.doi.org/10.1016/j.micpro.2021.104318
http://dx.doi.org/10.1016/j.micpro.2021.104318
http://dx.doi.org/10.1109/DFT59622.2023.10313551
http://dx.doi.org/10.1109/DFT59622.2023.10313551
http://dx.doi.org/10.1109/DFT59622.2023.10313551
http://dx.doi.org/10.23919/DATE54114.2022.9774569
http://dx.doi.org/10.1109/TNS.2021.3050707
http://dx.doi.org/10.1109/DFT52944.2021.9568280
http://dx.doi.org/10.1109/DFT52944.2021.9568280
http://dx.doi.org/10.1109/DFT52944.2021.9568280
http://dx.doi.org/10.1109/TNS.2021.3062014
http://dx.doi.org/10.1109/TNS.2021.3062014
http://dx.doi.org/10.1109/TNS.2021.3062014
http://dx.doi.org/10.1109/TVLSI.2020.3046075
http://dx.doi.org/10.1109/TDMR.2023.3235767
http://dx.doi.org/10.1109/TDMR.2023.3235767
http://dx.doi.org/10.1109/TDMR.2023.3235767
http://dx.doi.org/10.1016/j.microrel.2023.114974
http://dx.doi.org/10.1016/j.microrel.2023.114974
http://dx.doi.org/10.1016/j.microrel.2023.114974
http://dx.doi.org/10.1109/TR.2018.2878387
http://dx.doi.org/10.1109/TR.2018.2878387
http://dx.doi.org/10.1109/TR.2018.2878387
http://dx.doi.org/10.1109/TNS.2022.3142092
http://dx.doi.org/10.1109/TNS.2022.3142092
http://dx.doi.org/10.1109/TNS.2022.3142092
http://dx.doi.org/10.1109/ITC50571.2021.00015
http://dx.doi.org/10.1109/ITC50571.2021.00015
http://dx.doi.org/10.1109/ITC50571.2021.00015
http://dx.doi.org/10.1109/DDECS57882.2023.10139704
http://dx.doi.org/10.1109/MICRO50266.2020.00033
http://dx.doi.org/10.1145/3579371.3589105
http://dx.doi.org/10.1145/3579371.3589105
http://dx.doi.org/10.1145/3579371.3589105
http://dx.doi.org/10.1016/j.sysarc.2021.102057
http://dx.doi.org/10.1109/TETC.2021.3116999
http://dx.doi.org/10.1109/TETC.2021.3116999
http://dx.doi.org/10.1109/TETC.2021.3116999
http://dx.doi.org/10.1109/ITC50671.2022.00036
http://dx.doi.org/10.1109/ITC50671.2022.00036
http://dx.doi.org/10.1109/ITC50671.2022.00036
http://dx.doi.org/10.1145/3352460.3358307
http://dx.doi.org/10.1145/3352460.3358307
http://dx.doi.org/10.1145/3352460.3358307
http://dx.doi.org/10.1016/j.microrel.2020.113660
http://dx.doi.org/10.1109/ICCS52645.2021.9697197
http://dx.doi.org/10.1109/TC.2022.3184274
http://dx.doi.org/10.1109/DFT59622.2023.10313558
http://dx.doi.org/10.1145/3583781.3590226
http://dx.doi.org/10.1145/3583781.3590226
http://dx.doi.org/10.1145/3583781.3590226
http://dx.doi.org/10.1016/j.future.2023.05.009
http://dx.doi.org/10.1016/j.future.2023.05.009
http://dx.doi.org/10.1016/j.future.2023.05.009
http://dx.doi.org/10.1109/TETC.2022.3152668
http://dx.doi.org/10.1109/ISSRE55969.2022.00036
http://dx.doi.org/10.1109/ISSRE55969.2022.00036
http://dx.doi.org/10.1109/ISSRE55969.2022.00036
http://dx.doi.org/10.1109/ISQED57927.2023.10129353
http://dx.doi.org/10.1109/ISQED57927.2023.10129353
http://dx.doi.org/10.1109/ISQED57927.2023.10129353
http://dx.doi.org/10.1109/ITC44170.2019.9000150
http://dx.doi.org/10.1109/ITC44170.2019.9000150
http://dx.doi.org/10.1109/ITC44170.2019.9000150
http://dx.doi.org/10.1109/MDAT.2019.2952336
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb64
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb64
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb64
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb64
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb64

C. Bolchini et al. Computer Science Review 54 (2024) 100682
[65] Y. Ibrahim, H. Wang, K. Adam, Analyzing the reliability of convolutional neural
networks on GPUs: GoogLeNet as a case study, in: Proc. Int. Conf. Computing
and Information Technology, 2020, pp. 1–6, http://dx.doi.org/10.1109/ICCIT-
144147971.2020.9213804.

[66] E. Malekzadeh, N. Rohbani, Z. Lu, M. Ebrahimi, The impact of faults on DNNs:
A case study, in: Proc. Int. Symp. Defect and Fault Tolerance in VLSI and
Nanotechnology Systems, 2021, pp. 1–6, http://dx.doi.org/10.1109/DFT52944.
2021.9568340.

[67] S. Kundu, S. Banerjee, A. Raha, S. Natarajan, K. Basu, Toward functional safety
of systolic array-based deep learning hardware accelerators, IEEE Trans. Very
Large Scale Integr. (VLSI) Syst. 29 (3) (2021) 485–498.

[68] Y. He, Y. Li, Understanding permanent hardware failures in deep learning
training accelerator systems, in: Proc. European Test Symp., 2023, pp. 1–6,
http://dx.doi.org/10.1109/ETS56758.2023.10173972.

[69] A. Mahmoud, S.K.S. Hari, C.W. Fletcher, S.V. Adve, C. Sakr, N. Shanbhag, P.
Molchanov, M.B. Sullivan, T. Tsai, S.W. Keckler, Optimizing selective protection
for CNN resilience, in: Proc. Int. Symp. Software Reliability Engineering, 2021,
pp. 127–138, http://dx.doi.org/10.1109/ISSRE52982.2021.00025.

[70] M. Sabih, F. Hannig, J. Teich, Fault-tolerant low-precision DNNs using explain-
able AI, in: Proc. Int. Conf. Dependable Systems and Networks Workshops,
2021, pp. 166–174, http://dx.doi.org/10.1109/DSN-W52860.2021.00036.

[71] T. Garrett, A.D. George, Improving dependability of onboard deep learning
with resilient TensorFlow, in: Proc. Space Computing Conf., 2021, pp. 134–142,
http://dx.doi.org/10.1109/SCC49971.2021.00021.

[72] T. Tsai, S.K.S. Hari, M. Sullivan, O. Villa, S.W. Keckler, NVBitFI: Dynamic fault
injection for GPUs, in: Proc. Int. Conf. Dependable Systems and Networks, 2021,
pp. 25–31, http://dx.doi.org/10.1109/DSN48987.2021.00041.

[73] G. Abich, J. Gava, R. Garibotti, R. Reis, L. Ost, Applying lightweight soft error
mitigation techniques to embedded mixed precision Deep Neural Networks,
IEEE Trans. Circuits Syst. I: Regular Pap. 68 (11) (2021) 4772–4782.

[74] J. Gava, V. Bandeira, F. Rosa, R. Garibotti, R. Reis, L. Ost, SOFIA: An automated
framework for early soft error assessment, identification, and mitigation, J. Syst.
Archit. 131 (2022) 102710.

[75] J. Gava, A. Hanneman, G. Abich, R. Garibotti, S. Cuenca-Asensi, R.P. Bastos, R.
Reis, L. Ost, A lightweight mitigation technique for resource-constrained devices
executing DNN inference models under neutron radiation, IEEE Trans. Nucl. Sci.
70 (8) (2023) 1625–1633.

[76] C. Bolchini, L. Cassano, A. Miele, A. Nazzari, Selective hardening of CNNs
based on layer vulnerability estimation, in: Proc. Int. Symp. Defect and Fault
Tolerance in VLSI and Nanotechnology Systems, 2022, pp. 1–6, http://dx.doi.
org/10.1109/DFT56152.2022.9962339.

[77] M. Biasielli, C. Bolchini, L. Cassano, A. Mazzeo, A. Miele, Approximation-
based fault tolerance in image processing applications, IEEE Trans. Emerg. Top.
Comput. 10 (2) (2022) 648–661.

[78] A. Ruospo, G. Gavarini, I. Bragaglia, M. Traiola, A. Bosio, E. Sanchez, Selective
hardening of critical neurons in deep neural networks, in: Proc. Int. Symp.
Design and Diagnostics of Electronic Circuits and Systems, 2022, pp. 136–141,
http://dx.doi.org/10.1109/DDECS54261.2022.9770168.

[79] A. Ruospo, E. Sanchez, On the reliability assessment of artificial neural networks
running on AI-oriented MPSoCs, Appl. Sci. 11 (14) (2021) 6455.

[80] N. Khoshavi, A. Roohi, C. Broyles, S. Sargolzaei, Y. Bi, D.Z. Pan, SHIELDeNN:
Online accelerated framework for fault-tolerant deep neural network architec-
tures, in: Proc. Design Automation Conf., 2020, pp. 1–6, http://dx.doi.org/10.
1109/DAC18072.2020.9218697.

[81] T.G. Bertoa, G. Gambardella, N.J. Fraser, M. Blott, J. McAllister, Fault tolerant
neural network accelerators with selective TMR, IEEE Des. Test 40 (2) (2023)
67–74, http://dx.doi.org/10.1109/MDAT.2022.3174181.

[82] Z. Gao, H. Zhang, Y. Yao, J. Xiao, S. Zeng, G. Ge, Y. Wang, A. Ullah, P.
Reviriego, Soft error tolerant convolutional neural networks on FPGAs with
ensemble learning, IEEE Trans. Very Large Scale Integr. Syst. 30 (3) (2022)
291–302.

[83] B. Dong, Z. Wang, W. Chen, C. Chen, Y. Yang, Z. Yu, OR-ML: Enhancing
reliability for machine learning accelerator with opportunistic redundancy, in:
Proc. Design, Automation & Test in Europe Conference & Exhibition, 2021, pp.
739–742, http://dx.doi.org/10.23919/DATE51398.2021.9474016.

[84] K. Zhao, S. Di, S. Li, X. Liang, Y. Zhai, J. Chen, K. Ouyang, F. Cappello, Z. Chen,
FT-CNN: Algorithm-based fault tolerance for convolutional neural networks,
IEEE Trans. Parallel Distrib. Syst. 32 (7) (2021) 1677–1689.

[85] S.K.S. Hari, S.W. Sullivan, T. Tsai, S.W. Keckler, Making convolutions resilient
via algorithm-based error detection techniques, IEEE Trans. Dependable Secure
Comput. 19 (4) (2022) 2546–2558.

[86] J. Kosaian, K. Rashmi, Arithmetic-intensity-guided fault tolerance for neural
network inference on GPUs, in: Proc. Int. Conf. High Performance Computing,
Networking, Storage and Analysis, 2021, pp. 1–15, http://dx.doi.org/10.1145/
3458817.3476184.
21
[87] E. Ozen, A. Orailoglu, Low-cost error detection in deep neural network
accelerators with linear algorithmic checksums, J. Electron. Test. 36 (6) (2020)
703–718.

[88] M. Traiola, A. Kritikakou, O. Sentieys, harDNNing: a machine-learning-based
framework for fault tolerance assessment and protection of DNNs, in: Proc.
European Test Symp., 2023, pp. 1–6, http://dx.doi.org/10.1109/ETS56758.
2023.10174178.

[89] Z. Yan, Y. Shi, W. Liao, M. Hashimoto, X. Zhou, C. Zhuo, When single event
upset meets deep neural networks: Observations, explorations, and remedies,
in: Proc. Asia and South Pacific Design Automation Conf., 2020, pp. 163–168,
http://dx.doi.org/10.1109/ASP-DAC47756.2020.9045134.

[90] Z. Chen, G. Li, K. Pattabiraman, A low-cost fault corrector for Deep Neural
Networks through range restriction, in: Proc. Int. Conf. Dependable Systems and
Networks, 2021, pp. 1–13, http://dx.doi.org/10.1109/DSN48987.2021.00018.

[91] L.-H. Hoang, M.A. Hanif, M. Shafique, FT-ClipAct: Resilience analysis of deep
neural networks and improving their fault tolerance using clipped activation,
in: Proc. Design, Automation and Test in Europe Conference & Exhibition, 2020,
pp. 1241–1246.

[92] B. Ghavami, M. Sadati, Z. Fang, L. Shannon, FitAct: Error resilient deep neural
networks via fine-grained post-trainable ActIvation functions, in: Proc. Design,
Automation & Test in Europe Conference & Exhibitione, 2022, pp. 1239–1244,
http://dx.doi.org/10.48550/arXiv.2112.13544.

[93] E. Ozen, A. Orailoglu, SNR: Squeezing numerical range defuses bit error
vulnerability surface in deep neural networks, ACM Trans. Embed. Comput.
Syst. 20 (5s) (2021).

[94] C. Amarnath, M. Mejri, K. Ma, A. Chatterjee, Soft error resilient deep learn-
ing systems using neuron gradient statistics, in: Proc. Intl. Symp. on-Line
Testing and Robust System Design, 2022, pp. 1–7, http://dx.doi.org/10.1109/
IOLTS56730.2022.9897815.

[95] G. Gavarini, D. Stucchi, A. Ruospo, G. Boracchi, E. Sanchez, Open-set recogni-
tion: an inexpensive strategy to increase DNN reliability, in: Proc. Intl. Symp.
on-Line Testing and Robust System Design, 2022, pp. 1–7, http://dx.doi.org/
10.1109/IOLTS56730.2022.9897805.

[96] H. Guan, L. Ning, Z. Lin, X. Shen, H. Zhou, S.-H. Lim, In-place zero-space
memory protection for CNN, in: Proc. Int. Conf. Neural Information Processing
Systems, 2019, pp. 1–10, http://dx.doi.org/10.5555/3454287.3454802.

[97] S.-S. Lee, J.-S. Yang, Value-aware parity insertion ECC for fault-tolerant deep
neural network, in: Proc. Design, Automation & Test in Europe Conference &
Exhibition, 2022, pp. 724–729, http://dx.doi.org/10.23919/DATE54114.2022.
9774543.

[98] S. Burel, A. Evans, L. Anghel, Zero-overhead protection for CNN weights,
in: Proc. Int. Symp. Defect and Fault Tolerance in VLSI and Nanotechnology
Systems, 2021, pp. 1–6, http://dx.doi.org/10.1109/DFT52944.2021.9568363.

[99] J.J. Zhang, T. Gu, K. Basu, S. Garg, Analyzing and mitigating the impact of
permanent faults on a systolic array based neural network accelerator, in: Proc.
VLSI Test Symp., 2018, pp. 1–6, http://dx.doi.org/10.1109/VTS.2018.8368656.

[100] U. Zahid, G. Gambardella, N.J. Fraser, M. Blott, K. Vissers, FAT: Training neural
networks for reliable inference under hardware faults, in: Proc. Int. Test Conf.,
2020, pp. 1–10, http://dx.doi.org/10.1109/ITC44778.2020.9325249.

[101] N. Cavagnero, F. F. dos Santos, M. Ciccone, G. Averta, T. Tommasi, P. Rech,
Transient-fault-aware design and training to enhance DNNs reliability with zero-
overhead, in: Proc. Symp. on-Line Testing and Robust System Design, 2022, pp.
1–7, http://dx.doi.org/10.1109/IOLTS56730.2022.9897813.

[102] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L.-C. Chen, Mobilenetv2:
Inverted residuals and linear bottlenecks, in: Proc. Conf. Computer Vision and
Pattern Recognition, 2018, pp. 4510–4520.

[103] A.M. Buldu, A. Sen, K. Swaminathan, B. Kahne, MBET: Resilience improvement
method for DNNs, in: Proc. Int. Conf. Artificial Intelligence Testing, 2022, pp.
72–78, http://dx.doi.org/10.1109/AITest55621.2022.00019.

[104] A. Siddique, K.A. Hoque, Exposing reliability degradation and mitigation in
approximate DNNs under permanent faults, IEEE Trans. Very Large Scale Integr.
(VLSI) Syst. 31 (4) (2023) 555–566.

[105] Z. Liu, Y. Liu, Z. Chen, G. Guo, H. Wang, Analyzing and increasing soft error
resilience of Deep Neural Networks on ARM processors, Microelectron. Reliabil.
124 (2021) 114331, 1:11.

[106] N.-C. Huang, M.-S. Yang, Y.-C. Chang, K.-C. Wu, Decomposable architecture
and fault mitigation methodology for deep learning accelerators, in: Proc. Int.
Symp. Quality Electronic Design, 2023, pp. 1–8, http://dx.doi.org/10.1109/
ISQED57927.2023.10129283.

[107] Z. Zhang, L. Huang, R. Huang, W. Xu, D.S. Katz, Quantifying the impact of
memory errors in deep learning, in: Proc. Int. Conf. Cluster Computing, 2019,
pp. 1–12, http://dx.doi.org/10.1109/CLUSTER.2019.8890989.

[108] N. van Eck, L. Waltman, Software survey: VOSviewer, a computer program for
bibliometric mapping, Scientometrics 84 (2010) 523–538.

http://dx.doi.org/10.1109/ICCIT-144147971.2020.9213804
http://dx.doi.org/10.1109/ICCIT-144147971.2020.9213804
http://dx.doi.org/10.1109/ICCIT-144147971.2020.9213804
http://dx.doi.org/10.1109/DFT52944.2021.9568340
http://dx.doi.org/10.1109/DFT52944.2021.9568340
http://dx.doi.org/10.1109/DFT52944.2021.9568340
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb67
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb67
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb67
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb67
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb67
http://dx.doi.org/10.1109/ETS56758.2023.10173972
http://dx.doi.org/10.1109/ISSRE52982.2021.00025
http://dx.doi.org/10.1109/DSN-W52860.2021.00036
http://dx.doi.org/10.1109/SCC49971.2021.00021
http://dx.doi.org/10.1109/DSN48987.2021.00041
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb73
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb73
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb73
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb73
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb73
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb74
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb74
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb74
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb74
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb74
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb75
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb75
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb75
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb75
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb75
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb75
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb75
http://dx.doi.org/10.1109/DFT56152.2022.9962339
http://dx.doi.org/10.1109/DFT56152.2022.9962339
http://dx.doi.org/10.1109/DFT56152.2022.9962339
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb77
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb77
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb77
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb77
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb77
http://dx.doi.org/10.1109/DDECS54261.2022.9770168
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb79
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb79
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb79
http://dx.doi.org/10.1109/DAC18072.2020.9218697
http://dx.doi.org/10.1109/DAC18072.2020.9218697
http://dx.doi.org/10.1109/DAC18072.2020.9218697
http://dx.doi.org/10.1109/MDAT.2022.3174181
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb82
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb82
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb82
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb82
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb82
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb82
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb82
http://dx.doi.org/10.23919/DATE51398.2021.9474016
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb84
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb84
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb84
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb84
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb84
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb85
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb85
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb85
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb85
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb85
http://dx.doi.org/10.1145/3458817.3476184
http://dx.doi.org/10.1145/3458817.3476184
http://dx.doi.org/10.1145/3458817.3476184
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb87
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb87
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb87
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb87
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb87
http://dx.doi.org/10.1109/ETS56758.2023.10174178
http://dx.doi.org/10.1109/ETS56758.2023.10174178
http://dx.doi.org/10.1109/ETS56758.2023.10174178
http://dx.doi.org/10.1109/ASP-DAC47756.2020.9045134
http://dx.doi.org/10.1109/DSN48987.2021.00018
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb91
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb91
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb91
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb91
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb91
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb91
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb91
http://dx.doi.org/10.48550/arXiv.2112.13544
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb93
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb93
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb93
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb93
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb93
http://dx.doi.org/10.1109/IOLTS56730.2022.9897815
http://dx.doi.org/10.1109/IOLTS56730.2022.9897815
http://dx.doi.org/10.1109/IOLTS56730.2022.9897815
http://dx.doi.org/10.1109/IOLTS56730.2022.9897805
http://dx.doi.org/10.1109/IOLTS56730.2022.9897805
http://dx.doi.org/10.1109/IOLTS56730.2022.9897805
http://dx.doi.org/10.5555/3454287.3454802
http://dx.doi.org/10.23919/DATE54114.2022.9774543
http://dx.doi.org/10.23919/DATE54114.2022.9774543
http://dx.doi.org/10.23919/DATE54114.2022.9774543
http://dx.doi.org/10.1109/DFT52944.2021.9568363
http://dx.doi.org/10.1109/VTS.2018.8368656
http://dx.doi.org/10.1109/ITC44778.2020.9325249
http://dx.doi.org/10.1109/IOLTS56730.2022.9897813
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb102
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb102
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb102
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb102
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb102
http://dx.doi.org/10.1109/AITest55621.2022.00019
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb104
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb104
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb104
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb104
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb104
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb105
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb105
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb105
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb105
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb105
http://dx.doi.org/10.1109/ISQED57927.2023.10129283
http://dx.doi.org/10.1109/ISQED57927.2023.10129283
http://dx.doi.org/10.1109/ISQED57927.2023.10129283
http://dx.doi.org/10.1109/CLUSTER.2019.8890989
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb108
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb108
http://refhub.elsevier.com/S1574-0137(24)00066-2/sb108

	Resilience of deep learning applications: A systematic literature review of analysis and hardening techniques
	Introduction
	Methodology
	Research design
	Research method
	Classification framework

	The state of the art
	Resilience Analysis
	Application-level Methodologies
	Hardware-level Methodologies
	Cross-layer Methodologies
	Custom methods

	Hardening Strategies
	Redundancy-based techniques
	DL algorithm-aware techniques

	Insights, challenges and opportunities
	Concluding remarks
	Declaration of competing interest
	Data availability
	References

